|  | //===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements a TargetTransformInfo analysis pass specific to the | 
|  | // SystemZ target machine. It uses the target's detailed information to provide | 
|  | // more precise answers to certain TTI queries, while letting the target | 
|  | // independent and default TTI implementations handle the rest. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "SystemZTargetTransformInfo.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/CodeGen/BasicTTIImpl.h" | 
|  | #include "llvm/CodeGen/CostTable.h" | 
|  | #include "llvm/CodeGen/TargetLowering.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "systemztti" | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // SystemZ cost model. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | int SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, | 
|  | TTI::TargetCostKind CostKind) { | 
|  | assert(Ty->isIntegerTy()); | 
|  |  | 
|  | unsigned BitSize = Ty->getPrimitiveSizeInBits(); | 
|  | // There is no cost model for constants with a bit size of 0. Return TCC_Free | 
|  | // here, so that constant hoisting will ignore this constant. | 
|  | if (BitSize == 0) | 
|  | return TTI::TCC_Free; | 
|  | // No cost model for operations on integers larger than 64 bit implemented yet. | 
|  | if (BitSize > 64) | 
|  | return TTI::TCC_Free; | 
|  |  | 
|  | if (Imm == 0) | 
|  | return TTI::TCC_Free; | 
|  |  | 
|  | if (Imm.getBitWidth() <= 64) { | 
|  | // Constants loaded via lgfi. | 
|  | if (isInt<32>(Imm.getSExtValue())) | 
|  | return TTI::TCC_Basic; | 
|  | // Constants loaded via llilf. | 
|  | if (isUInt<32>(Imm.getZExtValue())) | 
|  | return TTI::TCC_Basic; | 
|  | // Constants loaded via llihf: | 
|  | if ((Imm.getZExtValue() & 0xffffffff) == 0) | 
|  | return TTI::TCC_Basic; | 
|  |  | 
|  | return 2 * TTI::TCC_Basic; | 
|  | } | 
|  |  | 
|  | return 4 * TTI::TCC_Basic; | 
|  | } | 
|  |  | 
|  | int SystemZTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, | 
|  | const APInt &Imm, Type *Ty, | 
|  | TTI::TargetCostKind CostKind) { | 
|  | assert(Ty->isIntegerTy()); | 
|  |  | 
|  | unsigned BitSize = Ty->getPrimitiveSizeInBits(); | 
|  | // There is no cost model for constants with a bit size of 0. Return TCC_Free | 
|  | // here, so that constant hoisting will ignore this constant. | 
|  | if (BitSize == 0) | 
|  | return TTI::TCC_Free; | 
|  | // No cost model for operations on integers larger than 64 bit implemented yet. | 
|  | if (BitSize > 64) | 
|  | return TTI::TCC_Free; | 
|  |  | 
|  | switch (Opcode) { | 
|  | default: | 
|  | return TTI::TCC_Free; | 
|  | case Instruction::GetElementPtr: | 
|  | // Always hoist the base address of a GetElementPtr. This prevents the | 
|  | // creation of new constants for every base constant that gets constant | 
|  | // folded with the offset. | 
|  | if (Idx == 0) | 
|  | return 2 * TTI::TCC_Basic; | 
|  | return TTI::TCC_Free; | 
|  | case Instruction::Store: | 
|  | if (Idx == 0 && Imm.getBitWidth() <= 64) { | 
|  | // Any 8-bit immediate store can by implemented via mvi. | 
|  | if (BitSize == 8) | 
|  | return TTI::TCC_Free; | 
|  | // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi. | 
|  | if (isInt<16>(Imm.getSExtValue())) | 
|  | return TTI::TCC_Free; | 
|  | } | 
|  | break; | 
|  | case Instruction::ICmp: | 
|  | if (Idx == 1 && Imm.getBitWidth() <= 64) { | 
|  | // Comparisons against signed 32-bit immediates implemented via cgfi. | 
|  | if (isInt<32>(Imm.getSExtValue())) | 
|  | return TTI::TCC_Free; | 
|  | // Comparisons against unsigned 32-bit immediates implemented via clgfi. | 
|  | if (isUInt<32>(Imm.getZExtValue())) | 
|  | return TTI::TCC_Free; | 
|  | } | 
|  | break; | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | if (Idx == 1 && Imm.getBitWidth() <= 64) { | 
|  | // We use algfi/slgfi to add/subtract 32-bit unsigned immediates. | 
|  | if (isUInt<32>(Imm.getZExtValue())) | 
|  | return TTI::TCC_Free; | 
|  | // Or their negation, by swapping addition vs. subtraction. | 
|  | if (isUInt<32>(-Imm.getSExtValue())) | 
|  | return TTI::TCC_Free; | 
|  | } | 
|  | break; | 
|  | case Instruction::Mul: | 
|  | if (Idx == 1 && Imm.getBitWidth() <= 64) { | 
|  | // We use msgfi to multiply by 32-bit signed immediates. | 
|  | if (isInt<32>(Imm.getSExtValue())) | 
|  | return TTI::TCC_Free; | 
|  | } | 
|  | break; | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | if (Idx == 1 && Imm.getBitWidth() <= 64) { | 
|  | // Masks supported by oilf/xilf. | 
|  | if (isUInt<32>(Imm.getZExtValue())) | 
|  | return TTI::TCC_Free; | 
|  | // Masks supported by oihf/xihf. | 
|  | if ((Imm.getZExtValue() & 0xffffffff) == 0) | 
|  | return TTI::TCC_Free; | 
|  | } | 
|  | break; | 
|  | case Instruction::And: | 
|  | if (Idx == 1 && Imm.getBitWidth() <= 64) { | 
|  | // Any 32-bit AND operation can by implemented via nilf. | 
|  | if (BitSize <= 32) | 
|  | return TTI::TCC_Free; | 
|  | // 64-bit masks supported by nilf. | 
|  | if (isUInt<32>(~Imm.getZExtValue())) | 
|  | return TTI::TCC_Free; | 
|  | // 64-bit masks supported by nilh. | 
|  | if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff) | 
|  | return TTI::TCC_Free; | 
|  | // Some 64-bit AND operations can be implemented via risbg. | 
|  | const SystemZInstrInfo *TII = ST->getInstrInfo(); | 
|  | unsigned Start, End; | 
|  | if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End)) | 
|  | return TTI::TCC_Free; | 
|  | } | 
|  | break; | 
|  | case Instruction::Shl: | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | // Always return TCC_Free for the shift value of a shift instruction. | 
|  | if (Idx == 1) | 
|  | return TTI::TCC_Free; | 
|  | break; | 
|  | case Instruction::UDiv: | 
|  | case Instruction::SDiv: | 
|  | case Instruction::URem: | 
|  | case Instruction::SRem: | 
|  | case Instruction::Trunc: | 
