| // RUN: mlir-opt %s --transform-interpreter --split-input-file -resolve-shaped-type-result-dims -canonicalize | FileCheck %s |
| |
| // Demonstrates what happens when peeling the 4th loop (that corresponds to the |
| // "depth" dimension in depthwise convs) followed by vectorization in the |
| // presence of _scalable_ vectors (these are introduced through scalable |
| // tiling). The main goal is to verify that canonicalizations fold away the |
| // masks in the main loop. |
| |
| func.func @conv(%arg0: tensor<1x1080x1962x48xi32>, %arg1: tensor<1x43x48xi32>) -> tensor<1x1080x1920x48xi32> { |
| // CHECK: #[[$MAP:.+]] = affine_map<()[s0] -> (-(48 mod s0) + 48)> |
| |
| // CHECK-LABEL: func.func @conv( |
| // CHECK-DAG: %[[C_43:.*]] = arith.constant 43 : index |
| // CHECK-DAG: %[[C_48:.*]] = arith.constant 48 : index |
| // CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index |
| // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index |
| // CHECK-DAG: %[[C4:.*]] = arith.constant 4 : index |
| // CHECK: %[[VSCALE:.*]] = vector.vscale |
| // CHECK: %[[VSCALE_X_4:.*]] = arith.muli %[[VSCALE]], %[[C4]] : index |
| |
| // Loop over the channel/depth dim - the main part after vectorisation (vectorized, no masking) |
| // CHECK: %[[UB_DEPTH_LOOP:.*]] = affine.apply #[[$MAP]](){{\[}}%[[VSCALE_X_4]]] |
| // CHECK-NEXT: %[[VAL_21:.*]] = scf.for {{.*}} to %[[UB_DEPTH_LOOP]] step %[[VSCALE_X_4]] |
| // Loop over the Filter width dim |
| // CHECK: scf.for %{{.*}} = %[[C0]] to %[[C_43]] step %[[C1]] {{.*}} -> (tensor<1x1x4x?xi32>) { |
| // CHECK-NOT: vector.mask |
| // CHECK: vector.broadcast {{.*}} : vector<[4]xi32> to vector<1x4x[4]xi32> |
| // CHECK-NEXT: arith.muli {{.*}} : vector<1x4x[4]xi32> |
| // CHECK-NEXT: arith.addi {{.*}} : vector<1x4x[4]xi32> |
| // CHECK-NOT: vector.mask |
| // CHECK: scf.yield {{.*}} : tensor<1x1x4x?xi32> |
| // CHECK: } |
| // CHECK: tensor.insert_slice {{.*}} tensor<1x1x4x?xi32> into tensor<1x1080x1920x48xi32> |
| // CHECK: scf.yield {{.*}} : tensor<1x1080x1920x48xi32> |
| |
| // CHECK-NEXT: } |
| |
| // Loop over the channel/depth dim - the remainder part (not vectorized) |
| // CHECK: scf.for {{.*}} to %[[C_48]] step %[[VSCALE_X_4]] |
| // Loop over the Filter width dim |
| // CHECK: scf.for %{{.*}} = %[[C0]] to %[[C_43]] step %[[C1]] {{.*}} -> (tensor<1x1x4x?xi32>) { |
| // CHECK: linalg.depthwise_conv_1d_nwc_wc {{.*}} -> tensor<1x4x?xi32> |
| // CHECK: scf.yield %{{.*}} : tensor<1x1x4x?xi32> |
| // CHECK: } |
| // CHECK: tensor.insert_slice {{.*}} tensor<1x1x4x?xi32> into tensor<1x1080x1920x48xi32> |
| // CHECK-NEXT: scf.yield %{{.*}} : tensor<1x1080x1920x48xi32> |
| // CHECK-NEXT: } |
| |
| |
| %0 = tensor.empty() : tensor<1x1080x1920x48xi32> |
| %c0_i32 = arith.constant 0 : i32 |
| %1 = linalg.fill ins(%c0_i32 : i32) outs(%0 : tensor<1x1080x1920x48xi32>) -> tensor<1x1080x1920x48xi32> |
| %2 = linalg.depthwise_conv_2d_nhwc_hwc { |
| dilations = dense<1> : tensor<2xi64>, |
| strides = dense<1> : tensor<2xi64>} |
| ins(%arg0, %arg1 : tensor<1x1080x1962x48xi32>, tensor<1x43x48xi32>) outs(%1 : tensor<1x1080x1920x48xi32>) -> tensor<1x1080x1920x48xi32> |
| return %2 : tensor<1x1080x1920x48xi32> |
| } |
| |
| module attributes {transform.with_named_sequence} { |
| transform.named_sequence @__transform_main(%root: !transform.any_op {transform.consume}) { |
| // 1. Tile parallel dims |
| %1 = transform.structured.match ops{["linalg.depthwise_conv_2d_nhwc_hwc"]} in %root : (!transform.any_op) -> !transform.any_op |
| %tiled_linalg_op_0, %loops_1:4 = transform.structured.tile_using_for %1 tile_sizes [1, 1, 4, [4], 0, 0] : (!transform.any_op) -> (!transform.any_op, !transform.op<"scf.for">, !transform.op<"scf.for">, !transform.op<"scf.for">, !transform.op<"scf.for">) |
| |
| // 2. Tile reduction dims |
| %2 = transform.structured.match ops{["linalg.depthwise_conv_2d_nhwc_hwc"]} in %loops_1#3 : (!transform.op<"scf.for">) -> !transform.any_op |
| %tiled_linalg_op_1, %loops_2:2 = transform.structured.tile_using_for %2 tile_sizes [0, 0, 0, 0, 1, 1] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) |
| |
| // 3. Decompose 2D conv into 2 x 1D conv |
| %3 = transform.structured.match ops{["linalg.depthwise_conv_2d_nhwc_hwc"]} in %loops_1#3 : (!transform.op<"scf.for">) -> !transform.any_op |
| %4 = transform.structured.decompose %3 : (!transform.any_op) -> !transform.any_op |
| |
| // 4. Apply loop peeling - only the 4th loop |
| %main_loop, %remainder_loop = transform.loop.peel %loops_1#3 : (!transform.op<"scf.for">) -> (!transform.op<"scf.for">, !transform.op<"scf.for">) |
| %5 = transform.structured.match ops{["linalg.depthwise_conv_1d_nwc_wc"]} in %main_loop : (!transform.op<"scf.for">) -> !transform.any_op |
| |
| // 5. Vectorize, but only the main loop |
| transform.structured.vectorize %5 vector_sizes [2, 4, [4], 16] : !transform.any_op |
| |
| transform.yield |
| } |
| } |