|  | //===- HexagonHardwareLoops.cpp - Identify and generate hardware loops ----===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass identifies loops where we can generate the Hexagon hardware | 
|  | // loop instruction.  The hardware loop can perform loop branches with a | 
|  | // zero-cycle overhead. | 
|  | // | 
|  | // The pattern that defines the induction variable can changed depending on | 
|  | // prior optimizations.  For example, the IndVarSimplify phase run by 'opt' | 
|  | // normalizes induction variables, and the Loop Strength Reduction pass | 
|  | // run by 'llc' may also make changes to the induction variable. | 
|  | // The pattern detected by this phase is due to running Strength Reduction. | 
|  | // | 
|  | // Criteria for hardware loops: | 
|  | //  - Countable loops (w/ ind. var for a trip count) | 
|  | //  - Assumes loops are normalized by IndVarSimplify | 
|  | //  - Try inner-most loops first | 
|  | //  - No function calls in loops. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "HexagonInstrInfo.h" | 
|  | #include "HexagonSubtarget.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineDominators.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineLoopInfo.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DebugLoc.h" | 
|  | #include "llvm/InitializePasses.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <cstdlib> | 
|  | #include <iterator> | 
|  | #include <map> | 
|  | #include <set> | 
|  | #include <string> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "hwloops" | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | static cl::opt<int> HWLoopLimit("hexagon-max-hwloop", cl::Hidden, cl::init(-1)); | 
|  |  | 
|  | // Option to create preheader only for a specific function. | 
|  | static cl::opt<std::string> PHFn("hexagon-hwloop-phfn", cl::Hidden, | 
|  | cl::init("")); | 
|  | #endif | 
|  |  | 
|  | // Option to create a preheader if one doesn't exist. | 
|  | static cl::opt<bool> HWCreatePreheader("hexagon-hwloop-preheader", | 
|  | cl::Hidden, cl::init(true), | 
|  | cl::desc("Add a preheader to a hardware loop if one doesn't exist")); | 
|  |  | 
|  | // Turn it off by default. If a preheader block is not created here, the | 
|  | // software pipeliner may be unable to find a block suitable to serve as | 
|  | // a preheader. In that case SWP will not run. | 
|  | static cl::opt<bool> SpecPreheader("hwloop-spec-preheader", cl::init(false), | 
|  | cl::Hidden, cl::ZeroOrMore, cl::desc("Allow speculation of preheader " | 
|  | "instructions")); | 
|  |  | 
|  | STATISTIC(NumHWLoops, "Number of loops converted to hardware loops"); | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | FunctionPass *createHexagonHardwareLoops(); | 
|  | void initializeHexagonHardwareLoopsPass(PassRegistry&); | 
|  |  | 
|  | } // end namespace llvm | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class CountValue; | 
|  |  | 
|  | struct HexagonHardwareLoops : public MachineFunctionPass { | 
|  | MachineLoopInfo            *MLI; | 
|  | MachineRegisterInfo        *MRI; | 
|  | MachineDominatorTree       *MDT; | 
|  | const HexagonInstrInfo     *TII; | 
|  | const HexagonRegisterInfo  *TRI; | 
|  | #ifndef NDEBUG | 
|  | static int Counter; | 
|  | #endif | 
|  |  | 
|  | public: | 
|  | static char ID; | 
|  |  | 
|  | HexagonHardwareLoops() : MachineFunctionPass(ID) {} | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &MF) override; | 
|  |  | 
|  | StringRef getPassName() const override { return "Hexagon Hardware Loops"; } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<MachineDominatorTree>(); | 
|  | AU.addRequired<MachineLoopInfo>(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | private: | 
|  | using LoopFeederMap = std::map<unsigned, MachineInstr *>; | 
|  |  | 
|  | /// Kinds of comparisons in the compare instructions. | 
|  | struct Comparison { | 
|  | enum Kind { | 
|  | EQ  = 0x01, | 
|  | NE  = 0x02, | 
|  | L   = 0x04, | 
|  | G   = 0x08, | 
|  | U   = 0x40, | 
|  | LTs = L, | 
|  | LEs = L | EQ, | 
|  | GTs = G, | 
|  | GEs = G | EQ, | 
|  | LTu = L      | U, | 
|  | LEu = L | EQ | U, | 
|  | GTu = G      | U, | 
|  | GEu = G | EQ | U | 
|  | }; | 
|  |  | 
|  | static Kind getSwappedComparison(Kind Cmp) { | 
|  | assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator"); | 
|  | if ((Cmp & L) || (Cmp & G)) | 
|  | return (Kind)(Cmp ^ (L|G)); | 
|  | return Cmp; | 
|  | } | 
|  |  | 
|  | static Kind getNegatedComparison(Kind Cmp) { | 
|  | if ((Cmp & L) || (Cmp & G)) | 
|  | return (Kind)((Cmp ^ (L | G)) ^ EQ); | 
|  | if ((Cmp & NE) || (Cmp & EQ)) | 
|  | return (Kind)(Cmp ^ (EQ | NE)); | 
|  | return (Kind)0; | 
|  | } | 
|  |  | 
|  | static bool isSigned(Kind Cmp) { | 
|  | return (Cmp & (L | G) && !(Cmp & U)); | 
|  | } | 
|  |  | 
|  | static bool isUnsigned(Kind Cmp) { | 
|  | return (Cmp & U); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Find the register that contains the loop controlling | 
|  | /// induction variable. | 
|  | /// If successful, it will return true and set the \p Reg, \p IVBump | 
|  | /// and \p IVOp arguments.  Otherwise it will return false. | 
|  | /// The returned induction register is the register R that follows the | 
|  | /// following induction pattern: | 
|  | /// loop: | 
|  | ///   R = phi ..., [ R.next, LatchBlock ] | 
|  | ///   R.next = R + #bump | 
|  | ///   if (R.next < #N) goto loop | 
|  | /// IVBump is the immediate value added to R, and IVOp is the instruction | 
|  | /// "R.next = R + #bump". | 
|  | bool findInductionRegister(MachineLoop *L, unsigned &Reg, | 
|  | int64_t &IVBump, MachineInstr *&IVOp) const; | 
|  |  | 
|  | /// Return the comparison kind for the specified opcode. | 
|  | Comparison::Kind getComparisonKind(unsigned CondOpc, | 
|  | MachineOperand *InitialValue, | 
|  | const MachineOperand *Endvalue, | 
|  | int64_t IVBump) const; | 
|  |  | 
|  | /// Analyze the statements in a loop to determine if the loop | 
|  | /// has a computable trip count and, if so, return a value that represents | 
|  | /// the trip count expression. | 
|  | CountValue *getLoopTripCount(MachineLoop *L, | 
|  | SmallVectorImpl<MachineInstr *> &OldInsts); | 
|  |  | 
|  | /// Return the expression that represents the number of times | 
|  | /// a loop iterates.  The function takes the operands that represent the | 
|  | /// loop start value, loop end value, and induction value.  Based upon | 
|  | /// these operands, the function attempts to compute the trip count. | 
|  | /// If the trip count is not directly available (as an immediate value, | 
|  | /// or a register), the function will attempt to insert computation of it | 
|  | /// to the loop's preheader. | 
|  | CountValue *computeCount(MachineLoop *Loop, const MachineOperand *Start, | 
|  | const MachineOperand *End, unsigned IVReg, | 
|  | int64_t IVBump, Comparison::Kind Cmp) const; | 
|  |  | 
|  | /// Return true if the instruction is not valid within a hardware | 
|  | /// loop. | 
|  | bool isInvalidLoopOperation(const MachineInstr *MI, | 
|  | bool IsInnerHWLoop) const; | 
|  |  | 
|  | /// Return true if the loop contains an instruction that inhibits | 
|  | /// using the hardware loop. | 
|  | bool containsInvalidInstruction(MachineLoop *L, bool IsInnerHWLoop) const; | 
|  |  | 
|  | /// Given a loop, check if we can convert it to a hardware loop. | 
|  | /// If so, then perform the conversion and return true. | 
|  | bool convertToHardwareLoop(MachineLoop *L, bool &L0used, bool &L1used); | 
|  |  | 
|  | /// Return true if the instruction is now dead. | 
|  | bool isDead(const MachineInstr *MI, | 
|  | SmallVectorImpl<MachineInstr *> &DeadPhis) const; | 
|  |  | 
|  | /// Remove the instruction if it is now dead. | 
|  | void removeIfDead(MachineInstr *MI); | 
|  |  | 
|  | /// Make sure that the "bump" instruction executes before the | 
|  | /// compare.  We need that for the IV fixup, so that the compare | 
|  | /// instruction would not use a bumped value that has not yet been | 
|  | /// defined.  If the instructions are out of order, try to reorder them. | 
|  | bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI); | 
|  |  | 
|  | /// Return true if MO and MI pair is visited only once. If visited | 
|  | /// more than once, this indicates there is recursion. In such a case, | 
|  | /// return false. | 
|  | bool isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, MachineInstr *MI, | 
|  | const MachineOperand *MO, | 
|  | LoopFeederMap &LoopFeederPhi) const; | 
|  |  | 
|  | /// Return true if the Phi may generate a value that may underflow, | 
|  | /// or may wrap. | 
|  | bool phiMayWrapOrUnderflow(MachineInstr *Phi, const MachineOperand *EndVal, | 
|  | MachineBasicBlock *MBB, MachineLoop *L, | 
|  | LoopFeederMap &LoopFeederPhi) const; | 
|  |  | 
|  | /// Return true if the induction variable may underflow an unsigned | 
|  | /// value in the first iteration. | 
|  | bool loopCountMayWrapOrUnderFlow(const MachineOperand *InitVal, | 
|  | const MachineOperand *EndVal, | 
|  | MachineBasicBlock *MBB, MachineLoop *L, | 
|  | LoopFeederMap &LoopFeederPhi) const; | 
|  |  | 
|  | /// Check if the given operand has a compile-time known constant | 
|  | /// value. Return true if yes, and false otherwise. When returning true, set | 
|  | /// Val to the corresponding constant value. | 
|  | bool checkForImmediate(const MachineOperand &MO, int64_t &Val) const; | 
|  |  | 
|  | /// Check if the operand has a compile-time known constant value. | 
|  | bool isImmediate(const MachineOperand &MO) const { | 
|  | int64_t V; | 