|  | case Instruction::ZExt: | 
|  | case Instruction::SExt: | 
|  | case Instruction::IntToPtr: | 
|  | case Instruction::PtrToInt: | 
|  | case Instruction::BitCast: | 
|  | case Instruction::PHI: | 
|  | case Instruction::Call: | 
|  | case Instruction::Select: | 
|  | case Instruction::Ret: | 
|  | case Instruction::Load: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return SystemZTTIImpl::getIntImmCost(Imm, Ty, CostKind); | 
|  | } | 
|  |  | 
|  | int SystemZTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, | 
|  | const APInt &Imm, Type *Ty, | 
|  | TTI::TargetCostKind CostKind) { | 
|  | assert(Ty->isIntegerTy()); | 
|  |  | 
|  | unsigned BitSize = Ty->getPrimitiveSizeInBits(); | 
|  | // There is no cost model for constants with a bit size of 0. Return TCC_Free | 
|  | // here, so that constant hoisting will ignore this constant. | 
|  | if (BitSize == 0) | 
|  | return TTI::TCC_Free; | 
|  | // No cost model for operations on integers larger than 64 bit implemented yet. | 
|  | if (BitSize > 64) | 
|  | return TTI::TCC_Free; | 
|  |  | 
|  | switch (IID) { | 
|  | default: | 
|  | return TTI::TCC_Free; | 
|  | case Intrinsic::sadd_with_overflow: | 
|  | case Intrinsic::uadd_with_overflow: | 
|  | case Intrinsic::ssub_with_overflow: | 
|  | case Intrinsic::usub_with_overflow: | 
|  | // These get expanded to include a normal addition/subtraction. | 
|  | if (Idx == 1 && Imm.getBitWidth() <= 64) { | 
|  | if (isUInt<32>(Imm.getZExtValue())) | 
|  | return TTI::TCC_Free; | 
|  | if (isUInt<32>(-Imm.getSExtValue())) | 
|  | return TTI::TCC_Free; | 
|  | } | 
|  | break; | 
|  | case Intrinsic::smul_with_overflow: | 
|  | case Intrinsic::umul_with_overflow: | 
|  | // These get expanded to include a normal multiplication. | 
|  | if (Idx == 1 && Imm.getBitWidth() <= 64) { | 
|  | if (isInt<32>(Imm.getSExtValue())) | 
|  | return TTI::TCC_Free; | 
|  | } | 
|  | break; | 
|  | case Intrinsic::experimental_stackmap: | 
|  | if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) | 
|  | return TTI::TCC_Free; | 
|  | break; | 
|  | case Intrinsic::experimental_patchpoint_void: | 
|  | case Intrinsic::experimental_patchpoint_i64: | 
|  | if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) | 
|  | return TTI::TCC_Free; | 
|  | break; | 
|  | } | 
|  | return SystemZTTIImpl::getIntImmCost(Imm, Ty, CostKind); | 
|  | } | 
|  |  | 
|  | TargetTransformInfo::PopcntSupportKind | 
|  | SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) { | 
|  | assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2"); | 
|  | if (ST->hasPopulationCount() && TyWidth <= 64) | 
|  | return TTI::PSK_FastHardware; | 
|  | return TTI::PSK_Software; | 
|  | } | 
|  |  | 
|  | void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, | 
|  | TTI::UnrollingPreferences &UP) { | 
|  | // Find out if L contains a call, what the machine instruction count | 
|  | // estimate is, and how many stores there are. | 
|  | bool HasCall = false; | 
|  | unsigned NumStores = 0; | 
|  | for (auto &BB : L->blocks()) | 
|  | for (auto &I : *BB) { | 
|  | if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) { | 
|  | if (const Function *F = cast<CallBase>(I).getCalledFunction()) { | 
|  | if (isLoweredToCall(F)) | 
|  | HasCall = true; | 
|  | if (F->getIntrinsicID() == Intrinsic::memcpy || | 
|  | F->getIntrinsicID() == Intrinsic::memset) | 
|  | NumStores++; | 
|  | } else { // indirect call. | 
|  | HasCall = true; | 
|  | } | 
|  | } | 
|  | if (isa<StoreInst>(&I)) { | 
|  | Type *MemAccessTy = I.getOperand(0)->getType(); | 
|  | NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, None, 0, | 
|  | TTI::TCK_RecipThroughput); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The z13 processor will run out of store tags if too many stores | 
|  | // are fed into it too quickly. Therefore make sure there are not | 
|  | // too many stores in the resulting unrolled loop. | 
|  | unsigned const Max = (NumStores ? (12 / NumStores) : UINT_MAX); | 
|  |  | 
|  | if (HasCall) { | 
|  | // Only allow full unrolling if loop has any calls. | 
|  | UP.FullUnrollMaxCount = Max; | 
|  | UP.MaxCount = 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | UP.MaxCount = Max; | 
|  | if (UP.MaxCount <= 1) | 
|  | return; | 
|  |  | 
|  | // Allow partial and runtime trip count unrolling. | 
|  | UP.Partial = UP.Runtime = true; | 
|  |  | 
|  | UP.PartialThreshold = 75; | 
|  | UP.DefaultUnrollRuntimeCount = 4; | 
|  |  | 
|  | // Allow expensive instructions in the pre-header of the loop. | 
|  | UP.AllowExpensiveTripCount = true; | 
|  |  | 
|  | UP.Force = true; | 
|  | } | 
|  |  | 
|  | void SystemZTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, | 
|  | TTI::PeelingPreferences &PP) { | 
|  | BaseT::getPeelingPreferences(L, SE, PP); | 
|  | } | 
|  |  | 
|  | bool SystemZTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1, | 
|  | TargetTransformInfo::LSRCost &C2) { | 
|  | // SystemZ specific: check instruction count (first), and don't care about | 
|  | // ImmCost, since offsets are checked explicitly. | 
|  | return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, | 
|  | C1.NumIVMuls, C1.NumBaseAdds, | 
|  | C1.ScaleCost, C1.SetupCost) < | 
|  | std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, | 
|  | C2.NumIVMuls, C2.NumBaseAdds, | 
|  | C2.ScaleCost, C2.SetupCost); | 
|  | } | 
|  |  | 
|  | unsigned SystemZTTIImpl::getNumberOfRegisters(unsigned ClassID) const { | 
|  | bool Vector = (ClassID == 1); | 
|  | if (!Vector) | 
|  | // Discount the stack pointer.  Also leave out %r0, since it can't | 
|  | // be used in an address. | 
|  | return 14; | 
|  | if (ST->hasVector()) | 
|  | return 32; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned SystemZTTIImpl::getRegisterBitWidth(bool Vector) const { | 
|  | if (!Vector) | 
|  | return 64; | 
|  | if (ST->hasVector()) | 
