|  | //===- HexagonGenInsert.cpp -----------------------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "BitTracker.h" | 
|  | #include "HexagonBitTracker.h" | 
|  | #include "HexagonInstrInfo.h" | 
|  | #include "HexagonRegisterInfo.h" | 
|  | #include "HexagonSubtarget.h" | 
|  | #include "llvm/ADT/BitVector.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/GraphTraits.h" | 
|  | #include "llvm/ADT/PostOrderIterator.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineDominators.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | #include "llvm/IR/DebugLoc.h" | 
|  | #include "llvm/InitializePasses.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/Timer.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <iterator> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | #define DEBUG_TYPE "hexinsert" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | static cl::opt<unsigned> | 
|  | VRegIndexCutoff("insert-vreg-cutoff", cl::init(~0U), cl::Hidden, | 
|  | cl::desc("Vreg# cutoff for insert generation.")); | 
|  | // The distance cutoff is selected based on the precheckin-perf results: | 
|  | // cutoffs 20, 25, 35, and 40 are worse than 30. | 
|  | static cl::opt<unsigned> | 
|  | VRegDistCutoff("insert-dist-cutoff", cl::init(30U), cl::Hidden, | 
|  | cl::desc("Vreg distance cutoff for insert " | 
|  | "generation.")); | 
|  |  | 
|  | // Limit the container sizes for extreme cases where we run out of memory. | 
|  | static cl::opt<unsigned> | 
|  | MaxORLSize("insert-max-orl", cl::init(4096), cl::Hidden, | 
|  | cl::desc("Maximum size of OrderedRegisterList")); | 
|  | static cl::opt<unsigned> MaxIFMSize("insert-max-ifmap", cl::init(1024), | 
|  | cl::Hidden, | 
|  | cl::desc("Maximum size of IFMap")); | 
|  |  | 
|  | static cl::opt<bool> OptTiming("insert-timing", cl::Hidden, | 
|  | cl::desc("Enable timing of insert generation")); | 
|  | static cl::opt<bool> | 
|  | OptTimingDetail("insert-timing-detail", cl::Hidden, | 
|  | cl::desc("Enable detailed timing of insert " | 
|  | "generation")); | 
|  |  | 
|  | static cl::opt<bool> OptSelectAll0("insert-all0", cl::init(false), cl::Hidden); | 
|  | static cl::opt<bool> OptSelectHas0("insert-has0", cl::init(false), cl::Hidden); | 
|  | // Whether to construct constant values via "insert". Could eliminate constant | 
|  | // extenders, but often not practical. | 
|  | static cl::opt<bool> OptConst("insert-const", cl::init(false), cl::Hidden); | 
|  |  | 
|  | // The preprocessor gets confused when the DEBUG macro is passed larger | 
|  | // chunks of code. Use this function to detect debugging. | 
|  | inline static bool isDebug() { | 
|  | #ifndef NDEBUG | 
|  | return DebugFlag && isCurrentDebugType(DEBUG_TYPE); | 
|  | #else | 
|  | return false; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Set of virtual registers, based on BitVector. | 
|  | struct RegisterSet : private BitVector { | 
|  | RegisterSet() = default; | 
|  | explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {} | 
|  | RegisterSet(const RegisterSet &RS) = default; | 
|  | RegisterSet &operator=(const RegisterSet &RS) = default; | 
|  |  | 
|  | using BitVector::clear; | 
|  |  | 
|  | unsigned find_first() const { | 
|  | int First = BitVector::find_first(); | 
|  | if (First < 0) | 
|  | return 0; | 
|  | return x2v(First); | 
|  | } | 
|  |  | 
|  | unsigned find_next(unsigned Prev) const { | 
|  | int Next = BitVector::find_next(v2x(Prev)); | 
|  | if (Next < 0) | 
|  | return 0; | 
|  | return x2v(Next); | 
|  | } | 
|  |  | 
|  | RegisterSet &insert(unsigned R) { | 
|  | unsigned Idx = v2x(R); | 
|  | ensure(Idx); | 
|  | return static_cast<RegisterSet&>(BitVector::set(Idx)); | 
|  | } | 
|  | RegisterSet &remove(unsigned R) { | 
|  | unsigned Idx = v2x(R); | 
|  | if (Idx >= size()) | 
|  | return *this; | 
|  | return static_cast<RegisterSet&>(BitVector::reset(Idx)); | 
|  | } | 
|  |  | 
|  | RegisterSet &insert(const RegisterSet &Rs) { | 
|  | return static_cast<RegisterSet&>(BitVector::operator|=(Rs)); | 
|  | } | 
|  | RegisterSet &remove(const RegisterSet &Rs) { | 
|  | return static_cast<RegisterSet&>(BitVector::reset(Rs)); | 
|  | } | 
|  |  | 
|  | reference operator[](unsigned R) { | 
|  | unsigned Idx = v2x(R); | 
|  | ensure(Idx); | 
|  | return BitVector::operator[](Idx); | 
|  | } | 
|  | bool operator[](unsigned R) const { | 
|  | unsigned Idx = v2x(R); | 
|  | assert(Idx < size()); | 
|  | return BitVector::operator[](Idx); | 
|  | } | 
|  | bool has(unsigned R) const { | 
|  | unsigned Idx = v2x(R); | 
|  | if (Idx >= size()) | 
|  | return false; | 
|  | return BitVector::test(Idx); | 
|  | } | 
|  |  | 
|  | bool empty() const { | 
|  | return !BitVector::any(); | 
|  | } | 
|  | bool includes(const RegisterSet &Rs) const { | 
|  | // A.BitVector::test(B)  <=>  A-B != {} | 
|  | return !Rs.BitVector::test(*this); | 
|  | } | 
|  | bool intersects(const RegisterSet &Rs) const { | 
|  | return BitVector::anyCommon(Rs); | 
|  | } | 
|  |  | 
|  | private: | 
|  | void ensure(unsigned Idx) { | 
|  | if (size() <= Idx) | 
|  | resize(std::max(Idx+1, 32U)); | 
|  | } | 
|  |  | 
|  | static inline unsigned v2x(unsigned v) { | 
|  | return Register::virtReg2Index(v); | 
|  | } | 
|  |  | 
|  | static inline unsigned x2v(unsigned x) { | 
|  | return Register::index2VirtReg(x); | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct PrintRegSet { | 
|  | PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI) | 
|  | : RS(S), TRI(RI) {} | 
|  |  | 
|  | friend raw_ostream &operator<< (raw_ostream &OS, | 
|  | const PrintRegSet &P); | 
|  |  | 
|  | private: | 
|  | const RegisterSet &RS; | 
|  | const TargetRegisterInfo *TRI; | 
|  | }; | 
|  |  | 
|  | raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) { | 
|  | OS << '{'; | 
|  | for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R)) | 
|  | OS << ' ' << printReg(R, P.TRI); | 
|  | OS << " }"; | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | // A convenience class to associate unsigned numbers (such as virtual | 
|  | // registers) with unsigned numbers. | 
|  | struct UnsignedMap : public DenseMap<unsigned,unsigned> { | 
|  | UnsignedMap() = default; | 
|  |  | 
|  | private: | 
|  | using BaseType = DenseMap<unsigned, unsigned>; | 
|  | }; | 
|  |  | 
|  | // A utility to establish an ordering between virtual registers: | 
|  | // VRegA < VRegB  <=>  RegisterOrdering[VRegA] < RegisterOrdering[VRegB] | 
|  | // This is meant as a cache for the ordering of virtual registers defined | 
|  | // by a potentially expensive comparison function, or obtained by a proce- | 
|  | // dure that should not be repeated each time two registers are compared. | 
|  | struct RegisterOrdering : public UnsignedMap { | 
|  | RegisterOrdering() = default; | 
|  |  | 
|  | unsigned operator[](unsigned VR) const { | 
|  | const_iterator F = find(VR); | 
|  | assert(F != end()); | 
|  | return F->second; | 
|  | } | 
|  |  | 
|  | // Add operator(), so that objects of this class can be used as | 
|  | // comparators in std::sort et al. | 
|  | bool operator() (unsigned VR1, unsigned VR2) const { | 
|  | return operator[](VR1) < operator[](VR2); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Ordering of bit values. This class does not have operator[], but | 
