|  | //===- Bitcode/Writer/DXILBitcodeWriter.cpp - DXIL Bitcode Writer ---------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Bitcode writer implementation. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "DXILBitcodeWriter.h" | 
|  | #include "DXILValueEnumerator.h" | 
|  | #include "DirectXIRPasses/PointerTypeAnalysis.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/Bitcode/BitcodeCommon.h" | 
|  | #include "llvm/Bitcode/BitcodeReader.h" | 
|  | #include "llvm/Bitcode/LLVMBitCodes.h" | 
|  | #include "llvm/Bitstream/BitCodes.h" | 
|  | #include "llvm/Bitstream/BitstreamWriter.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/Comdat.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DebugInfoMetadata.h" | 
|  | #include "llvm/IR/DebugLoc.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GlobalAlias.h" | 
|  | #include "llvm/IR/GlobalIFunc.h" | 
|  | #include "llvm/IR/GlobalObject.h" | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/InlineAsm.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/ModuleSummaryIndex.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/UseListOrder.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/IR/ValueSymbolTable.h" | 
|  | #include "llvm/Object/IRSymtab.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/ModRef.h" | 
|  | #include "llvm/Support/SHA1.h" | 
|  | #include "llvm/TargetParser/Triple.h" | 
|  |  | 
|  | namespace llvm { | 
|  | namespace dxil { | 
|  |  | 
|  | // Generates an enum to use as an index in the Abbrev array of Metadata record. | 
|  | enum MetadataAbbrev : unsigned { | 
|  | #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, | 
|  | #include "llvm/IR/Metadata.def" | 
|  | LastPlusOne | 
|  | }; | 
|  |  | 
|  | class DXILBitcodeWriter { | 
|  |  | 
|  | /// These are manifest constants used by the bitcode writer. They do not need | 
|  | /// to be kept in sync with the reader, but need to be consistent within this | 
|  | /// file. | 
|  | enum { | 
|  | // VALUE_SYMTAB_BLOCK abbrev id's. | 
|  | VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, | 
|  | VST_ENTRY_7_ABBREV, | 
|  | VST_ENTRY_6_ABBREV, | 
|  | VST_BBENTRY_6_ABBREV, | 
|  |  | 
|  | // CONSTANTS_BLOCK abbrev id's. | 
|  | CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, | 
|  | CONSTANTS_INTEGER_ABBREV, | 
|  | CONSTANTS_CE_CAST_Abbrev, | 
|  | CONSTANTS_NULL_Abbrev, | 
|  |  | 
|  | // FUNCTION_BLOCK abbrev id's. | 
|  | FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, | 
|  | FUNCTION_INST_BINOP_ABBREV, | 
|  | FUNCTION_INST_BINOP_FLAGS_ABBREV, | 
|  | FUNCTION_INST_CAST_ABBREV, | 
|  | FUNCTION_INST_RET_VOID_ABBREV, | 
|  | FUNCTION_INST_RET_VAL_ABBREV, | 
|  | FUNCTION_INST_UNREACHABLE_ABBREV, | 
|  | FUNCTION_INST_GEP_ABBREV, | 
|  | }; | 
|  |  | 
|  | // Cache some types | 
|  | Type *I8Ty; | 
|  | Type *I8PtrTy; | 
|  |  | 
|  | /// The stream created and owned by the client. | 
|  | BitstreamWriter &Stream; | 
|  |  | 
|  | StringTableBuilder &StrtabBuilder; | 
|  |  | 
|  | /// The Module to write to bitcode. | 
|  | const Module &M; | 
|  |  | 
|  | /// Enumerates ids for all values in the module. | 
|  | ValueEnumerator VE; | 
|  |  | 
|  | /// Map that holds the correspondence between GUIDs in the summary index, | 
|  | /// that came from indirect call profiles, and a value id generated by this | 
|  | /// class to use in the VST and summary block records. | 
|  | std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; | 
|  |  | 
|  | /// Tracks the last value id recorded in the GUIDToValueMap. | 
|  | unsigned GlobalValueId; | 
|  |  | 
|  | /// Saves the offset of the VSTOffset record that must eventually be | 
|  | /// backpatched with the offset of the actual VST. | 
|  | uint64_t VSTOffsetPlaceholder = 0; | 
|  |  | 
|  | /// Pointer to the buffer allocated by caller for bitcode writing. | 
|  | const SmallVectorImpl<char> &Buffer; | 
|  |  | 
|  | /// The start bit of the identification block. | 
|  | uint64_t BitcodeStartBit; | 
|  |  | 
|  | /// This maps values to their typed pointers | 
|  | PointerTypeMap PointerMap; | 
|  |  | 
|  | public: | 
|  | /// Constructs a ModuleBitcodeWriter object for the given Module, | 
|  | /// writing to the provided \p Buffer. | 
|  | DXILBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, | 
|  | StringTableBuilder &StrtabBuilder, BitstreamWriter &Stream) | 
|  | : I8Ty(Type::getInt8Ty(M.getContext())), | 
|  | I8PtrTy(TypedPointerType::get(I8Ty, 0)), Stream(Stream), | 
|  | StrtabBuilder(StrtabBuilder), M(M), VE(M, I8PtrTy), Buffer(Buffer), | 
|  | BitcodeStartBit(Stream.GetCurrentBitNo()), | 
|  | PointerMap(PointerTypeAnalysis::run(M)) { | 
|  | GlobalValueId = VE.getValues().size(); | 
|  | // Enumerate the typed pointers | 
|  | for (auto El : PointerMap) | 
|  | VE.EnumerateType(El.second); | 
|  | } | 
|  |  | 
|  | /// Emit the current module to the bitstream. | 
|  | void write(); | 
|  |  | 
|  | static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind); | 
|  | static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, | 
|  | StringRef Str, unsigned AbbrevToUse); | 
|  | static void writeIdentificationBlock(BitstreamWriter &Stream); | 
|  | static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V); | 
|  | static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A); | 
|  |  | 
|  | static unsigned getEncodedComdatSelectionKind(const Comdat &C); | 
|  | static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage); | 
|  | static unsigned getEncodedLinkage(const GlobalValue &GV); | 
|  | static unsigned getEncodedVisibility(const GlobalValue &GV); | 
|  | static unsigned getEncodedThreadLocalMode(const GlobalValue &GV); | 
|  | static unsigned getEncodedDLLStorageClass(const GlobalValue &GV); | 
|  | static unsigned getEncodedCastOpcode(unsigned Opcode); | 
|  | static unsigned getEncodedUnaryOpcode(unsigned Opcode); | 
|  | static unsigned getEncodedBinaryOpcode(unsigned Opcode); | 
|  | static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op); | 
|  | static unsigned getEncodedOrdering(AtomicOrdering Ordering); | 
|  | static uint64_t getOptimizationFlags(const Value *V); | 
|  |  | 
|  | private: | 
|  | void writeModuleVersion(); | 
|  | void writePerModuleGlobalValueSummary(); | 
|  |  | 
|  | void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, | 
|  | GlobalValueSummary *Summary, | 
|  | unsigned ValueID, | 
|  | unsigned FSCallsAbbrev, | 
|  | unsigned FSCallsProfileAbbrev, | 
|  | const Function &F); | 
|  | void writeModuleLevelReferences(const GlobalVariable &V, | 
|  | SmallVector<uint64_t, 64> &NameVals, | 
|  | unsigned FSModRefsAbbrev, | 
|  | unsigned FSModVTableRefsAbbrev); | 
|  |  | 
|  | void assignValueId(GlobalValue::GUID ValGUID) { | 
|  | GUIDToValueIdMap[ValGUID] = ++GlobalValueId; | 
|  | } | 
|  |  | 
|  | unsigned getValueId(GlobalValue::GUID ValGUID) { | 
|  | const auto &VMI = GUIDToValueIdMap.find(ValGUID); | 
|  | // Expect that any GUID value had a value Id assigned by an | 
|  | // earlier call to assignValueId. | 
|  | assert(VMI != GUIDToValueIdMap.end() && | 
|  | "GUID does not have assigned value Id"); | 
|  | return VMI->second; | 
|  | } | 
|  |  | 
|  | // Helper to get the valueId for the type of value recorded in VI. | 
|  | unsigned getValueId(ValueInfo VI) { | 
|  | if (!VI.haveGVs() || !VI.getValue()) | 
|  | return getValueId(VI.getGUID()); | 
|  | return VE.getValueID(VI.getValue()); | 
|  | } | 
|  |  | 
|  | std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } | 
|  |  | 
|  | uint64_t bitcodeStartBit() { return BitcodeStartBit; } | 
|  |  | 
|  | size_t addToStrtab(StringRef Str); | 
|  |  | 
|  | unsigned createDILocationAbbrev(); | 
|  | unsigned createGenericDINodeAbbrev(); | 
|  |  | 
|  | void writeAttributeGroupTable(); | 
|  | void writeAttributeTable(); | 
|  | void writeTypeTable(); | 
|  | void writeComdats(); | 
|  | void writeValueSymbolTableForwardDecl(); | 
|  | void writeModuleInfo(); | 
|  | void writeValueAsMetadata(const ValueAsMetadata *MD, | 
|  | SmallVectorImpl<uint64_t> &Record); | 
|  | void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev); | 
|  | void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned &Abbrev); | 
|  | void writeGenericDINode(const GenericDINode *N, | 
|  | SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev) { | 
|  | llvm_unreachable("DXIL cannot contain GenericDI Nodes"); | 
|  | } | 
|  | void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev); | 
|  | void writeDIGenericSubrange(const DIGenericSubrange *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | llvm_unreachable("DXIL cannot contain DIGenericSubrange Nodes"); | 
|  | } | 
|  | void writeDIEnumerator(const DIEnumerator *N, | 
|  | SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); | 
|  | void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev); | 
|  | void writeDIStringType(const DIStringType *N, | 
|  | SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { | 
|  | llvm_unreachable("DXIL cannot contain DIStringType Nodes"); | 
|  | } | 
|  | void writeDIDerivedType(const DIDerivedType *N, | 
|  | SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); | 
|  | void writeDICompositeType(const DICompositeType *N, | 
|  | SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); | 
|  | void writeDISubroutineType(const DISubroutineType *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev); | 
|  | void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev); | 
|  | void writeDICompileUnit(const DICompileUnit *N, | 
|  | SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); | 
|  | void writeDISubprogram(const DISubprogram *N, | 
|  | SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); | 
|  | void writeDILexicalBlock(const DILexicalBlock *N, | 
|  | SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); | 
|  | void writeDILexicalBlockFile(const DILexicalBlockFile *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev); | 
|  | void writeDICommonBlock(const DICommonBlock *N, | 
|  | SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { | 
|  | llvm_unreachable("DXIL cannot contain DICommonBlock Nodes"); | 
|  | } | 
|  | void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev); | 
|  | void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | llvm_unreachable("DXIL cannot contain DIMacro Nodes"); | 
|  | } | 
|  | void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | llvm_unreachable("DXIL cannot contain DIMacroFile Nodes"); | 
|  | } | 
|  | void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | llvm_unreachable("DXIL cannot contain DIArgList Nodes"); | 
|  | } | 
|  | void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | // DIAssignID is experimental feature to track variable location in IR.. | 
|  | // FIXME: translate DIAssignID to debug info DXIL supports. | 
|  | //   See https://github.com/llvm/llvm-project/issues/58989 | 
|  | llvm_unreachable("DXIL cannot contain DIAssignID Nodes"); | 
|  | } | 
|  | void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev); | 
|  | void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev); | 
|  | void writeDITemplateValueParameter(const DITemplateValueParameter *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev); | 
|  | void writeDIGlobalVariable(const DIGlobalVariable *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev); | 
|  | void writeDILocalVariable(const DILocalVariable *N, | 
|  | SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); | 
|  | void writeDILabel(const DILabel *N, SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | llvm_unreachable("DXIL cannot contain DILabel Nodes"); | 
|  | } | 
|  | void writeDIExpression(const DIExpression *N, | 
|  | SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); | 
|  | void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | llvm_unreachable("DXIL cannot contain GlobalVariableExpression Nodes"); | 
|  | } | 
|  | void writeDIObjCProperty(const DIObjCProperty *N, | 
|  | SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); | 
|  | void writeDIImportedEntity(const DIImportedEntity *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev); | 
|  | unsigned createNamedMetadataAbbrev(); | 
|  | void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); | 
|  | unsigned createMetadataStringsAbbrev(); | 
|  | void writeMetadataStrings(ArrayRef<const Metadata *> Strings, | 
|  | SmallVectorImpl<uint64_t> &Record); | 
|  | void writeMetadataRecords(ArrayRef<const Metadata *> MDs, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | std::vector<unsigned> *MDAbbrevs = nullptr, | 
|  | std::vector<uint64_t> *IndexPos = nullptr); | 
|  | void writeModuleMetadata(); | 
|  | void writeFunctionMetadata(const Function &F); | 
|  | void writeFunctionMetadataAttachment(const Function &F); | 
|  | void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, | 
|  | const GlobalObject &GO); | 
|  | void writeModuleMetadataKinds(); | 
|  | void writeOperandBundleTags(); | 
|  | void writeSyncScopeNames(); | 
|  | void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); | 
|  | void writeModuleConstants(); | 
|  | bool pushValueAndType(const Value *V, unsigned InstID, | 
|  | SmallVectorImpl<unsigned> &Vals); | 