|  | return checkForImmediate(MO, V); | 
|  | } | 
|  |  | 
|  | /// Return the immediate for the specified operand. | 
|  | int64_t getImmediate(const MachineOperand &MO) const { | 
|  | int64_t V; | 
|  | if (!checkForImmediate(MO, V)) | 
|  | llvm_unreachable("Invalid operand"); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | /// Reset the given machine operand to now refer to a new immediate | 
|  | /// value.  Assumes that the operand was already referencing an immediate | 
|  | /// value, either directly, or via a register. | 
|  | void setImmediate(MachineOperand &MO, int64_t Val); | 
|  |  | 
|  | /// Fix the data flow of the induction variable. | 
|  | /// The desired flow is: phi ---> bump -+-> comparison-in-latch. | 
|  | ///                                     | | 
|  | ///                                     +-> back to phi | 
|  | /// where "bump" is the increment of the induction variable: | 
|  | ///   iv = iv + #const. | 
|  | /// Due to some prior code transformations, the actual flow may look | 
|  | /// like this: | 
|  | ///   phi -+-> bump ---> back to phi | 
|  | ///        | | 
|  | ///        +-> comparison-in-latch (against upper_bound-bump), | 
|  | /// i.e. the comparison that controls the loop execution may be using | 
|  | /// the value of the induction variable from before the increment. | 
|  | /// | 
|  | /// Return true if the loop's flow is the desired one (i.e. it's | 
|  | /// either been fixed, or no fixing was necessary). | 
|  | /// Otherwise, return false.  This can happen if the induction variable | 
|  | /// couldn't be identified, or if the value in the latch's comparison | 
|  | /// cannot be adjusted to reflect the post-bump value. | 
|  | bool fixupInductionVariable(MachineLoop *L); | 
|  |  | 
|  | /// Given a loop, if it does not have a preheader, create one. | 
|  | /// Return the block that is the preheader. | 
|  | MachineBasicBlock *createPreheaderForLoop(MachineLoop *L); | 
|  | }; | 
|  |  | 
|  | char HexagonHardwareLoops::ID = 0; | 
|  | #ifndef NDEBUG | 
|  | int HexagonHardwareLoops::Counter = 0; | 
|  | #endif | 
|  |  | 
|  | /// Abstraction for a trip count of a loop. A smaller version | 
|  | /// of the MachineOperand class without the concerns of changing the | 
|  | /// operand representation. | 
|  | class CountValue { | 
|  | public: | 
|  | enum CountValueType { | 
|  | CV_Register, | 
|  | CV_Immediate | 
|  | }; | 
|  |  | 
|  | private: | 
|  | CountValueType Kind; | 
|  | union Values { | 
|  | struct { | 
|  | unsigned Reg; | 
|  | unsigned Sub; | 
|  | } R; | 
|  | unsigned ImmVal; | 
|  | } Contents; | 
|  |  | 
|  | public: | 
|  | explicit CountValue(CountValueType t, unsigned v, unsigned u = 0) { | 
|  | Kind = t; | 
|  | if (Kind == CV_Register) { | 
|  | Contents.R.Reg = v; | 
|  | Contents.R.Sub = u; | 
|  | } else { | 
|  | Contents.ImmVal = v; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool isReg() const { return Kind == CV_Register; } | 
|  | bool isImm() const { return Kind == CV_Immediate; } | 
|  |  | 
|  | unsigned getReg() const { | 
|  | assert(isReg() && "Wrong CountValue accessor"); | 
|  | return Contents.R.Reg; | 
|  | } | 
|  |  | 
|  | unsigned getSubReg() const { | 
|  | assert(isReg() && "Wrong CountValue accessor"); | 
|  | return Contents.R.Sub; | 
|  | } | 
|  |  | 
|  | unsigned getImm() const { | 
|  | assert(isImm() && "Wrong CountValue accessor"); | 
|  | return Contents.ImmVal; | 
|  | } | 
|  |  | 
|  | void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr) const { | 
|  | if (isReg()) { OS << printReg(Contents.R.Reg, TRI, Contents.R.Sub); } | 
|  | if (isImm()) { OS << Contents.ImmVal; } | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops", | 
|  | "Hexagon Hardware Loops", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) | 
|  | INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) | 
|  | INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops", | 
|  | "Hexagon Hardware Loops", false, false) | 
|  |  | 
|  | FunctionPass *llvm::createHexagonHardwareLoops() { | 
|  | return new HexagonHardwareLoops(); | 
|  | } | 
|  |  | 
|  | bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) { | 
|  | LLVM_DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n"); | 
|  | if (skipFunction(MF.getFunction())) | 
|  | return false; | 
|  |  | 
|  | bool Changed = false; | 
|  |  | 
|  | MLI = &getAnalysis<MachineLoopInfo>(); | 
|  | MRI = &MF.getRegInfo(); | 
|  | MDT = &getAnalysis<MachineDominatorTree>(); | 
|  | const HexagonSubtarget &HST = MF.getSubtarget<HexagonSubtarget>(); | 
|  | TII = HST.getInstrInfo(); | 
|  | TRI = HST.getRegisterInfo(); | 
|  |  | 
|  | for (auto &L : *MLI) | 
|  | if (!L->getParentLoop()) { | 
|  | bool L0Used = false; | 
|  | bool L1Used = false; | 
|  | Changed |= convertToHardwareLoop(L, L0Used, L1Used); | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L, | 
|  | unsigned &Reg, | 
|  | int64_t &IVBump, | 
|  | MachineInstr *&IVOp | 
|  | ) const { | 
|  | MachineBasicBlock *Header = L->getHeader(); | 
|  | MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); | 
|  | MachineBasicBlock *Latch = L->getLoopLatch(); | 
|  | MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); | 
|  | if (!Header || !Preheader || !Latch || !ExitingBlock) | 
|  | return false; | 
|  |  | 
|  | // This pair represents an induction register together with an immediate | 
|  | // value that will be added to it in each loop iteration. | 
|  | using RegisterBump = std::pair<unsigned, int64_t>; | 
|  |  | 
|  | // Mapping:  R.next -> (R, bump), where R, R.next and bump are derived | 
|  | // from an induction operation | 
|  | //   R.next = R + bump | 
|  | // where bump is an immediate value. | 
|  | using InductionMap = std::map<unsigned, RegisterBump>; | 
|  |  | 
|  | InductionMap IndMap; | 
|  |  | 
|  | using instr_iterator = MachineBasicBlock::instr_iterator; | 
|  |  | 
|  | for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); | 
|  | I != E && I->isPHI(); ++I) { | 
|  | MachineInstr *Phi = &*I; | 
|  |  | 
|  | // Have a PHI instruction.  Get the operand that corresponds to the | 
|  | // latch block, and see if is a result of an addition of form "reg+imm", | 
|  | // where the "reg" is defined by the PHI node we are looking at. | 
|  | for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { | 
|  | if (Phi->getOperand(i+1).getMBB() != Latch) | 
|  | continue; | 
|  |  | 
|  | Register PhiOpReg = Phi->getOperand(i).getReg(); | 
|  | MachineInstr *DI = MRI->getVRegDef(PhiOpReg); | 
|  |  | 
|  | if (DI->getDesc().isAdd()) { | 
|  | // If the register operand to the add is the PHI we're looking at, this | 
|  | // meets the induction pattern. | 
|  | Register IndReg = DI->getOperand(1).getReg(); | 
|  | MachineOperand &Opnd2 = DI->getOperand(2); | 
|  | int64_t V; | 
|  | if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) { | 
|  | Register UpdReg = DI->getOperand(0).getReg(); | 
|  | IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); | 
|  | } | 
|  | } | 
|  | }  // for (i) | 
|  | }  // for (instr) | 
|  |  | 
|  | SmallVector<MachineOperand,2> Cond; | 
|  | MachineBasicBlock *TB = nullptr, *FB = nullptr; | 
|  | bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); | 
|  | if (NotAnalyzed) | 
|  | return false; | 
|  |  | 
|  | unsigned PredR, PredPos, PredRegFlags; | 
|  | if (!TII->getPredReg(Cond, PredR, PredPos, PredRegFlags)) | 
|  | return false; | 
|  |  | 
|  | MachineInstr *PredI = MRI->getVRegDef(PredR); | 
|  | if (!PredI->isCompare()) | 
|  | return false; | 
|  |  | 
|  | Register CmpReg1, CmpReg2; | 
|  | int CmpImm = 0, CmpMask = 0; | 
|  | bool CmpAnalyzed = | 
|  | TII->analyzeCompare(*PredI, CmpReg1, CmpReg2, CmpMask, CmpImm); | 
|  | // Fail if the compare was not analyzed, or it's not comparing a register | 
|  | // with an immediate value.  Not checking the mask here, since we handle | 
|  | // the individual compare opcodes (including A4_cmpb*) later on. | 
|  | if (!CmpAnalyzed) | 
|  | return false; | 
|  |  | 
|  | // Exactly one of the input registers to the comparison should be among | 
|  | // the induction registers. | 
|  | InductionMap::iterator IndMapEnd = IndMap.end(); | 
|  | InductionMap::iterator F = IndMapEnd; | 
|  | if (CmpReg1 != 0) { | 
|  | InductionMap::iterator F1 = IndMap.find(CmpReg1); | 
|  | if (F1 != IndMapEnd) | 
|  | F = F1; | 
|  | } | 
|  | if (CmpReg2 != 0) { | 
|  | InductionMap::iterator F2 = IndMap.find(CmpReg2); | 
|  | if (F2 != IndMapEnd) { | 
|  | if (F != IndMapEnd) | 
|  | return false; | 
|  | F = F2; | 
|  | } | 
|  | } | 
|  | if (F == IndMapEnd) | 
|  | return false; | 
|  |  | 
|  | Reg = F->second.first; | 
|  | IVBump = F->second.second; | 
|  | IVOp = MRI->getVRegDef(F->first); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Return the comparison kind for the specified opcode. | 
|  | HexagonHardwareLoops::Comparison::Kind | 
|  | HexagonHardwareLoops::getComparisonKind(unsigned CondOpc, | 
|  | MachineOperand *InitialValue, | 
|  | const MachineOperand *EndValue, | 
|  | int64_t IVBump) const { | 
|  | Comparison::Kind Cmp = (Comparison::Kind)0; | 
|  | switch (CondOpc) { | 
|  | case Hexagon::C2_cmpeq: | 
|  | case Hexagon::C2_cmpeqi: | 
|  | case Hexagon::C2_cmpeqp: | 
|  | Cmp = Comparison::EQ; | 
|  | break; | 
|  | case Hexagon::C4_cmpneq: | 
|  | case Hexagon::C4_cmpneqi: | 
|  | Cmp = Comparison::NE; | 
|  | break; | 
|  | case Hexagon::C2_cmplt: | 
|  | Cmp = Comparison::LTs; | 
|  | break; | 
|  | case Hexagon::C2_cmpltu: | 
|  | Cmp = Comparison::LTu; | 
|  | break; | 