|  | // is supplies a comparison operator() for use in std:: algorithms. | 
|  | // The order is as follows: | 
|  | // - 0 < 1 < ref | 
|  | // - ref1 < ref2, if ord(ref1.Reg) < ord(ref2.Reg), | 
|  | //   or ord(ref1.Reg) == ord(ref2.Reg), and ref1.Pos < ref2.Pos. | 
|  | struct BitValueOrdering { | 
|  | BitValueOrdering(const RegisterOrdering &RB) : BaseOrd(RB) {} | 
|  |  | 
|  | bool operator() (const BitTracker::BitValue &V1, | 
|  | const BitTracker::BitValue &V2) const; | 
|  |  | 
|  | const RegisterOrdering &BaseOrd; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | bool BitValueOrdering::operator() (const BitTracker::BitValue &V1, | 
|  | const BitTracker::BitValue &V2) const { | 
|  | if (V1 == V2) | 
|  | return false; | 
|  | // V1==0 => true, V2==0 => false | 
|  | if (V1.is(0) || V2.is(0)) | 
|  | return V1.is(0); | 
|  | // Neither of V1,V2 is 0, and V1!=V2. | 
|  | // V2==1 => false, V1==1 => true | 
|  | if (V2.is(1) || V1.is(1)) | 
|  | return !V2.is(1); | 
|  | // Both V1,V2 are refs. | 
|  | unsigned Ind1 = BaseOrd[V1.RefI.Reg], Ind2 = BaseOrd[V2.RefI.Reg]; | 
|  | if (Ind1 != Ind2) | 
|  | return Ind1 < Ind2; | 
|  | // If V1.Pos==V2.Pos | 
|  | assert(V1.RefI.Pos != V2.RefI.Pos && "Bit values should be different"); | 
|  | return V1.RefI.Pos < V2.RefI.Pos; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Cache for the BitTracker's cell map. Map lookup has a logarithmic | 
|  | // complexity, this class will memoize the lookup results to reduce | 
|  | // the access time for repeated lookups of the same cell. | 
|  | struct CellMapShadow { | 
|  | CellMapShadow(const BitTracker &T) : BT(T) {} | 
|  |  | 
|  | const BitTracker::RegisterCell &lookup(unsigned VR) { | 
|  | unsigned RInd = Register::virtReg2Index(VR); | 
|  | // Grow the vector to at least 32 elements. | 
|  | if (RInd >= CVect.size()) | 
|  | CVect.resize(std::max(RInd+16, 32U), nullptr); | 
|  | const BitTracker::RegisterCell *CP = CVect[RInd]; | 
|  | if (CP == nullptr) | 
|  | CP = CVect[RInd] = &BT.lookup(VR); | 
|  | return *CP; | 
|  | } | 
|  |  | 
|  | const BitTracker &BT; | 
|  |  | 
|  | private: | 
|  | using CellVectType = std::vector<const BitTracker::RegisterCell *>; | 
|  |  | 
|  | CellVectType CVect; | 
|  | }; | 
|  |  | 
|  | // Comparator class for lexicographic ordering of virtual registers | 
|  | // according to the corresponding BitTracker::RegisterCell objects. | 
|  | struct RegisterCellLexCompare { | 
|  | RegisterCellLexCompare(const BitValueOrdering &BO, CellMapShadow &M) | 
|  | : BitOrd(BO), CM(M) {} | 
|  |  | 
|  | bool operator() (unsigned VR1, unsigned VR2) const; | 
|  |  | 
|  | private: | 
|  | const BitValueOrdering &BitOrd; | 
|  | CellMapShadow &CM; | 
|  | }; | 
|  |  | 
|  | // Comparator class for lexicographic ordering of virtual registers | 
|  | // according to the specified bits of the corresponding BitTracker:: | 
|  | // RegisterCell objects. | 
|  | // Specifically, this class will be used to compare bit B of a register | 
|  | // cell for a selected virtual register R with bit N of any register | 
|  | // other than R. | 
|  | struct RegisterCellBitCompareSel { | 
|  | RegisterCellBitCompareSel(unsigned R, unsigned B, unsigned N, | 
|  | const BitValueOrdering &BO, CellMapShadow &M) | 
|  | : SelR(R), SelB(B), BitN(N), BitOrd(BO), CM(M) {} | 
|  |  | 
|  | bool operator() (unsigned VR1, unsigned VR2) const; | 
|  |  | 
|  | private: | 
|  | const unsigned SelR, SelB; | 
|  | const unsigned BitN; | 
|  | const BitValueOrdering &BitOrd; | 
|  | CellMapShadow &CM; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | bool RegisterCellLexCompare::operator() (unsigned VR1, unsigned VR2) const { | 
|  | // Ordering of registers, made up from two given orderings: | 
|  | // - the ordering of the register numbers, and | 
|  | // - the ordering of register cells. | 
|  | // Def. R1 < R2 if: | 
|  | // - cell(R1) < cell(R2), or | 
|  | // - cell(R1) == cell(R2), and index(R1) < index(R2). | 
|  | // | 
|  | // For register cells, the ordering is lexicographic, with index 0 being | 
|  | // the most significant. | 
|  | if (VR1 == VR2) | 
|  | return false; | 
|  |  | 
|  | const BitTracker::RegisterCell &RC1 = CM.lookup(VR1), &RC2 = CM.lookup(VR2); | 
|  | uint16_t W1 = RC1.width(), W2 = RC2.width(); | 
|  | for (uint16_t i = 0, w = std::min(W1, W2); i < w; ++i) { | 
|  | const BitTracker::BitValue &V1 = RC1[i], &V2 = RC2[i]; | 
|  | if (V1 != V2) | 
|  | return BitOrd(V1, V2); | 
|  | } | 
|  | // Cells are equal up until the common length. | 
|  | if (W1 != W2) | 
|  | return W1 < W2; | 
|  |  | 
|  | return BitOrd.BaseOrd[VR1] < BitOrd.BaseOrd[VR2]; | 
|  | } | 
|  |  | 
|  | bool RegisterCellBitCompareSel::operator() (unsigned VR1, unsigned VR2) const { | 
|  | if (VR1 == VR2) | 
|  | return false; | 
|  | const BitTracker::RegisterCell &RC1 = CM.lookup(VR1); | 
|  | const BitTracker::RegisterCell &RC2 = CM.lookup(VR2); | 
|  | uint16_t W1 = RC1.width(), W2 = RC2.width(); | 
|  | uint16_t Bit1 = (VR1 == SelR) ? SelB : BitN; | 
|  | uint16_t Bit2 = (VR2 == SelR) ? SelB : BitN; | 
|  | // If Bit1 exceeds the width of VR1, then: | 
|  | // - return false, if at the same time Bit2 exceeds VR2, or | 
|  | // - return true, otherwise. | 
|  | // (I.e. "a bit value that does not exist is less than any bit value | 
|  | // that does exist".) | 
|  | if (W1 <= Bit1) | 
|  | return Bit2 < W2; | 
|  | // If Bit1 is within VR1, but Bit2 is not within VR2, return false. | 
|  | if (W2 <= Bit2) | 
|  | return false; | 
|  |  | 
|  | const BitTracker::BitValue &V1 = RC1[Bit1], V2 = RC2[Bit2]; | 
|  | if (V1 != V2) | 
|  | return BitOrd(V1, V2); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class OrderedRegisterList { | 
|  | using ListType = std::vector<unsigned>; | 
|  | const unsigned MaxSize; | 
|  |  | 
|  | public: | 
|  | OrderedRegisterList(const RegisterOrdering &RO) | 
|  | : MaxSize(MaxORLSize), Ord(RO) {} | 
|  |  | 
|  | void insert(unsigned VR); | 
|  | void remove(unsigned VR); | 
|  |  | 
|  | unsigned operator[](unsigned Idx) const { | 
|  | assert(Idx < Seq.size()); | 
|  | return Seq[Idx]; | 
|  | } | 
|  |  | 
|  | unsigned size() const { | 
|  | return Seq.size(); | 
|  | } | 
|  |  | 
|  | using iterator = ListType::iterator; | 
|  | using const_iterator = ListType::const_iterator; | 
|  |  | 
|  | iterator begin() { return Seq.begin(); } | 
|  | iterator end() { return Seq.end(); } | 
|  | const_iterator begin() const { return Seq.begin(); } | 
|  | const_iterator end() const { return Seq.end(); } | 
|  |  | 
|  | // Convenience function to convert an iterator to the corresponding index. | 
|  | unsigned idx(iterator It) const { return It-begin(); } | 
|  |  | 
|  | private: | 
|  | ListType Seq; | 
|  | const RegisterOrdering &Ord; | 
|  | }; | 
|  |  | 
|  | struct PrintORL { | 
|  | PrintORL(const OrderedRegisterList &L, const TargetRegisterInfo *RI) | 
|  | : RL(L), TRI(RI) {} | 
|  |  | 
|  | friend raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P); | 
|  |  | 
|  | private: | 
|  | const OrderedRegisterList &RL; | 
|  | const TargetRegisterInfo *TRI; | 
|  | }; | 
|  |  | 
|  | raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P) { | 
|  | OS << '('; | 
|  | OrderedRegisterList::const_iterator B = P.RL.begin(), E = P.RL.end(); | 