|  | return 128; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned SystemZTTIImpl::getMinPrefetchStride(unsigned NumMemAccesses, | 
|  | unsigned NumStridedMemAccesses, | 
|  | unsigned NumPrefetches, | 
|  | bool HasCall) const { | 
|  | // Don't prefetch a loop with many far apart accesses. | 
|  | if (NumPrefetches > 16) | 
|  | return UINT_MAX; | 
|  |  | 
|  | // Emit prefetch instructions for smaller strides in cases where we think | 
|  | // the hardware prefetcher might not be able to keep up. | 
|  | if (NumStridedMemAccesses > 32 && | 
|  | NumStridedMemAccesses == NumMemAccesses && !HasCall) | 
|  | return 1; | 
|  |  | 
|  | return ST->hasMiscellaneousExtensions3() ? 8192 : 2048; | 
|  | } | 
|  |  | 
|  | bool SystemZTTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) { | 
|  | EVT VT = TLI->getValueType(DL, DataType); | 
|  | return (VT.isScalarInteger() && TLI->isTypeLegal(VT)); | 
|  | } | 
|  |  | 
|  | // Return the bit size for the scalar type or vector element | 
|  | // type. getScalarSizeInBits() returns 0 for a pointer type. | 
|  | static unsigned getScalarSizeInBits(Type *Ty) { | 
|  | unsigned Size = | 
|  | (Ty->isPtrOrPtrVectorTy() ? 64U : Ty->getScalarSizeInBits()); | 
|  | assert(Size > 0 && "Element must have non-zero size."); | 
|  | return Size; | 
|  | } | 
|  |  | 
|  | // getNumberOfParts() calls getTypeLegalizationCost() which splits the vector | 
|  | // type until it is legal. This would e.g. return 4 for <6 x i64>, instead of | 
|  | // 3. | 
|  | static unsigned getNumVectorRegs(Type *Ty) { | 
|  | auto *VTy = cast<FixedVectorType>(Ty); | 
|  | unsigned WideBits = getScalarSizeInBits(Ty) * VTy->getNumElements(); | 
|  | assert(WideBits > 0 && "Could not compute size of vector"); | 
|  | return ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U)); | 
|  | } | 
|  |  | 
|  | int SystemZTTIImpl::getArithmeticInstrCost( | 
|  | unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, | 
|  | TTI::OperandValueKind Op1Info, | 
|  | TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo, | 
|  | TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, | 
|  | const Instruction *CxtI) { | 
|  |  | 
|  | // TODO: Handle more cost kinds. | 
|  | if (CostKind != TTI::TCK_RecipThroughput) | 
|  | return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, | 
|  | Op2Info, Opd1PropInfo, | 
|  | Opd2PropInfo, Args, CxtI); | 
|  |  | 
|  | // TODO: return a good value for BB-VECTORIZER that includes the | 
|  | // immediate loads, which we do not want to count for the loop | 
|  | // vectorizer, since they are hopefully hoisted out of the loop. This | 
|  | // would require a new parameter 'InLoop', but not sure if constant | 
|  | // args are common enough to motivate this. | 
|  |  | 
|  | unsigned ScalarBits = Ty->getScalarSizeInBits(); | 
|  |  | 
|  | // There are thre cases of division and remainder: Dividing with a register | 
|  | // needs a divide instruction. A divisor which is a power of two constant | 
|  | // can be implemented with a sequence of shifts. Any other constant needs a | 
|  | // multiply and shifts. | 
|  | const unsigned DivInstrCost = 20; | 
|  | const unsigned DivMulSeqCost = 10; | 
|  | const unsigned SDivPow2Cost = 4; | 
|  |  | 
|  | bool SignedDivRem = | 
|  | Opcode == Instruction::SDiv || Opcode == Instruction::SRem; | 
|  | bool UnsignedDivRem = | 
|  | Opcode == Instruction::UDiv || Opcode == Instruction::URem; | 
|  |  | 
|  | // Check for a constant divisor. | 
|  | bool DivRemConst = false; | 
|  | bool DivRemConstPow2 = false; | 
|  | if ((SignedDivRem || UnsignedDivRem) && Args.size() == 2) { | 
|  | if (const Constant *C = dyn_cast<Constant>(Args[1])) { | 
|  | const ConstantInt *CVal = | 
|  | (C->getType()->isVectorTy() | 
|  | ? dyn_cast_or_null<const ConstantInt>(C->getSplatValue()) | 
|  | : dyn_cast<const ConstantInt>(C)); | 
|  | if (CVal != nullptr && | 
|  | (CVal->getValue().isPowerOf2() || (-CVal->getValue()).isPowerOf2())) | 
|  | DivRemConstPow2 = true; | 
|  | else | 
|  | DivRemConst = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Ty->isVectorTy()) { | 
|  | // These FP operations are supported with a dedicated instruction for | 
|  | // float, double and fp128 (base implementation assumes float generally | 
|  | // costs 2). | 
|  | if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || | 
|  | Opcode == Instruction::FMul || Opcode == Instruction::FDiv) | 
|  | return 1; | 
|  |  | 
|  | // There is no native support for FRem. | 
|  | if (Opcode == Instruction::FRem) | 
|  | return LIBCALL_COST; | 
|  |  | 
|  | // Give discount for some combined logical operations if supported. | 
|  | if (Args.size() == 2 && ST->hasMiscellaneousExtensions3()) { | 
|  | if (Opcode == Instruction::Xor) { | 
|  | for (const Value *A : Args) { | 
|  | if (const Instruction *I = dyn_cast<Instruction>(A)) | 
|  | if (I->hasOneUse() && | 
|  | (I->getOpcode() == Instruction::And || | 
|  | I->getOpcode() == Instruction::Or || | 
|  | I->getOpcode() == Instruction::Xor)) | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | else if (Opcode == Instruction::Or || Opcode == Instruction::And) { | 
|  | for (const Value *A : Args) { | 
|  | if (const Instruction *I = dyn_cast<Instruction>(A)) | 
|  | if (I->hasOneUse() && I->getOpcode() == Instruction::Xor) | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Or requires one instruction, although it has custom handling for i64. | 
|  | if (Opcode == Instruction::Or) | 
|  | return 1; | 
|  |  | 
|  | if (Opcode == Instruction::Xor && ScalarBits == 1) { | 
|  | if (ST->hasLoadStoreOnCond2()) | 
|  | return 5; // 2 * (li 0; loc 1); xor | 
|  | return 7; // 2 * ipm sequences ; xor ; shift ; compare | 
|  | } | 
|  |  | 
|  | if (DivRemConstPow2) | 
|  | return (SignedDivRem ? SDivPow2Cost : 1); | 
|  | if (DivRemConst) | 
|  | return DivMulSeqCost; | 
|  | if (SignedDivRem || UnsignedDivRem) | 