|  | case Hexagon::C4_cmplte: | 
|  | case Hexagon::C4_cmpltei: | 
|  | Cmp = Comparison::LEs; | 
|  | break; | 
|  | case Hexagon::C4_cmplteu: | 
|  | case Hexagon::C4_cmplteui: | 
|  | Cmp = Comparison::LEu; | 
|  | break; | 
|  | case Hexagon::C2_cmpgt: | 
|  | case Hexagon::C2_cmpgti: | 
|  | case Hexagon::C2_cmpgtp: | 
|  | Cmp = Comparison::GTs; | 
|  | break; | 
|  | case Hexagon::C2_cmpgtu: | 
|  | case Hexagon::C2_cmpgtui: | 
|  | case Hexagon::C2_cmpgtup: | 
|  | Cmp = Comparison::GTu; | 
|  | break; | 
|  | case Hexagon::C2_cmpgei: | 
|  | Cmp = Comparison::GEs; | 
|  | break; | 
|  | case Hexagon::C2_cmpgeui: | 
|  | Cmp = Comparison::GEs; | 
|  | break; | 
|  | default: | 
|  | return (Comparison::Kind)0; | 
|  | } | 
|  | return Cmp; | 
|  | } | 
|  |  | 
|  | /// Analyze the statements in a loop to determine if the loop has | 
|  | /// a computable trip count and, if so, return a value that represents | 
|  | /// the trip count expression. | 
|  | /// | 
|  | /// This function iterates over the phi nodes in the loop to check for | 
|  | /// induction variable patterns that are used in the calculation for | 
|  | /// the number of time the loop is executed. | 
|  | CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L, | 
|  | SmallVectorImpl<MachineInstr *> &OldInsts) { | 
|  | MachineBasicBlock *TopMBB = L->getTopBlock(); | 
|  | MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin(); | 
|  | assert(PI != TopMBB->pred_end() && | 
|  | "Loop must have more than one incoming edge!"); | 
|  | MachineBasicBlock *Backedge = *PI++; | 
|  | if (PI == TopMBB->pred_end())  // dead loop? | 
|  | return nullptr; | 
|  | MachineBasicBlock *Incoming = *PI++; | 
|  | if (PI != TopMBB->pred_end())  // multiple backedges? | 
|  | return nullptr; | 
|  |  | 
|  | // Make sure there is one incoming and one backedge and determine which | 
|  | // is which. | 
|  | if (L->contains(Incoming)) { | 
|  | if (L->contains(Backedge)) | 
|  | return nullptr; | 
|  | std::swap(Incoming, Backedge); | 
|  | } else if (!L->contains(Backedge)) | 
|  | return nullptr; | 
|  |  | 
|  | // Look for the cmp instruction to determine if we can get a useful trip | 
|  | // count.  The trip count can be either a register or an immediate.  The | 
|  | // location of the value depends upon the type (reg or imm). | 
|  | MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); | 
|  | if (!ExitingBlock) | 
|  | return nullptr; | 
|  |  | 
|  | unsigned IVReg = 0; | 
|  | int64_t IVBump = 0; | 
|  | MachineInstr *IVOp; | 
|  | bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp); | 
|  | if (!FoundIV) | 
|  | return nullptr; | 
|  |  | 
|  | MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); | 
|  |  | 
|  | MachineOperand *InitialValue = nullptr; | 
|  | MachineInstr *IV_Phi = MRI->getVRegDef(IVReg); | 
|  | MachineBasicBlock *Latch = L->getLoopLatch(); | 
|  | for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) { | 
|  | MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB(); | 
|  | if (MBB == Preheader) | 
|  | InitialValue = &IV_Phi->getOperand(i); | 
|  | else if (MBB == Latch) | 
|  | IVReg = IV_Phi->getOperand(i).getReg();  // Want IV reg after bump. | 
|  | } | 
|  | if (!InitialValue) | 
|  | return nullptr; | 
|  |  | 
|  | SmallVector<MachineOperand,2> Cond; | 
|  | MachineBasicBlock *TB = nullptr, *FB = nullptr; | 
|  | bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); | 
|  | if (NotAnalyzed) | 
|  | return nullptr; | 
|  |  | 
|  | MachineBasicBlock *Header = L->getHeader(); | 
|  | // TB must be non-null.  If FB is also non-null, one of them must be | 
|  | // the header.  Otherwise, branch to TB could be exiting the loop, and | 
|  | // the fall through can go to the header. | 
|  | assert (TB && "Exit block without a branch?"); | 
|  | if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) { | 
|  | MachineBasicBlock *LTB = nullptr, *LFB = nullptr; | 
|  | SmallVector<MachineOperand,2> LCond; | 
|  | bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false); | 
|  | if (NotAnalyzed) | 
|  | return nullptr; | 
|  | if (TB == Latch) | 
|  | TB = (LTB == Header) ? LTB : LFB; | 
|  | else | 
|  | FB = (LTB == Header) ? LTB: LFB; | 
|  | } | 
|  | assert ((!FB || TB == Header || FB == Header) && "Branches not to header?"); | 
|  | if (!TB || (FB && TB != Header && FB != Header)) | 
|  | return nullptr; | 
|  |  | 
|  | // Branches of form "if (!P) ..." cause HexagonInstrInfo::analyzeBranch | 
|  | // to put imm(0), followed by P in the vector Cond. | 
|  | // If TB is not the header, it means that the "not-taken" path must lead | 
|  | // to the header. | 
|  | bool Negated = TII->predOpcodeHasNot(Cond) ^ (TB != Header); | 
|  | unsigned PredReg, PredPos, PredRegFlags; | 
|  | if (!TII->getPredReg(Cond, PredReg, PredPos, PredRegFlags)) | 
|  | return nullptr; | 
|  | MachineInstr *CondI = MRI->getVRegDef(PredReg); | 
|  | unsigned CondOpc = CondI->getOpcode(); | 
|  |  | 
|  | Register CmpReg1, CmpReg2; | 
|  | int Mask = 0, ImmValue = 0; | 
|  | bool AnalyzedCmp = | 
|  | TII->analyzeCompare(*CondI, CmpReg1, CmpReg2, Mask, ImmValue); | 
|  | if (!AnalyzedCmp) | 
|  | return nullptr; | 
|  |  | 
|  | // The comparison operator type determines how we compute the loop | 
|  | // trip count. | 
|  | OldInsts.push_back(CondI); | 
|  | OldInsts.push_back(IVOp); | 
|  |  | 
|  | // Sadly, the following code gets information based on the position | 
|  | // of the operands in the compare instruction.  This has to be done | 
|  | // this way, because the comparisons check for a specific relationship | 
|  | // between the operands (e.g. is-less-than), rather than to find out | 
|  | // what relationship the operands are in (as on PPC). | 
|  | Comparison::Kind Cmp; | 
|  | bool isSwapped = false; | 
|  | const MachineOperand &Op1 = CondI->getOperand(1); | 
|  | const MachineOperand &Op2 = CondI->getOperand(2); | 
|  | const MachineOperand *EndValue = nullptr; | 
|  |  | 
|  | if (Op1.isReg()) { | 
|  | if (Op2.isImm() || Op1.getReg() == IVReg) | 
|  | EndValue = &Op2; | 
|  | else { | 
|  | EndValue = &Op1; | 
|  | isSwapped = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!EndValue) | 
|  | return nullptr; | 
|  |  | 
|  | Cmp = getComparisonKind(CondOpc, InitialValue, EndValue, IVBump); | 
|  | if (!Cmp) | 
|  | return nullptr; | 
|  | if (Negated) | 
|  | Cmp = Comparison::getNegatedComparison(Cmp); | 
|  | if (isSwapped) | 
|  | Cmp = Comparison::getSwappedComparison(Cmp); | 
|  |  | 
|  | if (InitialValue->isReg()) { | 
|  | Register R = InitialValue->getReg(); | 
|  | MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); | 
|  | if (!MDT->properlyDominates(DefBB, Header)) { | 
|  | int64_t V; | 
|  | if (!checkForImmediate(*InitialValue, V)) | 
|  | return nullptr; | 
|  | } | 
|  | OldInsts.push_back(MRI->getVRegDef(R)); | 
|  | } | 
|  | if (EndValue->isReg()) { | 
|  | Register R = EndValue->getReg(); | 
|  | MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); | 
|  | if (!MDT->properlyDominates(DefBB, Header)) { | 
|  | int64_t V; | 
|  | if (!checkForImmediate(*EndValue, V)) | 
|  | return nullptr; | 
|  | } | 
|  | OldInsts.push_back(MRI->getVRegDef(R)); | 
|  | } | 
|  |  | 
|  | return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp); | 
|  | } | 
|  |  | 
|  | /// Helper function that returns the expression that represents the | 
|  | /// number of times a loop iterates.  The function takes the operands that | 
|  | /// represent the loop start value, loop end value, and induction value. | 
|  | /// Based upon these operands, the function attempts to compute the trip count. | 
|  | CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop, | 
|  | const MachineOperand *Start, | 
|  | const MachineOperand *End, | 
|  | unsigned IVReg, | 
|  | int64_t IVBump, | 
|  | Comparison::Kind Cmp) const { | 
|  | // Cannot handle comparison EQ, i.e. while (A == B). | 
|  | if (Cmp == Comparison::EQ) | 
|  | return nullptr; | 
|  |  | 
|  | // Check if either the start or end values are an assignment of an immediate. | 
|  | // If so, use the immediate value rather than the register. | 
|  | if (Start->isReg()) { | 
|  | const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg()); | 
|  | if (StartValInstr && (StartValInstr->getOpcode() == Hexagon::A2_tfrsi || | 
|  | StartValInstr->getOpcode() == Hexagon::A2_tfrpi)) | 
|  | Start = &StartValInstr->getOperand(1); | 
|  | } | 
|  | if (End->isReg()) { | 
|  | const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); | 
|  | if (EndValInstr && (EndValInstr->getOpcode() == Hexagon::A2_tfrsi || | 
|  | EndValInstr->getOpcode() == Hexagon::A2_tfrpi)) | 
|  | End = &EndValInstr->getOperand(1); | 
|  | } | 
|  |  | 
|  | if (!Start->isReg() && !Start->isImm()) | 
|  | return nullptr; | 
|  | if (!End->isReg() && !End->isImm()) | 
|  | return nullptr; | 
|  |  | 
|  | bool CmpLess =     Cmp & Comparison::L; | 
|  | bool CmpGreater =  Cmp & Comparison::G; | 
|  | bool CmpHasEqual = Cmp & Comparison::EQ; | 
|  |  | 
|  | // Avoid certain wrap-arounds.  This doesn't detect all wrap-arounds. | 
|  | if (CmpLess && IVBump < 0) | 
|  | // Loop going while iv is "less" with the iv value going down.  Must wrap. | 
|  | return nullptr; | 
|  |  | 
|  | if (CmpGreater && IVBump > 0) | 
|  | // Loop going while iv is "greater" with the iv value going up.  Must wrap. | 
|  | return nullptr; | 
|  |  | 
|  | // Phis that may feed into the loop. | 
|  | LoopFeederMap LoopFeederPhi; | 
|  |  | 
|  | // Check if the initial value may be zero and can be decremented in the first | 