|  | for (OrderedRegisterList::const_iterator I = B; I != E; ++I) { | 
|  | if (I != B) | 
|  | OS << ", "; | 
|  | OS << printReg(*I, P.TRI); | 
|  | } | 
|  | OS << ')'; | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | void OrderedRegisterList::insert(unsigned VR) { | 
|  | iterator L = llvm::lower_bound(Seq, VR, Ord); | 
|  | if (L == Seq.end()) | 
|  | Seq.push_back(VR); | 
|  | else | 
|  | Seq.insert(L, VR); | 
|  |  | 
|  | unsigned S = Seq.size(); | 
|  | if (S > MaxSize) | 
|  | Seq.resize(MaxSize); | 
|  | assert(Seq.size() <= MaxSize); | 
|  | } | 
|  |  | 
|  | void OrderedRegisterList::remove(unsigned VR) { | 
|  | iterator L = llvm::lower_bound(Seq, VR, Ord); | 
|  | if (L != Seq.end()) | 
|  | Seq.erase(L); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // A record of the insert form. The fields correspond to the operands | 
|  | // of the "insert" instruction: | 
|  | // ... = insert(SrcR, InsR, #Wdh, #Off) | 
|  | struct IFRecord { | 
|  | IFRecord(unsigned SR = 0, unsigned IR = 0, uint16_t W = 0, uint16_t O = 0) | 
|  | : SrcR(SR), InsR(IR), Wdh(W), Off(O) {} | 
|  |  | 
|  | unsigned SrcR, InsR; | 
|  | uint16_t Wdh, Off; | 
|  | }; | 
|  |  | 
|  | struct PrintIFR { | 
|  | PrintIFR(const IFRecord &R, const TargetRegisterInfo *RI) | 
|  | : IFR(R), TRI(RI) {} | 
|  |  | 
|  | private: | 
|  | friend raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P); | 
|  |  | 
|  | const IFRecord &IFR; | 
|  | const TargetRegisterInfo *TRI; | 
|  | }; | 
|  |  | 
|  | raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P) { | 
|  | unsigned SrcR = P.IFR.SrcR, InsR = P.IFR.InsR; | 
|  | OS << '(' << printReg(SrcR, P.TRI) << ',' << printReg(InsR, P.TRI) | 
|  | << ",#" << P.IFR.Wdh << ",#" << P.IFR.Off << ')'; | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | using IFRecordWithRegSet = std::pair<IFRecord, RegisterSet>; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | void initializeHexagonGenInsertPass(PassRegistry&); | 
|  | FunctionPass *createHexagonGenInsert(); | 
|  |  | 
|  | } // end namespace llvm | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class HexagonGenInsert : public MachineFunctionPass { | 
|  | public: | 
|  | static char ID; | 
|  |  | 
|  | HexagonGenInsert() : MachineFunctionPass(ID) { | 
|  | initializeHexagonGenInsertPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | StringRef getPassName() const override { | 
|  | return "Hexagon generate \"insert\" instructions"; | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<MachineDominatorTree>(); | 
|  | AU.addPreserved<MachineDominatorTree>(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &MF) override; | 
|  |  | 
|  | private: | 
|  | using PairMapType = DenseMap<std::pair<unsigned, unsigned>, unsigned>; | 
|  |  | 
|  | void buildOrderingMF(RegisterOrdering &RO) const; | 
|  | void buildOrderingBT(RegisterOrdering &RB, RegisterOrdering &RO) const; | 
|  | bool isIntClass(const TargetRegisterClass *RC) const; | 
|  | bool isConstant(unsigned VR) const; | 
|  | bool isSmallConstant(unsigned VR) const; | 
|  | bool isValidInsertForm(unsigned DstR, unsigned SrcR, unsigned InsR, | 
|  | uint16_t L, uint16_t S) const; | 
|  | bool findSelfReference(unsigned VR) const; | 
|  | bool findNonSelfReference(unsigned VR) const; | 
|  | void getInstrDefs(const MachineInstr *MI, RegisterSet &Defs) const; | 
|  | void getInstrUses(const MachineInstr *MI, RegisterSet &Uses) const; | 
|  | unsigned distance(const MachineBasicBlock *FromB, | 
|  | const MachineBasicBlock *ToB, const UnsignedMap &RPO, | 
|  | PairMapType &M) const; | 
|  | unsigned distance(MachineBasicBlock::const_iterator FromI, | 
|  | MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO, | 
|  | PairMapType &M) const; | 
|  | bool findRecordInsertForms(unsigned VR, OrderedRegisterList &AVs); | 
|  | void collectInBlock(MachineBasicBlock *B, OrderedRegisterList &AVs); | 
|  | void findRemovableRegisters(unsigned VR, IFRecord IF, | 
|  | RegisterSet &RMs) const; | 
|  | void computeRemovableRegisters(); | 
|  |  | 
|  | void pruneEmptyLists(); | 
|  | void pruneCoveredSets(unsigned VR); | 
|  | void pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO, PairMapType &M); | 
|  | void pruneRegCopies(unsigned VR); | 
|  | void pruneCandidates(); | 
|  | void selectCandidates(); | 
|  | bool generateInserts(); | 
|  |  | 
|  | bool removeDeadCode(MachineDomTreeNode *N); | 
|  |  | 
|  | // IFRecord coupled with a set of potentially removable registers: | 
|  | using IFListType = std::vector<IFRecordWithRegSet>; | 
|  | using IFMapType = DenseMap<unsigned, IFListType>; // vreg -> IFListType | 
|  |  | 
|  | void dump_map() const; | 
|  |  | 
|  | const HexagonInstrInfo *HII = nullptr; | 
|  | const HexagonRegisterInfo *HRI = nullptr; | 
|  |  | 
|  | MachineFunction *MFN; | 
|  | MachineRegisterInfo *MRI; | 
|  | MachineDominatorTree *MDT; | 
|  | CellMapShadow *CMS; | 
|  |  | 
|  | RegisterOrdering BaseOrd; | 
|  | RegisterOrdering CellOrd; | 
|  | IFMapType IFMap; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char HexagonGenInsert::ID = 0; | 
|  |  | 
|  | void HexagonGenInsert::dump_map() const { | 
|  | for (const auto &I : IFMap) { | 
|  | dbgs() << "  " << printReg(I.first, HRI) << ":\n"; | 
|  | const IFListType &LL = I.second; | 
|  | for (const auto &J : LL) | 
|  | dbgs() << "    " << PrintIFR(J.first, HRI) << ", " | 
|  | << PrintRegSet(J.second, HRI) << '\n'; | 
|  | } | 
|  | } | 
|  |  | 
|  | void HexagonGenInsert::buildOrderingMF(RegisterOrdering &RO) const { | 
|  | unsigned Index = 0; | 
|  |  | 
|  | for (const MachineBasicBlock &B : *MFN) { | 
|  | if (!CMS->BT.reached(&B)) | 
|  | continue; | 
|  |  | 
|  | for (const MachineInstr &MI : B) { | 
|  | for (const MachineOperand &MO : MI.operands()) { | 
|  | if (MO.isReg() && MO.isDef()) { | 
|  | Register R = MO.getReg(); | 
|  | assert(MO.getSubReg() == 0 && "Unexpected subregister in definition"); | 
|  | if (R.isVirtual()) | 
|  | RO.insert(std::make_pair(R, Index++)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | // Since some virtual registers may have had their def and uses eliminated, | 
|  | // they are no longer referenced in the code, and so they will not appear | 
|  | // in the map. | 
|  | } | 
|  |  | 
|  | void HexagonGenInsert::buildOrderingBT(RegisterOrdering &RB, | 
|  | RegisterOrdering &RO) const { | 
|  | // Create a vector of all virtual registers (collect them from the base | 
|  | // ordering RB), and then sort it using the RegisterCell comparator. | 
|  | BitValueOrdering BVO(RB); | 
|  | RegisterCellLexCompare LexCmp(BVO, *CMS); | 
|  |  | 
|  | using SortableVectorType = std::vector<unsigned>; | 
|  |  | 
|  | SortableVectorType VRs; | 
|  | for (auto &I : RB) | 
|  | VRs.push_back(I.first); | 
|  | llvm::sort(VRs, LexCmp); | 
|  | // Transfer the results to the outgoing register ordering. | 
|  | for (unsigned i = 0, n = VRs.size(); i < n; ++i) | 
|  | RO.insert(std::make_pair(VRs[i], i)); | 
|  | } | 
|  |  | 
|  | inline bool HexagonGenInsert::isIntClass(const TargetRegisterClass *RC) const { | 
|  | return RC == &Hexagon::IntRegsRegClass || RC == &Hexagon::DoubleRegsRegClass; | 
|  | } | 
|  |  | 
|  | bool HexagonGenInsert::isConstant(unsigned VR) const { | 