|  | return DivInstrCost; | 
|  | } | 
|  | else if (ST->hasVector()) { | 
|  | auto *VTy = cast<FixedVectorType>(Ty); | 
|  | unsigned VF = VTy->getNumElements(); | 
|  | unsigned NumVectors = getNumVectorRegs(Ty); | 
|  |  | 
|  | // These vector operations are custom handled, but are still supported | 
|  | // with one instruction per vector, regardless of element size. | 
|  | if (Opcode == Instruction::Shl || Opcode == Instruction::LShr || | 
|  | Opcode == Instruction::AShr) { | 
|  | return NumVectors; | 
|  | } | 
|  |  | 
|  | if (DivRemConstPow2) | 
|  | return (NumVectors * (SignedDivRem ? SDivPow2Cost : 1)); | 
|  | if (DivRemConst) | 
|  | return VF * DivMulSeqCost + getScalarizationOverhead(VTy, Args); | 
|  | if ((SignedDivRem || UnsignedDivRem) && VF > 4) | 
|  | // Temporary hack: disable high vectorization factors with integer | 
|  | // division/remainder, which will get scalarized and handled with | 
|  | // GR128 registers. The mischeduler is not clever enough to avoid | 
|  | // spilling yet. | 
|  | return 1000; | 
|  |  | 
|  | // These FP operations are supported with a single vector instruction for | 
|  | // double (base implementation assumes float generally costs 2). For | 
|  | // FP128, the scalar cost is 1, and there is no overhead since the values | 
|  | // are already in scalar registers. | 
|  | if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub || | 
|  | Opcode == Instruction::FMul || Opcode == Instruction::FDiv) { | 
|  | switch (ScalarBits) { | 
|  | case 32: { | 
|  | // The vector enhancements facility 1 provides v4f32 instructions. | 
|  | if (ST->hasVectorEnhancements1()) | 
|  | return NumVectors; | 
|  | // Return the cost of multiple scalar invocation plus the cost of | 
|  | // inserting and extracting the values. | 
|  | unsigned ScalarCost = | 
|  | getArithmeticInstrCost(Opcode, Ty->getScalarType(), CostKind); | 
|  | unsigned Cost = (VF * ScalarCost) + getScalarizationOverhead(VTy, Args); | 
|  | // FIXME: VF 2 for these FP operations are currently just as | 
|  | // expensive as for VF 4. | 
|  | if (VF == 2) | 
|  | Cost *= 2; | 
|  | return Cost; | 
|  | } | 
|  | case 64: | 
|  | case 128: | 
|  | return NumVectors; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // There is no native support for FRem. | 
|  | if (Opcode == Instruction::FRem) { | 
|  | unsigned Cost = (VF * LIBCALL_COST) + getScalarizationOverhead(VTy, Args); | 
|  | // FIXME: VF 2 for float is currently just as expensive as for VF 4. | 
|  | if (VF == 2 && ScalarBits == 32) | 
|  | Cost *= 2; | 
|  | return Cost; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fallback to the default implementation. | 
|  | return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info, | 
|  | Opd1PropInfo, Opd2PropInfo, Args, CxtI); | 
|  | } | 
|  |  | 
|  | int SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp, | 
|  | int Index, VectorType *SubTp) { | 
|  | if (ST->hasVector()) { | 
|  | unsigned NumVectors = getNumVectorRegs(Tp); | 
|  |  | 
|  | // TODO: Since fp32 is expanded, the shuffle cost should always be 0. | 
|  |  | 
|  | // FP128 values are always in scalar registers, so there is no work | 
|  | // involved with a shuffle, except for broadcast. In that case register | 
|  | // moves are done with a single instruction per element. | 
|  | if (Tp->getScalarType()->isFP128Ty()) | 
|  | return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0); | 
|  |  | 
|  | switch (Kind) { | 
|  | case  TargetTransformInfo::SK_ExtractSubvector: | 
|  | // ExtractSubvector Index indicates start offset. | 
|  |  | 
|  | // Extracting a subvector from first index is a noop. | 
|  | return (Index == 0 ? 0 : NumVectors); | 
|  |  | 
|  | case TargetTransformInfo::SK_Broadcast: | 
|  | // Loop vectorizer calls here to figure out the extra cost of | 
|  | // broadcasting a loaded value to all elements of a vector. Since vlrep | 
|  | // loads and replicates with a single instruction, adjust the returned | 
|  | // value. | 
|  | return NumVectors - 1; | 
|  |  | 
|  | default: | 
|  |  | 
|  | // SystemZ supports single instruction permutation / replication. | 
|  | return NumVectors; | 
|  | } | 
|  | } | 
|  |  | 
|  | return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); | 
|  | } | 
|  |  | 
|  | // Return the log2 difference of the element sizes of the two vector types. | 
|  | static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) { | 
|  | unsigned Bits0 = Ty0->getScalarSizeInBits(); | 
|  | unsigned Bits1 = Ty1->getScalarSizeInBits(); | 
|  |  | 
|  | if (Bits1 >  Bits0) | 
|  | return (Log2_32(Bits1) - Log2_32(Bits0)); | 
|  |  | 
|  | return (Log2_32(Bits0) - Log2_32(Bits1)); | 
|  | } | 
|  |  | 
|  | // Return the number of instructions needed to truncate SrcTy to DstTy. | 
|  | unsigned SystemZTTIImpl:: | 
|  | getVectorTruncCost(Type *SrcTy, Type *DstTy) { | 
|  | assert (SrcTy->isVectorTy() && DstTy->isVectorTy()); | 
|  | assert (SrcTy->getPrimitiveSizeInBits() > DstTy->getPrimitiveSizeInBits() && | 
|  | "Packing must reduce size of vector type."); | 
|  | assert(cast<FixedVectorType>(SrcTy)->getNumElements() == | 
|  | cast<FixedVectorType>(DstTy)->getNumElements() && | 
|  | "Packing should not change number of elements."); | 
|  |  | 
|  | // TODO: Since fp32 is expanded, the extract cost should always be 0. | 
|  |  | 
|  | unsigned NumParts = getNumVectorRegs(SrcTy); | 
|  | if (NumParts <= 2) | 
|  | // Up to 2 vector registers can be truncated efficiently with pack or | 
|  | // permute. The latter requires an immediate mask to be loaded, which | 
|  | // typically gets hoisted out of a loop.  TODO: return a good value for | 
|  | // BB-VECTORIZER that includes the immediate loads, which we do not want | 
|  | // to count for the loop vectorizer. | 
|  | return 1; | 
|  |  | 
|  | unsigned Cost = 0; | 
