| // RUN: mlir-opt %s -one-shot-bufferize="bufferize-function-boundaries test-analysis-only" -split-input-file | FileCheck %s |
| |
| // Run fuzzer with different seeds. |
| // RUN: mlir-opt %s -one-shot-bufferize="bufferize-function-boundaries test-analysis-only analysis-heuristic=fuzzer analysis-fuzzer-seed=23" -split-input-file -o /dev/null |
| // RUN: mlir-opt %s -one-shot-bufferize="bufferize-function-boundaries test-analysis-only analysis-heuristic=fuzzer analysis-fuzzer-seed=59" -split-input-file -o /dev/null |
| // RUN: mlir-opt %s -one-shot-bufferize="bufferize-function-boundaries test-analysis-only analysis-heuristic=fuzzer analysis-fuzzer-seed=91" -split-input-file -o /dev/null |
| |
| // Try different heuristics. Not checking the result, just make sure that we do |
| // not crash. |
| // RUN: mlir-opt %s -one-shot-bufferize="bufferize-function-boundaries test-analysis-only analysis-heuristic=bottom-up-from-terminators" -split-input-file -o /dev/null |
| // RUN: mlir-opt %s -one-shot-bufferize="bufferize-function-boundaries test-analysis-only analysis-heuristic=top-down" -split-input-file -o /dev/null |
| |
| // TODO: Extract op-specific test cases and move them to their respective |
| // dialects. |
| |
| //===----------------------------------------------------------------------===// |
| // Simple cases |
| //===----------------------------------------------------------------------===// |
| |
| // ----- |
| |
| // CHECK-LABEL: func @extract_slice_fun( |
| func.func @extract_slice_fun(%A : tensor<?xf32> {bufferization.writable = false}, |
| // CHECK-SAME: bufferization.access = "read" |
| %B : tensor<?xf32> {bufferization.writable = true}) |
| // CHECK-SAME: bufferization.access = "read" |
| -> (tensor<4xf32>, tensor<8xf32>) |
| { |
| // tensor.extract_slice is not used in a write, it is not compelled to |
| // bufferize out of place. Let callers decide whether they want to create |
| // aliasing subviews at all call sites or whether they allocate. |
| // This is true irrespective of whether the function argument is inplaceable. |
| // CHECK: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} |
| %r0 = tensor.extract_slice %A[0][4][1] : tensor<?xf32> to tensor<4xf32> |
| |
| // CHECK: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} |
| %r1 = tensor.extract_slice %B[0][8][1] : tensor<?xf32> to tensor<8xf32> |
| |
| return %r0, %r1: tensor<4xf32>, tensor<8xf32> |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: func @insert_slice_fun( |
| func.func @insert_slice_fun(%A : tensor<?xf32> {bufferization.writable = false}, |
| // CHECK-SAME: bufferization.access = "read" |
| %B : tensor<?xf32> {bufferization.writable = true}, |
| // CHECK-SAME: bufferization.access = "read-write" |
| %C : tensor<4xf32> {bufferization.writable = false}) |
| // CHECK-SAME: bufferization.access = "read" |
| -> (tensor<?xf32>, tensor<?xf32>) |
| { |
| // must bufferize out of place. |
| // CHECK: tensor.insert_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "false"]} |
| %r0 = tensor.insert_slice %C into %A[0][4][1] : tensor<4xf32> into tensor<?xf32> |
| |
| // bufferizes inplace. |
| // CHECK: tensor.insert_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true"]} |
| %r1 = tensor.insert_slice %C into %B[0][4][1] : tensor<4xf32> into tensor<?xf32> |
| |
| // CHECK: return |
| // CHECK-SAME: __equivalent_func_args__ = [-1, 1] |
| return %r0, %r1: tensor<?xf32>, tensor<?xf32> |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: func @conflict_on_B( |
| func.func @conflict_on_B(%A : tensor<4x4xf32> {bufferization.writable = true}, |
| // CHECK-SAME: bufferization.access = "read" |