|  | const BitTracker::RegisterCell &RC = CMS->lookup(VR); | 
|  | uint16_t W = RC.width(); | 
|  | for (uint16_t i = 0; i < W; ++i) { | 
|  | const BitTracker::BitValue &BV = RC[i]; | 
|  | if (BV.is(0) || BV.is(1)) | 
|  | continue; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool HexagonGenInsert::isSmallConstant(unsigned VR) const { | 
|  | const BitTracker::RegisterCell &RC = CMS->lookup(VR); | 
|  | uint16_t W = RC.width(); | 
|  | if (W > 64) | 
|  | return false; | 
|  | uint64_t V = 0, B = 1; | 
|  | for (uint16_t i = 0; i < W; ++i) { | 
|  | const BitTracker::BitValue &BV = RC[i]; | 
|  | if (BV.is(1)) | 
|  | V |= B; | 
|  | else if (!BV.is(0)) | 
|  | return false; | 
|  | B <<= 1; | 
|  | } | 
|  |  | 
|  | // For 32-bit registers, consider: Rd = #s16. | 
|  | if (W == 32) | 
|  | return isInt<16>(V); | 
|  |  | 
|  | // For 64-bit registers, it's Rdd = #s8 or Rdd = combine(#s8,#s8) | 
|  | return isInt<8>(Lo_32(V)) && isInt<8>(Hi_32(V)); | 
|  | } | 
|  |  | 
|  | bool HexagonGenInsert::isValidInsertForm(unsigned DstR, unsigned SrcR, | 
|  | unsigned InsR, uint16_t L, uint16_t S) const { | 
|  | const TargetRegisterClass *DstRC = MRI->getRegClass(DstR); | 
|  | const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcR); | 
|  | const TargetRegisterClass *InsRC = MRI->getRegClass(InsR); | 
|  | // Only integet (32-/64-bit) register classes. | 
|  | if (!isIntClass(DstRC) || !isIntClass(SrcRC) || !isIntClass(InsRC)) | 
|  | return false; | 
|  | // The "source" register must be of the same class as DstR. | 
|  | if (DstRC != SrcRC) | 
|  | return false; | 
|  | if (DstRC == InsRC) | 
|  | return true; | 
|  | // A 64-bit register can only be generated from other 64-bit registers. | 
|  | if (DstRC == &Hexagon::DoubleRegsRegClass) | 
|  | return false; | 
|  | // Otherwise, the L and S cannot span 32-bit word boundary. | 
|  | if (S < 32 && S+L > 32) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool HexagonGenInsert::findSelfReference(unsigned VR) const { | 
|  | const BitTracker::RegisterCell &RC = CMS->lookup(VR); | 
|  | for (uint16_t i = 0, w = RC.width(); i < w; ++i) { | 
|  | const BitTracker::BitValue &V = RC[i]; | 
|  | if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == VR) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool HexagonGenInsert::findNonSelfReference(unsigned VR) const { | 
|  | BitTracker::RegisterCell RC = CMS->lookup(VR); | 
|  | for (uint16_t i = 0, w = RC.width(); i < w; ++i) { | 
|  | const BitTracker::BitValue &V = RC[i]; | 
|  | if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != VR) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void HexagonGenInsert::getInstrDefs(const MachineInstr *MI, | 
|  | RegisterSet &Defs) const { | 
|  | for (const MachineOperand &MO : MI->operands()) { | 
|  | if (!MO.isReg() || !MO.isDef()) | 
|  | continue; | 
|  | Register R = MO.getReg(); | 
|  | if (!R.isVirtual()) | 
|  | continue; | 
|  | Defs.insert(R); | 
|  | } | 
|  | } | 
|  |  | 
|  | void HexagonGenInsert::getInstrUses(const MachineInstr *MI, | 
|  | RegisterSet &Uses) const { | 
|  | for (const MachineOperand &MO : MI->operands()) { | 
|  | if (!MO.isReg() || !MO.isUse()) | 
|  | continue; | 
|  | Register R = MO.getReg(); | 
|  | if (!R.isVirtual()) | 
|  | continue; | 
|  | Uses.insert(R); | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned HexagonGenInsert::distance(const MachineBasicBlock *FromB, | 
|  | const MachineBasicBlock *ToB, const UnsignedMap &RPO, | 
|  | PairMapType &M) const { | 
|  | // Forward distance from the end of a block to the beginning of it does | 
|  | // not make sense. This function should not be called with FromB == ToB. | 
|  | assert(FromB != ToB); | 
|  |  | 
|  | unsigned FromN = FromB->getNumber(), ToN = ToB->getNumber(); | 
|  | // If we have already computed it, return the cached result. | 
|  | PairMapType::iterator F = M.find(std::make_pair(FromN, ToN)); | 
|  | if (F != M.end()) | 
|  | return F->second; | 
|  | unsigned ToRPO = RPO.lookup(ToN); | 
|  |  | 
|  | unsigned MaxD = 0; | 
|  |  | 
|  | for (const MachineBasicBlock *PB : ToB->predecessors()) { | 
|  | // Skip back edges. Also, if FromB is a predecessor of ToB, the distance | 
|  | // along that path will be 0, and we don't need to do any calculations | 
|  | // on it. | 
|  | if (PB == FromB || RPO.lookup(PB->getNumber()) >= ToRPO) | 
|  | continue; | 
|  | unsigned D = PB->size() + distance(FromB, PB, RPO, M); | 
|  | if (D > MaxD) | 
|  | MaxD = D; | 
|  | } | 
|  |  | 
|  | // Memoize the result for later lookup. | 
|  | M.insert(std::make_pair(std::make_pair(FromN, ToN), MaxD)); | 
|  | return MaxD; | 
|  | } | 
|  |  | 
|  | unsigned HexagonGenInsert::distance(MachineBasicBlock::const_iterator FromI, | 
|  | MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO, | 
|  | PairMapType &M) const { | 
|  | const MachineBasicBlock *FB = FromI->getParent(), *TB = ToI->getParent(); | 
|  | if (FB == TB) | 
|  | return std::distance(FromI, ToI); | 
|  | unsigned D1 = std::distance(TB->begin(), ToI); | 
|  | unsigned D2 = distance(FB, TB, RPO, M); | 
|  | unsigned D3 = std::distance(FromI, FB->end()); | 
|  | return D1+D2+D3; | 
|  | } | 
|  |  | 
|  | bool HexagonGenInsert::findRecordInsertForms(unsigned VR, | 
|  | OrderedRegisterList &AVs) { | 
|  | if (isDebug()) { | 
|  | dbgs() << __func__ << ": " << printReg(VR, HRI) | 
|  | << "  AVs: " << PrintORL(AVs, HRI) << "\n"; | 
|  | } | 
|  | if (AVs.size() == 0) | 
|  | return false; | 
|  |  | 
|  | using iterator = OrderedRegisterList::iterator; | 
|  |  | 
|  | BitValueOrdering BVO(BaseOrd); | 
|  | const BitTracker::RegisterCell &RC = CMS->lookup(VR); | 
|  | uint16_t W = RC.width(); | 
|  |  | 
|  | using RSRecord = std::pair<unsigned, uint16_t>; // (reg,shift) | 
|  | using RSListType = std::vector<RSRecord>; | 
|  | // Have a map, with key being the matching prefix length, and the value | 
|  | // being the list of pairs (R,S), where R's prefix matches VR at S. | 
|  | // (DenseMap<uint16_t,RSListType> fails to instantiate.) | 
|  | using LRSMapType = DenseMap<unsigned, RSListType>; | 
|  | LRSMapType LM; | 
|  |  | 
|  | // Conceptually, rotate the cell RC right (i.e. towards the LSB) by S, | 
|  | // and find matching prefixes from AVs with the rotated RC. Such a prefix | 
|  | // would match a string of bits (of length L) in RC starting at S. | 
|  | for (uint16_t S = 0; S < W; ++S) { | 
|  | iterator B = AVs.begin(), E = AVs.end(); | 
|  | // The registers in AVs are ordered according to the lexical order of | 
|  | // the corresponding register cells. This means that the range of regis- | 
|  | // ters in AVs that match a prefix of length L+1 will be contained in | 
|  | // the range that matches a prefix of length L. This means that we can | 
|  | // keep narrowing the search space as the prefix length goes up. This | 
|  | // helps reduce the overall complexity of the search. | 
|  | uint16_t L; | 
|  | for (L = 0; L < W-S; ++L) { | 
|  | // Compare against VR's bits starting at S, which emulates rotation | 
|  | // of VR by S. | 
|  | RegisterCellBitCompareSel RCB(VR, S+L, L, BVO, *CMS); | 
|  | iterator NewB = std::lower_bound(B, E, VR, RCB); | 
|  | iterator NewE = std::upper_bound(NewB, E, VR, RCB); | 
|  | // For the registers that are eliminated from the next range, L is | 