|  | unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); | 
|  | unsigned VF = cast<FixedVectorType>(SrcTy)->getNumElements(); | 
|  | for (unsigned P = 0; P < Log2Diff; ++P) { | 
|  | if (NumParts > 1) | 
|  | NumParts /= 2; | 
|  | Cost += NumParts; | 
|  | } | 
|  |  | 
|  | // Currently, a general mix of permutes and pack instructions is output by | 
|  | // isel, which follow the cost computation above except for this case which | 
|  | // is one instruction less: | 
|  | if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 && | 
|  | DstTy->getScalarSizeInBits() == 8) | 
|  | Cost--; | 
|  |  | 
|  | return Cost; | 
|  | } | 
|  |  | 
|  | // Return the cost of converting a vector bitmask produced by a compare | 
|  | // (SrcTy), to the type of the select or extend instruction (DstTy). | 
|  | unsigned SystemZTTIImpl:: | 
|  | getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) { | 
|  | assert (SrcTy->isVectorTy() && DstTy->isVectorTy() && | 
|  | "Should only be called with vector types."); | 
|  |  | 
|  | unsigned PackCost = 0; | 
|  | unsigned SrcScalarBits = SrcTy->getScalarSizeInBits(); | 
|  | unsigned DstScalarBits = DstTy->getScalarSizeInBits(); | 
|  | unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy); | 
|  | if (SrcScalarBits > DstScalarBits) | 
|  | // The bitmask will be truncated. | 
|  | PackCost = getVectorTruncCost(SrcTy, DstTy); | 
|  | else if (SrcScalarBits < DstScalarBits) { | 
|  | unsigned DstNumParts = getNumVectorRegs(DstTy); | 
|  | // Each vector select needs its part of the bitmask unpacked. | 
|  | PackCost = Log2Diff * DstNumParts; | 
|  | // Extra cost for moving part of mask before unpacking. | 
|  | PackCost += DstNumParts - 1; | 
|  | } | 
|  |  | 
|  | return PackCost; | 
|  | } | 
|  |  | 
|  | // Return the type of the compared operands. This is needed to compute the | 
|  | // cost for a Select / ZExt or SExt instruction. | 
|  | static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) { | 
|  | Type *OpTy = nullptr; | 
|  | if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0))) | 
|  | OpTy = CI->getOperand(0)->getType(); | 
|  | else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0))) | 
|  | if (LogicI->getNumOperands() == 2) | 
|  | if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0))) | 
|  | if (isa<CmpInst>(LogicI->getOperand(1))) | 
|  | OpTy = CI0->getOperand(0)->getType(); | 
|  |  | 
|  | if (OpTy != nullptr) { | 
|  | if (VF == 1) { | 
|  | assert (!OpTy->isVectorTy() && "Expected scalar type"); | 
|  | return OpTy; | 
|  | } | 
|  | // Return the potentially vectorized type based on 'I' and 'VF'.  'I' may | 
|  | // be either scalar or already vectorized with a same or lesser VF. | 
|  | Type *ElTy = OpTy->getScalarType(); | 
|  | return FixedVectorType::get(ElTy, VF); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Get the cost of converting a boolean vector to a vector with same width | 
|  | // and element size as Dst, plus the cost of zero extending if needed. | 
|  | unsigned SystemZTTIImpl:: | 
|  | getBoolVecToIntConversionCost(unsigned Opcode, Type *Dst, | 
|  | const Instruction *I) { | 
|  | auto *DstVTy = cast<FixedVectorType>(Dst); | 
|  | unsigned VF = DstVTy->getNumElements(); | 
|  | unsigned Cost = 0; | 
|  | // If we know what the widths of the compared operands, get any cost of | 
|  | // converting it to match Dst. Otherwise assume same widths. | 
|  | Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); | 
|  | if (CmpOpTy != nullptr) | 
|  | Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst); | 
|  | if (Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP) | 
|  | // One 'vn' per dst vector with an immediate mask. | 
|  | Cost += getNumVectorRegs(Dst); | 
|  | return Cost; | 
|  | } | 
|  |  | 
|  | int SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, | 
|  | TTI::TargetCostKind CostKind, | 
|  | const Instruction *I) { | 
|  | // FIXME: Can the logic below also be used for these cost kinds? | 
|  | if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency) { | 
|  | int BaseCost = BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind, I); | 
|  | return BaseCost == 0 ? BaseCost : 1; | 
|  | } | 
|  |  | 
|  | unsigned DstScalarBits = Dst->getScalarSizeInBits(); | 
|  | unsigned SrcScalarBits = Src->getScalarSizeInBits(); | 
|  |  | 
|  | if (!Src->isVectorTy()) { | 
|  | assert (!Dst->isVectorTy()); | 
|  |  | 
|  | if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP) { | 
|  | if (SrcScalarBits >= 32 || | 
|  | (I != nullptr && isa<LoadInst>(I->getOperand(0)))) | 
|  | return 1; | 
|  | return SrcScalarBits > 1 ? 2 /*i8/i16 extend*/ : 5 /*branch seq.*/; | 
|  | } | 
|  |  | 
|  | if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) && | 
|  | Src->isIntegerTy(1)) { | 
|  | if (ST->hasLoadStoreOnCond2()) | 
|  | return 2; // li 0; loc 1 | 
|  |  | 
|  | // This should be extension of a compare i1 result, which is done with | 
|  | // ipm and a varying sequence of instructions. | 
|  | unsigned Cost = 0; | 
|  | if (Opcode == Instruction::SExt) | 
|  | Cost = (DstScalarBits < 64 ? 3 : 4); | 
|  | if (Opcode == Instruction::ZExt) | 
|  | Cost = 3; | 
|  | Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr); | 
|  | if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy()) | 
|  | // If operands of an fp-type was compared, this costs +1. | 
|  | Cost++; | 
|  | return Cost; | 
|  | } | 
|  | } | 
|  | else if (ST->hasVector()) { | 
|  | auto *SrcVecTy = cast<FixedVectorType>(Src); | 
|  | auto *DstVecTy = cast<FixedVectorType>(Dst); | 
|  | unsigned VF = SrcVecTy->getNumElements(); | 
|  | unsigned NumDstVectors = getNumVectorRegs(Dst); | 
|  | unsigned NumSrcVectors = getNumVectorRegs(Src); | 
|  |  | 
|  | if (Opcode == Instruction::Trunc) { | 
|  | if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits()) | 