|  | void writeOperandBundles(const CallBase &CB, unsigned InstID); | 
|  | void pushValue(const Value *V, unsigned InstID, | 
|  | SmallVectorImpl<unsigned> &Vals); | 
|  | void pushValueSigned(const Value *V, unsigned InstID, | 
|  | SmallVectorImpl<uint64_t> &Vals); | 
|  | void writeInstruction(const Instruction &I, unsigned InstID, | 
|  | SmallVectorImpl<unsigned> &Vals); | 
|  | void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); | 
|  | void writeGlobalValueSymbolTable( | 
|  | DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); | 
|  | void writeFunction(const Function &F); | 
|  | void writeBlockInfo(); | 
|  |  | 
|  | unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { return unsigned(SSID); } | 
|  |  | 
|  | unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } | 
|  |  | 
|  | unsigned getTypeID(Type *T, const Value *V = nullptr); | 
|  | /// getGlobalObjectValueTypeID - returns the element type for a GlobalObject | 
|  | /// | 
|  | /// GlobalObject types are saved by PointerTypeAnalysis as pointers to the | 
|  | /// GlobalObject, but in the bitcode writer we need the pointer element type. | 
|  | unsigned getGlobalObjectValueTypeID(Type *T, const GlobalObject *G); | 
|  | }; | 
|  |  | 
|  | } // namespace dxil | 
|  | } // namespace llvm | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::dxil; | 
|  |  | 
|  | //////////////////////////////////////////////////////////////////////////////// | 
|  | /// Begin dxil::BitcodeWriter Implementation | 
|  | //////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | dxil::BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, | 
|  | raw_fd_stream *FS) | 
|  | : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, 512)) { | 
|  | // Emit the file header. | 
|  | Stream->Emit((unsigned)'B', 8); | 
|  | Stream->Emit((unsigned)'C', 8); | 
|  | Stream->Emit(0x0, 4); | 
|  | Stream->Emit(0xC, 4); | 
|  | Stream->Emit(0xE, 4); | 
|  | Stream->Emit(0xD, 4); | 
|  | } | 
|  |  | 
|  | dxil::BitcodeWriter::~BitcodeWriter() { } | 
|  |  | 
|  | /// Write the specified module to the specified output stream. | 
|  | void dxil::WriteDXILToFile(const Module &M, raw_ostream &Out) { | 
|  | SmallVector<char, 0> Buffer; | 
|  | Buffer.reserve(256 * 1024); | 
|  |  | 
|  | // If this is darwin or another generic macho target, reserve space for the | 
|  | // header. | 
|  | Triple TT(M.getTargetTriple()); | 
|  | if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) | 
|  | Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); | 
|  |  | 
|  | BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); | 
|  | Writer.writeModule(M); | 
|  |  | 
|  | // Write the generated bitstream to "Out". | 
|  | if (!Buffer.empty()) | 
|  | Out.write((char *)&Buffer.front(), Buffer.size()); | 
|  | } | 
|  |  | 
|  | void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { | 
|  | Stream->EnterSubblock(Block, 3); | 
|  |  | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(Record)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); | 
|  | auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); | 
|  |  | 
|  | Stream->ExitBlock(); | 
|  | } | 
|  |  | 
|  | void BitcodeWriter::writeModule(const Module &M) { | 
|  |  | 
|  | // The Mods vector is used by irsymtab::build, which requires non-const | 
|  | // Modules in case it needs to materialize metadata. But the bitcode writer | 
|  | // requires that the module is materialized, so we can cast to non-const here, | 
|  | // after checking that it is in fact materialized. | 
|  | assert(M.isMaterialized()); | 
|  | Mods.push_back(const_cast<Module *>(&M)); | 
|  |  | 
|  | DXILBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream); | 
|  | ModuleWriter.write(); | 
|  | } | 
|  |  | 
|  | //////////////////////////////////////////////////////////////////////////////// | 
|  | /// Begin dxil::BitcodeWriterBase Implementation | 
|  | //////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | unsigned DXILBitcodeWriter::getEncodedCastOpcode(unsigned Opcode) { | 
|  | switch (Opcode) { | 
|  | default: | 
|  | llvm_unreachable("Unknown cast instruction!"); | 
|  | case Instruction::Trunc: | 
|  | return bitc::CAST_TRUNC; | 
|  | case Instruction::ZExt: | 
|  | return bitc::CAST_ZEXT; | 
|  | case Instruction::SExt: | 
|  | return bitc::CAST_SEXT; | 
|  | case Instruction::FPToUI: | 
|  | return bitc::CAST_FPTOUI; | 
|  | case Instruction::FPToSI: | 
|  | return bitc::CAST_FPTOSI; | 
|  | case Instruction::UIToFP: | 
|  | return bitc::CAST_UITOFP; | 
|  | case Instruction::SIToFP: | 
|  | return bitc::CAST_SITOFP; | 
|  | case Instruction::FPTrunc: | 
|  | return bitc::CAST_FPTRUNC; | 
|  | case Instruction::FPExt: | 
|  | return bitc::CAST_FPEXT; | 
|  | case Instruction::PtrToInt: | 
|  | return bitc::CAST_PTRTOINT; | 
|  | case Instruction::IntToPtr: | 
|  | return bitc::CAST_INTTOPTR; | 
|  | case Instruction::BitCast: | 
|  | return bitc::CAST_BITCAST; | 
|  | case Instruction::AddrSpaceCast: | 
|  | return bitc::CAST_ADDRSPACECAST; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned DXILBitcodeWriter::getEncodedUnaryOpcode(unsigned Opcode) { | 
|  | switch (Opcode) { | 
|  | default: | 
|  | llvm_unreachable("Unknown binary instruction!"); | 
|  | case Instruction::FNeg: | 
|  | return bitc::UNOP_FNEG; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned DXILBitcodeWriter::getEncodedBinaryOpcode(unsigned Opcode) { | 
|  | switch (Opcode) { | 
|  | default: | 
|  | llvm_unreachable("Unknown binary instruction!"); | 
|  | case Instruction::Add: | 
|  | case Instruction::FAdd: | 
|  | return bitc::BINOP_ADD; | 
|  | case Instruction::Sub: | 
|  | case Instruction::FSub: | 
|  | return bitc::BINOP_SUB; | 
|  | case Instruction::Mul: | 
|  | case Instruction::FMul: | 
|  | return bitc::BINOP_MUL; | 
|  | case Instruction::UDiv: | 
|  | return bitc::BINOP_UDIV; | 
|  | case Instruction::FDiv: | 
|  | case Instruction::SDiv: | 
|  | return bitc::BINOP_SDIV; | 
|  | case Instruction::URem: | 
|  | return bitc::BINOP_UREM; | 
|  | case Instruction::FRem: | 
|  | case Instruction::SRem: | 
|  | return bitc::BINOP_SREM; | 
|  | case Instruction::Shl: | 
|  | return bitc::BINOP_SHL; | 
|  | case Instruction::LShr: | 
|  | return bitc::BINOP_LSHR; | 
|  | case Instruction::AShr: | 
|  | return bitc::BINOP_ASHR; | 
|  | case Instruction::And: | 
|  | return bitc::BINOP_AND; | 
|  | case Instruction::Or: | 
|  | return bitc::BINOP_OR; | 
|  | case Instruction::Xor: | 
|  | return bitc::BINOP_XOR; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned DXILBitcodeWriter::getTypeID(Type *T, const Value *V) { | 
|  | if (!T->isPointerTy() && | 
|  | // For Constant, always check PointerMap to make sure OpaquePointer in | 
|  | // things like constant struct/array works. | 
|  | (!V || !isa<Constant>(V))) | 
|  | return VE.getTypeID(T); | 
|  | auto It = PointerMap.find(V); | 
|  | if (It != PointerMap.end()) | 
|  | return VE.getTypeID(It->second); | 
|  | // For Constant, return T when cannot find in PointerMap. | 
|  | // FIXME: support ConstantPointerNull which could map to more than one | 
|  | // TypedPointerType. | 
|  | // See https://github.com/llvm/llvm-project/issues/57942. | 
|  | if (V && isa<Constant>(V) && !isa<ConstantPointerNull>(V)) | 
|  | return VE.getTypeID(T); | 
|  | return VE.getTypeID(I8PtrTy); | 
|  | } | 
|  |  | 
|  | unsigned DXILBitcodeWriter::getGlobalObjectValueTypeID(Type *T, | 
|  | const GlobalObject *G) { | 
|  | auto It = PointerMap.find(G); | 
|  | if (It != PointerMap.end()) { | 
|  | TypedPointerType *PtrTy = cast<TypedPointerType>(It->second); | 
|  | return VE.getTypeID(PtrTy->getElementType()); | 
|  | } | 
|  | return VE.getTypeID(T); | 
|  | } | 
|  |  | 
|  | unsigned DXILBitcodeWriter::getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { | 
|  | switch (Op) { | 
|  | default: | 
|  | llvm_unreachable("Unknown RMW operation!"); | 
|  | case AtomicRMWInst::Xchg: | 
|  | return bitc::RMW_XCHG; | 
|  | case AtomicRMWInst::Add: | 
|  | return bitc::RMW_ADD; | 
|  | case AtomicRMWInst::Sub: | 
|  | return bitc::RMW_SUB; | 
|  | case AtomicRMWInst::And: | 
|  | return bitc::RMW_AND; | 
|  | case AtomicRMWInst::Nand: | 
|  | return bitc::RMW_NAND; | 
|  | case AtomicRMWInst::Or: | 
|  | return bitc::RMW_OR; | 
|  | case AtomicRMWInst::Xor: | 
|  | return bitc::RMW_XOR; | 
|  | case AtomicRMWInst::Max: | 
|  | return bitc::RMW_MAX; | 
|  | case AtomicRMWInst::Min: | 
|  | return bitc::RMW_MIN; | 
|  | case AtomicRMWInst::UMax: | 
|  | return bitc::RMW_UMAX; | 
|  | case AtomicRMWInst::UMin: | 
|  | return bitc::RMW_UMIN; | 
|  | case AtomicRMWInst::FAdd: | 
|  | return bitc::RMW_FADD; | 
|  | case AtomicRMWInst::FSub: | 
|  | return bitc::RMW_FSUB; | 
|  | case AtomicRMWInst::FMax: | 
|  | return bitc::RMW_FMAX; | 
|  | case AtomicRMWInst::FMin: | 
|  | return bitc::RMW_FMIN; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned DXILBitcodeWriter::getEncodedOrdering(AtomicOrdering Ordering) { | 
|  | switch (Ordering) { | 
|  | case AtomicOrdering::NotAtomic: | 
|  | return bitc::ORDERING_NOTATOMIC; | 
|  | case AtomicOrdering::Unordered: | 
|  | return bitc::ORDERING_UNORDERED; | 
|  | case AtomicOrdering::Monotonic: | 
|  | return bitc::ORDERING_MONOTONIC; | 
|  | case AtomicOrdering::Acquire: | 
|  | return bitc::ORDERING_ACQUIRE; | 
|  | case AtomicOrdering::Release: | 
|  | return bitc::ORDERING_RELEASE; | 
|  | case AtomicOrdering::AcquireRelease: | 
|  | return bitc::ORDERING_ACQREL; | 
|  | case AtomicOrdering::SequentiallyConsistent: | 
|  | return bitc::ORDERING_SEQCST; | 
|  | } | 
|  | llvm_unreachable("Invalid ordering"); | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::writeStringRecord(BitstreamWriter &Stream, | 
|  | unsigned Code, StringRef Str, | 
|  | unsigned AbbrevToUse) { | 
|  | SmallVector<unsigned, 64> Vals; | 
|  |  | 
|  | // Code: [strchar x N] | 
|  | for (char C : Str) { | 
|  | if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) | 
|  | AbbrevToUse = 0; | 
|  | Vals.push_back(C); | 
|  | } | 
|  |  | 
|  | // Emit the finished record. | 
|  | Stream.EmitRecord(Code, Vals, AbbrevToUse); | 
|  | } | 
|  |  | 
|  | uint64_t DXILBitcodeWriter::getAttrKindEncoding(Attribute::AttrKind Kind) { | 
|  | switch (Kind) { | 
|  | case Attribute::Alignment: | 
|  | return bitc::ATTR_KIND_ALIGNMENT; | 
|  | case Attribute::AlwaysInline: | 
|  | return bitc::ATTR_KIND_ALWAYS_INLINE; | 
|  | case Attribute::Builtin: | 
|  | return bitc::ATTR_KIND_BUILTIN; | 
|  | case Attribute::ByVal: | 
|  | return bitc::ATTR_KIND_BY_VAL; | 
|  | case Attribute::Convergent: | 
|  | return bitc::ATTR_KIND_CONVERGENT; | 
|  | case Attribute::InAlloca: | 
|  | return bitc::ATTR_KIND_IN_ALLOCA; | 
|  | case Attribute::Cold: | 
|  | return bitc::ATTR_KIND_COLD; | 
|  | case Attribute::InlineHint: | 
|  | return bitc::ATTR_KIND_INLINE_HINT; | 
|  | case Attribute::InReg: | 
|  | return bitc::ATTR_KIND_IN_REG; | 
|  | case Attribute::JumpTable: | 
|  | return bitc::ATTR_KIND_JUMP_TABLE; | 
|  | case Attribute::MinSize: | 
|  | return bitc::ATTR_KIND_MIN_SIZE; | 
|  | case Attribute::Naked: | 
|  | return bitc::ATTR_KIND_NAKED; | 
|  | case Attribute::Nest: | 
|  | return bitc::ATTR_KIND_NEST; | 
|  | case Attribute::NoAlias: | 
|  | return bitc::ATTR_KIND_NO_ALIAS; | 
|  | case Attribute::NoBuiltin: | 
|  | return bitc::ATTR_KIND_NO_BUILTIN; | 
|  | case Attribute::NoCapture: | 
|  | return bitc::ATTR_KIND_NO_CAPTURE; | 
|  | case Attribute::NoDuplicate: | 
|  | return bitc::ATTR_KIND_NO_DUPLICATE; | 
|  | case Attribute::NoImplicitFloat: | 
|  | return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; | 
|  | case Attribute::NoInline: | 
|  | return bitc::ATTR_KIND_NO_INLINE; | 
|  | case Attribute::NonLazyBind: | 
|  | return bitc::ATTR_KIND_NON_LAZY_BIND; | 
|  | case Attribute::NonNull: | 
|  | return bitc::ATTR_KIND_NON_NULL; | 
|  | case Attribute::Dereferenceable: | 
|  | return bitc::ATTR_KIND_DEREFERENCEABLE; | 
|  | case Attribute::DereferenceableOrNull: | 
|  | return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; | 
|  | case Attribute::NoRedZone: | 
|  | return bitc::ATTR_KIND_NO_RED_ZONE; | 
|  | case Attribute::NoReturn: | 
|  | return bitc::ATTR_KIND_NO_RETURN; | 
|  | case Attribute::NoUnwind: | 
|  | return bitc::ATTR_KIND_NO_UNWIND; | 
|  | case Attribute::OptimizeForSize: | 
|  | return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; | 
|  | case Attribute::OptimizeNone: | 
|  | return bitc::ATTR_KIND_OPTIMIZE_NONE; | 
|  | case Attribute::ReadNone: | 
|  | return bitc::ATTR_KIND_READ_NONE; | 
|  | case Attribute::ReadOnly: | 
|  | return bitc::ATTR_KIND_READ_ONLY; | 
|  | case Attribute::Returned: | 
|  | return bitc::ATTR_KIND_RETURNED; | 
|  | case Attribute::ReturnsTwice: | 
|  | return bitc::ATTR_KIND_RETURNS_TWICE; | 
|  | case Attribute::SExt: | 
|  | return bitc::ATTR_KIND_S_EXT; | 
|  | case Attribute::StackAlignment: | 
|  | return bitc::ATTR_KIND_STACK_ALIGNMENT; | 
|  | case Attribute::StackProtect: | 
|  | return bitc::ATTR_KIND_STACK_PROTECT; | 
|  | case Attribute::StackProtectReq: | 
|  | return bitc::ATTR_KIND_STACK_PROTECT_REQ; | 
|  | case Attribute::StackProtectStrong: | 
|  | return bitc::ATTR_KIND_STACK_PROTECT_STRONG; | 