|  | // the longest prefix matching VR at position S (their prefixes | 
|  | // differ from VR at S+L). If L>0, record this information for later | 
|  | // use. | 
|  | if (L > 0) { | 
|  | for (iterator I = B; I != NewB; ++I) | 
|  | LM[L].push_back(std::make_pair(*I, S)); | 
|  | for (iterator I = NewE; I != E; ++I) | 
|  | LM[L].push_back(std::make_pair(*I, S)); | 
|  | } | 
|  | B = NewB, E = NewE; | 
|  | if (B == E) | 
|  | break; | 
|  | } | 
|  | // Record the final register range. If this range is non-empty, then | 
|  | // L=W-S. | 
|  | assert(B == E || L == W-S); | 
|  | if (B != E) { | 
|  | for (iterator I = B; I != E; ++I) | 
|  | LM[L].push_back(std::make_pair(*I, S)); | 
|  | // If B!=E, then we found a range of registers whose prefixes cover the | 
|  | // rest of VR from position S. There is no need to further advance S. | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isDebug()) { | 
|  | dbgs() << "Prefixes matching register " << printReg(VR, HRI) << "\n"; | 
|  | for (const auto &I : LM) { | 
|  | dbgs() << "  L=" << I.first << ':'; | 
|  | const RSListType &LL = I.second; | 
|  | for (const auto &J : LL) | 
|  | dbgs() << " (" << printReg(J.first, HRI) << ",@" << J.second << ')'; | 
|  | dbgs() << '\n'; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Recorded = false; | 
|  |  | 
|  | for (unsigned SrcR : AVs) { | 
|  | int FDi = -1, LDi = -1;   // First/last different bit. | 
|  | const BitTracker::RegisterCell &AC = CMS->lookup(SrcR); | 
|  | uint16_t AW = AC.width(); | 
|  | for (uint16_t i = 0, w = std::min(W, AW); i < w; ++i) { | 
|  | if (RC[i] == AC[i]) | 
|  | continue; | 
|  | if (FDi == -1) | 
|  | FDi = i; | 
|  | LDi = i; | 
|  | } | 
|  | if (FDi == -1) | 
|  | continue;  // TODO (future): Record identical registers. | 
|  | // Look for a register whose prefix could patch the range [FD..LD] | 
|  | // where VR and SrcR differ. | 
|  | uint16_t FD = FDi, LD = LDi;  // Switch to unsigned type. | 
|  | uint16_t MinL = LD-FD+1; | 
|  | for (uint16_t L = MinL; L < W; ++L) { | 
|  | LRSMapType::iterator F = LM.find(L); | 
|  | if (F == LM.end()) | 
|  | continue; | 
|  | RSListType &LL = F->second; | 
|  | for (const auto &I : LL) { | 
|  | uint16_t S = I.second; | 
|  | // MinL is the minimum length of the prefix. Any length above MinL | 
|  | // allows some flexibility as to where the prefix can start: | 
|  | // given the extra length EL=L-MinL, the prefix must start between | 
|  | // max(0,FD-EL) and FD. | 
|  | if (S > FD)   // Starts too late. | 
|  | continue; | 
|  | uint16_t EL = L-MinL; | 
|  | uint16_t LowS = (EL < FD) ? FD-EL : 0; | 
|  | if (S < LowS) // Starts too early. | 
|  | continue; | 
|  | unsigned InsR = I.first; | 
|  | if (!isValidInsertForm(VR, SrcR, InsR, L, S)) | 
|  | continue; | 
|  | if (isDebug()) { | 
|  | dbgs() << printReg(VR, HRI) << " = insert(" << printReg(SrcR, HRI) | 
|  | << ',' << printReg(InsR, HRI) << ",#" << L << ",#" | 
|  | << S << ")\n"; | 
|  | } | 
|  | IFRecordWithRegSet RR(IFRecord(SrcR, InsR, L, S), RegisterSet()); | 
|  | IFMap[VR].push_back(RR); | 
|  | Recorded = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return Recorded; | 
|  | } | 
|  |  | 
|  | void HexagonGenInsert::collectInBlock(MachineBasicBlock *B, | 
|  | OrderedRegisterList &AVs) { | 
|  | if (isDebug()) | 
|  | dbgs() << "visiting block " << printMBBReference(*B) << "\n"; | 
|  |  | 
|  | // First, check if this block is reachable at all. If not, the bit tracker | 
|  | // will not have any information about registers in it. | 
|  | if (!CMS->BT.reached(B)) | 
|  | return; | 
|  |  | 
|  | bool DoConst = OptConst; | 
|  | // Keep a separate set of registers defined in this block, so that we | 
|  | // can remove them from the list of available registers once all DT | 
|  | // successors have been processed. | 
|  | RegisterSet BlockDefs, InsDefs; | 
|  | for (MachineInstr &MI : *B) { | 
|  | InsDefs.clear(); | 
|  | getInstrDefs(&MI, InsDefs); | 
|  | // Leave those alone. They are more transparent than "insert". | 
|  | bool Skip = MI.isCopy() || MI.isRegSequence(); | 
|  |  | 
|  | if (!Skip) { | 
|  | // Visit all defined registers, and attempt to find the corresponding | 
|  | // "insert" representations. | 
|  | for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR)) { | 
|  | // Do not collect registers that are known to be compile-time cons- | 
|  | // tants, unless requested. | 
|  | if (!DoConst && isConstant(VR)) | 
|  | continue; | 
|  | // If VR's cell contains a reference to VR, then VR cannot be defined | 
|  | // via "insert". If VR is a constant that can be generated in a single | 
|  | // instruction (without constant extenders), generating it via insert | 
|  | // makes no sense. | 
|  | if (findSelfReference(VR) || isSmallConstant(VR)) | 
|  | continue; | 
|  |  | 
|  | findRecordInsertForms(VR, AVs); | 
|  | // Stop if the map size is too large. | 
|  | if (IFMap.size() > MaxIFMSize) | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Insert the defined registers into the list of available registers | 
|  | // after they have been processed. | 
|  | for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR)) | 
|  | AVs.insert(VR); | 
|  | BlockDefs.insert(InsDefs); | 
|  | } | 
|  |  | 
|  | for (auto *DTN : children<MachineDomTreeNode*>(MDT->getNode(B))) { | 
|  | MachineBasicBlock *SB = DTN->getBlock(); | 
|  | collectInBlock(SB, AVs); | 
|  | } | 
|  |  | 
|  | for (unsigned VR = BlockDefs.find_first(); VR; VR = BlockDefs.find_next(VR)) | 
|  | AVs.remove(VR); | 
|  | } | 
|  |  | 
|  | void HexagonGenInsert::findRemovableRegisters(unsigned VR, IFRecord IF, | 
|  | RegisterSet &RMs) const { | 
|  | // For a given register VR and a insert form, find the registers that are | 
|  | // used by the current definition of VR, and which would no longer be | 
|  | // needed for it after the definition of VR is replaced with the insert | 
|  | // form. These are the registers that could potentially become dead. | 
|  | RegisterSet Regs[2]; | 
|  |  | 
|  | unsigned S = 0;  // Register set selector. | 
|  | Regs[S].insert(VR); | 
|  |  | 
|  | while (!Regs[S].empty()) { | 
|  | // Breadth-first search. | 
|  | unsigned OtherS = 1-S; | 
|  | Regs[OtherS].clear(); | 
|  | for (unsigned R = Regs[S].find_first(); R; R = Regs[S].find_next(R)) { | 
|  | Regs[S].remove(R); | 
|  | if (R == IF.SrcR || R == IF.InsR) | 
|  | continue; | 
|  | // Check if a given register has bits that are references to any other | 
|  | // registers. This is to detect situations where the instruction that | 
|  | // defines register R takes register Q as an operand, but R itself does | 
|  | // not contain any bits from Q. Loads are examples of how this could | 
|  | // happen: | 
|  | //   R = load Q | 
|  | // In this case (assuming we do not have any knowledge about the loaded | 
|  | // value), we must not treat R as a "conveyance" of the bits from Q. | 
|  | // (The information in BT about R's bits would have them as constants, | 
|  | // in case of zero-extending loads, or refs to R.) | 
|  | if (!findNonSelfReference(R)) | 
|  | continue; | 
|  | RMs.insert(R); | 
|  | const MachineInstr *DefI = MRI->getVRegDef(R); | 
|  | assert(DefI); | 
|  | // Do not iterate past PHI nodes to avoid infinite loops. This can | 