|  | return 0; // Check for NOOP conversions. | 
|  | return getVectorTruncCost(Src, Dst); | 
|  | } | 
|  |  | 
|  | if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { | 
|  | if (SrcScalarBits >= 8) { | 
|  | // ZExt/SExt will be handled with one unpack per doubling of width. | 
|  | unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst); | 
|  |  | 
|  | // For types that spans multiple vector registers, some additional | 
|  | // instructions are used to setup the unpacking. | 
|  | unsigned NumSrcVectorOps = | 
|  | (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors) | 
|  | : (NumDstVectors / 2)); | 
|  |  | 
|  | return (NumUnpacks * NumDstVectors) + NumSrcVectorOps; | 
|  | } | 
|  | else if (SrcScalarBits == 1) | 
|  | return getBoolVecToIntConversionCost(Opcode, Dst, I); | 
|  | } | 
|  |  | 
|  | if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP || | 
|  | Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) { | 
|  | // TODO: Fix base implementation which could simplify things a bit here | 
|  | // (seems to miss on differentiating on scalar/vector types). | 
|  |  | 
|  | // Only 64 bit vector conversions are natively supported before z15. | 
|  | if (DstScalarBits == 64 || ST->hasVectorEnhancements2()) { | 
|  | if (SrcScalarBits == DstScalarBits) | 
|  | return NumDstVectors; | 
|  |  | 
|  | if (SrcScalarBits == 1) | 
|  | return getBoolVecToIntConversionCost(Opcode, Dst, I) + NumDstVectors; | 
|  | } | 
|  |  | 
|  | // Return the cost of multiple scalar invocation plus the cost of | 
|  | // inserting and extracting the values. Base implementation does not | 
|  | // realize float->int gets scalarized. | 
|  | unsigned ScalarCost = getCastInstrCost(Opcode, Dst->getScalarType(), | 
|  | Src->getScalarType(), CostKind); | 
|  | unsigned TotCost = VF * ScalarCost; | 
|  | bool NeedsInserts = true, NeedsExtracts = true; | 
|  | // FP128 registers do not get inserted or extracted. | 
|  | if (DstScalarBits == 128 && | 
|  | (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP)) | 
|  | NeedsInserts = false; | 
|  | if (SrcScalarBits == 128 && | 
|  | (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI)) | 
|  | NeedsExtracts = false; | 
|  |  | 
|  | TotCost += getScalarizationOverhead(SrcVecTy, false, NeedsExtracts); | 
|  | TotCost += getScalarizationOverhead(DstVecTy, NeedsInserts, false); | 
|  |  | 
|  | // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4. | 
|  | if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32) | 
|  | TotCost *= 2; | 
|  |  | 
|  | return TotCost; | 
|  | } | 
|  |  | 
|  | if (Opcode == Instruction::FPTrunc) { | 
|  | if (SrcScalarBits == 128)  // fp128 -> double/float + inserts of elements. | 
|  | return VF /*ldxbr/lexbr*/ + | 
|  | getScalarizationOverhead(DstVecTy, true, false); | 
|  | else // double -> float | 
|  | return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/); | 
|  | } | 
|  |  | 
|  | if (Opcode == Instruction::FPExt) { | 
|  | if (SrcScalarBits == 32 && DstScalarBits == 64) { | 
|  | // float -> double is very rare and currently unoptimized. Instead of | 
|  | // using vldeb, which can do two at a time, all conversions are | 
|  | // scalarized. | 
|  | return VF * 2; | 
|  | } | 
|  | // -> fp128.  VF * lxdb/lxeb + extraction of elements. | 
|  | return VF + getScalarizationOverhead(SrcVecTy, false, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | return BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind, I); | 
|  | } | 
|  |  | 
|  | // Scalar i8 / i16 operations will typically be made after first extending | 
|  | // the operands to i32. | 
|  | static unsigned getOperandsExtensionCost(const Instruction *I) { | 
|  | unsigned ExtCost = 0; | 
|  | for (Value *Op : I->operands()) | 
|  | // A load of i8 or i16 sign/zero extends to i32. | 
|  | if (!isa<LoadInst>(Op) && !isa<ConstantInt>(Op)) | 
|  | ExtCost++; | 
|  |  | 
|  | return ExtCost; | 
|  | } | 
|  |  | 
|  | int SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, | 
|  | Type *CondTy, | 
|  | TTI::TargetCostKind CostKind, | 
|  | const Instruction *I) { | 
|  | if (CostKind != TTI::TCK_RecipThroughput) | 
|  | return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind); | 
|  |  | 
|  | if (!ValTy->isVectorTy()) { | 
|  | switch (Opcode) { | 
|  | case Instruction::ICmp: { | 
|  | // A loaded value compared with 0 with multiple users becomes Load and | 
|  | // Test. The load is then not foldable, so return 0 cost for the ICmp. | 
|  | unsigned ScalarBits = ValTy->getScalarSizeInBits(); | 
|  | if (I != nullptr && ScalarBits >= 32) | 
|  | if (LoadInst *Ld = dyn_cast<LoadInst>(I->getOperand(0))) | 
|  | if (const ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1))) | 
|  | if (!Ld->hasOneUse() && Ld->getParent() == I->getParent() && | 
|  | C->getZExtValue() == 0) | 
|  | return 0; | 
|  |  | 
|  | unsigned Cost = 1; | 
|  | if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16) | 
|  | Cost += (I != nullptr ? getOperandsExtensionCost(I) : 2); | 
|  | return Cost; | 
|  | } | 
|  | case Instruction::Select: | 
|  | if (ValTy->isFloatingPointTy()) | 
|  | return 4; // No load on condition for FP - costs a conditional jump. | 
|  | return 1; // Load On Condition / Select Register. | 
|  | } | 
|  | } | 
|  | else if (ST->hasVector()) { | 
|  | unsigned VF = cast<FixedVectorType>(ValTy)->getNumElements(); | 
|  |  | 
|  | // Called with a compare instruction. | 
|  | if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) { | 
|  | unsigned PredicateExtraCost = 0; | 
|  | if (I != nullptr) { | 
|  | // Some predicates cost one or two extra instructions. | 
|  | switch (cast<CmpInst>(I)->getPredicate()) { | 
|  | case CmpInst::Predicate::ICMP_NE: | 
|  | case CmpInst::Predicate::ICMP_UGE: | 
|  | case CmpInst::Predicate::ICMP_ULE: | 
|  | case CmpInst::Predicate::ICMP_SGE: | 
|  | case CmpInst::Predicate::ICMP_SLE: | 
