| // RUN: mlir-opt %s -transform-interpreter -split-input-file -verify-diagnostics | FileCheck %s |
| |
| func.func @conv1d_nwc_wcf_dyn_ch_dim(%input: memref<4x6x?xf32>, %filter: memref<1x?x8xf32>, %output: memref<4x2x8xf32>) { |
| // expected-error @+1 {{Attempted to vectorize, but failed}} |
| linalg.conv_1d_nwc_wcf |
| {dilations = dense<1> : tensor<1xi64>, strides = dense<3> : tensor<1xi64>} |
| ins(%input, %filter : memref<4x6x?xf32>, memref<1x?x8xf32>) |
| outs(%output : memref<4x2x8xf32>) |
| return |
| } |
| |
| module attributes {transform.with_named_sequence} { |
| transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { |
| %0 = transform.structured.match ops{["linalg.conv_1d_nwc_wcf"]} in %arg1 : (!transform.any_op) -> !transform.any_op |
| transform.structured.vectorize %0 : !transform.any_op |
| transform.yield |
| } |
| } |
| |
| // ----- |
| |
| // Masked vectorisation of 1D depthwise CW convs is not yet supported |
| |
| func.func @depthwise_conv1d_ncw_cw(%input: memref<3x?x4xf32>, %filter: memref<?x1xf32>, %output: memref<3x?x4xf32>) { |
| // expected-error @+1 {{Attempted to vectorize, but failed}} |
| linalg.depthwise_conv_1d_ncw_cw |
| {dilations = dense<2> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} |
| ins(%input, %filter : memref<3x?x4xf32>, memref<?x1xf32>) |
| outs(%output : memref<3x?x4xf32>) |
| return |
| } |
| |
| module attributes {transform.with_named_sequence} { |
| transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { |
| %0 = transform.structured.match ops{["linalg.depthwise_conv_1d_ncw_cw"]} in %arg1 : (!transform.any_op) -> !transform.any_op |
| transform.structured.vectorize %0 vector_sizes [3, 4, 5, 1] : !transform.any_op |
| transform.yield |
| } |
| } |
| |
| // ----- |
| |
| func.func @depthwise_conv1d_nwc_wc_dyn_w_dim(%input: memref<3x?x4xf32>, %filter: memref<?x4xf32>, %output: memref<3x?x4xf32>) { |
| // expected-error @+1 {{Attempted to vectorize, but failed}} |
| linalg.depthwise_conv_1d_nwc_wc |
| {dilations = dense<2> : tensor<1xi64>, strides = dense<1> : tensor<1xi64>} |
| ins(%input, %filter : memref<3x?x4xf32>, memref<?x4xf32>) |
| outs(%output : memref<3x?x4xf32>) |
| return |
| } |
| |
| module attributes {transform.with_named_sequence} { |
| transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { |
| %0 = transform.structured.match ops{["linalg.depthwise_conv_1d_nwc_wc"]} in %arg1 : (!transform.any_op) -> !transform.any_op |
| transform.structured.vectorize %0 vector_sizes [3, 2, 4, 2] : !transform.any_op |
| transform.yield |
| } |
| } |
| |
| // ----- |
| |
| func.func @depthwise_conv1d_nwc_wc_dyn_ch_dim(%input: memref<3x5x?xf32>, %filter: memref<2x?xf32>, %output: memref<3x2x?xf32>) { |
| // expected-error @+1 {{Attempted to vectorize, but failed}} |
| linalg.depthwise_conv_1d_nwc_wc |
| ins(%input, %filter : memref<3x5x?xf32>, memref<2x?xf32>) |
| outs(%output : memref<3x2x?xf32>) |
| return |
| } |
| |
| module attributes {transform.with_named_sequence} { |
| transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { |
| %0 = transform.structured.match ops{["linalg.depthwise_conv_1d_nwc_wc"]} in %arg1 : (!transform.any_op) -> !transform.any_op |
| transform.structured.vectorize %0 : !transform.any_op |
| transform.yield |
| } |
| } |
| |
| // ----- |
| |
| func.func @depthwise_conv1d_nwc_wc_dyn_w_dim(%input: memref<3x?x3xf32>, %filter: memref<2x3xf32>, %output: memref<3x?x3xf32>) { |
| // expected-error @+1 {{Attempted to vectorize, but failed}} |
| linalg.depthwise_conv_1d_nwc_wc |
| ins(%input, %filter : memref<3x?x3xf32>, memref<2x3xf32>) |
| outs(%output : memref<3x?x3xf32>) |
| return |
| } |
| |
| module attributes {transform.with_named_sequence} { |
| transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { |
| %0 = transform.structured.match ops{["linalg.depthwise_conv_1d_nwc_wc"]} in %arg1 : (!transform.any_op) -> !transform.any_op |