|  | // make the final set a bit less accurate, but the removable register | 
|  | // sets are an approximation anyway. | 
|  | if (DefI->isPHI()) | 
|  | continue; | 
|  | getInstrUses(DefI, Regs[OtherS]); | 
|  | } | 
|  | S = OtherS; | 
|  | } | 
|  | // The register VR is added to the list as a side-effect of the algorithm, | 
|  | // but it is not "potentially removable". A potentially removable register | 
|  | // is one that may become unused (dead) after conversion to the insert form | 
|  | // IF, and obviously VR (or its replacement) will not become dead by apply- | 
|  | // ing IF. | 
|  | RMs.remove(VR); | 
|  | } | 
|  |  | 
|  | void HexagonGenInsert::computeRemovableRegisters() { | 
|  | for (auto &I : IFMap) { | 
|  | IFListType &LL = I.second; | 
|  | for (auto &J : LL) | 
|  | findRemovableRegisters(I.first, J.first, J.second); | 
|  | } | 
|  | } | 
|  |  | 
|  | void HexagonGenInsert::pruneEmptyLists() { | 
|  | // Remove all entries from the map, where the register has no insert forms | 
|  | // associated with it. | 
|  | using IterListType = SmallVector<IFMapType::iterator, 16>; | 
|  | IterListType Prune; | 
|  | for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) { | 
|  | if (I->second.empty()) | 
|  | Prune.push_back(I); | 
|  | } | 
|  | for (unsigned i = 0, n = Prune.size(); i < n; ++i) | 
|  | IFMap.erase(Prune[i]); | 
|  | } | 
|  |  | 
|  | void HexagonGenInsert::pruneCoveredSets(unsigned VR) { | 
|  | IFMapType::iterator F = IFMap.find(VR); | 
|  | assert(F != IFMap.end()); | 
|  | IFListType &LL = F->second; | 
|  |  | 
|  | // First, examine the IF candidates for register VR whose removable-regis- | 
|  | // ter sets are empty. This means that a given candidate will not help eli- | 
|  | // minate any registers, but since "insert" is not a constant-extendable | 
|  | // instruction, using such a candidate may reduce code size if the defini- | 
|  | // tion of VR is constant-extended. | 
|  | // If there exists a candidate with a non-empty set, the ones with empty | 
|  | // sets will not be used and can be removed. | 
|  | MachineInstr *DefVR = MRI->getVRegDef(VR); | 
|  | bool DefEx = HII->isConstExtended(*DefVR); | 
|  | bool HasNE = false; | 
|  | for (const auto &I : LL) { | 
|  | if (I.second.empty()) | 
|  | continue; | 
|  | HasNE = true; | 
|  | break; | 
|  | } | 
|  | if (!DefEx || HasNE) { | 
|  | // The definition of VR is not constant-extended, or there is a candidate | 
|  | // with a non-empty set. Remove all candidates with empty sets. | 
|  | auto IsEmpty = [] (const IFRecordWithRegSet &IR) -> bool { | 
|  | return IR.second.empty(); | 
|  | }; | 
|  | llvm::erase_if(LL, IsEmpty); | 
|  | } else { | 
|  | // The definition of VR is constant-extended, and all candidates have | 
|  | // empty removable-register sets. Pick the maximum candidate, and remove | 
|  | // all others. The "maximum" does not have any special meaning here, it | 
|  | // is only so that the candidate that will remain on the list is selec- | 
|  | // ted deterministically. | 
|  | IFRecord MaxIF = LL[0].first; | 
|  | for (unsigned i = 1, n = LL.size(); i < n; ++i) { | 
|  | // If LL[MaxI] < LL[i], then MaxI = i. | 
|  | const IFRecord &IF = LL[i].first; | 
|  | unsigned M0 = BaseOrd[MaxIF.SrcR], M1 = BaseOrd[MaxIF.InsR]; | 
|  | unsigned R0 = BaseOrd[IF.SrcR], R1 = BaseOrd[IF.InsR]; | 
|  | if (M0 > R0) | 
|  | continue; | 
|  | if (M0 == R0) { | 
|  | if (M1 > R1) | 
|  | continue; | 
|  | if (M1 == R1) { | 
|  | if (MaxIF.Wdh > IF.Wdh) | 
|  | continue; | 
|  | if (MaxIF.Wdh == IF.Wdh && MaxIF.Off >= IF.Off) | 
|  | continue; | 
|  | } | 
|  | } | 
|  | // MaxIF < IF. | 
|  | MaxIF = IF; | 
|  | } | 
|  | // Remove everything except the maximum candidate. All register sets | 
|  | // are empty, so no need to preserve anything. | 
|  | LL.clear(); | 
|  | LL.push_back(std::make_pair(MaxIF, RegisterSet())); | 
|  | } | 
|  |  | 
|  | // Now, remove those whose sets of potentially removable registers are | 
|  | // contained in another IF candidate for VR. For example, given these | 
|  | // candidates for %45, | 
|  | //   %45: | 
|  | //     (%44,%41,#9,#8), { %42 } | 
|  | //     (%43,%41,#9,#8), { %42 %44 } | 
|  | // remove the first one, since it is contained in the second one. | 
|  | for (unsigned i = 0, n = LL.size(); i < n; ) { | 
|  | const RegisterSet &RMi = LL[i].second; | 
|  | unsigned j = 0; | 
|  | while (j < n) { | 
|  | if (j != i && LL[j].second.includes(RMi)) | 
|  | break; | 
|  | j++; | 
|  | } | 
|  | if (j == n) {   // RMi not contained in anything else. | 
|  | i++; | 
|  | continue; | 
|  | } | 
|  | LL.erase(LL.begin()+i); | 
|  | n = LL.size(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void HexagonGenInsert::pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO, | 
|  | PairMapType &M) { | 
|  | IFMapType::iterator F = IFMap.find(VR); | 
|  | assert(F != IFMap.end()); | 
|  | IFListType &LL = F->second; | 
|  | unsigned Cutoff = VRegDistCutoff; | 
|  | const MachineInstr *DefV = MRI->getVRegDef(VR); | 
|  |  | 
|  | for (unsigned i = LL.size(); i > 0; --i) { | 
|  | unsigned SR = LL[i-1].first.SrcR, IR = LL[i-1].first.InsR; | 
|  | const MachineInstr *DefS = MRI->getVRegDef(SR); | 
|  | const MachineInstr *DefI = MRI->getVRegDef(IR); | 
|  | unsigned DSV = distance(DefS, DefV, RPO, M); | 
|  | if (DSV < Cutoff) { | 
|  | unsigned DIV = distance(DefI, DefV, RPO, M); | 
|  | if (DIV < Cutoff) | 
|  | continue; | 
|  | } | 
|  | LL.erase(LL.begin()+(i-1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void HexagonGenInsert::pruneRegCopies(unsigned VR) { | 
|  | IFMapType::iterator F = IFMap.find(VR); | 
|  | assert(F != IFMap.end()); | 
|  | IFListType &LL = F->second; | 
|  |  | 
|  | auto IsCopy = [] (const IFRecordWithRegSet &IR) -> bool { | 
|  | return IR.first.Wdh == 32 && (IR.first.Off == 0 || IR.first.Off == 32); | 
|  | }; | 
|  | llvm::erase_if(LL, IsCopy); | 
|  | } | 
|  |  | 
|  | void HexagonGenInsert::pruneCandidates() { | 
|  | // Remove candidates that are not beneficial, regardless of the final | 
|  | // selection method. | 
|  | // First, remove candidates whose potentially removable set is a subset | 
|  | // of another candidate's set. | 
|  | for (const auto &I : IFMap) | 
|  | pruneCoveredSets(I.first); | 
|  |  | 
|  | UnsignedMap RPO; | 
|  |  | 
|  | using RPOTType = ReversePostOrderTraversal<const MachineFunction *>; | 
|  |  | 
|  | RPOTType RPOT(MFN); | 
|  | unsigned RPON = 0; | 
|  | for (const auto &I : RPOT) | 
|  | RPO[I->getNumber()] = RPON++; | 
|  |  | 
|  | PairMapType Memo; // Memoization map for distance calculation. | 
|  | // Remove candidates that would use registers defined too far away. | 
|  | for (const auto &I : IFMap) | 
|  | pruneUsesTooFar(I.first, RPO, Memo); | 
|  |  | 
|  | pruneEmptyLists(); | 
|  |  | 
|  | for (const auto &I : IFMap) | 
|  | pruneRegCopies(I.first); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Class for comparing IF candidates for registers that have multiple of | 
|  | // them. The smaller the candidate, according to this ordering, the better. | 
|  | // First, compare the number of zeros in the associated potentially remova- | 
|  | // ble register sets. "Zero" indicates that the register is very likely to | 