|  | PredicateExtraCost = 1; | 
|  | break; | 
|  | case CmpInst::Predicate::FCMP_ONE: | 
|  | case CmpInst::Predicate::FCMP_ORD: | 
|  | case CmpInst::Predicate::FCMP_UEQ: | 
|  | case CmpInst::Predicate::FCMP_UNO: | 
|  | PredicateExtraCost = 2; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of | 
|  | // floats.  FIXME: <2 x float> generates same code as <4 x float>. | 
|  | unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1); | 
|  | unsigned NumVecs_cmp = getNumVectorRegs(ValTy); | 
|  |  | 
|  | unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost)); | 
|  | return Cost; | 
|  | } | 
|  | else { // Called with a select instruction. | 
|  | assert (Opcode == Instruction::Select); | 
|  |  | 
|  | // We can figure out the extra cost of packing / unpacking if the | 
|  | // instruction was passed and the compare instruction is found. | 
|  | unsigned PackCost = 0; | 
|  | Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr); | 
|  | if (CmpOpTy != nullptr) | 
|  | PackCost = | 
|  | getVectorBitmaskConversionCost(CmpOpTy, ValTy); | 
|  |  | 
|  | return getNumVectorRegs(ValTy) /*vsel*/ + PackCost; | 
|  | } | 
|  | } | 
|  |  | 
|  | return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind); | 
|  | } | 
|  |  | 
|  | int SystemZTTIImpl:: | 
|  | getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { | 
|  | // vlvgp will insert two grs into a vector register, so only count half the | 
|  | // number of instructions. | 
|  | if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64)) | 
|  | return ((Index % 2 == 0) ? 1 : 0); | 
|  |  | 
|  | if (Opcode == Instruction::ExtractElement) { | 
|  | int Cost = ((getScalarSizeInBits(Val) == 1) ? 2 /*+test-under-mask*/ : 1); | 
|  |  | 
|  | // Give a slight penalty for moving out of vector pipeline to FXU unit. | 
|  | if (Index == 0 && Val->isIntOrIntVectorTy()) | 
|  | Cost += 1; | 
|  |  | 
|  | return Cost; | 
|  | } | 
|  |  | 
|  | return BaseT::getVectorInstrCost(Opcode, Val, Index); | 
|  | } | 
|  |  | 
|  | // Check if a load may be folded as a memory operand in its user. | 
|  | bool SystemZTTIImpl:: | 
|  | isFoldableLoad(const LoadInst *Ld, const Instruction *&FoldedValue) { | 
|  | if (!Ld->hasOneUse()) | 
|  | return false; | 
|  | FoldedValue = Ld; | 
|  | const Instruction *UserI = cast<Instruction>(*Ld->user_begin()); | 
|  | unsigned LoadedBits = getScalarSizeInBits(Ld->getType()); | 
|  | unsigned TruncBits = 0; | 
|  | unsigned SExtBits = 0; | 
|  | unsigned ZExtBits = 0; | 
|  | if (UserI->hasOneUse()) { | 
|  | unsigned UserBits = UserI->getType()->getScalarSizeInBits(); | 
|  | if (isa<TruncInst>(UserI)) | 
|  | TruncBits = UserBits; | 
|  | else if (isa<SExtInst>(UserI)) | 
|  | SExtBits = UserBits; | 
|  | else if (isa<ZExtInst>(UserI)) | 
|  | ZExtBits = UserBits; | 
|  | } | 
|  | if (TruncBits || SExtBits || ZExtBits) { | 
|  | FoldedValue = UserI; | 
|  | UserI = cast<Instruction>(*UserI->user_begin()); | 
|  | // Load (single use) -> trunc/extend (single use) -> UserI | 
|  | } | 
|  | if ((UserI->getOpcode() == Instruction::Sub || | 
|  | UserI->getOpcode() == Instruction::SDiv || | 
|  | UserI->getOpcode() == Instruction::UDiv) && | 
|  | UserI->getOperand(1) != FoldedValue) | 
|  | return false; // Not commutative, only RHS foldable. | 
|  | // LoadOrTruncBits holds the number of effectively loaded bits, but 0 if an | 
|  | // extension was made of the load. | 
|  | unsigned LoadOrTruncBits = | 
|  | ((SExtBits || ZExtBits) ? 0 : (TruncBits ? TruncBits : LoadedBits)); | 
|  | switch (UserI->getOpcode()) { | 
|  | case Instruction::Add: // SE: 16->32, 16/32->64, z14:16->64. ZE: 32->64 | 
|  | case Instruction::Sub: | 
|  | case Instruction::ICmp: | 
|  | if (LoadedBits == 32 && ZExtBits == 64) | 
|  | return true; | 
|  | LLVM_FALLTHROUGH; | 
|  | case Instruction::Mul: // SE: 16->32, 32->64, z14:16->64 | 
|  | if (UserI->getOpcode() != Instruction::ICmp) { | 
|  | if (LoadedBits == 16 && | 
|  | (SExtBits == 32 || | 
|  | (SExtBits == 64 && ST->hasMiscellaneousExtensions2()))) | 
|  | return true; | 
|  | if (LoadOrTruncBits == 16) | 
|  | return true; | 
|  | } | 
|  | LLVM_FALLTHROUGH; | 
|  | case Instruction::SDiv:// SE: 32->64 | 
|  | if (LoadedBits == 32 && SExtBits == 64) | 
|  | return true; | 
|  | LLVM_FALLTHROUGH; | 
|  | case Instruction::UDiv: | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | // This also makes sense for float operations, but disabled for now due | 
|  | // to regressions. | 
|  | // case Instruction::FCmp: | 
|  | // case Instruction::FAdd: | 
|  | // case Instruction::FSub: | 
|  | // case Instruction::FMul: | 
|  | // case Instruction::FDiv: | 
|  |  | 
|  | // All possible extensions of memory checked above. | 
|  |  | 
|  | // Comparison between memory and immediate. | 
|  | if (UserI->getOpcode() == Instruction::ICmp) | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(UserI->getOperand(1))) | 
|  | if (isUInt<16>(CI->getZExtValue())) | 
|  | return true; | 
|  | return (LoadOrTruncBits == 32 || LoadOrTruncBits == 64); | 
|  | break; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isBswapIntrinsicCall(const Value *V) { | 
|  | if (const Instruction *I = dyn_cast<Instruction>(V)) | 
|  | if (auto *CI = dyn_cast<CallInst>(I)) | 
|  | if (auto *F = CI->getCalledFunction()) | 
|  | if (F->getIntrinsicID() == Intrinsic::bswap) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, | 
|  | MaybeAlign Alignment, unsigned AddressSpace, | 
|  | TTI::TargetCostKind CostKind, | 
|  | const Instruction *I) { | 
|  | assert(!Src->isVoidTy() && "Invalid type"); | 
|  |  | 
|  | // TODO: Handle other cost kinds. | 
|  | if (CostKind != TTI::TCK_RecipThroughput) | 
|  | return 1; | 
|  |  | 
|  | if (!Src->isVectorTy() && Opcode == Instruction::Load && I != nullptr) { | 
|  | // Store the load or its truncated or extended value in FoldedValue. | 