| %B : tensor<4x4xf32> {bufferization.writable = true}) |
| // CHECK-SAME: bufferization.access = "read-write" |
| -> (tensor<4x4xf32>, tensor<4x4xf32>, tensor<4x4xf32>) |
| { |
| // matmul output operand interferes with input operand. |
| // CHECK: linalg.matmul |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true", "false"]} |
| %C = linalg.matmul ins(%A, %B: tensor<4x4xf32>, tensor<4x4xf32>) |
| outs(%B: tensor<4x4xf32>) |
| -> tensor<4x4xf32> |
| |
| // matmul output operand interferes with input operand. |
| // CHECK: linalg.matmul |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true", "false"]} |
| %D = linalg.matmul ins(%B, %A: tensor<4x4xf32>, tensor<4x4xf32>) |
| outs(%B: tensor<4x4xf32>) |
| -> tensor<4x4xf32> |
| |
| // matmul output operand does not interferes with input operand. |
| // CHECK: linalg.matmul |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true", "true"]} |
| %E = linalg.matmul ins(%A, %A: tensor<4x4xf32>, tensor<4x4xf32>) |
| outs(%B: tensor<4x4xf32>) |
| -> tensor<4x4xf32> |
| |
| // CHECK: return |
| // CHECK-SAME: __equivalent_func_args__ = [-1, -1, 1] |
| return %C, %D, %E: tensor<4x4xf32>, tensor<4x4xf32>, tensor<4x4xf32> |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Length-1 producer-consumer cases. |
| //===----------------------------------------------------------------------===// |
| |
| // ----- |
| |
| // CHECK-LABEL: func @extract_slice_extract_slice( |
| func.func @extract_slice_extract_slice( |
| %A : tensor<?xf32> {bufferization.writable = true}, |
| // CHECK-SAME: bufferization.access = "read" |
| %B : tensor<?xf32> {bufferization.writable = false}) |
| // CHECK-SAME: bufferization.access = "read" |
| -> (tensor<2xf32>, tensor<2xf32>) |
| { |
| // tensor.extract_slice is not used in a write, it is not compelled to |
| // bufferize out of place. Let callers decide whether they want to create |
| // aliasing subviews at all call sites or whether they allocate. |
| // This is true irrespective of whether the function argument is inplaceable. |
| // CHECK: {__inplace_operands_attr__ = ["true"]} |
| %r0 = tensor.extract_slice %A[0][4][1] : tensor<?xf32> to tensor<4xf32> |
| |
| // CHECK: {__inplace_operands_attr__ = ["true"]} |
| %r1 = tensor.extract_slice %r0[0][2][1] : tensor<4xf32> to tensor<2xf32> |
| |
| // CHECK: {__inplace_operands_attr__ = ["true"]} |
| %r2 = tensor.extract_slice %B[0][4][1] : tensor<?xf32> to tensor<4xf32> |
| |
| // CHECK: {__inplace_operands_attr__ = ["true"]} |
| %r3 = tensor.extract_slice %r2[0][2][1] : tensor<4xf32> to tensor<2xf32> |
| |
| return %r1, %r3: tensor<2xf32>, tensor<2xf32> |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: func @insert_slice_insert_slice( |
| func.func @insert_slice_insert_slice( |
| %A : tensor<?xf32> {bufferization.writable = true}, |
| // CHECK-SAME: bufferization.access = "read-write" |
| %A2 : tensor<4xf32> {bufferization.writable = true}, |
| // CHECK-SAME: bufferization.access = "read-write" |
| %A3 : tensor<2xf32> {bufferization.writable = true}, |
| // CHECK-SAME: bufferization.access = "read" |
| %B : tensor<?xf32> {bufferization.writable = false}, |
| // CHECK-SAME: bufferization.access = "read" |
| %B2 : tensor<4xf32> {bufferization.writable = false}, |
| // CHECK-SAME: bufferization.access = "read" |
| %B3 : tensor<2xf32> {bufferization.writable = false}) |
| // CHECK-SAME: bufferization.access = "read" |
| -> (tensor<?xf32>, tensor<?xf32>) |
| { |
| // CHECK: {__inplace_operands_attr__ = ["true", "true"]} |
| %r0 = tensor.insert_slice %A3 into %A2[0][2][1] : tensor<2xf32> into tensor<4xf32> |
| |
| // CHECK: {__inplace_operands_attr__ = ["true", "true"]} |