|  | // become dead after this transformation. | 
|  | // Second, compare "averages", i.e. use-count per size. The lower wins. | 
|  | // After that, it does not really matter which one is smaller. Resolve | 
|  | // the tie in some deterministic way. | 
|  | struct IFOrdering { | 
|  | IFOrdering(const UnsignedMap &UC, const RegisterOrdering &BO) | 
|  | : UseC(UC), BaseOrd(BO) {} | 
|  |  | 
|  | bool operator() (const IFRecordWithRegSet &A, | 
|  | const IFRecordWithRegSet &B) const; | 
|  |  | 
|  | private: | 
|  | void stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero, | 
|  | unsigned &Sum) const; | 
|  |  | 
|  | const UnsignedMap &UseC; | 
|  | const RegisterOrdering &BaseOrd; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | bool IFOrdering::operator() (const IFRecordWithRegSet &A, | 
|  | const IFRecordWithRegSet &B) const { | 
|  | unsigned SizeA = 0, ZeroA = 0, SumA = 0; | 
|  | unsigned SizeB = 0, ZeroB = 0, SumB = 0; | 
|  | stats(A.second, SizeA, ZeroA, SumA); | 
|  | stats(B.second, SizeB, ZeroB, SumB); | 
|  |  | 
|  | // We will pick the minimum element. The more zeros, the better. | 
|  | if (ZeroA != ZeroB) | 
|  | return ZeroA > ZeroB; | 
|  | // Compare SumA/SizeA with SumB/SizeB, lower is better. | 
|  | uint64_t AvgA = SumA*SizeB, AvgB = SumB*SizeA; | 
|  | if (AvgA != AvgB) | 
|  | return AvgA < AvgB; | 
|  |  | 
|  | // The sets compare identical so far. Resort to comparing the IF records. | 
|  | // The actual values don't matter, this is only for determinism. | 
|  | unsigned OSA = BaseOrd[A.first.SrcR], OSB = BaseOrd[B.first.SrcR]; | 
|  | if (OSA != OSB) | 
|  | return OSA < OSB; | 
|  | unsigned OIA = BaseOrd[A.first.InsR], OIB = BaseOrd[B.first.InsR]; | 
|  | if (OIA != OIB) | 
|  | return OIA < OIB; | 
|  | if (A.first.Wdh != B.first.Wdh) | 
|  | return A.first.Wdh < B.first.Wdh; | 
|  | return A.first.Off < B.first.Off; | 
|  | } | 
|  |  | 
|  | void IFOrdering::stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero, | 
|  | unsigned &Sum) const { | 
|  | for (unsigned R = Rs.find_first(); R; R = Rs.find_next(R)) { | 
|  | UnsignedMap::const_iterator F = UseC.find(R); | 
|  | assert(F != UseC.end()); | 
|  | unsigned UC = F->second; | 
|  | if (UC == 0) | 
|  | Zero++; | 
|  | Sum += UC; | 
|  | Size++; | 
|  | } | 
|  | } | 
|  |  | 
|  | void HexagonGenInsert::selectCandidates() { | 
|  | // Some registers may have multiple valid candidates. Pick the best one | 
|  | // (or decide not to use any). | 
|  |  | 
|  | // Compute the "removability" measure of R: | 
|  | // For each potentially removable register R, record the number of regis- | 
|  | // ters with IF candidates, where R appears in at least one set. | 
|  | RegisterSet AllRMs; | 
|  | UnsignedMap UseC, RemC; | 
|  | IFMapType::iterator End = IFMap.end(); | 
|  |  | 
|  | for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) { | 
|  | const IFListType &LL = I->second; | 
|  | RegisterSet TT; | 
|  | for (const auto &J : LL) | 
|  | TT.insert(J.second); | 
|  | for (unsigned R = TT.find_first(); R; R = TT.find_next(R)) | 
|  | RemC[R]++; | 
|  | AllRMs.insert(TT); | 
|  | } | 
|  |  | 
|  | for (unsigned R = AllRMs.find_first(); R; R = AllRMs.find_next(R)) { | 
|  | using use_iterator = MachineRegisterInfo::use_nodbg_iterator; | 
|  | using InstrSet = SmallSet<const MachineInstr *, 16>; | 
|  |  | 
|  | InstrSet UIs; | 
|  | // Count as the number of instructions in which R is used, not the | 
|  | // number of operands. | 
|  | use_iterator E = MRI->use_nodbg_end(); | 
|  | for (use_iterator I = MRI->use_nodbg_begin(R); I != E; ++I) | 
|  | UIs.insert(I->getParent()); | 
|  | unsigned C = UIs.size(); | 
|  | // Calculate a measure, which is the number of instructions using R, | 
|  | // minus the "removability" count computed earlier. | 
|  | unsigned D = RemC[R]; | 
|  | UseC[R] = (C > D) ? C-D : 0;  // doz | 
|  | } | 
|  |  | 
|  | bool SelectAll0 = OptSelectAll0, SelectHas0 = OptSelectHas0; | 
|  | if (!SelectAll0 && !SelectHas0) | 
|  | SelectAll0 = true; | 
|  |  | 
|  | // The smaller the number UseC for a given register R, the "less used" | 
|  | // R is aside from the opportunities for removal offered by generating | 
|  | // "insert" instructions. | 
|  | // Iterate over the IF map, and for those registers that have multiple | 
|  | // candidates, pick the minimum one according to IFOrdering. | 
|  | IFOrdering IFO(UseC, BaseOrd); | 
|  | for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) { | 
|  | IFListType &LL = I->second; | 
|  | if (LL.empty()) | 
|  | continue; | 
|  | // Get the minimum element, remember it and clear the list. If the | 
|  | // element found is adequate, we will put it back on the list, other- | 
|  | // wise the list will remain empty, and the entry for this register | 
|  | // will be removed (i.e. this register will not be replaced by insert). | 
|  | IFListType::iterator MinI = std::min_element(LL.begin(), LL.end(), IFO); | 
|  | assert(MinI != LL.end()); | 
|  | IFRecordWithRegSet M = *MinI; | 
|  | LL.clear(); | 
|  |  | 
|  | // We want to make sure that this replacement will have a chance to be | 
|  | // beneficial, and that means that we want to have indication that some | 
|  | // register will be removed. The most likely registers to be eliminated | 
|  | // are the use operands in the definition of I->first. Accept/reject a | 
|  | // candidate based on how many of its uses it can potentially eliminate. | 
|  |  | 
|  | RegisterSet Us; | 
|  | const MachineInstr *DefI = MRI->getVRegDef(I->first); | 
|  | getInstrUses(DefI, Us); | 
|  | bool Accept = false; | 
|  |  | 
|  | if (SelectAll0) { | 
|  | bool All0 = true; | 
|  | for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) { | 
|  | if (UseC[R] == 0) | 
|  | continue; | 
|  | All0 = false; | 
|  | break; | 
|  | } | 
|  | Accept = All0; | 
|  | } else if (SelectHas0) { | 
|  | bool Has0 = false; | 
|  | for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) { | 
|  | if (UseC[R] != 0) | 
|  | continue; | 
|  | Has0 = true; | 
|  | break; | 
|  | } | 
|  | Accept = Has0; | 
|  | } | 
|  | if (Accept) | 
|  | LL.push_back(M); | 
|  | } | 
|  |  | 
|  | // Remove candidates that add uses of removable registers, unless the | 
|  | // removable registers are among replacement candidates. | 
|  | // Recompute the removable registers, since some candidates may have | 
|  | // been eliminated. | 
|  | AllRMs.clear(); | 
|  | for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) { | 
|  | const IFListType &LL = I->second; | 
|  | if (!LL.empty()) | 
|  | AllRMs.insert(LL[0].second); | 
|  | } | 
|  | for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) { | 
|  | IFListType &LL = I->second; | 
|  | if (LL.empty()) | 
|  | continue; | 
|  | unsigned SR = LL[0].first.SrcR, IR = LL[0].first.InsR; | 
|  | if (AllRMs[SR] || AllRMs[IR]) | 
|  | LL.clear(); | 
|  | } | 
|  |  | 
|  | pruneEmptyLists(); | 
|  | } | 
|  |  | 
|  | bool HexagonGenInsert::generateInserts() { | 
|  | // Create a new register for each one from IFMap, and store them in the | 
|  | // map. | 
|  | UnsignedMap RegMap; | 
|  | for (auto &I : IFMap) { | 
|  | unsigned VR = I.first; | 
|  | const TargetRegisterClass *RC = MRI->getRegClass(VR); | 
|  | Register NewVR = MRI->createVirtualRegister(RC); | 