|  | case Attribute::SafeStack: | 
|  | return bitc::ATTR_KIND_SAFESTACK; | 
|  | case Attribute::StructRet: | 
|  | return bitc::ATTR_KIND_STRUCT_RET; | 
|  | case Attribute::SanitizeAddress: | 
|  | return bitc::ATTR_KIND_SANITIZE_ADDRESS; | 
|  | case Attribute::SanitizeThread: | 
|  | return bitc::ATTR_KIND_SANITIZE_THREAD; | 
|  | case Attribute::SanitizeMemory: | 
|  | return bitc::ATTR_KIND_SANITIZE_MEMORY; | 
|  | case Attribute::UWTable: | 
|  | return bitc::ATTR_KIND_UW_TABLE; | 
|  | case Attribute::ZExt: | 
|  | return bitc::ATTR_KIND_Z_EXT; | 
|  | case Attribute::EndAttrKinds: | 
|  | llvm_unreachable("Can not encode end-attribute kinds marker."); | 
|  | case Attribute::None: | 
|  | llvm_unreachable("Can not encode none-attribute."); | 
|  | case Attribute::EmptyKey: | 
|  | case Attribute::TombstoneKey: | 
|  | llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); | 
|  | default: | 
|  | llvm_unreachable("Trying to encode attribute not supported by DXIL. These " | 
|  | "should be stripped in DXILPrepare"); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Trying to encode unknown attribute"); | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, | 
|  | uint64_t V) { | 
|  | if ((int64_t)V >= 0) | 
|  | Vals.push_back(V << 1); | 
|  | else | 
|  | Vals.push_back((-V << 1) | 1); | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, | 
|  | const APInt &A) { | 
|  | // We have an arbitrary precision integer value to write whose | 
|  | // bit width is > 64. However, in canonical unsigned integer | 
|  | // format it is likely that the high bits are going to be zero. | 
|  | // So, we only write the number of active words. | 
|  | unsigned NumWords = A.getActiveWords(); | 
|  | const uint64_t *RawData = A.getRawData(); | 
|  | for (unsigned i = 0; i < NumWords; i++) | 
|  | emitSignedInt64(Vals, RawData[i]); | 
|  | } | 
|  |  | 
|  | uint64_t DXILBitcodeWriter::getOptimizationFlags(const Value *V) { | 
|  | uint64_t Flags = 0; | 
|  |  | 
|  | if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { | 
|  | if (OBO->hasNoSignedWrap()) | 
|  | Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; | 
|  | if (OBO->hasNoUnsignedWrap()) | 
|  | Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; | 
|  | } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { | 
|  | if (PEO->isExact()) | 
|  | Flags |= 1 << bitc::PEO_EXACT; | 
|  | } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { | 
|  | if (FPMO->hasAllowReassoc()) | 
|  | Flags |= bitc::AllowReassoc; | 
|  | if (FPMO->hasNoNaNs()) | 
|  | Flags |= bitc::NoNaNs; | 
|  | if (FPMO->hasNoInfs()) | 
|  | Flags |= bitc::NoInfs; | 
|  | if (FPMO->hasNoSignedZeros()) | 
|  | Flags |= bitc::NoSignedZeros; | 
|  | if (FPMO->hasAllowReciprocal()) | 
|  | Flags |= bitc::AllowReciprocal; | 
|  | if (FPMO->hasAllowContract()) | 
|  | Flags |= bitc::AllowContract; | 
|  | if (FPMO->hasApproxFunc()) | 
|  | Flags |= bitc::ApproxFunc; | 
|  | } | 
|  |  | 
|  | return Flags; | 
|  | } | 
|  |  | 
|  | unsigned | 
|  | DXILBitcodeWriter::getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { | 
|  | switch (Linkage) { | 
|  | case GlobalValue::ExternalLinkage: | 
|  | return 0; | 
|  | case GlobalValue::WeakAnyLinkage: | 
|  | return 16; | 
|  | case GlobalValue::AppendingLinkage: | 
|  | return 2; | 
|  | case GlobalValue::InternalLinkage: | 
|  | return 3; | 
|  | case GlobalValue::LinkOnceAnyLinkage: | 
|  | return 18; | 
|  | case GlobalValue::ExternalWeakLinkage: | 
|  | return 7; | 
|  | case GlobalValue::CommonLinkage: | 
|  | return 8; | 
|  | case GlobalValue::PrivateLinkage: | 
|  | return 9; | 
|  | case GlobalValue::WeakODRLinkage: | 
|  | return 17; | 
|  | case GlobalValue::LinkOnceODRLinkage: | 
|  | return 19; | 
|  | case GlobalValue::AvailableExternallyLinkage: | 
|  | return 12; | 
|  | } | 
|  | llvm_unreachable("Invalid linkage"); | 
|  | } | 
|  |  | 
|  | unsigned DXILBitcodeWriter::getEncodedLinkage(const GlobalValue &GV) { | 
|  | return getEncodedLinkage(GV.getLinkage()); | 
|  | } | 
|  |  | 
|  | unsigned DXILBitcodeWriter::getEncodedVisibility(const GlobalValue &GV) { | 
|  | switch (GV.getVisibility()) { | 
|  | case GlobalValue::DefaultVisibility: | 
|  | return 0; | 
|  | case GlobalValue::HiddenVisibility: | 
|  | return 1; | 
|  | case GlobalValue::ProtectedVisibility: | 
|  | return 2; | 
|  | } | 
|  | llvm_unreachable("Invalid visibility"); | 
|  | } | 
|  |  | 
|  | unsigned DXILBitcodeWriter::getEncodedDLLStorageClass(const GlobalValue &GV) { | 
|  | switch (GV.getDLLStorageClass()) { | 
|  | case GlobalValue::DefaultStorageClass: | 
|  | return 0; | 
|  | case GlobalValue::DLLImportStorageClass: | 
|  | return 1; | 
|  | case GlobalValue::DLLExportStorageClass: | 
|  | return 2; | 
|  | } | 
|  | llvm_unreachable("Invalid DLL storage class"); | 
|  | } | 
|  |  | 
|  | unsigned DXILBitcodeWriter::getEncodedThreadLocalMode(const GlobalValue &GV) { | 
|  | switch (GV.getThreadLocalMode()) { | 
|  | case GlobalVariable::NotThreadLocal: | 
|  | return 0; | 
|  | case GlobalVariable::GeneralDynamicTLSModel: | 
|  | return 1; | 
|  | case GlobalVariable::LocalDynamicTLSModel: | 
|  | return 2; | 
|  | case GlobalVariable::InitialExecTLSModel: | 
|  | return 3; | 
|  | case GlobalVariable::LocalExecTLSModel: | 
|  | return 4; | 
|  | } | 
|  | llvm_unreachable("Invalid TLS model"); | 
|  | } | 
|  |  | 
|  | unsigned DXILBitcodeWriter::getEncodedComdatSelectionKind(const Comdat &C) { | 
|  | switch (C.getSelectionKind()) { | 
|  | case Comdat::Any: | 
|  | return bitc::COMDAT_SELECTION_KIND_ANY; | 
|  | case Comdat::ExactMatch: | 
|  | return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; | 
|  | case Comdat::Largest: | 
|  | return bitc::COMDAT_SELECTION_KIND_LARGEST; | 
|  | case Comdat::NoDeduplicate: | 
|  | return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; | 
|  | case Comdat::SameSize: | 
|  | return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; | 
|  | } | 
|  | llvm_unreachable("Invalid selection kind"); | 
|  | } | 
|  |  | 
|  | //////////////////////////////////////////////////////////////////////////////// | 
|  | /// Begin DXILBitcodeWriter Implementation | 
|  | //////////////////////////////////////////////////////////////////////////////// | 
|  |  | 
|  | void DXILBitcodeWriter::writeAttributeGroupTable() { | 
|  | const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = | 
|  | VE.getAttributeGroups(); | 
|  | if (AttrGrps.empty()) | 
|  | return; | 
|  |  | 
|  | Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); | 
|  |  | 
|  | SmallVector<uint64_t, 64> Record; | 
|  | for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { | 
|  | unsigned AttrListIndex = Pair.first; | 
|  | AttributeSet AS = Pair.second; | 
|  | Record.push_back(VE.getAttributeGroupID(Pair)); | 
|  | Record.push_back(AttrListIndex); | 
|  |  | 
|  | for (Attribute Attr : AS) { | 
|  | if (Attr.isEnumAttribute()) { | 
|  | uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum()); | 
|  | assert(Val <= bitc::ATTR_KIND_ARGMEMONLY && | 
|  | "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY"); | 
|  | Record.push_back(0); | 
|  | Record.push_back(Val); | 
|  | } else if (Attr.isIntAttribute()) { | 
|  | if (Attr.getKindAsEnum() == Attribute::AttrKind::Memory) { | 
|  | MemoryEffects ME = Attr.getMemoryEffects(); | 
|  | if (ME.doesNotAccessMemory()) { | 
|  | Record.push_back(0); | 
|  | Record.push_back(bitc::ATTR_KIND_READ_NONE); | 
|  | } else { | 
|  | if (ME.onlyReadsMemory()) { | 
|  | Record.push_back(0); | 
|  | Record.push_back(bitc::ATTR_KIND_READ_ONLY); | 
|  | } | 
|  | if (ME.onlyAccessesArgPointees()) { | 
|  | Record.push_back(0); | 
|  | Record.push_back(bitc::ATTR_KIND_ARGMEMONLY); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum()); | 
|  | assert(Val <= bitc::ATTR_KIND_ARGMEMONLY && | 
|  | "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY"); | 
|  | Record.push_back(1); | 
|  | Record.push_back(Val); | 
|  | Record.push_back(Attr.getValueAsInt()); | 
|  | } | 
|  | } else { | 
|  | StringRef Kind = Attr.getKindAsString(); | 
|  | StringRef Val = Attr.getValueAsString(); | 
|  |  | 
|  | Record.push_back(Val.empty() ? 3 : 4); | 
|  | Record.append(Kind.begin(), Kind.end()); | 
|  | Record.push_back(0); | 
|  | if (!Val.empty()) { | 
|  | Record.append(Val.begin(), Val.end()); | 
|  | Record.push_back(0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | Stream.ExitBlock(); | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::writeAttributeTable() { | 
|  | const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); | 
|  | if (Attrs.empty()) | 
|  | return; | 
|  |  | 
|  | Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); | 
|  |  | 
|  | SmallVector<uint64_t, 64> Record; | 
|  | for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { | 
|  | AttributeList AL = Attrs[i]; | 
|  | for (unsigned i : AL.indexes()) { | 
|  | AttributeSet AS = AL.getAttributes(i); | 
|  | if (AS.hasAttributes()) | 
|  | Record.push_back(VE.getAttributeGroupID({i, AS})); | 
|  | } | 
|  |  | 
|  | Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | Stream.ExitBlock(); | 
|  | } | 
|  |  | 
|  | /// WriteTypeTable - Write out the type table for a module. | 
|  | void DXILBitcodeWriter::writeTypeTable() { | 
|  | const ValueEnumerator::TypeList &TypeList = VE.getTypes(); | 
|  |  | 
|  | Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); | 
|  | SmallVector<uint64_t, 64> TypeVals; | 
|  |  | 
|  | uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); | 
|  |  | 
|  | // Abbrev for TYPE_CODE_POINTER. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); | 
|  | Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 | 
|  | unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | // Abbrev for TYPE_CODE_FUNCTION. | 
|  | Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); | 
|  | unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | // Abbrev for TYPE_CODE_STRUCT_ANON. | 
|  | Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); | 
|  | unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | // Abbrev for TYPE_CODE_STRUCT_NAME. | 
|  | Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); | 
|  | unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | // Abbrev for TYPE_CODE_STRUCT_NAMED. | 
|  | Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); | 
|  | unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | // Abbrev for TYPE_CODE_ARRAY. | 
|  | Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); | 
|  | unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | // Emit an entry count so the reader can reserve space. | 
|  | TypeVals.push_back(TypeList.size()); | 
|  | Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); | 
|  | TypeVals.clear(); | 
|  |  | 
|  | // Loop over all of the types, emitting each in turn. | 
|  | for (Type *T : TypeList) { | 
|  | int AbbrevToUse = 0; | 
|  | unsigned Code = 0; | 
|  |  | 
|  | switch (T->getTypeID()) { | 
|  | case Type::BFloatTyID: | 
|  | case Type::X86_AMXTyID: | 
|  | case Type::TokenTyID: | 
|  | case Type::TargetExtTyID: | 
|  | llvm_unreachable("These should never be used!!!"); | 
|  | break; | 
|  | case Type::VoidTyID: | 
|  | Code = bitc::TYPE_CODE_VOID; | 
|  | break; | 
|  | case Type::HalfTyID: | 
|  | Code = bitc::TYPE_CODE_HALF; | 
|  | break; | 
|  | case Type::FloatTyID: | 
|  | Code = bitc::TYPE_CODE_FLOAT; | 
|  | break; | 
|  | case Type::DoubleTyID: | 
|  | Code = bitc::TYPE_CODE_DOUBLE; | 
|  | break; | 
|  | case Type::X86_FP80TyID: | 
|  | Code = bitc::TYPE_CODE_X86_FP80; | 
|  | break; | 
|  | case Type::FP128TyID: | 
|  | Code = bitc::TYPE_CODE_FP128; | 
|  | break; | 
|  | case Type::PPC_FP128TyID: | 
|  | Code = bitc::TYPE_CODE_PPC_FP128; | 
|  | break; | 
|  | case Type::LabelTyID: | 
|  | Code = bitc::TYPE_CODE_LABEL; | 
|  | break; | 
|  | case Type::MetadataTyID: | 
|  | Code = bitc::TYPE_CODE_METADATA; | 
|  | break; | 
|  | case Type::X86_MMXTyID: | 
|  | Code = bitc::TYPE_CODE_X86_MMX; | 
|  | break; | 
|  | case Type::IntegerTyID: | 
|  | // INTEGER: [width] | 
|  | Code = bitc::TYPE_CODE_INTEGER; | 
|  | TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); | 
|  | break; | 
|  | case Type::TypedPointerTyID: { | 
|  | TypedPointerType *PTy = cast<TypedPointerType>(T); | 
|  | // POINTER: [pointee type, address space] | 
|  | Code = bitc::TYPE_CODE_POINTER; | 
|  | TypeVals.push_back(getTypeID(PTy->getElementType())); | 
|  | unsigned AddressSpace = PTy->getAddressSpace(); | 
|  | TypeVals.push_back(AddressSpace); | 
|  | if (AddressSpace == 0) | 
|  | AbbrevToUse = PtrAbbrev; | 
|  | break; | 
|  | } | 
|  | case Type::PointerTyID: { | 
|  | // POINTER: [pointee type, address space] | 
|  | // Emitting an empty struct type for the pointer's type allows this to be | 
|  | // order-independent. Non-struct types must be emitted in bitcode before | 
|  | // they can be referenced. | 
|  | TypeVals.push_back(false); | 
|  | Code = bitc::TYPE_CODE_OPAQUE; | 
|  | writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, | 
|  | "dxilOpaquePtrReservedName", StructNameAbbrev); | 
|  | break; | 
|  | } | 
|  | case Type::FunctionTyID: { | 
|  | FunctionType *FT = cast<FunctionType>(T); | 