| %r1 = tensor.insert_slice %r0 into %A[0][4][1] : tensor<4xf32> into tensor<?xf32> |
| |
| // CHECK: {__inplace_operands_attr__ = ["true", "false"]} |
| %r2 = tensor.insert_slice %B3 into %B2[0][2][1] : tensor<2xf32> into tensor<4xf32> |
| |
| // CHECK: {__inplace_operands_attr__ = ["true", "false"]} |
| %r3 = tensor.insert_slice %r2 into %B[0][4][1] : tensor<4xf32> into tensor<?xf32> |
| |
| // CHECK: return |
| // CHECK-SAME: __equivalent_func_args__ = [0, -1] |
| return %r1, %r3: tensor<?xf32>, tensor<?xf32> |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: func @extract_slice_nonmatching_insert_slice |
| func.func @extract_slice_nonmatching_insert_slice( |
| %A : tensor<?xf32> {bufferization.writable = true}, |
| %B : tensor<?xf32> {bufferization.writable = false}, |
| %idx: index) |
| -> (tensor<?xf32>, tensor<?xf32>) |
| { |
| // %r1 bufferizes inplace because %A is inplaceable. |
| // %r0 is an overlapping tensor.extract_slice that does not match, it must be |
| // out of place. |
| // CHECK: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["false"]} |
| %r0 = tensor.extract_slice %A[0][4][1] : tensor<?xf32> to tensor<4xf32> |
| |
| // %r1 can bufferize inplace fine. |
| // CHECK: tensor.insert_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true", "none"]} |
| %r1 = tensor.insert_slice %r0 into %A[%idx][4][1] : tensor<4xf32> into tensor<?xf32> |
| |
| // %r3 does bufferizes inplace because %B is not inplaceable. |
| // %r0 is an overlapping tensor.extract_slice that does not match, but does |
| // not alias with the buffer coming from %r3 so it can actually bufferize |
| // inplace. |
| // CHECK: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} |
| %r2 = tensor.extract_slice %B[0][4][1] : tensor<?xf32> to tensor<4xf32> |
| |
| // %r3 cannot bufferize inplace since %B is not inplaceable. |
| // CHECK: tensor.insert_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "false", "none"]} |
| %r3 = tensor.insert_slice %r2 into %B[%idx][4][1] : tensor<4xf32> into tensor<?xf32> |
| |
| // CHECK: return |
| // CHECK-SAME: __equivalent_func_args__ = [0, -1] |
| return %r1, %r3: tensor<?xf32>, tensor<?xf32> |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: func @extract_slice_matching_insert_slice |
| func.func @extract_slice_matching_insert_slice( |
| %A : tensor<?xf32> {bufferization.writable = true}, |
| %B : tensor<?xf32> {bufferization.writable = false}) |
| -> (tensor<?xf32>, tensor<?xf32>) |
| { |
| // %r1 bufferizes inplace because %A is inplaceable. |
| // %r0 is a tensor.extract_slice that matches, it can also be bufferized |
| // inplace. |
| // CHECK: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} |
| %r0 = tensor.extract_slice %A[0][4][1] : tensor<?xf32> to tensor<4xf32> |
| |
| // CHECK: tensor.insert_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true"]} |
| %r1 = tensor.insert_slice %r0 into %A[0][4][1] : tensor<4xf32> into tensor<?xf32> |
| |
| // %r2 is a tensor.extract_slice that matches %r3, it can be bufferized |
| // inplace. |
| // CHECK: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} |
| %r2 = tensor.extract_slice %B[0][4][1] : tensor<?xf32> to tensor<4xf32> |
| |
| // tensor.insert_slice cannot bufferize inplace. |
| // This should have been captured by a canonicalization pattern and it would |
| // be unproductive to have special logic in bufferization to encode matching |
| // insert_slice(extract_slice(A), A). |
| // CHECK: tensor.insert_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "false"]} |
| %r3 = tensor.insert_slice %r2 into %B[0][4][1] : tensor<4xf32> into tensor<?xf32> |
| |
| // CHECK: return |