|  | RegMap[VR] = NewVR; | 
|  | } | 
|  |  | 
|  | // We can generate the "insert" instructions using potentially stale re- | 
|  | // gisters: SrcR and InsR for a given VR may be among other registers that | 
|  | // are also replaced. This is fine, we will do the mass "rauw" a bit later. | 
|  | for (auto &I : IFMap) { | 
|  | MachineInstr *MI = MRI->getVRegDef(I.first); | 
|  | MachineBasicBlock &B = *MI->getParent(); | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  | unsigned NewR = RegMap[I.first]; | 
|  | bool R32 = MRI->getRegClass(NewR) == &Hexagon::IntRegsRegClass; | 
|  | const MCInstrDesc &D = R32 ? HII->get(Hexagon::S2_insert) | 
|  | : HII->get(Hexagon::S2_insertp); | 
|  | IFRecord IF = I.second[0].first; | 
|  | unsigned Wdh = IF.Wdh, Off = IF.Off; | 
|  | unsigned InsS = 0; | 
|  | if (R32 && MRI->getRegClass(IF.InsR) == &Hexagon::DoubleRegsRegClass) { | 
|  | InsS = Hexagon::isub_lo; | 
|  | if (Off >= 32) { | 
|  | InsS = Hexagon::isub_hi; | 
|  | Off -= 32; | 
|  | } | 
|  | } | 
|  | // Advance to the proper location for inserting instructions. This could | 
|  | // be B.end(). | 
|  | MachineBasicBlock::iterator At = MI; | 
|  | if (MI->isPHI()) | 
|  | At = B.getFirstNonPHI(); | 
|  |  | 
|  | BuildMI(B, At, DL, D, NewR) | 
|  | .addReg(IF.SrcR) | 
|  | .addReg(IF.InsR, 0, InsS) | 
|  | .addImm(Wdh) | 
|  | .addImm(Off); | 
|  |  | 
|  | MRI->clearKillFlags(IF.SrcR); | 
|  | MRI->clearKillFlags(IF.InsR); | 
|  | } | 
|  |  | 
|  | for (const auto &I : IFMap) { | 
|  | MachineInstr *DefI = MRI->getVRegDef(I.first); | 
|  | MRI->replaceRegWith(I.first, RegMap[I.first]); | 
|  | DefI->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool HexagonGenInsert::removeDeadCode(MachineDomTreeNode *N) { | 
|  | bool Changed = false; | 
|  |  | 
|  | for (auto *DTN : children<MachineDomTreeNode*>(N)) | 
|  | Changed |= removeDeadCode(DTN); | 
|  |  | 
|  | MachineBasicBlock *B = N->getBlock(); | 
|  | std::vector<MachineInstr*> Instrs; | 
|  | for (MachineInstr &MI : llvm::reverse(*B)) | 
|  | Instrs.push_back(&MI); | 
|  |  | 
|  | for (MachineInstr *MI : Instrs) { | 
|  | unsigned Opc = MI->getOpcode(); | 
|  | // Do not touch lifetime markers. This is why the target-independent DCE | 
|  | // cannot be used. | 
|  | if (Opc == TargetOpcode::LIFETIME_START || | 
|  | Opc == TargetOpcode::LIFETIME_END) | 
|  | continue; | 
|  | bool Store = false; | 
|  | if (MI->isInlineAsm() || !MI->isSafeToMove(nullptr, Store)) | 
|  | continue; | 
|  |  | 
|  | bool AllDead = true; | 
|  | SmallVector<unsigned,2> Regs; | 
|  | for (const MachineOperand &MO : MI->operands()) { | 
|  | if (!MO.isReg() || !MO.isDef()) | 
|  | continue; | 
|  | Register R = MO.getReg(); | 
|  | if (!R.isVirtual() || !MRI->use_nodbg_empty(R)) { | 
|  | AllDead = false; | 
|  | break; | 
|  | } | 
|  | Regs.push_back(R); | 
|  | } | 
|  | if (!AllDead) | 
|  | continue; | 
|  |  | 
|  | B->erase(MI); | 
|  | for (unsigned I = 0, N = Regs.size(); I != N; ++I) | 
|  | MRI->markUsesInDebugValueAsUndef(Regs[I]); | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | bool HexagonGenInsert::runOnMachineFunction(MachineFunction &MF) { | 
|  | if (skipFunction(MF.getFunction())) | 
|  | return false; | 
|  |  | 
|  | bool Timing = OptTiming, TimingDetail = Timing && OptTimingDetail; | 
|  | bool Changed = false; | 
|  |  | 
|  | // Verify: one, but not both. | 
|  | assert(!OptSelectAll0 || !OptSelectHas0); | 
|  |  | 
|  | IFMap.clear(); | 
|  | BaseOrd.clear(); | 
|  | CellOrd.clear(); | 
|  |  | 
|  | const auto &ST = MF.getSubtarget<HexagonSubtarget>(); | 
|  | HII = ST.getInstrInfo(); | 
|  | HRI = ST.getRegisterInfo(); | 
|  | MFN = &MF; | 
|  | MRI = &MF.getRegInfo(); | 
|  | MDT = &getAnalysis<MachineDominatorTree>(); | 
|  |  | 
|  | // Clean up before any further processing, so that dead code does not | 
|  | // get used in a newly generated "insert" instruction. Have a custom | 
|  | // version of DCE that preserves lifetime markers. Without it, merging | 
|  | // of stack objects can fail to recognize and merge disjoint objects | 
|  | // leading to unnecessary stack growth. | 
|  | Changed = removeDeadCode(MDT->getRootNode()); | 
|  |  | 
|  | const HexagonEvaluator HE(*HRI, *MRI, *HII, MF); | 
|  | BitTracker BTLoc(HE, MF); | 
|  | BTLoc.trace(isDebug()); | 
|  | BTLoc.run(); | 
|  | CellMapShadow MS(BTLoc); | 
|  | CMS = &MS; | 
|  |  | 
|  | buildOrderingMF(BaseOrd); | 
|  | buildOrderingBT(BaseOrd, CellOrd); | 
|  |  | 
|  | if (isDebug()) { | 
|  | dbgs() << "Cell ordering:\n"; | 
|  | for (const auto &I : CellOrd) { | 
|  | unsigned VR = I.first, Pos = I.second; | 
|  | dbgs() << printReg(VR, HRI) << " -> " << Pos << "\n"; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Collect candidates for conversion into the insert forms. | 
|  | MachineBasicBlock *RootB = MDT->getRoot(); | 
|  | OrderedRegisterList AvailR(CellOrd); | 
|  |  | 
|  | const char *const TGName = "hexinsert"; | 
|  | const char *const TGDesc = "Generate Insert Instructions"; | 
|  |  | 
|  | { | 
|  | NamedRegionTimer _T("collection", "collection", TGName, TGDesc, | 
|  | TimingDetail); | 
|  | collectInBlock(RootB, AvailR); | 
|  | // Complete the information gathered in IFMap. | 
|  | computeRemovableRegisters(); | 
|  | } | 
|  |  | 
|  | if (isDebug()) { | 
|  | dbgs() << "Candidates after collection:\n"; | 
|  | dump_map(); | 
|  | } | 
|  |  | 
|  | if (IFMap.empty()) | 
|  | return Changed; | 
|  |  | 
|  | { | 
|  | NamedRegionTimer _T("pruning", "pruning", TGName, TGDesc, TimingDetail); | 
|  | pruneCandidates(); | 
|  | } | 
|  |  | 
|  | if (isDebug()) { | 
|  | dbgs() << "Candidates after pruning:\n"; | 
|  | dump_map(); | 
|  | } | 
|  |  | 
|  | if (IFMap.empty()) | 
|  | return Changed; | 
|  |  | 
|  | { | 
|  | NamedRegionTimer _T("selection", "selection", TGName, TGDesc, TimingDetail); | 
|  | selectCandidates(); | 
|  | } | 
|  |  | 
|  | if (isDebug()) { | 
|  | dbgs() << "Candidates after selection:\n"; | 
|  | dump_map(); | 
|  | } | 
|  |  | 
|  | // Filter out vregs beyond the cutoff. | 
|  | if (VRegIndexCutoff.getPosition()) { | 
|  | unsigned Cutoff = VRegIndexCutoff; | 
|  |  | 
|  | using IterListType = SmallVector<IFMapType::iterator, 16>; | 
|  |  | 
|  | IterListType Out; | 
|  | for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) { | 
|  | unsigned Idx = Register::virtReg2Index(I->first); | 
|  | if (Idx >= Cutoff) | 
|  | Out.push_back(I); | 
|  | } | 
|  | for (unsigned i = 0, n = Out.size(); i < n; ++i) | 
|  | IFMap.erase(Out[i]); | 
|  | } | 
|  | if (IFMap.empty()) | 
|  | return Changed; | 
|  |  | 
|  | { | 
|  | NamedRegionTimer _T("generation", "generation", TGName, TGDesc, | 
|  | TimingDetail); | 
|  | generateInserts(); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | FunctionPass *llvm::createHexagonGenInsert() { | 
|  | return new HexagonGenInsert(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                         Public Constructor Functions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(HexagonGenInsert, "hexinsert", | 
|  | "Hexagon generate \"insert\" instructions", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) | 
|  | INITIALIZE_PASS_END(HexagonGenInsert, "hexinsert", | 
|  | "Hexagon generate \"insert\" instructions", false, false) |