|  | // FUNCTION: [isvararg, retty, paramty x N] | 
|  | Code = bitc::TYPE_CODE_FUNCTION; | 
|  | TypeVals.push_back(FT->isVarArg()); | 
|  | TypeVals.push_back(getTypeID(FT->getReturnType())); | 
|  | for (Type *PTy : FT->params()) | 
|  | TypeVals.push_back(getTypeID(PTy)); | 
|  | AbbrevToUse = FunctionAbbrev; | 
|  | break; | 
|  | } | 
|  | case Type::StructTyID: { | 
|  | StructType *ST = cast<StructType>(T); | 
|  | // STRUCT: [ispacked, eltty x N] | 
|  | TypeVals.push_back(ST->isPacked()); | 
|  | // Output all of the element types. | 
|  | for (Type *ElTy : ST->elements()) | 
|  | TypeVals.push_back(getTypeID(ElTy)); | 
|  |  | 
|  | if (ST->isLiteral()) { | 
|  | Code = bitc::TYPE_CODE_STRUCT_ANON; | 
|  | AbbrevToUse = StructAnonAbbrev; | 
|  | } else { | 
|  | if (ST->isOpaque()) { | 
|  | Code = bitc::TYPE_CODE_OPAQUE; | 
|  | } else { | 
|  | Code = bitc::TYPE_CODE_STRUCT_NAMED; | 
|  | AbbrevToUse = StructNamedAbbrev; | 
|  | } | 
|  |  | 
|  | // Emit the name if it is present. | 
|  | if (!ST->getName().empty()) | 
|  | writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), | 
|  | StructNameAbbrev); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Type::ArrayTyID: { | 
|  | ArrayType *AT = cast<ArrayType>(T); | 
|  | // ARRAY: [numelts, eltty] | 
|  | Code = bitc::TYPE_CODE_ARRAY; | 
|  | TypeVals.push_back(AT->getNumElements()); | 
|  | TypeVals.push_back(getTypeID(AT->getElementType())); | 
|  | AbbrevToUse = ArrayAbbrev; | 
|  | break; | 
|  | } | 
|  | case Type::FixedVectorTyID: | 
|  | case Type::ScalableVectorTyID: { | 
|  | VectorType *VT = cast<VectorType>(T); | 
|  | // VECTOR [numelts, eltty] | 
|  | Code = bitc::TYPE_CODE_VECTOR; | 
|  | TypeVals.push_back(VT->getElementCount().getKnownMinValue()); | 
|  | TypeVals.push_back(getTypeID(VT->getElementType())); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Emit the finished record. | 
|  | Stream.EmitRecord(Code, TypeVals, AbbrevToUse); | 
|  | TypeVals.clear(); | 
|  | } | 
|  |  | 
|  | Stream.ExitBlock(); | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::writeComdats() { | 
|  | SmallVector<uint16_t, 64> Vals; | 
|  | for (const Comdat *C : VE.getComdats()) { | 
|  | // COMDAT: [selection_kind, name] | 
|  | Vals.push_back(getEncodedComdatSelectionKind(*C)); | 
|  | size_t Size = C->getName().size(); | 
|  | assert(isUInt<16>(Size)); | 
|  | Vals.push_back(Size); | 
|  | for (char Chr : C->getName()) | 
|  | Vals.push_back((unsigned char)Chr); | 
|  | Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); | 
|  | Vals.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::writeValueSymbolTableForwardDecl() {} | 
|  |  | 
|  | /// Emit top-level description of module, including target triple, inline asm, | 
|  | /// descriptors for global variables, and function prototype info. | 
|  | /// Returns the bit offset to backpatch with the location of the real VST. | 
|  | void DXILBitcodeWriter::writeModuleInfo() { | 
|  | // Emit various pieces of data attached to a module. | 
|  | if (!M.getTargetTriple().empty()) | 
|  | writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), | 
|  | 0 /*TODO*/); | 
|  | const std::string &DL = M.getDataLayoutStr(); | 
|  | if (!DL.empty()) | 
|  | writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); | 
|  | if (!M.getModuleInlineAsm().empty()) | 
|  | writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), | 
|  | 0 /*TODO*/); | 
|  |  | 
|  | // Emit information about sections and GC, computing how many there are. Also | 
|  | // compute the maximum alignment value. | 
|  | std::map<std::string, unsigned> SectionMap; | 
|  | std::map<std::string, unsigned> GCMap; | 
|  | MaybeAlign MaxAlignment; | 
|  | unsigned MaxGlobalType = 0; | 
|  | const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { | 
|  | if (A) | 
|  | MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); | 
|  | }; | 
|  | for (const GlobalVariable &GV : M.globals()) { | 
|  | UpdateMaxAlignment(GV.getAlign()); | 
|  | // Use getGlobalObjectValueTypeID to look up the enumerated type ID for | 
|  | // Global Variable types. | 
|  | MaxGlobalType = std::max( | 
|  | MaxGlobalType, getGlobalObjectValueTypeID(GV.getValueType(), &GV)); | 
|  | if (GV.hasSection()) { | 
|  | // Give section names unique ID's. | 
|  | unsigned &Entry = SectionMap[std::string(GV.getSection())]; | 
|  | if (!Entry) { | 
|  | writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, | 
|  | GV.getSection(), 0 /*TODO*/); | 
|  | Entry = SectionMap.size(); | 
|  | } | 
|  | } | 
|  | } | 
|  | for (const Function &F : M) { | 
|  | UpdateMaxAlignment(F.getAlign()); | 
|  | if (F.hasSection()) { | 
|  | // Give section names unique ID's. | 
|  | unsigned &Entry = SectionMap[std::string(F.getSection())]; | 
|  | if (!Entry) { | 
|  | writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), | 
|  | 0 /*TODO*/); | 
|  | Entry = SectionMap.size(); | 
|  | } | 
|  | } | 
|  | if (F.hasGC()) { | 
|  | // Same for GC names. | 
|  | unsigned &Entry = GCMap[F.getGC()]; | 
|  | if (!Entry) { | 
|  | writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), | 
|  | 0 /*TODO*/); | 
|  | Entry = GCMap.size(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Emit abbrev for globals, now that we know # sections and max alignment. | 
|  | unsigned SimpleGVarAbbrev = 0; | 
|  | if (!M.global_empty()) { | 
|  | // Add an abbrev for common globals with no visibility or thread | 
|  | // localness. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, | 
|  | Log2_32_Ceil(MaxGlobalType + 1))); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2 | 
|  | //| explicitType << 1 | 
|  | //| constant | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer. | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. | 
|  | if (!MaxAlignment)                                     // Alignment. | 
|  | Abbv->Add(BitCodeAbbrevOp(0)); | 
|  | else { | 
|  | unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, | 
|  | Log2_32_Ceil(MaxEncAlignment + 1))); | 
|  | } | 
|  | if (SectionMap.empty()) // Section. | 
|  | Abbv->Add(BitCodeAbbrevOp(0)); | 
|  | else | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, | 
|  | Log2_32_Ceil(SectionMap.size() + 1))); | 
|  | // Don't bother emitting vis + thread local. | 
|  | SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  | } | 
|  |  | 
|  | // Emit the global variable information. | 
|  | SmallVector<unsigned, 64> Vals; | 
|  | for (const GlobalVariable &GV : M.globals()) { | 
|  | unsigned AbbrevToUse = 0; | 
|  |  | 
|  | // GLOBALVAR: [type, isconst, initid, | 
|  | //             linkage, alignment, section, visibility, threadlocal, | 
|  | //             unnamed_addr, externally_initialized, dllstorageclass, | 
|  | //             comdat] | 
|  | Vals.push_back(getGlobalObjectValueTypeID(GV.getValueType(), &GV)); | 
|  | Vals.push_back( | 
|  | GV.getType()->getAddressSpace() << 2 | 2 | | 
|  | (GV.isConstant() ? 1 : 0)); // HLSL Change - bitwise | was used with | 
|  | // unsigned int and bool | 
|  | Vals.push_back( | 
|  | GV.isDeclaration() ? 0 : (VE.getValueID(GV.getInitializer()) + 1)); | 
|  | Vals.push_back(getEncodedLinkage(GV)); | 
|  | Vals.push_back(getEncodedAlign(GV.getAlign())); | 
|  | Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] | 
|  | : 0); | 
|  | if (GV.isThreadLocal() || | 
|  | GV.getVisibility() != GlobalValue::DefaultVisibility || | 
|  | GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || | 
|  | GV.isExternallyInitialized() || | 
|  | GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || | 
|  | GV.hasComdat()) { | 
|  | Vals.push_back(getEncodedVisibility(GV)); | 
|  | Vals.push_back(getEncodedThreadLocalMode(GV)); | 
|  | Vals.push_back(GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); | 
|  | Vals.push_back(GV.isExternallyInitialized()); | 
|  | Vals.push_back(getEncodedDLLStorageClass(GV)); | 
|  | Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); | 
|  | } else { | 
|  | AbbrevToUse = SimpleGVarAbbrev; | 
|  | } | 
|  |  | 
|  | Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); | 
|  | Vals.clear(); | 
|  | } | 
|  |  | 
|  | // Emit the function proto information. | 
|  | for (const Function &F : M) { | 
|  | // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment, | 
|  | //             section, visibility, gc, unnamed_addr, prologuedata, | 
|  | //             dllstorageclass, comdat, prefixdata, personalityfn] | 
|  | Vals.push_back(getGlobalObjectValueTypeID(F.getFunctionType(), &F)); | 
|  | Vals.push_back(F.getCallingConv()); | 
|  | Vals.push_back(F.isDeclaration()); | 
|  | Vals.push_back(getEncodedLinkage(F)); | 
|  | Vals.push_back(VE.getAttributeListID(F.getAttributes())); | 
|  | Vals.push_back(getEncodedAlign(F.getAlign())); | 
|  | Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] | 
|  | : 0); | 
|  | Vals.push_back(getEncodedVisibility(F)); | 
|  | Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); | 
|  | Vals.push_back(F.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); | 
|  | Vals.push_back( | 
|  | F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) : 0); | 
|  | Vals.push_back(getEncodedDLLStorageClass(F)); | 
|  | Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); | 
|  | Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) | 
|  | : 0); | 
|  | Vals.push_back( | 
|  | F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); | 
|  |  | 
|  | unsigned AbbrevToUse = 0; | 
|  | Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); | 
|  | Vals.clear(); | 
|  | } | 
|  |  | 
|  | // Emit the alias information. | 
|  | for (const GlobalAlias &A : M.aliases()) { | 
|  | // ALIAS: [alias type, aliasee val#, linkage, visibility] | 
|  | Vals.push_back(getTypeID(A.getValueType(), &A)); | 
|  | Vals.push_back(VE.getValueID(A.getAliasee())); | 
|  | Vals.push_back(getEncodedLinkage(A)); | 
|  | Vals.push_back(getEncodedVisibility(A)); | 
|  | Vals.push_back(getEncodedDLLStorageClass(A)); | 
|  | Vals.push_back(getEncodedThreadLocalMode(A)); | 
|  | Vals.push_back(A.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); | 
|  | unsigned AbbrevToUse = 0; | 
|  | Stream.EmitRecord(bitc::MODULE_CODE_ALIAS_OLD, Vals, AbbrevToUse); | 
|  | Vals.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::writeValueAsMetadata( | 
|  | const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { | 
|  | // Mimic an MDNode with a value as one operand. | 
|  | Value *V = MD->getValue(); | 
|  | Type *Ty = V->getType(); | 
|  | if (Function *F = dyn_cast<Function>(V)) | 
|  | Ty = TypedPointerType::get(F->getFunctionType(), F->getAddressSpace()); | 
|  | else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) | 
|  | Ty = TypedPointerType::get(GV->getValueType(), GV->getAddressSpace()); | 
|  | Record.push_back(getTypeID(Ty)); | 
|  | Record.push_back(VE.getValueID(V)); | 
|  | Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::writeMDTuple(const MDTuple *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { | 
|  | Metadata *MD = N->getOperand(i); | 
|  | assert(!(MD && isa<LocalAsMetadata>(MD)) && | 
|  | "Unexpected function-local metadata"); | 
|  | Record.push_back(VE.getMetadataOrNullID(MD)); | 
|  | } | 
|  | Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE | 
|  | : bitc::METADATA_NODE, | 
|  | Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::writeDILocation(const DILocation *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned &Abbrev) { | 
|  | if (!Abbrev) | 
|  | Abbrev = createDILocationAbbrev(); | 
|  | Record.push_back(N->isDistinct()); | 
|  | Record.push_back(N->getLine()); | 
|  | Record.push_back(N->getColumn()); | 
|  | Record.push_back(VE.getMetadataID(N->getScope())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | static uint64_t rotateSign(APInt Val) { | 
|  | int64_t I = Val.getSExtValue(); | 
|  | uint64_t U = I; | 
|  | return I < 0 ? ~(U << 1) : U << 1; | 
|  | } | 
|  |  | 
|  | static uint64_t rotateSign(DISubrange::BoundType Val) { | 
|  | return rotateSign(Val.get<ConstantInt *>()->getValue()); | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::writeDISubrange(const DISubrange *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.push_back(N->isDistinct()); | 
|  | Record.push_back( | 
|  | N->getCount().get<ConstantInt *>()->getValue().getSExtValue()); | 
|  | Record.push_back(rotateSign(N->getLowerBound())); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.push_back(N->isDistinct()); | 
|  | Record.push_back(rotateSign(N->getValue())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawName())); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::writeDIBasicType(const DIBasicType *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.push_back(N->isDistinct()); | 
|  | Record.push_back(N->getTag()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawName())); | 
|  | Record.push_back(N->getSizeInBits()); | 
|  | Record.push_back(N->getAlignInBits()); | 
|  | Record.push_back(N->getEncoding()); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.push_back(N->isDistinct()); | 
|  | Record.push_back(N->getTag()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawName())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getFile())); | 