| // CHECK-SAME: __equivalent_func_args__ = [0, -1] |
| return %r1, %r3: tensor<?xf32>, tensor<?xf32> |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: @read_of_matching_insert_slice_source |
| func.func @read_of_matching_insert_slice_source( |
| %A : tensor<?xf32> {bufferization.writable = true}, |
| %idx : index, |
| %idx2 : index) |
| -> (tensor<?xf32>, vector<5xf32>) |
| { |
| %cst = arith.constant 0.0 : f32 |
| %cst2 = arith.constant 1.0 : f32 |
| |
| // CHECK: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "none", "none"]} |
| %0 = tensor.extract_slice %A[%idx][%idx][1] : tensor<?xf32> to tensor<?xf32> |
| |
| // CHECK: linalg.fill |
| // CHECK-SAME: {__inplace_operands_attr__ = ["none", "true"]} |
| %1 = linalg.fill ins(%cst : f32) outs(%0 : tensor<?xf32>) -> tensor<?xf32> |
| |
| // CHECK: tensor.insert_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true", "none", "none"]} |
| %2 = tensor.insert_slice %1 into %A[%idx][%idx][1] : tensor<?xf32> into tensor<?xf32> |
| |
| %3 = vector.transfer_read %1[%idx2], %cst2 : tensor<?xf32>, vector<5xf32> |
| |
| // CHECK: return |
| // CHECK-SAME: __equivalent_func_args__ = [0, -1] |
| return %2, %3 : tensor<?xf32>, vector<5xf32> |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: @read_of_matching_insert_slice_source_interleaved |
| func.func @read_of_matching_insert_slice_source_interleaved( |
| %A : tensor<?xf32> {bufferization.writable = true}, |
| %idx : index, |
| %idx2 : index, |
| %idx3 : index) |
| -> (tensor<?xf32>, vector<5xf32>) |
| { |
| %cst = arith.constant 0.0 : f32 |
| %cst2 = arith.constant 1.0 : f32 |
| |
| // CHECK: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["false", "none", "none"]} |
| %0 = tensor.extract_slice %A[%idx][%idx][1] : tensor<?xf32> to tensor<?xf32> |
| |
| // CHECK: linalg.fill |
| // CHECK-SAME: {__inplace_operands_attr__ = ["none", "true"]} |
| %1 = linalg.fill ins(%cst : f32) outs(%0 : tensor<?xf32>) -> tensor<?xf32> |
| |
| // CHECK: tensor.insert_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true", "none", "none"]} |
| %2 = tensor.insert_slice %1 into %A[%idx][%idx][1] : tensor<?xf32> into tensor<?xf32> |
| |
| // CHECK: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "none", "none"]} |
| %4 = tensor.extract_slice %2[%idx3][%idx3][1] : tensor<?xf32> to tensor<?xf32> |
| |
| // CHECK: linalg.fill |
| // CHECK-SAME: {__inplace_operands_attr__ = ["none", "true"]} |
| %5 = linalg.fill ins(%cst : f32) outs(%4 : tensor<?xf32>) -> tensor<?xf32> |
| |
| %3 = vector.transfer_read %1[%idx2], %cst2 : tensor<?xf32>, vector<5xf32> |
| |
| // CHECK: tensor.insert_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true", "none", "none"]} |
| %6 = tensor.insert_slice %5 into %2[%idx3][%idx3][1] : tensor<?xf32> into tensor<?xf32> |
| |
| // CHECK: return |
| // CHECK-SAME: __equivalent_func_args__ = [0, -1] |
| return %6, %3 : tensor<?xf32>, vector<5xf32> |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: func @extract_slice_linalg_readonly_use |
| func.func @extract_slice_linalg_readonly_use( |
| %A : tensor<?x?xf32> {bufferization.writable = false}, |
| %B : tensor<4x4xf32> {bufferization.writable = false}, |
| %C : tensor<4x4xf32> {bufferization.writable = true}) |
| -> (tensor<4x4xf32>, tensor<4x4xf32>) |
| { |
| // tensor.extract_slice is only used as a read, no interference irrespective |
| // of user's inplace status. |
| // CHECK: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} |
| %sA = tensor.extract_slice %A[0, 0][4, 4][1, 1] : tensor<?x?xf32> to tensor<4x4xf32> |
| |
| // matmul output operand is not inplaceable at the function boundary. |