|  | // iteration. If the value is zero, the endloop instruction will not decrement | 
|  | // the loop counter, so we shouldn't generate a hardware loop in this case. | 
|  | if (loopCountMayWrapOrUnderFlow(Start, End, Loop->getLoopPreheader(), Loop, | 
|  | LoopFeederPhi)) | 
|  | return nullptr; | 
|  |  | 
|  | if (Start->isImm() && End->isImm()) { | 
|  | // Both, start and end are immediates. | 
|  | int64_t StartV = Start->getImm(); | 
|  | int64_t EndV = End->getImm(); | 
|  | int64_t Dist = EndV - StartV; | 
|  | if (Dist == 0) | 
|  | return nullptr; | 
|  |  | 
|  | bool Exact = (Dist % IVBump) == 0; | 
|  |  | 
|  | if (Cmp == Comparison::NE) { | 
|  | if (!Exact) | 
|  | return nullptr; | 
|  | if ((Dist < 0) ^ (IVBump < 0)) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // For comparisons that include the final value (i.e. include equality | 
|  | // with the final value), we need to increase the distance by 1. | 
|  | if (CmpHasEqual) | 
|  | Dist = Dist > 0 ? Dist+1 : Dist-1; | 
|  |  | 
|  | // For the loop to iterate, CmpLess should imply Dist > 0.  Similarly, | 
|  | // CmpGreater should imply Dist < 0.  These conditions could actually | 
|  | // fail, for example, in unreachable code (which may still appear to be | 
|  | // reachable in the CFG). | 
|  | if ((CmpLess && Dist < 0) || (CmpGreater && Dist > 0)) | 
|  | return nullptr; | 
|  |  | 
|  | // "Normalized" distance, i.e. with the bump set to +-1. | 
|  | int64_t Dist1 = (IVBump > 0) ? (Dist +  (IVBump - 1)) / IVBump | 
|  | : (-Dist + (-IVBump - 1)) / (-IVBump); | 
|  | assert (Dist1 > 0 && "Fishy thing.  Both operands have the same sign."); | 
|  |  | 
|  | uint64_t Count = Dist1; | 
|  |  | 
|  | if (Count > 0xFFFFFFFFULL) | 
|  | return nullptr; | 
|  |  | 
|  | return new CountValue(CountValue::CV_Immediate, Count); | 
|  | } | 
|  |  | 
|  | // A general case: Start and End are some values, but the actual | 
|  | // iteration count may not be available.  If it is not, insert | 
|  | // a computation of it into the preheader. | 
|  |  | 
|  | // If the induction variable bump is not a power of 2, quit. | 
|  | // Othwerise we'd need a general integer division. | 
|  | if (!isPowerOf2_64(std::abs(IVBump))) | 
|  | return nullptr; | 
|  |  | 
|  | MachineBasicBlock *PH = MLI->findLoopPreheader(Loop, SpecPreheader); | 
|  | assert (PH && "Should have a preheader by now"); | 
|  | MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator(); | 
|  | DebugLoc DL; | 
|  | if (InsertPos != PH->end()) | 
|  | DL = InsertPos->getDebugLoc(); | 
|  |  | 
|  | // If Start is an immediate and End is a register, the trip count | 
|  | // will be "reg - imm".  Hexagon's "subtract immediate" instruction | 
|  | // is actually "reg + -imm". | 
|  |  | 
|  | // If the loop IV is going downwards, i.e. if the bump is negative, | 
|  | // then the iteration count (computed as End-Start) will need to be | 
|  | // negated.  To avoid the negation, just swap Start and End. | 
|  | if (IVBump < 0) { | 
|  | std::swap(Start, End); | 
|  | IVBump = -IVBump; | 
|  | } | 
|  | // Cmp may now have a wrong direction, e.g.  LEs may now be GEs. | 
|  | // Signedness, and "including equality" are preserved. | 
|  |  | 
|  | bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm) | 
|  | bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg) | 
|  |  | 
|  | int64_t StartV = 0, EndV = 0; | 
|  | if (Start->isImm()) | 
|  | StartV = Start->getImm(); | 
|  | if (End->isImm()) | 
|  | EndV = End->getImm(); | 
|  |  | 
|  | int64_t AdjV = 0; | 
|  | // To compute the iteration count, we would need this computation: | 
|  | //   Count = (End - Start + (IVBump-1)) / IVBump | 
|  | // or, when CmpHasEqual: | 
|  | //   Count = (End - Start + (IVBump-1)+1) / IVBump | 
|  | // The "IVBump-1" part is the adjustment (AdjV).  We can avoid | 
|  | // generating an instruction specifically to add it if we can adjust | 
|  | // the immediate values for Start or End. | 
|  |  | 
|  | if (CmpHasEqual) { | 
|  | // Need to add 1 to the total iteration count. | 
|  | if (Start->isImm()) | 
|  | StartV--; | 
|  | else if (End->isImm()) | 
|  | EndV++; | 
|  | else | 
|  | AdjV += 1; | 
|  | } | 
|  |  | 
|  | if (Cmp != Comparison::NE) { | 
|  | if (Start->isImm()) | 
|  | StartV -= (IVBump-1); | 
|  | else if (End->isImm()) | 
|  | EndV += (IVBump-1); | 
|  | else | 
|  | AdjV += (IVBump-1); | 
|  | } | 
|  |  | 
|  | unsigned R = 0, SR = 0; | 
|  | if (Start->isReg()) { | 
|  | R = Start->getReg(); | 
|  | SR = Start->getSubReg(); | 
|  | } else { | 
|  | R = End->getReg(); | 
|  | SR = End->getSubReg(); | 
|  | } | 
|  | const TargetRegisterClass *RC = MRI->getRegClass(R); | 
|  | // Hardware loops cannot handle 64-bit registers.  If it's a double | 
|  | // register, it has to have a subregister. | 
|  | if (!SR && RC == &Hexagon::DoubleRegsRegClass) | 
|  | return nullptr; | 
|  | const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass; | 
|  |  | 
|  | // Compute DistR (register with the distance between Start and End). | 
|  | unsigned DistR, DistSR; | 
|  |  | 
|  | // Avoid special case, where the start value is an imm(0). | 
|  | if (Start->isImm() && StartV == 0) { | 
|  | DistR = End->getReg(); | 
|  | DistSR = End->getSubReg(); | 
|  | } else { | 
|  | const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::A2_sub) : | 
|  | (RegToImm ? TII->get(Hexagon::A2_subri) : | 
|  | TII->get(Hexagon::A2_addi)); | 
|  | if (RegToReg || RegToImm) { | 
|  | Register SubR = MRI->createVirtualRegister(IntRC); | 
|  | MachineInstrBuilder SubIB = | 
|  | BuildMI(*PH, InsertPos, DL, SubD, SubR); | 
|  |  | 
|  | if (RegToReg) | 
|  | SubIB.addReg(End->getReg(), 0, End->getSubReg()) | 
|  | .addReg(Start->getReg(), 0, Start->getSubReg()); | 
|  | else | 
|  | SubIB.addImm(EndV) | 
|  | .addReg(Start->getReg(), 0, Start->getSubReg()); | 
|  | DistR = SubR; | 
|  | } else { | 
|  | // If the loop has been unrolled, we should use the original loop count | 
|  | // instead of recalculating the value. This will avoid additional | 
|  | // 'Add' instruction. | 
|  | const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); | 
|  | if (EndValInstr->getOpcode() == Hexagon::A2_addi && | 
|  | EndValInstr->getOperand(1).getSubReg() == 0 && | 
|  | EndValInstr->getOperand(2).getImm() == StartV) { | 
|  | DistR = EndValInstr->getOperand(1).getReg(); | 
|  | } else { | 
|  | Register SubR = MRI->createVirtualRegister(IntRC); | 
|  | MachineInstrBuilder SubIB = | 
|  | BuildMI(*PH, InsertPos, DL, SubD, SubR); | 
|  | SubIB.addReg(End->getReg(), 0, End->getSubReg()) | 
|  | .addImm(-StartV); | 
|  | DistR = SubR; | 
|  | } | 
|  | } | 
|  | DistSR = 0; | 
|  | } | 
|  |  | 
|  | // From DistR, compute AdjR (register with the adjusted distance). | 
|  | unsigned AdjR, AdjSR; | 
|  |  | 
|  | if (AdjV == 0) { | 
|  | AdjR = DistR; | 
|  | AdjSR = DistSR; | 
|  | } else { | 
|  | // Generate CountR = ADD DistR, AdjVal | 
|  | Register AddR = MRI->createVirtualRegister(IntRC); | 
|  | MCInstrDesc const &AddD = TII->get(Hexagon::A2_addi); | 
|  | BuildMI(*PH, InsertPos, DL, AddD, AddR) | 
|  | .addReg(DistR, 0, DistSR) | 
|  | .addImm(AdjV); | 
|  |  | 
|  | AdjR = AddR; | 
|  | AdjSR = 0; | 
|  | } | 
|  |  | 
|  | // From AdjR, compute CountR (register with the final count). | 
|  | unsigned CountR, CountSR; | 
|  |  | 
|  | if (IVBump == 1) { | 
|  | CountR = AdjR; | 
|  | CountSR = AdjSR; | 
|  | } else { | 
|  | // The IV bump is a power of two. Log_2(IV bump) is the shift amount. | 
|  | unsigned Shift = Log2_32(IVBump); | 
|  |  | 
|  | // Generate NormR = LSR DistR, Shift. | 
|  | Register LsrR = MRI->createVirtualRegister(IntRC); | 
|  | const MCInstrDesc &LsrD = TII->get(Hexagon::S2_lsr_i_r); | 
|  | BuildMI(*PH, InsertPos, DL, LsrD, LsrR) | 
|  | .addReg(AdjR, 0, AdjSR) | 
|  | .addImm(Shift); | 
|  |  | 
|  | CountR = LsrR; | 
|  | CountSR = 0; | 
|  | } | 
|  |  | 
|  | return new CountValue(CountValue::CV_Register, CountR, CountSR); | 
|  | } | 
|  |  | 
|  | /// Return true if the operation is invalid within hardware loop. | 
|  | bool HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI, | 
|  | bool IsInnerHWLoop) const { | 
|  | // Call is not allowed because the callee may use a hardware loop except for | 
|  | // the case when the call never returns. | 
|  | if (MI->getDesc().isCall()) | 
|  | return !TII->doesNotReturn(*MI); | 
|  |  | 
|  | // Check if the instruction defines a hardware loop register. | 
|  | using namespace Hexagon; | 
|  |  | 
|  | static const unsigned Regs01[] = { LC0, SA0, LC1, SA1 }; | 
|  | static const unsigned Regs1[]  = { LC1, SA1 }; | 
|  | auto CheckRegs = IsInnerHWLoop ? makeArrayRef(Regs01, array_lengthof(Regs01)) | 
|  | : makeArrayRef(Regs1, array_lengthof(Regs1)); | 
|  | for (unsigned R : CheckRegs) | 
|  | if (MI->modifiesRegister(R, TRI)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Return true if the loop contains an instruction that inhibits | 
|  | /// the use of the hardware loop instruction. | 
|  | bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L, | 
|  | bool IsInnerHWLoop) const { | 
|  | LLVM_DEBUG(dbgs() << "\nhw_loop head, " | 
|  | << printMBBReference(**L->block_begin())); | 
|  | for (MachineBasicBlock *MBB : L->getBlocks()) { | 
|  | for (MachineBasicBlock::iterator | 
|  | MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) { | 
|  | const MachineInstr *MI = &*MII; | 
|  | if (isInvalidLoopOperation(MI, IsInnerHWLoop)) { | 
|  | LLVM_DEBUG(dbgs() << "\nCannot convert to hw_loop due to:"; | 