|  | Record.push_back(N->getLine()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getScope())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); | 
|  | Record.push_back(N->getSizeInBits()); | 
|  | Record.push_back(N->getAlignInBits()); | 
|  | Record.push_back(N->getOffsetInBits()); | 
|  | Record.push_back(N->getFlags()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::writeDICompositeType(const DICompositeType *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.push_back(N->isDistinct()); | 
|  | Record.push_back(N->getTag()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawName())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getFile())); | 
|  | Record.push_back(N->getLine()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getScope())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); | 
|  | Record.push_back(N->getSizeInBits()); | 
|  | Record.push_back(N->getAlignInBits()); | 
|  | Record.push_back(N->getOffsetInBits()); | 
|  | Record.push_back(N->getFlags()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); | 
|  | Record.push_back(N->getRuntimeLang()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::writeDISubroutineType(const DISubroutineType *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.push_back(N->isDistinct()); | 
|  | Record.push_back(N->getFlags()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::writeDIFile(const DIFile *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.push_back(N->isDistinct()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.push_back(N->isDistinct()); | 
|  | Record.push_back(N->getSourceLanguage()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getFile())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); | 
|  | Record.push_back(N->isOptimized()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); | 
|  | Record.push_back(N->getRuntimeVersion()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); | 
|  | Record.push_back(N->getEmissionKind()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); | 
|  | Record.push_back(/* subprograms */ 0); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); | 
|  | Record.push_back(N->getDWOId()); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::writeDISubprogram(const DISubprogram *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.push_back(N->isDistinct()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getScope())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawName())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getFile())); | 
|  | Record.push_back(N->getLine()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getType())); | 
|  | Record.push_back(N->isLocalToUnit()); | 
|  | Record.push_back(N->isDefinition()); | 
|  | Record.push_back(N->getScopeLine()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); | 
|  | Record.push_back(N->getVirtuality()); | 
|  | Record.push_back(N->getVirtualIndex()); | 
|  | Record.push_back(N->getFlags()); | 
|  | Record.push_back(N->isOptimized()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.push_back(N->isDistinct()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getScope())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getFile())); | 
|  | Record.push_back(N->getLine()); | 
|  | Record.push_back(N->getColumn()); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::writeDILexicalBlockFile( | 
|  | const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.push_back(N->isDistinct()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getScope())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getFile())); | 
|  | Record.push_back(N->getDiscriminator()); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::writeDINamespace(const DINamespace *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.push_back(N->isDistinct()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getScope())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getFile())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawName())); | 
|  | Record.push_back(/* line number */ 0); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::writeDIModule(const DIModule *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.push_back(N->isDistinct()); | 
|  | for (auto &I : N->operands()) | 
|  | Record.push_back(VE.getMetadataOrNullID(I)); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::writeDITemplateTypeParameter( | 
|  | const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.push_back(N->isDistinct()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawName())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getType())); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::writeDITemplateValueParameter( | 
|  | const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.push_back(N->isDistinct()); | 
|  | Record.push_back(N->getTag()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawName())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getType())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getValue())); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::writeDIGlobalVariable(const DIGlobalVariable *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.push_back(N->isDistinct()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getScope())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawName())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getFile())); | 
|  | Record.push_back(N->getLine()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getType())); | 
|  | Record.push_back(N->isLocalToUnit()); | 
|  | Record.push_back(N->isDefinition()); | 
|  | Record.push_back(/* N->getRawVariable() */ 0); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::writeDILocalVariable(const DILocalVariable *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.push_back(N->isDistinct()); | 
|  | Record.push_back(N->getTag()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getScope())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawName())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getFile())); | 
|  | Record.push_back(N->getLine()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getType())); | 
|  | Record.push_back(N->getArg()); | 
|  | Record.push_back(N->getFlags()); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::writeDIExpression(const DIExpression *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.reserve(N->getElements().size() + 1); | 
|  |  | 
|  | Record.push_back(N->isDistinct()); | 
|  | Record.append(N->elements_begin(), N->elements_end()); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | llvm_unreachable("DXIL does not support objc!!!"); | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::writeDIImportedEntity(const DIImportedEntity *N, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | unsigned Abbrev) { | 
|  | Record.push_back(N->isDistinct()); | 
|  | Record.push_back(N->getTag()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getScope())); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getEntity())); | 
|  | Record.push_back(N->getLine()); | 
|  | Record.push_back(VE.getMetadataOrNullID(N->getRawName())); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | unsigned DXILBitcodeWriter::createDILocationAbbrev() { | 
|  | // Abbrev for METADATA_LOCATION. | 
|  | // | 
|  | // Assume the column is usually under 128, and always output the inlined-at | 
|  | // location (it's never more expensive than building an array size 1). | 
|  | std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); | 
|  | return Stream.EmitAbbrev(std::move(Abbv)); | 
|  | } | 
|  |  | 
|  | unsigned DXILBitcodeWriter::createGenericDINodeAbbrev() { | 
|  | // Abbrev for METADATA_GENERIC_DEBUG. | 
|  | // | 
|  | // Assume the column is usually under 128, and always output the inlined-at | 
|  | // location (it's never more expensive than building an array size 1). | 
|  | std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); | 
|  | return Stream.EmitAbbrev(std::move(Abbv)); | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::writeMetadataRecords(ArrayRef<const Metadata *> MDs, | 
|  | SmallVectorImpl<uint64_t> &Record, | 
|  | std::vector<unsigned> *MDAbbrevs, | 
|  | std::vector<uint64_t> *IndexPos) { | 
|  | if (MDs.empty()) | 
|  | return; | 
|  |  | 
|  | // Initialize MDNode abbreviations. | 
|  | #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; | 
|  | #include "llvm/IR/Metadata.def" | 
|  |  | 
|  | for (const Metadata *MD : MDs) { | 
|  | if (IndexPos) | 
|  | IndexPos->push_back(Stream.GetCurrentBitNo()); | 
|  | if (const MDNode *N = dyn_cast<MDNode>(MD)) { | 
|  | assert(N->isResolved() && "Expected forward references to be resolved"); | 
|  |  | 
|  | switch (N->getMetadataID()) { | 
|  | default: | 
|  | llvm_unreachable("Invalid MDNode subclass"); | 
|  | #define HANDLE_MDNODE_LEAF(CLASS)                                              \ | 
|  | case Metadata::CLASS##Kind:                                                  \ | 
|  | if (MDAbbrevs)                                                             \ | 
|  | write##CLASS(cast<CLASS>(N), Record,                                     \ | 
|  | (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \ | 
|  | else                                                                       \ | 
|  | write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \ | 
|  | continue; | 
|  | #include "llvm/IR/Metadata.def" | 
|  | } | 
|  | } | 
|  | writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned DXILBitcodeWriter::createMetadataStringsAbbrev() { | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING_OLD)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); | 
|  | return Stream.EmitAbbrev(std::move(Abbv)); | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::writeMetadataStrings( | 
|  | ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { | 
|  | for (const Metadata *MD : Strings) { | 
|  | const MDString *MDS = cast<MDString>(MD); | 
|  | // Code: [strchar x N] | 
|  | Record.append(MDS->bytes_begin(), MDS->bytes_end()); | 
|  |  | 
|  | // Emit the finished record. | 
|  | Stream.EmitRecord(bitc::METADATA_STRING_OLD, Record, | 
|  | createMetadataStringsAbbrev()); | 
|  | Record.clear(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::writeModuleMetadata() { | 
|  | if (!VE.hasMDs() && M.named_metadata_empty()) | 
|  | return; | 
|  |  | 
|  | Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 5); | 
|  |  | 
|  | // Emit all abbrevs upfront, so that the reader can jump in the middle of the | 
|  | // block and load any metadata. | 
|  | std::vector<unsigned> MDAbbrevs; | 
|  |  | 
|  | MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); | 
|  | MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); | 
|  | MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = | 
|  | createGenericDINodeAbbrev(); | 
|  |  | 
|  | unsigned NameAbbrev = 0; | 
|  | if (!M.named_metadata_empty()) { | 
|  | // Abbrev for METADATA_NAME. | 
|  | std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); | 
|  | NameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  | } | 
|  |  | 
|  | SmallVector<uint64_t, 64> Record; | 
|  | writeMetadataStrings(VE.getMDStrings(), Record); | 
|  |  | 
|  | std::vector<uint64_t> IndexPos; | 
|  | IndexPos.reserve(VE.getNonMDStrings().size()); | 
|  | writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); | 
|  |  | 
|  | // Write named metadata. | 
|  | for (const NamedMDNode &NMD : M.named_metadata()) { | 
|  | // Write name. | 
|  | StringRef Str = NMD.getName(); | 
|  | Record.append(Str.bytes_begin(), Str.bytes_end()); | 
|  | Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); | 
|  | Record.clear(); | 
|  |  | 
|  | // Write named metadata operands. | 
|  | for (const MDNode *N : NMD.operands()) | 
|  | Record.push_back(VE.getMetadataID(N)); | 
|  | Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | Stream.ExitBlock(); | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::writeFunctionMetadata(const Function &F) { | 
|  | if (!VE.hasMDs()) | 
|  | return; | 
|  |  | 
|  | Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); | 
|  | SmallVector<uint64_t, 64> Record; | 
|  | writeMetadataStrings(VE.getMDStrings(), Record); | 
|  | writeMetadataRecords(VE.getNonMDStrings(), Record); | 
|  | Stream.ExitBlock(); | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { | 
|  | Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); | 
|  |  | 
|  | SmallVector<uint64_t, 64> Record; | 
|  |  | 
|  | // Write metadata attachments | 
|  | // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] | 
|  | SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; | 
|  | F.getAllMetadata(MDs); | 
|  | if (!MDs.empty()) { | 
|  | for (const auto &I : MDs) { | 
|  | Record.push_back(I.first); | 
|  | Record.push_back(VE.getMetadataID(I.second)); | 
|  | } | 
|  | Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | for (const BasicBlock &BB : F) | 
|  | for (const Instruction &I : BB) { | 
|  | MDs.clear(); | 
|  | I.getAllMetadataOtherThanDebugLoc(MDs); | 
|  |  | 
|  | // If no metadata, ignore instruction. | 
|  | if (MDs.empty()) | 
|  | continue; | 
|  |  | 
|  | Record.push_back(VE.getInstructionID(&I)); | 
|  |  | 
|  | for (unsigned i = 0, e = MDs.size(); i != e; ++i) { | 