| // CHECK: linalg.matmul |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true", "false"]} |
| %D = linalg.matmul ins(%sA, %B: tensor<4x4xf32>, tensor<4x4xf32>) |
| outs(%B: tensor<4x4xf32>) |
| -> tensor<4x4xf32> |
| |
| // matmul output operand is inplaceable at the function boundary. |
| // CHECK: linalg.matmul |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true", "true"]} |
| %E = linalg.matmul ins(%sA, %B: tensor<4x4xf32>, tensor<4x4xf32>) |
| outs(%C: tensor<4x4xf32>) |
| -> tensor<4x4xf32> |
| |
| // CHECK: return |
| // CHECK-SAME: __equivalent_func_args__ = [-1, 2] |
| return %D, %E: tensor<4x4xf32>, tensor<4x4xf32> |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: func @extract_slice_to_linalg_write_use |
| func.func @extract_slice_to_linalg_write_use( |
| %A : tensor<4x4xf32> {bufferization.writable = false}, |
| %B : tensor<?x?xf32> {bufferization.writable = false}, |
| %C : tensor<?x?xf32> {bufferization.writable = true}) |
| -> (tensor<4x4xf32>, tensor<4x4xf32>) |
| { |
| // Step 4. %sB forward propagates to a write in %D but it is not inplace. |
| // So this is only ever read and can bufferize inplace. |
| // CHECK: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} |
| %sB = tensor.extract_slice %B[0, 0][4, 4][1, 1] : tensor<?x?xf32> to tensor<4x4xf32> |
| |
| // Step 3. %sB has a read interference in %E, it does not bufferize inplace. |
| // CHECK: linalg.matmul |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true", "false"]} |
| %D = linalg.matmul ins(%B, %C: tensor<?x?xf32>, tensor<?x?xf32>) |
| outs(%sB: tensor<4x4xf32>) |
| -> tensor<4x4xf32> |
| |
| // Step 2. %sC forward propagates to an inplace write in %E. |
| // %sC backward propagates to %C which is inplaceable. |
| // As a consequence this is bufferized inplace. |
| // CHECK: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} |
| %sC = tensor.extract_slice %C[0, 0][4, 4][1, 1] : tensor<?x?xf32> to tensor<4x4xf32> |
| |
| // Step 1. %sC backprops to the tensor.extract_slice producer which is not |
| // considered an interference. This bufferizes inplace. |
| // CHECK: linalg.matmul |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true", "true"]} |
| %E = linalg.matmul ins(%A, %sB: tensor<4x4xf32>, tensor<4x4xf32>) |
| outs(%sC: tensor<4x4xf32>) |
| -> tensor<4x4xf32> |
| |
| return %D, %E: tensor<4x4xf32>, tensor<4x4xf32> |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: func @insert_slice_double_extract_slice |
| func.func @insert_slice_double_extract_slice( |
| %s1: index, |
| %s2: index, |
| %s3: index, |
| %s4: index, |
| %A: tensor<8x6xf32> {bufferization.writable = false}, |
| %B: tensor<6x6xf32> {bufferization.writable = false}, |
| %C: tensor<30x20xf32> {bufferization.writable = true}) |
| -> tensor<30x20xf32> |
| { |
| // CHECK: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "none", "none", "none", "none"]} |
| %15 = tensor.extract_slice %C[%s3, %s4] [%s1, %s2] [1, 1] : tensor<30x20xf32> to tensor<?x?xf32> |
| |
| // CHECK: linalg.matmul |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true", "true"]} |
| %18 = linalg.matmul ins(%A, %B : tensor<8x6xf32>, tensor<6x6xf32>) outs(%15 : tensor<?x?xf32>) -> tensor<?x?xf32> |
| |
| // CHECK: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "none", "none"]} |
| %19 = tensor.extract_slice %18[0, 0] [%s1, %s2] [1, 1] : tensor<?x?xf32> to tensor<?x?xf32> |
| |
| // CHECK: tensor.insert_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true", "none", "none", "none", "none"]} |
| %20 = tensor.insert_slice %19 into %C[%s3, %s4] [%s1, %s2] [1, 1] : tensor<?x?xf32> into tensor<30x20xf32> |
| |
| // CHECK: return |