|  | MI->dump();); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Returns true if the instruction is dead.  This was essentially | 
|  | /// copied from DeadMachineInstructionElim::isDead, but with special cases | 
|  | /// for inline asm, physical registers and instructions with side effects | 
|  | /// removed. | 
|  | bool HexagonHardwareLoops::isDead(const MachineInstr *MI, | 
|  | SmallVectorImpl<MachineInstr *> &DeadPhis) const { | 
|  | // Examine each operand. | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = MI->getOperand(i); | 
|  | if (!MO.isReg() || !MO.isDef()) | 
|  | continue; | 
|  |  | 
|  | Register Reg = MO.getReg(); | 
|  | if (MRI->use_nodbg_empty(Reg)) | 
|  | continue; | 
|  |  | 
|  | using use_nodbg_iterator = MachineRegisterInfo::use_nodbg_iterator; | 
|  |  | 
|  | // This instruction has users, but if the only user is the phi node for the | 
|  | // parent block, and the only use of that phi node is this instruction, then | 
|  | // this instruction is dead: both it (and the phi node) can be removed. | 
|  | use_nodbg_iterator I = MRI->use_nodbg_begin(Reg); | 
|  | use_nodbg_iterator End = MRI->use_nodbg_end(); | 
|  | if (std::next(I) != End || !I->getParent()->isPHI()) | 
|  | return false; | 
|  |  | 
|  | MachineInstr *OnePhi = I->getParent(); | 
|  | for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) { | 
|  | const MachineOperand &OPO = OnePhi->getOperand(j); | 
|  | if (!OPO.isReg() || !OPO.isDef()) | 
|  | continue; | 
|  |  | 
|  | Register OPReg = OPO.getReg(); | 
|  | use_nodbg_iterator nextJ; | 
|  | for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg); | 
|  | J != End; J = nextJ) { | 
|  | nextJ = std::next(J); | 
|  | MachineOperand &Use = *J; | 
|  | MachineInstr *UseMI = Use.getParent(); | 
|  |  | 
|  | // If the phi node has a user that is not MI, bail. | 
|  | if (MI != UseMI) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | DeadPhis.push_back(OnePhi); | 
|  | } | 
|  |  | 
|  | // If there are no defs with uses, the instruction is dead. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) { | 
|  | // This procedure was essentially copied from DeadMachineInstructionElim. | 
|  |  | 
|  | SmallVector<MachineInstr*, 1> DeadPhis; | 
|  | if (isDead(MI, DeadPhis)) { | 
|  | LLVM_DEBUG(dbgs() << "HW looping will remove: " << *MI); | 
|  |  | 
|  | // It is possible that some DBG_VALUE instructions refer to this | 
|  | // instruction.  Examine each def operand for such references; | 
|  | // if found, mark the DBG_VALUE as undef (but don't delete it). | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = MI->getOperand(i); | 
|  | if (!MO.isReg() || !MO.isDef()) | 
|  | continue; | 
|  | Register Reg = MO.getReg(); | 
|  | MachineRegisterInfo::use_iterator nextI; | 
|  | for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg), | 
|  | E = MRI->use_end(); I != E; I = nextI) { | 
|  | nextI = std::next(I);  // I is invalidated by the setReg | 
|  | MachineOperand &Use = *I; | 
|  | MachineInstr *UseMI = I->getParent(); | 
|  | if (UseMI == MI) | 
|  | continue; | 
|  | if (Use.isDebug()) | 
|  | UseMI->getOperand(0).setReg(0U); | 
|  | } | 
|  | } | 
|  |  | 
|  | MI->eraseFromParent(); | 
|  | for (unsigned i = 0; i < DeadPhis.size(); ++i) | 
|  | DeadPhis[i]->eraseFromParent(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Check if the loop is a candidate for converting to a hardware | 
|  | /// loop.  If so, then perform the transformation. | 
|  | /// | 
|  | /// This function works on innermost loops first.  A loop can be converted | 
|  | /// if it is a counting loop; either a register value or an immediate. | 
|  | /// | 
|  | /// The code makes several assumptions about the representation of the loop | 
|  | /// in llvm. | 
|  | bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L, | 
|  | bool &RecL0used, | 
|  | bool &RecL1used) { | 
|  | // This is just for sanity. | 
|  | assert(L->getHeader() && "Loop without a header?"); | 
|  |  | 
|  | bool Changed = false; | 
|  | bool L0Used = false; | 
|  | bool L1Used = false; | 
|  |  | 
|  | // Process nested loops first. | 
|  | for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) { | 
|  | Changed |= convertToHardwareLoop(*I, RecL0used, RecL1used); | 
|  | L0Used |= RecL0used; | 
|  | L1Used |= RecL1used; | 
|  | } | 
|  |  | 
|  | // If a nested loop has been converted, then we can't convert this loop. | 
|  | if (Changed && L0Used && L1Used) | 
|  | return Changed; | 
|  |  | 
|  | unsigned LOOP_i; | 
|  | unsigned LOOP_r; | 
|  | unsigned ENDLOOP; | 
|  |  | 
|  | // Flag used to track loopN instruction: | 
|  | // 1 - Hardware loop is being generated for the inner most loop. | 
|  | // 0 - Hardware loop is being generated for the outer loop. | 
|  | unsigned IsInnerHWLoop = 1; | 
|  |  | 
|  | if (L0Used) { | 
|  | LOOP_i = Hexagon::J2_loop1i; | 
|  | LOOP_r = Hexagon::J2_loop1r; | 
|  | ENDLOOP = Hexagon::ENDLOOP1; | 
|  | IsInnerHWLoop = 0; | 
|  | } else { | 
|  | LOOP_i = Hexagon::J2_loop0i; | 
|  | LOOP_r = Hexagon::J2_loop0r; | 
|  | ENDLOOP = Hexagon::ENDLOOP0; | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Stop trying after reaching the limit (if any). | 
|  | int Limit = HWLoopLimit; | 
|  | if (Limit >= 0) { | 
|  | if (Counter >= HWLoopLimit) | 
|  | return false; | 
|  | Counter++; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Does the loop contain any invalid instructions? | 
|  | if (containsInvalidInstruction(L, IsInnerHWLoop)) | 
|  | return false; | 
|  |  | 
|  | MachineBasicBlock *LastMBB = L->findLoopControlBlock(); | 
|  | // Don't generate hw loop if the loop has more than one exit. | 
|  | if (!LastMBB) | 
|  | return false; | 
|  |  | 
|  | MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator(); | 
|  | if (LastI == LastMBB->end()) | 
|  | return false; | 
|  |  | 
|  | // Is the induction variable bump feeding the latch condition? | 
|  | if (!fixupInductionVariable(L)) | 
|  | return false; | 
|  |  | 
|  | // Ensure the loop has a preheader: the loop instruction will be | 
|  | // placed there. | 
|  | MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader); | 
|  | if (!Preheader) { | 
|  | Preheader = createPreheaderForLoop(L); | 
|  | if (!Preheader) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator(); | 
|  |  | 
|  | SmallVector<MachineInstr*, 2> OldInsts; | 
|  | // Are we able to determine the trip count for the loop? | 
|  | CountValue *TripCount = getLoopTripCount(L, OldInsts); | 
|  | if (!TripCount) | 
|  | return false; | 
|  |  | 
|  | // Is the trip count available in the preheader? | 
|  | if (TripCount->isReg()) { | 
|  | // There will be a use of the register inserted into the preheader, | 
|  | // so make sure that the register is actually defined at that point. | 
|  | MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg()); | 
|  | MachineBasicBlock *BBDef = TCDef->getParent(); | 
|  | if (!MDT->dominates(BBDef, Preheader)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Determine the loop start. | 
|  | MachineBasicBlock *TopBlock = L->getTopBlock(); | 
|  | MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); | 
|  | MachineBasicBlock *LoopStart = nullptr; | 
|  | if (ExitingBlock !=  L->getLoopLatch()) { | 
|  | MachineBasicBlock *TB = nullptr, *FB = nullptr; | 
|  | SmallVector<MachineOperand, 2> Cond; | 
|  |  | 
|  | if (TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false)) | 
|  | return false; | 
|  |  | 
|  | if (L->contains(TB)) | 
|  | LoopStart = TB; | 
|  | else if (L->contains(FB)) | 
|  | LoopStart = FB; | 
|  | else | 
|  | return false; | 
|  | } | 
|  | else | 
|  | LoopStart = TopBlock; | 
|  |  | 
|  | // Convert the loop to a hardware loop. | 
|  | LLVM_DEBUG(dbgs() << "Change to hardware loop at "; L->dump()); | 
|  | DebugLoc DL; | 
|  | if (InsertPos != Preheader->end()) | 
|  | DL = InsertPos->getDebugLoc(); | 
|  |  | 
|  | if (TripCount->isReg()) { | 
|  | // Create a copy of the loop count register. | 
|  | Register CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); | 
|  | BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg) | 
|  | .addReg(TripCount->getReg(), 0, TripCount->getSubReg()); | 
|  | // Add the Loop instruction to the beginning of the loop. | 
|  | BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)).addMBB(LoopStart) | 
|  | .addReg(CountReg); | 
|  | } else { | 
|  | assert(TripCount->isImm() && "Expecting immediate value for trip count"); | 
|  | // Add the Loop immediate instruction to the beginning of the loop, | 
|  | // if the immediate fits in the instructions.  Otherwise, we need to | 
|  | // create a new virtual register. | 
|  | int64_t CountImm = TripCount->getImm(); | 
|  | if (!TII->isValidOffset(LOOP_i, CountImm, TRI)) { | 
|  | Register CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); | 
|  | BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::A2_tfrsi), CountReg) | 
|  | .addImm(CountImm); | 
|  | BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)) | 
|  | .addMBB(LoopStart).addReg(CountReg); | 
|  | } else | 
|  | BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_i)) | 
|  | .addMBB(LoopStart).addImm(CountImm); | 
|  | } | 
|  |  | 
|  | // Make sure the loop start always has a reference in the CFG.  We need | 
|  | // to create a BlockAddress operand to get this mechanism to work both the | 
|  | // MachineBasicBlock and BasicBlock objects need the flag set. | 
|  | LoopStart->setHasAddressTaken(); | 
|  | // This line is needed to set the hasAddressTaken flag on the BasicBlock | 
|  | // object. | 