|  | Record.push_back(MDs[i].first); | 
|  | Record.push_back(VE.getMetadataID(MDs[i].second)); | 
|  | } | 
|  | Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | Stream.ExitBlock(); | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::writeModuleMetadataKinds() { | 
|  | SmallVector<uint64_t, 64> Record; | 
|  |  | 
|  | // Write metadata kinds | 
|  | // METADATA_KIND - [n x [id, name]] | 
|  | SmallVector<StringRef, 8> Names; | 
|  | M.getMDKindNames(Names); | 
|  |  | 
|  | if (Names.empty()) | 
|  | return; | 
|  |  | 
|  | Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); | 
|  |  | 
|  | for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { | 
|  | Record.push_back(MDKindID); | 
|  | StringRef KName = Names[MDKindID]; | 
|  | Record.append(KName.begin(), KName.end()); | 
|  |  | 
|  | Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | Stream.ExitBlock(); | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, | 
|  | bool isGlobal) { | 
|  | if (FirstVal == LastVal) | 
|  | return; | 
|  |  | 
|  | Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); | 
|  |  | 
|  | unsigned AggregateAbbrev = 0; | 
|  | unsigned String8Abbrev = 0; | 
|  | unsigned CString7Abbrev = 0; | 
|  | unsigned CString6Abbrev = 0; | 
|  | // If this is a constant pool for the module, emit module-specific abbrevs. | 
|  | if (isGlobal) { | 
|  | // Abbrev for CST_CODE_AGGREGATE. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add( | 
|  | BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal + 1))); | 
|  | AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  |  | 
|  | // Abbrev for CST_CODE_STRING. | 
|  | Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); | 
|  | String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  | // Abbrev for CST_CODE_CSTRING. | 
|  | Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); | 
|  | CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  | // Abbrev for CST_CODE_CSTRING. | 
|  | Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); | 
|  | CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); | 
|  | } | 
|  |  | 
|  | SmallVector<uint64_t, 64> Record; | 
|  |  | 
|  | const ValueEnumerator::ValueList &Vals = VE.getValues(); | 
|  | Type *LastTy = nullptr; | 
|  | for (unsigned i = FirstVal; i != LastVal; ++i) { | 
|  | const Value *V = Vals[i].first; | 
|  | // If we need to switch types, do so now. | 
|  | if (V->getType() != LastTy) { | 
|  | LastTy = V->getType(); | 
|  | Record.push_back(getTypeID(LastTy, V)); | 
|  | Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, | 
|  | CONSTANTS_SETTYPE_ABBREV); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { | 
|  | Record.push_back(unsigned(IA->hasSideEffects()) | | 
|  | unsigned(IA->isAlignStack()) << 1 | | 
|  | unsigned(IA->getDialect() & 1) << 2); | 
|  |  | 
|  | // Add the asm string. | 
|  | const std::string &AsmStr = IA->getAsmString(); | 
|  | Record.push_back(AsmStr.size()); | 
|  | Record.append(AsmStr.begin(), AsmStr.end()); | 
|  |  | 
|  | // Add the constraint string. | 
|  | const std::string &ConstraintStr = IA->getConstraintString(); | 
|  | Record.push_back(ConstraintStr.size()); | 
|  | Record.append(ConstraintStr.begin(), ConstraintStr.end()); | 
|  | Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); | 
|  | Record.clear(); | 
|  | continue; | 
|  | } | 
|  | const Constant *C = cast<Constant>(V); | 
|  | unsigned Code = -1U; | 
|  | unsigned AbbrevToUse = 0; | 
|  | if (C->isNullValue()) { | 
|  | Code = bitc::CST_CODE_NULL; | 
|  | } else if (isa<UndefValue>(C)) { | 
|  | Code = bitc::CST_CODE_UNDEF; | 
|  | } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { | 
|  | if (IV->getBitWidth() <= 64) { | 
|  | uint64_t V = IV->getSExtValue(); | 
|  | emitSignedInt64(Record, V); | 
|  | Code = bitc::CST_CODE_INTEGER; | 
|  | AbbrevToUse = CONSTANTS_INTEGER_ABBREV; | 
|  | } else { // Wide integers, > 64 bits in size. | 
|  | // We have an arbitrary precision integer value to write whose | 
|  | // bit width is > 64. However, in canonical unsigned integer | 
|  | // format it is likely that the high bits are going to be zero. | 
|  | // So, we only write the number of active words. | 
|  | unsigned NWords = IV->getValue().getActiveWords(); | 
|  | const uint64_t *RawWords = IV->getValue().getRawData(); | 
|  | for (unsigned i = 0; i != NWords; ++i) { | 
|  | emitSignedInt64(Record, RawWords[i]); | 
|  | } | 
|  | Code = bitc::CST_CODE_WIDE_INTEGER; | 
|  | } | 
|  | } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { | 
|  | Code = bitc::CST_CODE_FLOAT; | 
|  | Type *Ty = CFP->getType(); | 
|  | if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { | 
|  | Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); | 
|  | } else if (Ty->isX86_FP80Ty()) { | 
|  | // api needed to prevent premature destruction | 
|  | // bits are not in the same order as a normal i80 APInt, compensate. | 
|  | APInt api = CFP->getValueAPF().bitcastToAPInt(); | 
|  | const uint64_t *p = api.getRawData(); | 
|  | Record.push_back((p[1] << 48) | (p[0] >> 16)); | 
|  | Record.push_back(p[0] & 0xffffLL); | 
|  | } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { | 
|  | APInt api = CFP->getValueAPF().bitcastToAPInt(); | 
|  | const uint64_t *p = api.getRawData(); | 
|  | Record.push_back(p[0]); | 
|  | Record.push_back(p[1]); | 
|  | } else { | 
|  | assert(0 && "Unknown FP type!"); | 
|  | } | 
|  | } else if (isa<ConstantDataSequential>(C) && | 
|  | cast<ConstantDataSequential>(C)->isString()) { | 
|  | const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); | 
|  | // Emit constant strings specially. | 
|  | unsigned NumElts = Str->getNumElements(); | 
|  | // If this is a null-terminated string, use the denser CSTRING encoding. | 
|  | if (Str->isCString()) { | 
|  | Code = bitc::CST_CODE_CSTRING; | 
|  | --NumElts; // Don't encode the null, which isn't allowed by char6. | 
|  | } else { | 
|  | Code = bitc::CST_CODE_STRING; | 
|  | AbbrevToUse = String8Abbrev; | 
|  | } | 
|  | bool isCStr7 = Code == bitc::CST_CODE_CSTRING; | 
|  | bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | unsigned char V = Str->getElementAsInteger(i); | 
|  | Record.push_back(V); | 
|  | isCStr7 &= (V & 128) == 0; | 
|  | if (isCStrChar6) | 
|  | isCStrChar6 = BitCodeAbbrevOp::isChar6(V); | 
|  | } | 
|  |  | 
|  | if (isCStrChar6) | 
|  | AbbrevToUse = CString6Abbrev; | 
|  | else if (isCStr7) | 
|  | AbbrevToUse = CString7Abbrev; | 
|  | } else if (const ConstantDataSequential *CDS = | 
|  | dyn_cast<ConstantDataSequential>(C)) { | 
|  | Code = bitc::CST_CODE_DATA; | 
|  | Type *EltTy = CDS->getElementType(); | 
|  | if (isa<IntegerType>(EltTy)) { | 
|  | for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) | 
|  | Record.push_back(CDS->getElementAsInteger(i)); | 
|  | } else if (EltTy->isFloatTy()) { | 
|  | for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { | 
|  | union { | 
|  | float F; | 
|  | uint32_t I; | 
|  | }; | 
|  | F = CDS->getElementAsFloat(i); | 
|  | Record.push_back(I); | 
|  | } | 
|  | } else { | 
|  | assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); | 
|  | for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { | 
|  | union { | 
|  | double F; | 
|  | uint64_t I; | 
|  | }; | 
|  | F = CDS->getElementAsDouble(i); | 
|  | Record.push_back(I); | 
|  | } | 
|  | } | 
|  | } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || | 
|  | isa<ConstantVector>(C)) { | 
|  | Code = bitc::CST_CODE_AGGREGATE; | 
|  | for (const Value *Op : C->operands()) | 
|  | Record.push_back(VE.getValueID(Op)); | 
|  | AbbrevToUse = AggregateAbbrev; | 
|  | } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { | 
|  | switch (CE->getOpcode()) { | 
|  | default: | 
|  | if (Instruction::isCast(CE->getOpcode())) { | 
|  | Code = bitc::CST_CODE_CE_CAST; | 
|  | Record.push_back(getEncodedCastOpcode(CE->getOpcode())); | 
|  | Record.push_back( | 
|  | getTypeID(C->getOperand(0)->getType(), C->getOperand(0))); | 
|  | Record.push_back(VE.getValueID(C->getOperand(0))); | 
|  | AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; | 
|  | } else { | 
|  | assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); | 
|  | Code = bitc::CST_CODE_CE_BINOP; | 
|  | Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); | 
|  | Record.push_back(VE.getValueID(C->getOperand(0))); | 
|  | Record.push_back(VE.getValueID(C->getOperand(1))); | 
|  | uint64_t Flags = getOptimizationFlags(CE); | 
|  | if (Flags != 0) | 
|  | Record.push_back(Flags); | 
|  | } | 
|  | break; | 
|  | case Instruction::GetElementPtr: { | 
|  | Code = bitc::CST_CODE_CE_GEP; | 
|  | const auto *GO = cast<GEPOperator>(C); | 
|  | if (GO->isInBounds()) | 
|  | Code = bitc::CST_CODE_CE_INBOUNDS_GEP; | 
|  | Record.push_back(getTypeID(GO->getSourceElementType())); | 
|  | for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { | 
|  | Record.push_back( | 
|  | getTypeID(C->getOperand(i)->getType(), C->getOperand(i))); | 
|  | Record.push_back(VE.getValueID(C->getOperand(i))); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::Select: | 
|  | Code = bitc::CST_CODE_CE_SELECT; | 
|  | Record.push_back(VE.getValueID(C->getOperand(0))); | 
|  | Record.push_back(VE.getValueID(C->getOperand(1))); | 
|  | Record.push_back(VE.getValueID(C->getOperand(2))); | 
|  | break; | 
|  | case Instruction::ExtractElement: | 
|  | Code = bitc::CST_CODE_CE_EXTRACTELT; | 
|  | Record.push_back(getTypeID(C->getOperand(0)->getType())); | 
|  | Record.push_back(VE.getValueID(C->getOperand(0))); | 
|  | Record.push_back(getTypeID(C->getOperand(1)->getType())); | 
|  | Record.push_back(VE.getValueID(C->getOperand(1))); | 
|  | break; | 
|  | case Instruction::InsertElement: | 
|  | Code = bitc::CST_CODE_CE_INSERTELT; | 
|  | Record.push_back(VE.getValueID(C->getOperand(0))); | 
|  | Record.push_back(VE.getValueID(C->getOperand(1))); | 
|  | Record.push_back(getTypeID(C->getOperand(2)->getType())); | 
|  | Record.push_back(VE.getValueID(C->getOperand(2))); | 
|  | break; | 
|  | case Instruction::ShuffleVector: | 
|  | // If the return type and argument types are the same, this is a | 
|  | // standard shufflevector instruction.  If the types are different, | 
|  | // then the shuffle is widening or truncating the input vectors, and | 
|  | // the argument type must also be encoded. | 
|  | if (C->getType() == C->getOperand(0)->getType()) { | 
|  | Code = bitc::CST_CODE_CE_SHUFFLEVEC; | 
|  | } else { | 
|  | Code = bitc::CST_CODE_CE_SHUFVEC_EX; | 
|  | Record.push_back(getTypeID(C->getOperand(0)->getType())); | 
|  | } | 
|  | Record.push_back(VE.getValueID(C->getOperand(0))); | 
|  | Record.push_back(VE.getValueID(C->getOperand(1))); | 
|  | Record.push_back(VE.getValueID(C->getOperand(2))); | 
|  | break; | 
|  | case Instruction::ICmp: | 
|  | case Instruction::FCmp: | 
|  | Code = bitc::CST_CODE_CE_CMP; | 
|  | Record.push_back(getTypeID(C->getOperand(0)->getType())); | 
|  | Record.push_back(VE.getValueID(C->getOperand(0))); | 
|  | Record.push_back(VE.getValueID(C->getOperand(1))); | 
|  | Record.push_back(CE->getPredicate()); | 
|  | break; | 
|  | } | 
|  | } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { | 
|  | Code = bitc::CST_CODE_BLOCKADDRESS; | 
|  | Record.push_back(getTypeID(BA->getFunction()->getType())); | 
|  | Record.push_back(VE.getValueID(BA->getFunction())); | 
|  | Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); | 
|  | } else { | 
|  | #ifndef NDEBUG | 
|  | C->dump(); | 
|  | #endif | 
|  | llvm_unreachable("Unknown constant!"); | 
|  | } | 
|  | Stream.EmitRecord(Code, Record, AbbrevToUse); | 
|  | Record.clear(); | 
|  | } | 
|  |  | 
|  | Stream.ExitBlock(); | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::writeModuleConstants() { | 
|  | const ValueEnumerator::ValueList &Vals = VE.getValues(); | 
|  |  | 
|  | // Find the first constant to emit, which is the first non-globalvalue value. | 
|  | // We know globalvalues have been emitted by WriteModuleInfo. | 
|  | for (unsigned i = 0, e = Vals.size(); i != e; ++i) { | 
|  | if (!isa<GlobalValue>(Vals[i].first)) { | 
|  | writeConstants(i, Vals.size(), true); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// pushValueAndType - The file has to encode both the value and type id for | 
|  | /// many values, because we need to know what type to create for forward | 
|  | /// references.  However, most operands are not forward references, so this type | 
|  | /// field is not needed. | 
|  | /// | 
|  | /// This function adds V's value ID to Vals.  If the value ID is higher than the | 
|  | /// instruction ID, then it is a forward reference, and it also includes the | 
|  | /// type ID.  The value ID that is written is encoded relative to the InstID. | 
|  | bool DXILBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, | 
|  | SmallVectorImpl<unsigned> &Vals) { | 
|  | unsigned ValID = VE.getValueID(V); | 
|  | // Make encoding relative to the InstID. | 
|  | Vals.push_back(InstID - ValID); | 
|  | if (ValID >= InstID) { | 
|  | Vals.push_back(getTypeID(V->getType(), V)); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// pushValue - Like pushValueAndType, but where the type of the value is | 
|  | /// omitted (perhaps it was already encoded in an earlier operand). | 