| transform.structured.vectorize %0 : !transform.any_op |
| transform.yield |
| } |
| } |
| |
| // ----- |
| |
| func.func @conv1d_dyn_w_dim(%input: tensor<?xf32>, %filter: tensor<4xf32>, %output: tensor<?xf32>) -> tensor<?xf32> { |
| // expected-error @+1 {{Attempted to vectorize, but failed}} |
| %0 = linalg.conv_1d ins(%input, %filter : tensor<?xf32>, tensor<4xf32>) |
| outs(%output : tensor<?xf32>) -> tensor<?xf32> |
| return %0 : tensor<?xf32> |
| } |
| |
| module attributes {transform.with_named_sequence} { |
| transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { |
| %0 = transform.structured.match ops{["linalg.conv_1d"]} in %arg1 : (!transform.any_op) -> !transform.any_op |
| transform.structured.vectorize %0 : !transform.any_op |
| transform.yield |
| } |
| } |
| |
| // ----- |
| |
| func.func @test_pack_no_vectorize_dynamic_shape(%arg0: tensor<?xf32>, %arg1: tensor<4x16xf32>) -> tensor<4x16xf32> { |
| %pad = arith.constant 0.000000e+00 : f32 |
| // expected-error @+1 {{Attempted to vectorize, but failed}} |
| %pack = tensor.pack %arg0 padding_value(%pad : f32) inner_dims_pos = [0] inner_tiles = [16] into %arg1 : tensor<?xf32> -> tensor<4x16xf32> |
| return %pack : tensor<4x16xf32> |
| } |
| |
| module attributes {transform.with_named_sequence} { |
| transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.readonly}) { |
| %0 = transform.structured.match ops{["tensor.pack"]} in %arg0 : (!transform.any_op) -> !transform.any_op |
| transform.structured.vectorize %0 : !transform.any_op |
| transform.yield |
| } |
| } |
| |
| // ----- |
| |
| func.func @linalg_reduce_scalable_leading_dim(%input: tensor<?x?xf32>, |
| %acc: tensor<?xf32>) -> tensor<?xf32> { |
| |
| // expected-error @+1 {{Attempted to vectorize, but failed}} |
| %0 = linalg.reduce ins(%input : tensor<?x?xf32>) outs(%acc : tensor<?xf32>) dimensions = [0] |
| (%in: f32, %init: f32) { |
| %0 = arith.addf %in, %init : f32 |
| linalg.yield %0 : f32 |
| } |
| return %0 : tensor<?xf32> |
| } |
| |
| module attributes {transform.with_named_sequence} { |
| transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { |
| %0 = transform.structured.match ops{["linalg.reduce"]} in %arg1 : (!transform.any_op) -> !transform.any_op |
| transform.structured.vectorize %0 vector_sizes [[4], 1] : !transform.any_op |
| transform.yield |
| } |
| } |
| |
| // ----- |
| |
| func.func @linalg_generic_reduction_scalable_leading_dim(%input: tensor<?x?xf32>, |
| %acc: tensor<?xf32>) -> tensor<?xf32> { |
| |
| // expected-error @+1 {{Attempted to vectorize, but failed}} |
| %0 = linalg.generic { indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, |
| affine_map<(d0, d1) -> (d1)>], |
| iterator_types = ["reduction", "parallel"] } |
| ins(%input : tensor<?x?xf32>) |
| outs(%acc : tensor<?xf32>) { |
| ^bb(%in: f32, %out: f32) : |
| %0 = arith.addf %in, %out : f32 |
| linalg.yield %0 : f32 |
| } -> tensor<?xf32> |
| return %0 : tensor<?xf32> |
| } |
| |
| module attributes {transform.with_named_sequence} { |
| transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { |
| %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op |
| transform.structured.vectorize %0 vector_sizes [[4], 1] : !transform.any_op |
| transform.yield |
| } |
| } |
| |
| // ----- |
| |
| func.func @linalg_matvec_scalable_two_dims(%A: memref<?x?xf32>, %B: memref<?xf32>, %C: memref<?xf32>) { |
| // expected-error @+1 {{Attempted to vectorize, but failed}} |
| linalg.matvec ins(%A, %B: memref<?x?xf32>, memref<?xf32>) |
| outs(%C: memref<?xf32>) |
| return |
| } |
| |
| module attributes {transform.with_named_sequence} { |
| transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { |
| %matmul = transform.structured.match ops{["linalg.matvec"]} in %arg1 : (!transform.any_op) -> !transform.any_op |