|  | BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock())); | 
|  |  | 
|  | // Replace the loop branch with an endloop instruction. | 
|  | DebugLoc LastIDL = LastI->getDebugLoc(); | 
|  | BuildMI(*LastMBB, LastI, LastIDL, TII->get(ENDLOOP)).addMBB(LoopStart); | 
|  |  | 
|  | // The loop ends with either: | 
|  | //  - a conditional branch followed by an unconditional branch, or | 
|  | //  - a conditional branch to the loop start. | 
|  | if (LastI->getOpcode() == Hexagon::J2_jumpt || | 
|  | LastI->getOpcode() == Hexagon::J2_jumpf) { | 
|  | // Delete one and change/add an uncond. branch to out of the loop. | 
|  | MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB(); | 
|  | LastI = LastMBB->erase(LastI); | 
|  | if (!L->contains(BranchTarget)) { | 
|  | if (LastI != LastMBB->end()) | 
|  | LastI = LastMBB->erase(LastI); | 
|  | SmallVector<MachineOperand, 0> Cond; | 
|  | TII->insertBranch(*LastMBB, BranchTarget, nullptr, Cond, LastIDL); | 
|  | } | 
|  | } else { | 
|  | // Conditional branch to loop start; just delete it. | 
|  | LastMBB->erase(LastI); | 
|  | } | 
|  | delete TripCount; | 
|  |  | 
|  | // The induction operation and the comparison may now be | 
|  | // unneeded. If these are unneeded, then remove them. | 
|  | for (unsigned i = 0; i < OldInsts.size(); ++i) | 
|  | removeIfDead(OldInsts[i]); | 
|  |  | 
|  | ++NumHWLoops; | 
|  |  | 
|  | // Set RecL1used and RecL0used only after hardware loop has been | 
|  | // successfully generated. Doing it earlier can cause wrong loop instruction | 
|  | // to be used. | 
|  | if (L0Used) // Loop0 was already used. So, the correct loop must be loop1. | 
|  | RecL1used = true; | 
|  | else | 
|  | RecL0used = true; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI, | 
|  | MachineInstr *CmpI) { | 
|  | assert (BumpI != CmpI && "Bump and compare in the same instruction?"); | 
|  |  | 
|  | MachineBasicBlock *BB = BumpI->getParent(); | 
|  | if (CmpI->getParent() != BB) | 
|  | return false; | 
|  |  | 
|  | using instr_iterator = MachineBasicBlock::instr_iterator; | 
|  |  | 
|  | // Check if things are in order to begin with. | 
|  | for (instr_iterator I(BumpI), E = BB->instr_end(); I != E; ++I) | 
|  | if (&*I == CmpI) | 
|  | return true; | 
|  |  | 
|  | // Out of order. | 
|  | Register PredR = CmpI->getOperand(0).getReg(); | 
|  | bool FoundBump = false; | 
|  | instr_iterator CmpIt = CmpI->getIterator(), NextIt = std::next(CmpIt); | 
|  | for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) { | 
|  | MachineInstr *In = &*I; | 
|  | for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) { | 
|  | MachineOperand &MO = In->getOperand(i); | 
|  | if (MO.isReg() && MO.isUse()) { | 
|  | if (MO.getReg() == PredR)  // Found an intervening use of PredR. | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (In == BumpI) { | 
|  | BB->splice(++BumpI->getIterator(), BB, CmpI->getIterator()); | 
|  | FoundBump = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | assert (FoundBump && "Cannot determine instruction order"); | 
|  | return FoundBump; | 
|  | } | 
|  |  | 
|  | /// This function is required to break recursion. Visiting phis in a loop may | 
|  | /// result in recursion during compilation. We break the recursion by making | 
|  | /// sure that we visit a MachineOperand and its definition in a | 
|  | /// MachineInstruction only once. If we attempt to visit more than once, then | 
|  | /// there is recursion, and will return false. | 
|  | bool HexagonHardwareLoops::isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, | 
|  | MachineInstr *MI, | 
|  | const MachineOperand *MO, | 
|  | LoopFeederMap &LoopFeederPhi) const { | 
|  | if (LoopFeederPhi.find(MO->getReg()) == LoopFeederPhi.end()) { | 
|  | LLVM_DEBUG(dbgs() << "\nhw_loop head, " | 
|  | << printMBBReference(**L->block_begin())); | 
|  | // Ignore all BBs that form Loop. | 
|  | for (MachineBasicBlock *MBB : L->getBlocks()) { | 
|  | if (A == MBB) | 
|  | return false; | 
|  | } | 
|  | MachineInstr *Def = MRI->getVRegDef(MO->getReg()); | 
|  | LoopFeederPhi.insert(std::make_pair(MO->getReg(), Def)); | 
|  | return true; | 
|  | } else | 
|  | // Already visited node. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Return true if a Phi may generate a value that can underflow. | 
|  | /// This function calls loopCountMayWrapOrUnderFlow for each Phi operand. | 
|  | bool HexagonHardwareLoops::phiMayWrapOrUnderflow( | 
|  | MachineInstr *Phi, const MachineOperand *EndVal, MachineBasicBlock *MBB, | 
|  | MachineLoop *L, LoopFeederMap &LoopFeederPhi) const { | 
|  | assert(Phi->isPHI() && "Expecting a Phi."); | 
|  | // Walk through each Phi, and its used operands. Make sure that | 
|  | // if there is recursion in Phi, we won't generate hardware loops. | 
|  | for (int i = 1, n = Phi->getNumOperands(); i < n; i += 2) | 
|  | if (isLoopFeeder(L, MBB, Phi, &(Phi->getOperand(i)), LoopFeederPhi)) | 
|  | if (loopCountMayWrapOrUnderFlow(&(Phi->getOperand(i)), EndVal, | 
|  | Phi->getParent(), L, LoopFeederPhi)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Return true if the induction variable can underflow in the first iteration. | 
|  | /// An example, is an initial unsigned value that is 0 and is decrement in the | 
|  | /// first itertion of a do-while loop.  In this case, we cannot generate a | 
|  | /// hardware loop because the endloop instruction does not decrement the loop | 
|  | /// counter if it is <= 1. We only need to perform this analysis if the | 
|  | /// initial value is a register. | 
|  | /// | 
|  | /// This function assumes the initial value may underfow unless proven | 
|  | /// otherwise. If the type is signed, then we don't care because signed | 
|  | /// underflow is undefined. We attempt to prove the initial value is not | 
|  | /// zero by perfoming a crude analysis of the loop counter. This function | 
|  | /// checks if the initial value is used in any comparison prior to the loop | 
|  | /// and, if so, assumes the comparison is a range check. This is inexact, | 
|  | /// but will catch the simple cases. | 
|  | bool HexagonHardwareLoops::loopCountMayWrapOrUnderFlow( | 
|  | const MachineOperand *InitVal, const MachineOperand *EndVal, | 
|  | MachineBasicBlock *MBB, MachineLoop *L, | 
|  | LoopFeederMap &LoopFeederPhi) const { | 
|  | // Only check register values since they are unknown. | 
|  | if (!InitVal->isReg()) | 
|  | return false; | 
|  |  | 
|  | if (!EndVal->isImm()) | 
|  | return false; | 
|  |  | 
|  | // A register value that is assigned an immediate is a known value, and it | 
|  | // won't underflow in the first iteration. | 
|  | int64_t Imm; | 
|  | if (checkForImmediate(*InitVal, Imm)) | 
|  | return (EndVal->getImm() == Imm); | 
|  |  | 
|  | Register Reg = InitVal->getReg(); | 
|  |  | 
|  | // We don't know the value of a physical register. | 
|  | if (!Register::isVirtualRegister(Reg)) | 
|  | return true; | 
|  |  | 
|  | MachineInstr *Def = MRI->getVRegDef(Reg); | 
|  | if (!Def) | 
|  | return true; | 
|  |  | 
|  | // If the initial value is a Phi or copy and the operands may not underflow, | 
|  | // then the definition cannot be underflow either. | 
|  | if (Def->isPHI() && !phiMayWrapOrUnderflow(Def, EndVal, Def->getParent(), | 
|  | L, LoopFeederPhi)) | 
|  | return false; | 
|  | if (Def->isCopy() && !loopCountMayWrapOrUnderFlow(&(Def->getOperand(1)), | 
|  | EndVal, Def->getParent(), | 
|  | L, LoopFeederPhi)) | 
|  | return false; | 
|  |  | 
|  | // Iterate over the uses of the initial value. If the initial value is used | 
|  | // in a compare, then we assume this is a range check that ensures the loop | 
|  | // doesn't underflow. This is not an exact test and should be improved. | 
|  | for (MachineRegisterInfo::use_instr_nodbg_iterator I = MRI->use_instr_nodbg_begin(Reg), | 
|  | E = MRI->use_instr_nodbg_end(); I != E; ++I) { | 
|  | MachineInstr *MI = &*I; | 
|  | Register CmpReg1, CmpReg2; | 
|  | int CmpMask = 0, CmpValue = 0; | 
|  |  | 
|  | if (!TII->analyzeCompare(*MI, CmpReg1, CmpReg2, CmpMask, CmpValue)) | 
|  | continue; | 
|  |  | 
|  | MachineBasicBlock *TBB = nullptr, *FBB = nullptr; | 
|  | SmallVector<MachineOperand, 2> Cond; | 
|  | if (TII->analyzeBranch(*MI->getParent(), TBB, FBB, Cond, false)) | 
|  | continue; | 
|  |  | 
|  | Comparison::Kind Cmp = | 
|  | getComparisonKind(MI->getOpcode(), nullptr, nullptr, 0); | 
|  | if (Cmp == 0) | 
|  | continue; | 
|  | if (TII->predOpcodeHasNot(Cond) ^ (TBB != MBB)) | 
|  | Cmp = Comparison::getNegatedComparison(Cmp); | 
|  | if (CmpReg2 != 0 && CmpReg2 == Reg) | 
|  | Cmp = Comparison::getSwappedComparison(Cmp); | 
|  |  | 
|  | // Signed underflow is undefined. | 
|  | if (Comparison::isSigned(Cmp)) | 
|  | return false; | 
|  |  | 
|  | // Check if there is a comparison of the initial value. If the initial value | 
|  | // is greater than or not equal to another value, then assume this is a | 
|  | // range check. | 
|  | if ((Cmp & Comparison::G) || Cmp == Comparison::NE) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // OK - this is a hack that needs to be improved. We really need to analyze | 
|  | // the instructions performed on the initial value. This works on the simplest | 
|  | // cases only. | 
|  | if (!Def->isCopy() && !Def->isPHI()) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool HexagonHardwareLoops::checkForImmediate(const MachineOperand &MO, | 
|  | int64_t &Val) const { | 
|  | if (MO.isImm()) { | 
|  | Val = MO.getImm(); | 
|  | return true; | 
|  | } | 
|  | if (!MO.isReg()) | 
|  | return false; | 
|  |  | 