|  | void DXILBitcodeWriter::pushValue(const Value *V, unsigned InstID, | 
|  | SmallVectorImpl<unsigned> &Vals) { | 
|  | unsigned ValID = VE.getValueID(V); | 
|  | Vals.push_back(InstID - ValID); | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, | 
|  | SmallVectorImpl<uint64_t> &Vals) { | 
|  | unsigned ValID = VE.getValueID(V); | 
|  | int64_t diff = ((int32_t)InstID - (int32_t)ValID); | 
|  | emitSignedInt64(Vals, diff); | 
|  | } | 
|  |  | 
|  | /// WriteInstruction - Emit an instruction | 
|  | void DXILBitcodeWriter::writeInstruction(const Instruction &I, unsigned InstID, | 
|  | SmallVectorImpl<unsigned> &Vals) { | 
|  | unsigned Code = 0; | 
|  | unsigned AbbrevToUse = 0; | 
|  | VE.setInstructionID(&I); | 
|  | switch (I.getOpcode()) { | 
|  | default: | 
|  | if (Instruction::isCast(I.getOpcode())) { | 
|  | Code = bitc::FUNC_CODE_INST_CAST; | 
|  | if (!pushValueAndType(I.getOperand(0), InstID, Vals)) | 
|  | AbbrevToUse = (unsigned)FUNCTION_INST_CAST_ABBREV; | 
|  | Vals.push_back(getTypeID(I.getType(), &I)); | 
|  | Vals.push_back(getEncodedCastOpcode(I.getOpcode())); | 
|  | } else { | 
|  | assert(isa<BinaryOperator>(I) && "Unknown instruction!"); | 
|  | Code = bitc::FUNC_CODE_INST_BINOP; | 
|  | if (!pushValueAndType(I.getOperand(0), InstID, Vals)) | 
|  | AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_ABBREV; | 
|  | pushValue(I.getOperand(1), InstID, Vals); | 
|  | Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); | 
|  | uint64_t Flags = getOptimizationFlags(&I); | 
|  | if (Flags != 0) { | 
|  | if (AbbrevToUse == (unsigned)FUNCTION_INST_BINOP_ABBREV) | 
|  | AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV; | 
|  | Vals.push_back(Flags); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Instruction::GetElementPtr: { | 
|  | Code = bitc::FUNC_CODE_INST_GEP; | 
|  | AbbrevToUse = (unsigned)FUNCTION_INST_GEP_ABBREV; | 
|  | auto &GEPInst = cast<GetElementPtrInst>(I); | 
|  | Vals.push_back(GEPInst.isInBounds()); | 
|  | Vals.push_back(getTypeID(GEPInst.getSourceElementType())); | 
|  | for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) | 
|  | pushValueAndType(I.getOperand(i), InstID, Vals); | 
|  | break; | 
|  | } | 
|  | case Instruction::ExtractValue: { | 
|  | Code = bitc::FUNC_CODE_INST_EXTRACTVAL; | 
|  | pushValueAndType(I.getOperand(0), InstID, Vals); | 
|  | const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); | 
|  | Vals.append(EVI->idx_begin(), EVI->idx_end()); | 
|  | break; | 
|  | } | 
|  | case Instruction::InsertValue: { | 
|  | Code = bitc::FUNC_CODE_INST_INSERTVAL; | 
|  | pushValueAndType(I.getOperand(0), InstID, Vals); | 
|  | pushValueAndType(I.getOperand(1), InstID, Vals); | 
|  | const InsertValueInst *IVI = cast<InsertValueInst>(&I); | 
|  | Vals.append(IVI->idx_begin(), IVI->idx_end()); | 
|  | break; | 
|  | } | 
|  | case Instruction::Select: | 
|  | Code = bitc::FUNC_CODE_INST_VSELECT; | 
|  | pushValueAndType(I.getOperand(1), InstID, Vals); | 
|  | pushValue(I.getOperand(2), InstID, Vals); | 
|  | pushValueAndType(I.getOperand(0), InstID, Vals); | 
|  | break; | 
|  | case Instruction::ExtractElement: | 
|  | Code = bitc::FUNC_CODE_INST_EXTRACTELT; | 
|  | pushValueAndType(I.getOperand(0), InstID, Vals); | 
|  | pushValueAndType(I.getOperand(1), InstID, Vals); | 
|  | break; | 
|  | case Instruction::InsertElement: | 
|  | Code = bitc::FUNC_CODE_INST_INSERTELT; | 
|  | pushValueAndType(I.getOperand(0), InstID, Vals); | 
|  | pushValue(I.getOperand(1), InstID, Vals); | 
|  | pushValueAndType(I.getOperand(2), InstID, Vals); | 
|  | break; | 
|  | case Instruction::ShuffleVector: | 
|  | Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; | 
|  | pushValueAndType(I.getOperand(0), InstID, Vals); | 
|  | pushValue(I.getOperand(1), InstID, Vals); | 
|  | pushValue(cast<ShuffleVectorInst>(&I)->getShuffleMaskForBitcode(), InstID, | 
|  | Vals); | 
|  | break; | 
|  | case Instruction::ICmp: | 
|  | case Instruction::FCmp: { | 
|  | // compare returning Int1Ty or vector of Int1Ty | 
|  | Code = bitc::FUNC_CODE_INST_CMP2; | 
|  | pushValueAndType(I.getOperand(0), InstID, Vals); | 
|  | pushValue(I.getOperand(1), InstID, Vals); | 
|  | Vals.push_back(cast<CmpInst>(I).getPredicate()); | 
|  | uint64_t Flags = getOptimizationFlags(&I); | 
|  | if (Flags != 0) | 
|  | Vals.push_back(Flags); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Instruction::Ret: { | 
|  | Code = bitc::FUNC_CODE_INST_RET; | 
|  | unsigned NumOperands = I.getNumOperands(); | 
|  | if (NumOperands == 0) | 
|  | AbbrevToUse = (unsigned)FUNCTION_INST_RET_VOID_ABBREV; | 
|  | else if (NumOperands == 1) { | 
|  | if (!pushValueAndType(I.getOperand(0), InstID, Vals)) | 
|  | AbbrevToUse = (unsigned)FUNCTION_INST_RET_VAL_ABBREV; | 
|  | } else { | 
|  | for (unsigned i = 0, e = NumOperands; i != e; ++i) | 
|  | pushValueAndType(I.getOperand(i), InstID, Vals); | 
|  | } | 
|  | } break; | 
|  | case Instruction::Br: { | 
|  | Code = bitc::FUNC_CODE_INST_BR; | 
|  | const BranchInst &II = cast<BranchInst>(I); | 
|  | Vals.push_back(VE.getValueID(II.getSuccessor(0))); | 
|  | if (II.isConditional()) { | 
|  | Vals.push_back(VE.getValueID(II.getSuccessor(1))); | 
|  | pushValue(II.getCondition(), InstID, Vals); | 
|  | } | 
|  | } break; | 
|  | case Instruction::Switch: { | 
|  | Code = bitc::FUNC_CODE_INST_SWITCH; | 
|  | const SwitchInst &SI = cast<SwitchInst>(I); | 
|  | Vals.push_back(getTypeID(SI.getCondition()->getType())); | 
|  | pushValue(SI.getCondition(), InstID, Vals); | 
|  | Vals.push_back(VE.getValueID(SI.getDefaultDest())); | 
|  | for (auto Case : SI.cases()) { | 
|  | Vals.push_back(VE.getValueID(Case.getCaseValue())); | 
|  | Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); | 
|  | } | 
|  | } break; | 
|  | case Instruction::IndirectBr: | 
|  | Code = bitc::FUNC_CODE_INST_INDIRECTBR; | 
|  | Vals.push_back(getTypeID(I.getOperand(0)->getType())); | 
|  | // Encode the address operand as relative, but not the basic blocks. | 
|  | pushValue(I.getOperand(0), InstID, Vals); | 
|  | for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) | 
|  | Vals.push_back(VE.getValueID(I.getOperand(i))); | 
|  | break; | 
|  |  | 
|  | case Instruction::Invoke: { | 
|  | const InvokeInst *II = cast<InvokeInst>(&I); | 
|  | const Value *Callee = II->getCalledOperand(); | 
|  | FunctionType *FTy = II->getFunctionType(); | 
|  | Code = bitc::FUNC_CODE_INST_INVOKE; | 
|  |  | 
|  | Vals.push_back(VE.getAttributeListID(II->getAttributes())); | 
|  | Vals.push_back(II->getCallingConv() | 1 << 13); | 
|  | Vals.push_back(VE.getValueID(II->getNormalDest())); | 
|  | Vals.push_back(VE.getValueID(II->getUnwindDest())); | 
|  | Vals.push_back(getTypeID(FTy)); | 
|  | pushValueAndType(Callee, InstID, Vals); | 
|  |  | 
|  | // Emit value #'s for the fixed parameters. | 
|  | for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) | 
|  | pushValue(I.getOperand(i), InstID, Vals); // fixed param. | 
|  |  | 
|  | // Emit type/value pairs for varargs params. | 
|  | if (FTy->isVarArg()) { | 
|  | for (unsigned i = FTy->getNumParams(), e = I.getNumOperands() - 3; i != e; | 
|  | ++i) | 
|  | pushValueAndType(I.getOperand(i), InstID, Vals); // vararg | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::Resume: | 
|  | Code = bitc::FUNC_CODE_INST_RESUME; | 
|  | pushValueAndType(I.getOperand(0), InstID, Vals); | 
|  | break; | 
|  | case Instruction::Unreachable: | 
|  | Code = bitc::FUNC_CODE_INST_UNREACHABLE; | 
|  | AbbrevToUse = (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV; | 
|  | break; | 
|  |  | 
|  | case Instruction::PHI: { | 
|  | const PHINode &PN = cast<PHINode>(I); | 
|  | Code = bitc::FUNC_CODE_INST_PHI; | 
|  | // With the newer instruction encoding, forward references could give | 
|  | // negative valued IDs.  This is most common for PHIs, so we use | 
|  | // signed VBRs. | 
|  | SmallVector<uint64_t, 128> Vals64; | 
|  | Vals64.push_back(getTypeID(PN.getType())); | 
|  | for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { | 
|  | pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); | 
|  | Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); | 
|  | } | 
|  | // Emit a Vals64 vector and exit. | 
|  | Stream.EmitRecord(Code, Vals64, AbbrevToUse); | 
|  | Vals64.clear(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case Instruction::LandingPad: { | 
|  | const LandingPadInst &LP = cast<LandingPadInst>(I); | 
|  | Code = bitc::FUNC_CODE_INST_LANDINGPAD; | 
|  | Vals.push_back(getTypeID(LP.getType())); | 
|  | Vals.push_back(LP.isCleanup()); | 
|  | Vals.push_back(LP.getNumClauses()); | 
|  | for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { | 
|  | if (LP.isCatch(I)) | 
|  | Vals.push_back(LandingPadInst::Catch); | 
|  | else | 
|  | Vals.push_back(LandingPadInst::Filter); | 
|  | pushValueAndType(LP.getClause(I), InstID, Vals); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Instruction::Alloca: { | 
|  | Code = bitc::FUNC_CODE_INST_ALLOCA; | 
|  | const AllocaInst &AI = cast<AllocaInst>(I); | 
|  | Vals.push_back(getTypeID(AI.getAllocatedType())); | 
|  | Vals.push_back(getTypeID(I.getOperand(0)->getType())); | 
|  | Vals.push_back(VE.getValueID(I.getOperand(0))); // size. | 
|  | unsigned AlignRecord = Log2_32(AI.getAlign().value()) + 1; | 
|  | assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); | 
|  | AlignRecord |= AI.isUsedWithInAlloca() << 5; | 
|  | AlignRecord |= 1 << 6; | 
|  | Vals.push_back(AlignRecord); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Instruction::Load: | 
|  | if (cast<LoadInst>(I).isAtomic()) { | 
|  | Code = bitc::FUNC_CODE_INST_LOADATOMIC; | 
|  | pushValueAndType(I.getOperand(0), InstID, Vals); | 
|  | } else { | 
|  | Code = bitc::FUNC_CODE_INST_LOAD; | 
|  | if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr | 
|  | AbbrevToUse = (unsigned)FUNCTION_INST_LOAD_ABBREV; | 
|  | } | 
|  | Vals.push_back(getTypeID(I.getType())); | 
|  | Vals.push_back(Log2(cast<LoadInst>(I).getAlign()) + 1); | 
|  | Vals.push_back(cast<LoadInst>(I).isVolatile()); | 
|  | if (cast<LoadInst>(I).isAtomic()) { | 
|  | Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); | 
|  | Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); | 
|  | } | 
|  | break; | 
|  | case Instruction::Store: | 
|  | if (cast<StoreInst>(I).isAtomic()) | 
|  | Code = bitc::FUNC_CODE_INST_STOREATOMIC; | 
|  | else | 
|  | Code = bitc::FUNC_CODE_INST_STORE; | 
|  | pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr | 
|  | pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val | 
|  | Vals.push_back(Log2(cast<StoreInst>(I).getAlign()) + 1); | 
|  | Vals.push_back(cast<StoreInst>(I).isVolatile()); | 
|  | if (cast<StoreInst>(I).isAtomic()) { | 
|  | Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); | 
|  | Vals.push_back( | 
|  | getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); | 
|  | } | 
|  | break; | 
|  | case Instruction::AtomicCmpXchg: | 
|  | Code = bitc::FUNC_CODE_INST_CMPXCHG; | 
|  | pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr | 
|  | pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. | 
|  | pushValue(I.getOperand(2), InstID, Vals);        // newval. | 
|  | Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); | 
|  | Vals.push_back( | 
|  | getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); | 
|  | Vals.push_back( | 
|  | getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); | 
|  | Vals.push_back( | 
|  | getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); | 
|  | Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); | 
|  | break; | 
|  | case Instruction::AtomicRMW: | 
|  | Code = bitc::FUNC_CODE_INST_ATOMICRMW; | 
|  | pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr | 
|  | pushValue(I.getOperand(1), InstID, Vals);        // val. | 
|  | Vals.push_back( | 
|  | getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); | 
|  | Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); | 
|  | Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); | 
|  | Vals.push_back( | 
|  | getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); | 
|  | break; | 
|  | case Instruction::Fence: | 
|  | Code = bitc::FUNC_CODE_INST_FENCE; | 
|  | Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); | 
|  | Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); | 
|  | break; | 
|  | case Instruction::Call: { | 
|  | const CallInst &CI = cast<CallInst>(I); | 
|  | FunctionType *FTy = CI.getFunctionType(); | 
|  |  | 
|  | Code = bitc::FUNC_CODE_INST_CALL; | 
|  |  | 
|  | Vals.push_back(VE.getAttributeListID(CI.getAttributes())); | 
|  | Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | | 
|  | unsigned(CI.isMustTailCall()) << 14 | 1 << 15); | 
|  | Vals.push_back(getGlobalObjectValueTypeID(FTy, CI.getCalledFunction())); | 
|  | pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee | 
|  |  | 
|  | // Emit value #'s for the fixed parameters. | 
|  | for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { | 
|  | // Check for labels (can happen with asm labels). | 
|  | if (FTy->getParamType(i)->isLabelTy()) | 
|  | Vals.push_back(VE.getValueID(CI.getArgOperand(i))); | 
|  | else | 
|  | pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. | 