| transform.structured.vectorize %matmul vector_sizes [[4], [4]] : !transform.any_op |
| transform.yield |
| } |
| } |
| |
| // ----- |
| |
| func.func @linalg_matmul_scalable_leading_parallel_dim(%A: memref<?x?xf32>, %B: memref<?x?xf32>, %C: memref<?x?xf32>) { |
| // expected-error @+1 {{Attempted to vectorize, but failed}} |
| linalg.matmul ins(%A, %B: memref<?x?xf32>, memref<?x?xf32>) |
| outs(%C: memref<?x?xf32>) |
| return |
| } |
| |
| module attributes {transform.with_named_sequence} { |
| transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { |
| %matmul = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op |
| transform.structured.vectorize %matmul vector_sizes [[8], 16, 4] : !transform.any_op |
| transform.yield |
| } |
| } |
| |
| // ----- |
| |
| func.func @linalg_matmul_scalable_trailing_reduction_dim(%A: memref<?x?xf32>, %B: memref<?x?xf32>, %C: memref<?x?xf32>) { |
| // expected-error @+1 {{Attempted to vectorize, but failed}} |
| linalg.matmul ins(%A, %B: memref<?x?xf32>, memref<?x?xf32>) |
| outs(%C: memref<?x?xf32>) |
| return |
| } |
| |
| module attributes {transform.with_named_sequence} { |
| transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { |
| %matmul = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op |
| transform.structured.vectorize %matmul vector_sizes [8, 16, [4]] : !transform.any_op |
| transform.yield |
| } |
| } |
| |
| // ----- |
| |
| func.func @linalg_generic_matmul_scalable_two_trailing_dims(%A: tensor<?x64xf32>, %B: tensor<64x?xf32>, |
| %C: tensor<?x?xf32>) -> tensor<?x?xf32> { |
| |
| // expected-error @+1 {{Attempted to vectorize, but failed}} |
| %0 = linalg.generic { indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d2)>, |
| affine_map<(d0, d1, d2) -> (d2, d1)>, |
| affine_map<(d0, d1, d2) -> (d0, d1)>], |
| iterator_types = ["parallel", "parallel", "reduction"] } |
| ins(%A, %B : tensor<?x64xf32>, tensor<64x?xf32>) |
| outs(%C: tensor<?x?xf32>) { |
| ^bb(%in1: f32, %in2: f32, %out: f32) : |
| %0 = arith.mulf %in1, %in2 : f32 |
| %1 = arith.addf %0, %out : f32 |
| linalg.yield %1 : f32 |
| } -> tensor<?x?xf32> |
| return %0 : tensor<?x?xf32> |
| } |
| |
| module attributes {transform.with_named_sequence} { |
| transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { |
| %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op |
| transform.structured.vectorize %0 vector_sizes [2, [4], [4]] : !transform.any_op |
| transform.yield |
| } |
| } |
| |
| // ----- |
| |
| // With dynamically shaped source, the vectorizer infers the vector size for |
| // xfer Ops from the destination tensor and, conservatively, assumes |
| // out-of-bounds accesses. Out-of-bounds accesses require a pad value, but |
| // that's impossible to recover in this example. Hence no vectorization. |
| |
| // TODO: Use diagnostics once we can vectorize tensor.insert_slice with |
| // transform.structured.vectorize |
| |
| // CHECK-LABEL: @insert_dynamic_slice_unknown_pad |
| // CHECK-NOT: vector |
| // CHECK: tensor.insert_slice |
| func.func @insert_dynamic_slice_unknown_pad(%arg0: tensor<1x?x3xf32>, %arg1: tensor<9x8x7x1x2x3xf32>, %size: index) -> tensor<9x8x7x1x2x3xf32> { |
| %res = tensor.insert_slice %arg0 into %arg1[0, 0, 0, 0, 0, 0] [1, 1, 1, 1, %size, 3][1, 1, 1, 1, 1, 1] : tensor<1x?x3xf32> into tensor<9x8x7x1x2x3xf32> |
| return %res : tensor<9x8x7x1x2x3xf32> |
| } |
| |
| module attributes {transform.with_named_sequence} { |
| transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { |
| %0 = transform.structured.match ops{["tensor.insert_slice"]} in %arg1 : (!transform.any_op) -> !transform.any_op |
| %1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op |
| %2 = transform.structured.vectorize_children_and_apply_patterns %1 : (!transform.any_op) -> !transform.any_op |
| transform.yield |
| } |
| } |