|  | // MO is a register. Check whether it is defined as an immediate value, | 
|  | // and if so, get the value of it in TV. That value will then need to be | 
|  | // processed to handle potential subregisters in MO. | 
|  | int64_t TV; | 
|  |  | 
|  | Register R = MO.getReg(); | 
|  | if (!Register::isVirtualRegister(R)) | 
|  | return false; | 
|  | MachineInstr *DI = MRI->getVRegDef(R); | 
|  | unsigned DOpc = DI->getOpcode(); | 
|  | switch (DOpc) { | 
|  | case TargetOpcode::COPY: | 
|  | case Hexagon::A2_tfrsi: | 
|  | case Hexagon::A2_tfrpi: | 
|  | case Hexagon::CONST32: | 
|  | case Hexagon::CONST64: | 
|  | // Call recursively to avoid an extra check whether operand(1) is | 
|  | // indeed an immediate (it could be a global address, for example), | 
|  | // plus we can handle COPY at the same time. | 
|  | if (!checkForImmediate(DI->getOperand(1), TV)) | 
|  | return false; | 
|  | break; | 
|  | case Hexagon::A2_combineii: | 
|  | case Hexagon::A4_combineir: | 
|  | case Hexagon::A4_combineii: | 
|  | case Hexagon::A4_combineri: | 
|  | case Hexagon::A2_combinew: { | 
|  | const MachineOperand &S1 = DI->getOperand(1); | 
|  | const MachineOperand &S2 = DI->getOperand(2); | 
|  | int64_t V1, V2; | 
|  | if (!checkForImmediate(S1, V1) || !checkForImmediate(S2, V2)) | 
|  | return false; | 
|  | TV = V2 | (static_cast<uint64_t>(V1) << 32); | 
|  | break; | 
|  | } | 
|  | case TargetOpcode::REG_SEQUENCE: { | 
|  | const MachineOperand &S1 = DI->getOperand(1); | 
|  | const MachineOperand &S3 = DI->getOperand(3); | 
|  | int64_t V1, V3; | 
|  | if (!checkForImmediate(S1, V1) || !checkForImmediate(S3, V3)) | 
|  | return false; | 
|  | unsigned Sub2 = DI->getOperand(2).getImm(); | 
|  | unsigned Sub4 = DI->getOperand(4).getImm(); | 
|  | if (Sub2 == Hexagon::isub_lo && Sub4 == Hexagon::isub_hi) | 
|  | TV = V1 | (V3 << 32); | 
|  | else if (Sub2 == Hexagon::isub_hi && Sub4 == Hexagon::isub_lo) | 
|  | TV = V3 | (V1 << 32); | 
|  | else | 
|  | llvm_unreachable("Unexpected form of REG_SEQUENCE"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // By now, we should have successfully obtained the immediate value defining | 
|  | // the register referenced in MO. Handle a potential use of a subregister. | 
|  | switch (MO.getSubReg()) { | 
|  | case Hexagon::isub_lo: | 
|  | Val = TV & 0xFFFFFFFFULL; | 
|  | break; | 
|  | case Hexagon::isub_hi: | 
|  | Val = (TV >> 32) & 0xFFFFFFFFULL; | 
|  | break; | 
|  | default: | 
|  | Val = TV; | 
|  | break; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) { | 
|  | if (MO.isImm()) { | 
|  | MO.setImm(Val); | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(MO.isReg()); | 
|  | Register R = MO.getReg(); | 
|  | MachineInstr *DI = MRI->getVRegDef(R); | 
|  |  | 
|  | const TargetRegisterClass *RC = MRI->getRegClass(R); | 
|  | Register NewR = MRI->createVirtualRegister(RC); | 
|  | MachineBasicBlock &B = *DI->getParent(); | 
|  | DebugLoc DL = DI->getDebugLoc(); | 
|  | BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR).addImm(Val); | 
|  | MO.setReg(NewR); | 
|  | } | 
|  |  | 
|  | static bool isImmValidForOpcode(unsigned CmpOpc, int64_t Imm) { | 
|  | // These two instructions are not extendable. | 
|  | if (CmpOpc == Hexagon::A4_cmpbeqi) | 
|  | return isUInt<8>(Imm); | 
|  | if (CmpOpc == Hexagon::A4_cmpbgti) | 
|  | return isInt<8>(Imm); | 
|  | // The rest of the comparison-with-immediate instructions are extendable. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) { | 
|  | MachineBasicBlock *Header = L->getHeader(); | 
|  | MachineBasicBlock *Latch = L->getLoopLatch(); | 
|  | MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); | 
|  |  | 
|  | if (!(Header && Latch && ExitingBlock)) | 
|  | return false; | 
|  |  | 
|  | // These data structures follow the same concept as the corresponding | 
|  | // ones in findInductionRegister (where some comments are). | 
|  | using RegisterBump = std::pair<unsigned, int64_t>; | 
|  | using RegisterInduction = std::pair<unsigned, RegisterBump>; | 
|  | using RegisterInductionSet = std::set<RegisterInduction>; | 
|  |  | 
|  | // Register candidates for induction variables, with their associated bumps. | 
|  | RegisterInductionSet IndRegs; | 
|  |  | 
|  | // Look for induction patterns: | 
|  | //   %1 = PHI ..., [ latch, %2 ] | 
|  | //   %2 = ADD %1, imm | 
|  | using instr_iterator = MachineBasicBlock::instr_iterator; | 
|  |  | 
|  | for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); | 
|  | I != E && I->isPHI(); ++I) { | 
|  | MachineInstr *Phi = &*I; | 
|  |  | 
|  | // Have a PHI instruction. | 
|  | for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { | 
|  | if (Phi->getOperand(i+1).getMBB() != Latch) | 
|  | continue; | 
|  |  | 
|  | Register PhiReg = Phi->getOperand(i).getReg(); | 
|  | MachineInstr *DI = MRI->getVRegDef(PhiReg); | 
|  |  | 
|  | if (DI->getDesc().isAdd()) { | 
|  | // If the register operand to the add/sub is the PHI we are looking | 
|  | // at, this meets the induction pattern. | 
|  | Register IndReg = DI->getOperand(1).getReg(); | 
|  | MachineOperand &Opnd2 = DI->getOperand(2); | 
|  | int64_t V; | 
|  | if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) { | 
|  | Register UpdReg = DI->getOperand(0).getReg(); | 
|  | IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); | 
|  | } | 
|  | } | 
|  | }  // for (i) | 
|  | }  // for (instr) | 
|  |  | 
|  | if (IndRegs.empty()) | 
|  | return false; | 
|  |  | 
|  | MachineBasicBlock *TB = nullptr, *FB = nullptr; | 
|  | SmallVector<MachineOperand,2> Cond; | 
|  | // analyzeBranch returns true if it fails to analyze branch. | 
|  | bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false); | 
|  | if (NotAnalyzed || Cond.empty()) | 
|  | return false; | 
|  |  | 
|  | if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) { | 
|  | MachineBasicBlock *LTB = nullptr, *LFB = nullptr; | 
|  | SmallVector<MachineOperand,2> LCond; | 
|  | bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false); | 
|  | if (NotAnalyzed) | 
|  | return false; | 
|  |  | 
|  | // Since latch is not the exiting block, the latch branch should be an | 
|  | // unconditional branch to the loop header. | 
|  | if (TB == Latch) | 
|  | TB = (LTB == Header) ? LTB : LFB; | 
|  | else | 
|  | FB = (LTB == Header) ? LTB : LFB; | 
|  | } | 
|  | if (TB != Header) { | 
|  | if (FB != Header) { | 
|  | // The latch/exit block does not go back to the header. | 
|  | return false; | 
|  | } | 
|  | // FB is the header (i.e., uncond. jump to branch header) | 
|  | // In this case, the LoopBody -> TB should not be a back edge otherwise | 
|  | // it could result in an infinite loop after conversion to hw_loop. | 
|  | // This case can happen when the Latch has two jumps like this: | 
|  | // Jmp_c OuterLoopHeader <-- TB | 
|  | // Jmp   InnerLoopHeader <-- FB | 
|  | if (MDT->dominates(TB, FB)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Expecting a predicate register as a condition.  It won't be a hardware | 
|  | // predicate register at this point yet, just a vreg. | 
|  | // HexagonInstrInfo::analyzeBranch for negated branches inserts imm(0) | 
|  | // into Cond, followed by the predicate register.  For non-negated branches | 
|  | // it's just the register. | 
|  | unsigned CSz = Cond.size(); | 
|  | if (CSz != 1 && CSz != 2) | 
|  | return false; | 
|  |  | 
|  | if (!Cond[CSz-1].isReg()) | 
|  | return false; | 
|  |  | 
|  | Register P = Cond[CSz - 1].getReg(); | 
|  | MachineInstr *PredDef = MRI->getVRegDef(P); | 
|  |  | 
|  | if (!PredDef->isCompare()) | 
|  | return false; | 
|  |  | 
|  | SmallSet<unsigned,2> CmpRegs; | 
|  | MachineOperand *CmpImmOp = nullptr; | 
|  |  | 
|  | // Go over all operands to the compare and look for immediate and register | 
|  | // operands.  Assume that if the compare has a single register use and a | 
|  | // single immediate operand, then the register is being compared with the | 
|  | // immediate value. | 
|  | for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { | 
|  | MachineOperand &MO = PredDef->getOperand(i); | 
|  | if (MO.isReg()) { | 
|  | // Skip all implicit references.  In one case there was: | 
|  | //   %140 = FCMPUGT32_rr %138, %139, implicit %usr | 
|  | if (MO.isImplicit()) | 
|  | continue; | 
|  | if (MO.isUse()) { | 
|  | if (!isImmediate(MO)) { | 
|  | CmpRegs.insert(MO.getReg()); | 
|  | continue; | 
|  | } | 
|  | // Consider the register to be the "immediate" operand. | 
|  | if (CmpImmOp) | 
|  | return false; | 
|  | CmpImmOp = &MO; | 
|  | } | 
|  | } else if (MO.isImm()) { | 
|  | if (CmpImmOp)    // A second immediate argument?  Confusing.  Bail out. | 
|  | return false; | 
|  | CmpImmOp = &MO; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CmpRegs.empty()) | 
|  | return false; | 
|  |  | 
|  | // Check if the compared register follows the order we want.  Fix if needed. | 
|  | for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end(); | 
|  | I != E; ++I) { | 
|  | // This is a success.  If the register used in the comparison is one that | 
|  | // we have identified as a bumped (updated) induction register, there is | 
|  | // nothing to do. | 
|  | if (CmpRegs.count(I->first)) | 
|  | return true; | 
|  |  | 
|  | // Otherwise, if the register being compared comes out of a PHI node, | 
|  | // and has been recognized as following the induction pattern, and is | 
|  | // compared against an immediate, we can fix it. | 
|  | const RegisterBump &RB = I->second; | 
|  | if (CmpRegs.count(RB.first)) { | 
|  | if (!CmpImmOp) { | 
|  | // If both operands to the compare instruction are registers, see if | 