|  | } | 
|  |  | 
|  | // Emit type/value pairs for varargs params. | 
|  | if (FTy->isVarArg()) { | 
|  | for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) | 
|  | pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Instruction::VAArg: | 
|  | Code = bitc::FUNC_CODE_INST_VAARG; | 
|  | Vals.push_back(getTypeID(I.getOperand(0)->getType())); // valistty | 
|  | pushValue(I.getOperand(0), InstID, Vals);              // valist. | 
|  | Vals.push_back(getTypeID(I.getType()));                // restype. | 
|  | break; | 
|  | } | 
|  |  | 
|  | Stream.EmitRecord(Code, Vals, AbbrevToUse); | 
|  | Vals.clear(); | 
|  | } | 
|  |  | 
|  | // Emit names for globals/functions etc. | 
|  | void DXILBitcodeWriter::writeFunctionLevelValueSymbolTable( | 
|  | const ValueSymbolTable &VST) { | 
|  | if (VST.empty()) | 
|  | return; | 
|  | Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); | 
|  |  | 
|  | SmallVector<unsigned, 64> NameVals; | 
|  |  | 
|  | // HLSL Change | 
|  | // Read the named values from a sorted list instead of the original list | 
|  | // to ensure the binary is the same no matter what values ever existed. | 
|  | SmallVector<const ValueName *, 16> SortedTable; | 
|  |  | 
|  | for (auto &VI : VST) { | 
|  | SortedTable.push_back(VI.second->getValueName()); | 
|  | } | 
|  | // The keys are unique, so there shouldn't be stability issues. | 
|  | llvm::sort(SortedTable, [](const ValueName *A, const ValueName *B) { | 
|  | return A->first() < B->first(); | 
|  | }); | 
|  |  | 
|  | for (const ValueName *SI : SortedTable) { | 
|  | auto &Name = *SI; | 
|  |  | 
|  | // Figure out the encoding to use for the name. | 
|  | bool is7Bit = true; | 
|  | bool isChar6 = true; | 
|  | for (const char *C = Name.getKeyData(), *E = C + Name.getKeyLength(); | 
|  | C != E; ++C) { | 
|  | if (isChar6) | 
|  | isChar6 = BitCodeAbbrevOp::isChar6(*C); | 
|  | if ((unsigned char)*C & 128) { | 
|  | is7Bit = false; | 
|  | break; // don't bother scanning the rest. | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; | 
|  |  | 
|  | // VST_ENTRY:   [valueid, namechar x N] | 
|  | // VST_BBENTRY: [bbid, namechar x N] | 
|  | unsigned Code; | 
|  | if (isa<BasicBlock>(SI->getValue())) { | 
|  | Code = bitc::VST_CODE_BBENTRY; | 
|  | if (isChar6) | 
|  | AbbrevToUse = VST_BBENTRY_6_ABBREV; | 
|  | } else { | 
|  | Code = bitc::VST_CODE_ENTRY; | 
|  | if (isChar6) | 
|  | AbbrevToUse = VST_ENTRY_6_ABBREV; | 
|  | else if (is7Bit) | 
|  | AbbrevToUse = VST_ENTRY_7_ABBREV; | 
|  | } | 
|  |  | 
|  | NameVals.push_back(VE.getValueID(SI->getValue())); | 
|  | for (const char *P = Name.getKeyData(), | 
|  | *E = Name.getKeyData() + Name.getKeyLength(); | 
|  | P != E; ++P) | 
|  | NameVals.push_back((unsigned char)*P); | 
|  |  | 
|  | // Emit the finished record. | 
|  | Stream.EmitRecord(Code, NameVals, AbbrevToUse); | 
|  | NameVals.clear(); | 
|  | } | 
|  | Stream.ExitBlock(); | 
|  | } | 
|  |  | 
|  | /// Emit a function body to the module stream. | 
|  | void DXILBitcodeWriter::writeFunction(const Function &F) { | 
|  | Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); | 
|  | VE.incorporateFunction(F); | 
|  |  | 
|  | SmallVector<unsigned, 64> Vals; | 
|  |  | 
|  | // Emit the number of basic blocks, so the reader can create them ahead of | 
|  | // time. | 
|  | Vals.push_back(VE.getBasicBlocks().size()); | 
|  | Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); | 
|  | Vals.clear(); | 
|  |  | 
|  | // If there are function-local constants, emit them now. | 
|  | unsigned CstStart, CstEnd; | 
|  | VE.getFunctionConstantRange(CstStart, CstEnd); | 
|  | writeConstants(CstStart, CstEnd, false); | 
|  |  | 
|  | // If there is function-local metadata, emit it now. | 
|  | writeFunctionMetadata(F); | 
|  |  | 
|  | // Keep a running idea of what the instruction ID is. | 
|  | unsigned InstID = CstEnd; | 
|  |  | 
|  | bool NeedsMetadataAttachment = F.hasMetadata(); | 
|  |  | 
|  | DILocation *LastDL = nullptr; | 
|  |  | 
|  | // Finally, emit all the instructions, in order. | 
|  | for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) | 
|  | for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; | 
|  | ++I) { | 
|  | writeInstruction(*I, InstID, Vals); | 
|  |  | 
|  | if (!I->getType()->isVoidTy()) | 
|  | ++InstID; | 
|  |  | 
|  | // If the instruction has metadata, write a metadata attachment later. | 
|  | NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); | 
|  |  | 
|  | // If the instruction has a debug location, emit it. | 
|  | DILocation *DL = I->getDebugLoc(); | 
|  | if (!DL) | 
|  | continue; | 
|  |  | 
|  | if (DL == LastDL) { | 
|  | // Just repeat the same debug loc as last time. | 
|  | Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Vals.push_back(DL->getLine()); | 
|  | Vals.push_back(DL->getColumn()); | 
|  | Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); | 
|  | Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); | 
|  | Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); | 
|  | Vals.clear(); | 
|  |  | 
|  | LastDL = DL; | 
|  | } | 
|  |  | 
|  | // Emit names for all the instructions etc. | 
|  | if (auto *Symtab = F.getValueSymbolTable()) | 
|  | writeFunctionLevelValueSymbolTable(*Symtab); | 
|  |  | 
|  | if (NeedsMetadataAttachment) | 
|  | writeFunctionMetadataAttachment(F); | 
|  |  | 
|  | VE.purgeFunction(); | 
|  | Stream.ExitBlock(); | 
|  | } | 
|  |  | 
|  | // Emit blockinfo, which defines the standard abbreviations etc. | 
|  | void DXILBitcodeWriter::writeBlockInfo() { | 
|  | // We only want to emit block info records for blocks that have multiple | 
|  | // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. | 
|  | // Other blocks can define their abbrevs inline. | 
|  | Stream.EnterBlockInfoBlock(); | 
|  |  | 
|  | { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); | 
|  | if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, | 
|  | std::move(Abbv)) != VST_ENTRY_8_ABBREV) | 
|  | assert(false && "Unexpected abbrev ordering!"); | 
|  | } | 
|  |  | 
|  | { // 7-bit fixed width VST_ENTRY strings. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); | 
|  | if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, | 
|  | std::move(Abbv)) != VST_ENTRY_7_ABBREV) | 
|  | assert(false && "Unexpected abbrev ordering!"); | 
|  | } | 
|  | { // 6-bit char6 VST_ENTRY strings. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); | 
|  | if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, | 
|  | std::move(Abbv)) != VST_ENTRY_6_ABBREV) | 
|  | assert(false && "Unexpected abbrev ordering!"); | 
|  | } | 
|  | { // 6-bit char6 VST_BBENTRY strings. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); | 
|  | if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, | 
|  | std::move(Abbv)) != VST_BBENTRY_6_ABBREV) | 
|  | assert(false && "Unexpected abbrev ordering!"); | 
|  | } | 
|  |  | 
|  | { // SETTYPE abbrev for CONSTANTS_BLOCK. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, | 
|  | VE.computeBitsRequiredForTypeIndicies())); | 
|  | if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != | 
|  | CONSTANTS_SETTYPE_ABBREV) | 
|  | assert(false && "Unexpected abbrev ordering!"); | 
|  | } | 
|  |  | 
|  | { // INTEGER abbrev for CONSTANTS_BLOCK. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); | 
|  | if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != | 
|  | CONSTANTS_INTEGER_ABBREV) | 
|  | assert(false && "Unexpected abbrev ordering!"); | 
|  | } | 
|  |  | 
|  | { // CE_CAST abbrev for CONSTANTS_BLOCK. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,      // typeid | 
|  | VE.computeBitsRequiredForTypeIndicies())); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id | 
|  |  | 
|  | if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != | 
|  | CONSTANTS_CE_CAST_Abbrev) | 
|  | assert(false && "Unexpected abbrev ordering!"); | 
|  | } | 
|  | { // NULL abbrev for CONSTANTS_BLOCK. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); | 
|  | if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != | 
|  | CONSTANTS_NULL_Abbrev) | 
|  | assert(false && "Unexpected abbrev ordering!"); | 
|  | } | 
|  |  | 
|  | // FIXME: This should only use space for first class types! | 
|  |  | 
|  | { // INST_LOAD abbrev for FUNCTION_BLOCK. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty | 
|  | VE.computeBitsRequiredForTypeIndicies())); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // Align | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile | 
|  | if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != | 
|  | (unsigned)FUNCTION_INST_LOAD_ABBREV) | 
|  | assert(false && "Unexpected abbrev ordering!"); | 
|  | } | 
|  | { // INST_BINOP abbrev for FUNCTION_BLOCK. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // LHS | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // RHS | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc | 
|  | if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != | 
|  | (unsigned)FUNCTION_INST_BINOP_ABBREV) | 
|  | assert(false && "Unexpected abbrev ordering!"); | 
|  | } | 
|  | { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // LHS | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // RHS | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags | 
|  | if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != | 
|  | (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV) | 
|  | assert(false && "Unexpected abbrev ordering!"); | 
|  | } | 
|  | { // INST_CAST abbrev for FUNCTION_BLOCK. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty | 
|  | VE.computeBitsRequiredForTypeIndicies())); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc | 
|  | if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != | 
|  | (unsigned)FUNCTION_INST_CAST_ABBREV) | 
|  | assert(false && "Unexpected abbrev ordering!"); | 
|  | } | 
|  |  | 
|  | { // INST_RET abbrev for FUNCTION_BLOCK. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); | 
|  | if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != | 
|  | (unsigned)FUNCTION_INST_RET_VOID_ABBREV) | 
|  | assert(false && "Unexpected abbrev ordering!"); | 
|  | } | 
|  | { // INST_RET abbrev for FUNCTION_BLOCK. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID | 
|  | if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != | 
|  | (unsigned)FUNCTION_INST_RET_VAL_ABBREV) | 
|  | assert(false && "Unexpected abbrev ordering!"); | 
|  | } | 
|  | { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); | 
|  | if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != | 
|  | (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV) | 
|  | assert(false && "Unexpected abbrev ordering!"); | 
|  | } | 
|  | { | 
|  | auto Abbv = std::make_shared<BitCodeAbbrev>(); | 
|  | Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty | 
|  | Log2_32_Ceil(VE.getTypes().size() + 1))); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); | 
|  | Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); | 
|  | if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != | 
|  | (unsigned)FUNCTION_INST_GEP_ABBREV) | 
|  | assert(false && "Unexpected abbrev ordering!"); | 
|  | } | 
|  |  | 
|  | Stream.ExitBlock(); | 
|  | } | 
|  |  | 
|  | void DXILBitcodeWriter::writeModuleVersion() { | 
|  | // VERSION: [version#] | 
|  | Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<unsigned>{1}); | 
|  | } | 
|  |  | 
|  | /// WriteModule - Emit the specified module to the bitstream. | 
|  | void DXILBitcodeWriter::write() { | 
|  | // The identification block is new since llvm-3.7, but the old bitcode reader | 
|  | // will skip it. | 
|  | // writeIdentificationBlock(Stream); | 
|  |  | 
|  | Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); | 
|  |  | 
|  | // It is redundant to fully-specify this here, but nice to make it explicit | 
|  | // so that it is clear the DXIL module version is different. | 
|  | DXILBitcodeWriter::writeModuleVersion(); | 
|  |  | 
|  | // Emit blockinfo, which defines the standard abbreviations etc. | 
|  | writeBlockInfo(); | 
|  |  | 
|  | // Emit information about attribute groups. | 
|  | writeAttributeGroupTable(); | 
|  |  | 
|  | // Emit information about parameter attributes. | 
|  | writeAttributeTable(); | 
|  |  | 
|  | // Emit information describing all of the types in the module. | 
|  | writeTypeTable(); | 
|  |  | 
|  | writeComdats(); | 
|  |  | 
|  | // Emit top-level description of module, including target triple, inline asm, | 
|  | // descriptors for global variables, and function prototype info. | 
|  | writeModuleInfo(); | 
|  |  | 
|  | // Emit constants. | 
|  | writeModuleConstants(); | 
|  |  | 
|  | // Emit metadata. | 
|  | writeModuleMetadataKinds(); | 
|  |  | 
|  | // Emit metadata. | 
|  | writeModuleMetadata(); | 
|  |  | 
|  | // Emit names for globals/functions etc. | 
|  | // DXIL uses the same format for module-level value symbol table as for the | 
|  | // function level table. | 
|  | writeFunctionLevelValueSymbolTable(M.getValueSymbolTable()); | 
|  |  | 
|  | // Emit function bodies. | 
|  | for (const Function &F : M) | 
|  | if (!F.isDeclaration()) | 
|  | writeFunction(F); | 
|  |  | 
|  | Stream.ExitBlock(); | 
|  | } |