|  | const Instruction *FoldedValue = nullptr; | 
|  | if (isFoldableLoad(cast<LoadInst>(I), FoldedValue)) { | 
|  | const Instruction *UserI = cast<Instruction>(*FoldedValue->user_begin()); | 
|  | assert (UserI->getNumOperands() == 2 && "Expected a binop."); | 
|  |  | 
|  | // UserI can't fold two loads, so in that case return 0 cost only | 
|  | // half of the time. | 
|  | for (unsigned i = 0; i < 2; ++i) { | 
|  | if (UserI->getOperand(i) == FoldedValue) | 
|  | continue; | 
|  |  | 
|  | if (Instruction *OtherOp = dyn_cast<Instruction>(UserI->getOperand(i))){ | 
|  | LoadInst *OtherLoad = dyn_cast<LoadInst>(OtherOp); | 
|  | if (!OtherLoad && | 
|  | (isa<TruncInst>(OtherOp) || isa<SExtInst>(OtherOp) || | 
|  | isa<ZExtInst>(OtherOp))) | 
|  | OtherLoad = dyn_cast<LoadInst>(OtherOp->getOperand(0)); | 
|  | if (OtherLoad && isFoldableLoad(OtherLoad, FoldedValue/*dummy*/)) | 
|  | return i == 0; // Both operands foldable. | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; // Only I is foldable in user. | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned NumOps = | 
|  | (Src->isVectorTy() ? getNumVectorRegs(Src) : getNumberOfParts(Src)); | 
|  |  | 
|  | // Store/Load reversed saves one instruction. | 
|  | if (((!Src->isVectorTy() && NumOps == 1) || ST->hasVectorEnhancements2()) && | 
|  | I != nullptr) { | 
|  | if (Opcode == Instruction::Load && I->hasOneUse()) { | 
|  | const Instruction *LdUser = cast<Instruction>(*I->user_begin()); | 
|  | // In case of load -> bswap -> store, return normal cost for the load. | 
|  | if (isBswapIntrinsicCall(LdUser) && | 
|  | (!LdUser->hasOneUse() || !isa<StoreInst>(*LdUser->user_begin()))) | 
|  | return 0; | 
|  | } | 
|  | else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) { | 
|  | const Value *StoredVal = SI->getValueOperand(); | 
|  | if (StoredVal->hasOneUse() && isBswapIntrinsicCall(StoredVal)) | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Src->getScalarSizeInBits() == 128) | 
|  | // 128 bit scalars are held in a pair of two 64 bit registers. | 
|  | NumOps *= 2; | 
|  |  | 
|  | return  NumOps; | 
|  | } | 
|  |  | 
|  | // The generic implementation of getInterleavedMemoryOpCost() is based on | 
|  | // adding costs of the memory operations plus all the extracts and inserts | 
|  | // needed for using / defining the vector operands. The SystemZ version does | 
|  | // roughly the same but bases the computations on vector permutations | 
|  | // instead. | 
|  | int SystemZTTIImpl::getInterleavedMemoryOpCost( | 
|  | unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, | 
|  | Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, | 
|  | bool UseMaskForCond, bool UseMaskForGaps) { | 
|  | if (UseMaskForCond || UseMaskForGaps) | 
|  | return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, | 
|  | Alignment, AddressSpace, CostKind, | 
|  | UseMaskForCond, UseMaskForGaps); | 
|  | assert(isa<VectorType>(VecTy) && | 
|  | "Expect a vector type for interleaved memory op"); | 
|  |  | 
|  | // Return the ceiling of dividing A by B. | 
|  | auto ceil = [](unsigned A, unsigned B) { return (A + B - 1) / B; }; | 
|  |  | 
|  | unsigned NumElts = cast<FixedVectorType>(VecTy)->getNumElements(); | 
|  | assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor"); | 
|  | unsigned VF = NumElts / Factor; | 
|  | unsigned NumEltsPerVecReg = (128U / getScalarSizeInBits(VecTy)); | 
|  | unsigned NumVectorMemOps = getNumVectorRegs(VecTy); | 
|  | unsigned NumPermutes = 0; | 
|  |  | 
|  | if (Opcode == Instruction::Load) { | 
|  | // Loading interleave groups may have gaps, which may mean fewer | 
|  | // loads. Find out how many vectors will be loaded in total, and in how | 
|  | // many of them each value will be in. | 
|  | BitVector UsedInsts(NumVectorMemOps, false); | 
|  | std::vector<BitVector> ValueVecs(Factor, BitVector(NumVectorMemOps, false)); | 
|  | for (unsigned Index : Indices) | 
|  | for (unsigned Elt = 0; Elt < VF; ++Elt) { | 
|  | unsigned Vec = (Index + Elt * Factor) / NumEltsPerVecReg; | 
|  | UsedInsts.set(Vec); | 
|  | ValueVecs[Index].set(Vec); | 
|  | } | 
|  | NumVectorMemOps = UsedInsts.count(); | 
|  |  | 
|  | for (unsigned Index : Indices) { | 
|  | // Estimate that each loaded source vector containing this Index | 
|  | // requires one operation, except that vperm can handle two input | 
|  | // registers first time for each dst vector. | 
|  | unsigned NumSrcVecs = ValueVecs[Index].count(); | 
|  | unsigned NumDstVecs = ceil(VF * getScalarSizeInBits(VecTy), 128U); | 
|  | assert (NumSrcVecs >= NumDstVecs && "Expected at least as many sources"); | 
|  | NumPermutes += std::max(1U, NumSrcVecs - NumDstVecs); | 
|  | } | 
|  | } else { | 
|  | // Estimate the permutes for each stored vector as the smaller of the | 
|  | // number of elements and the number of source vectors. Subtract one per | 
|  | // dst vector for vperm (S.A.). | 
|  | unsigned NumSrcVecs = std::min(NumEltsPerVecReg, Factor); | 
|  | unsigned NumDstVecs = NumVectorMemOps; | 
|  | assert (NumSrcVecs > 1 && "Expected at least two source vectors."); | 
|  | NumPermutes += (NumDstVecs * NumSrcVecs) - NumDstVecs; | 
|  | } | 
|  |  | 
|  | // Cost of load/store operations and the permutations needed. | 
|  | return NumVectorMemOps + NumPermutes; | 
|  | } | 
|  |  | 
|  | static int getVectorIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy) { | 
|  | if (RetTy->isVectorTy() && ID == Intrinsic::bswap) | 
|  | return getNumVectorRegs(RetTy); // VPERM | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | int SystemZTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, | 
|  | TTI::TargetCostKind CostKind) { | 
|  | int Cost = getVectorIntrinsicInstrCost(ICA.getID(), ICA.getReturnType()); | 
|  | if (Cost != -1) | 
|  | return Cost; | 
|  | return BaseT::getIntrinsicInstrCost(ICA, CostKind); | 
|  | } |