|  | // it can be changed to use induction register as one of the operands. | 
|  | MachineInstr *IndI = nullptr; | 
|  | MachineInstr *nonIndI = nullptr; | 
|  | MachineOperand *IndMO = nullptr; | 
|  | MachineOperand *nonIndMO = nullptr; | 
|  |  | 
|  | for (unsigned i = 1, n = PredDef->getNumOperands(); i < n; ++i) { | 
|  | MachineOperand &MO = PredDef->getOperand(i); | 
|  | if (MO.isReg() && MO.getReg() == RB.first) { | 
|  | LLVM_DEBUG(dbgs() << "\n DefMI(" << i | 
|  | << ") = " << *(MRI->getVRegDef(I->first))); | 
|  | if (IndI) | 
|  | return false; | 
|  |  | 
|  | IndI = MRI->getVRegDef(I->first); | 
|  | IndMO = &MO; | 
|  | } else if (MO.isReg()) { | 
|  | LLVM_DEBUG(dbgs() << "\n DefMI(" << i | 
|  | << ") = " << *(MRI->getVRegDef(MO.getReg()))); | 
|  | if (nonIndI) | 
|  | return false; | 
|  |  | 
|  | nonIndI = MRI->getVRegDef(MO.getReg()); | 
|  | nonIndMO = &MO; | 
|  | } | 
|  | } | 
|  | if (IndI && nonIndI && | 
|  | nonIndI->getOpcode() == Hexagon::A2_addi && | 
|  | nonIndI->getOperand(2).isImm() && | 
|  | nonIndI->getOperand(2).getImm() == - RB.second) { | 
|  | bool Order = orderBumpCompare(IndI, PredDef); | 
|  | if (Order) { | 
|  | IndMO->setReg(I->first); | 
|  | nonIndMO->setReg(nonIndI->getOperand(1).getReg()); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // It is not valid to do this transformation on an unsigned comparison | 
|  | // because it may underflow. | 
|  | Comparison::Kind Cmp = | 
|  | getComparisonKind(PredDef->getOpcode(), nullptr, nullptr, 0); | 
|  | if (!Cmp || Comparison::isUnsigned(Cmp)) | 
|  | return false; | 
|  |  | 
|  | // If the register is being compared against an immediate, try changing | 
|  | // the compare instruction to use induction register and adjust the | 
|  | // immediate operand. | 
|  | int64_t CmpImm = getImmediate(*CmpImmOp); | 
|  | int64_t V = RB.second; | 
|  | // Handle Overflow (64-bit). | 
|  | if (((V > 0) && (CmpImm > INT64_MAX - V)) || | 
|  | ((V < 0) && (CmpImm < INT64_MIN - V))) | 
|  | return false; | 
|  | CmpImm += V; | 
|  | // Most comparisons of register against an immediate value allow | 
|  | // the immediate to be constant-extended. There are some exceptions | 
|  | // though. Make sure the new combination will work. | 
|  | if (CmpImmOp->isImm()) | 
|  | if (!isImmValidForOpcode(PredDef->getOpcode(), CmpImm)) | 
|  | return false; | 
|  |  | 
|  | // Make sure that the compare happens after the bump.  Otherwise, | 
|  | // after the fixup, the compare would use a yet-undefined register. | 
|  | MachineInstr *BumpI = MRI->getVRegDef(I->first); | 
|  | bool Order = orderBumpCompare(BumpI, PredDef); | 
|  | if (!Order) | 
|  | return false; | 
|  |  | 
|  | // Finally, fix the compare instruction. | 
|  | setImmediate(*CmpImmOp, CmpImm); | 
|  | for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { | 
|  | MachineOperand &MO = PredDef->getOperand(i); | 
|  | if (MO.isReg() && MO.getReg() == RB.first) { | 
|  | MO.setReg(I->first); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// createPreheaderForLoop - Create a preheader for a given loop. | 
|  | MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop( | 
|  | MachineLoop *L) { | 
|  | if (MachineBasicBlock *TmpPH = MLI->findLoopPreheader(L, SpecPreheader)) | 
|  | return TmpPH; | 
|  | if (!HWCreatePreheader) | 
|  | return nullptr; | 
|  |  | 
|  | MachineBasicBlock *Header = L->getHeader(); | 
|  | MachineBasicBlock *Latch = L->getLoopLatch(); | 
|  | MachineBasicBlock *ExitingBlock = L->findLoopControlBlock(); | 
|  | MachineFunction *MF = Header->getParent(); | 
|  | DebugLoc DL; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | if ((!PHFn.empty()) && (PHFn != MF->getName())) | 
|  | return nullptr; | 
|  | #endif | 
|  |  | 
|  | if (!Latch || !ExitingBlock || Header->hasAddressTaken()) | 
|  | return nullptr; | 
|  |  | 
|  | using instr_iterator = MachineBasicBlock::instr_iterator; | 
|  |  | 
|  | // Verify that all existing predecessors have analyzable branches | 
|  | // (or no branches at all). | 
|  | using MBBVector = std::vector<MachineBasicBlock *>; | 
|  |  | 
|  | MBBVector Preds(Header->pred_begin(), Header->pred_end()); | 
|  | SmallVector<MachineOperand,2> Tmp1; | 
|  | MachineBasicBlock *TB = nullptr, *FB = nullptr; | 
|  |  | 
|  | if (TII->analyzeBranch(*ExitingBlock, TB, FB, Tmp1, false)) | 
|  | return nullptr; | 
|  |  | 
|  | for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { | 
|  | MachineBasicBlock *PB = *I; | 
|  | bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp1, false); | 
|  | if (NotAnalyzed) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock(); | 
|  | MF->insert(Header->getIterator(), NewPH); | 
|  |  | 
|  | if (Header->pred_size() > 2) { | 
|  | // Ensure that the header has only two predecessors: the preheader and | 
|  | // the loop latch.  Any additional predecessors of the header should | 
|  | // join at the newly created preheader. Inspect all PHI nodes from the | 
|  | // header and create appropriate corresponding PHI nodes in the preheader. | 
|  |  | 
|  | for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); | 
|  | I != E && I->isPHI(); ++I) { | 
|  | MachineInstr *PN = &*I; | 
|  |  | 
|  | const MCInstrDesc &PD = TII->get(TargetOpcode::PHI); | 
|  | MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL); | 
|  | NewPH->insert(NewPH->end(), NewPN); | 
|  |  | 
|  | Register PR = PN->getOperand(0).getReg(); | 
|  | const TargetRegisterClass *RC = MRI->getRegClass(PR); | 
|  | Register NewPR = MRI->createVirtualRegister(RC); | 
|  | NewPN->addOperand(MachineOperand::CreateReg(NewPR, true)); | 
|  |  | 
|  | // Copy all non-latch operands of a header's PHI node to the newly | 
|  | // created PHI node in the preheader. | 
|  | for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { | 
|  | Register PredR = PN->getOperand(i).getReg(); | 
|  | unsigned PredRSub = PN->getOperand(i).getSubReg(); | 
|  | MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); | 
|  | if (PredB == Latch) | 
|  | continue; | 
|  |  | 
|  | MachineOperand MO = MachineOperand::CreateReg(PredR, false); | 
|  | MO.setSubReg(PredRSub); | 
|  | NewPN->addOperand(MO); | 
|  | NewPN->addOperand(MachineOperand::CreateMBB(PredB)); | 
|  | } | 
|  |  | 
|  | // Remove copied operands from the old PHI node and add the value | 
|  | // coming from the preheader's PHI. | 
|  | for (int i = PN->getNumOperands()-2; i > 0; i -= 2) { | 
|  | MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); | 
|  | if (PredB != Latch) { | 
|  | PN->RemoveOperand(i+1); | 
|  | PN->RemoveOperand(i); | 
|  | } | 
|  | } | 
|  | PN->addOperand(MachineOperand::CreateReg(NewPR, false)); | 
|  | PN->addOperand(MachineOperand::CreateMBB(NewPH)); | 
|  | } | 
|  | } else { | 
|  | assert(Header->pred_size() == 2); | 
|  |  | 
|  | // The header has only two predecessors, but the non-latch predecessor | 
|  | // is not a preheader (e.g. it has other successors, etc.) | 
|  | // In such a case we don't need any extra PHI nodes in the new preheader, | 
|  | // all we need is to adjust existing PHIs in the header to now refer to | 
|  | // the new preheader. | 
|  | for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); | 
|  | I != E && I->isPHI(); ++I) { | 
|  | MachineInstr *PN = &*I; | 
|  | for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { | 
|  | MachineOperand &MO = PN->getOperand(i+1); | 
|  | if (MO.getMBB() != Latch) | 
|  | MO.setMBB(NewPH); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // "Reroute" the CFG edges to link in the new preheader. | 
|  | // If any of the predecessors falls through to the header, insert a branch | 
|  | // to the new preheader in that place. | 
|  | SmallVector<MachineOperand,1> Tmp2; | 
|  | SmallVector<MachineOperand,1> EmptyCond; | 
|  |  | 
|  | TB = FB = nullptr; | 
|  |  | 
|  | for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { | 
|  | MachineBasicBlock *PB = *I; | 
|  | if (PB != Latch) { | 
|  | Tmp2.clear(); | 
|  | bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp2, false); | 
|  | (void)NotAnalyzed; // suppress compiler warning | 
|  | assert (!NotAnalyzed && "Should be analyzable!"); | 
|  | if (TB != Header && (Tmp2.empty() || FB != Header)) | 
|  | TII->insertBranch(*PB, NewPH, nullptr, EmptyCond, DL); | 
|  | PB->ReplaceUsesOfBlockWith(Header, NewPH); | 
|  | } | 
|  | } | 
|  |  | 
|  | // It can happen that the latch block will fall through into the header. | 
|  | // Insert an unconditional branch to the header. | 
|  | TB = FB = nullptr; | 
|  | bool LatchNotAnalyzed = TII->analyzeBranch(*Latch, TB, FB, Tmp2, false); | 
|  | (void)LatchNotAnalyzed; // suppress compiler warning | 
|  | assert (!LatchNotAnalyzed && "Should be analyzable!"); | 
|  | if (!TB && !FB) | 
|  | TII->insertBranch(*Latch, Header, nullptr, EmptyCond, DL); | 
|  |  | 
|  | // Finally, the branch from the preheader to the header. | 
|  | TII->insertBranch(*NewPH, Header, nullptr, EmptyCond, DL); | 
|  | NewPH->addSuccessor(Header); | 
|  |  | 
|  | MachineLoop *ParentLoop = L->getParentLoop(); | 
|  | if (ParentLoop) | 
|  | ParentLoop->addBasicBlockToLoop(NewPH, MLI->getBase()); | 
|  |  | 
|  | // Update the dominator information with the new preheader. | 
|  | if (MDT) { | 
|  | if (MachineDomTreeNode *HN = MDT->getNode(Header)) { | 
|  | if (MachineDomTreeNode *DHN = HN->getIDom()) { | 
|  | MDT->addNewBlock(NewPH, DHN->getBlock()); | 
|  | MDT->changeImmediateDominator(Header, NewPH); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return NewPH; | 
|  | } |