| // CHECK-SAME: __equivalent_func_args__ = [6] |
| return %20 : tensor<30x20xf32> |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Transitive cases |
| //===----------------------------------------------------------------------===// |
| |
| // ----- |
| |
| // CHECK-LABEL: func @extract_slice_to_linalg_write_use |
| func.func @extract_slice_to_linalg_write_use( |
| %A : tensor<4x4xf32> {bufferization.writable = false}, |
| %B : tensor<?x?xf32> {bufferization.writable = false}, |
| %C : tensor<?x?xf32> {bufferization.writable = true}) |
| -> (tensor<4x4xf32>, tensor<4x4xf32>) |
| { |
| // Step 4. %sB forward propagates to an inplace write in %D. |
| // %sB backward propagates to %B which is not inplaceable. |
| // As a consequence this is bufferized out of place. |
| // CHECK: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["false"]} |
| %sB = tensor.extract_slice %B[0, 0][4, 4][1, 1] : tensor<?x?xf32> to tensor<4x4xf32> |
| |
| // Step 3. %sB backprops to the tensor.extract_slice producer which is not |
| // considered an interference. This bufferizes inplace. |
| // CHECK: linalg.matmul |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true", "true"]} |
| %D = linalg.matmul ins(%B, %C: tensor<?x?xf32>, tensor<?x?xf32>) |
| outs(%sB: tensor<4x4xf32>) |
| -> tensor<4x4xf32> |
| |
| // Step 2. %sC forward propagates to an inplace write in %E. |
| // %sC backward propagates to %C which is inplaceable. |
| // As a consequence this is bufferized inplace. |
| // CHECK: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} |
| %sC = tensor.extract_slice %C[0, 0][4, 4][1, 1] : tensor<?x?xf32> to tensor<4x4xf32> |
| |
| // Step 1. %sC backprops to the tensor.extract_slice producer which is not |
| // considered an interference. This bufferizes inplace. |
| // CHECK: linalg.matmul |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true", "true"]} |
| %E = linalg.matmul ins(%A, %A: tensor<4x4xf32>, tensor<4x4xf32>) |
| outs(%sC: tensor<4x4xf32>) |
| -> tensor<4x4xf32> |
| |
| return %D, %E: tensor<4x4xf32>, tensor<4x4xf32> |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: func @nested_extract_slice_and_insert |
| func.func @nested_extract_slice_and_insert( |
| %A : tensor<?x?xf32> {bufferization.writable = false}, |
| %B : tensor<?x?xf32> {bufferization.writable = true}, |
| %C : tensor<?x?xf32> {bufferization.writable = true}, |
| %idx : index, |
| %sz1 : index, |
| %sz2 : index) |
| -> (tensor<?x?xf32>, tensor<?x?xf32>, tensor<?x?xf32>) |
| { |
| %f0 = arith.constant 0.0 : f32 |
| |
| // 2-level matching tensor.extract_slice / tensor.insert_slice into non |
| // inplaceable %A. |
| // - %rA is not inplaceable because %A is not inplaceable at function boundary. |
| // - once %rA is deemed not inplaceable, nothing prevent %rsA to be inplaceable |
| // - this propagates to %FA and %ssA being inplaceable. |
| // - %sA would then bufferize to an inplace write (i.e. %FA) but %A is not |
| // inplaceable and so %sA is not inplaceable. |
| // CHECK: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["false", "none", "none"]} |
| // CHECK-NEXT: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} |
| // CHECK-NEXT: fill |
| // CHECK-SAME: {__inplace_operands_attr__ = ["none", "true"]} |
| // CHECK-NEXT: tensor.insert_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true"]} |
| // CHECK-NEXT: tensor.insert_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "false", "none", "none"]} |
| %sA = tensor.extract_slice %A[0, 0][%idx, %idx][1, 1] : tensor<?x?xf32> to tensor<?x?xf32> |
| %ssA = tensor.extract_slice %sA[0, 0][4, 4][1, 1] : tensor<?x?xf32> to tensor<4x4xf32> |
| %FA = linalg.fill ins(%f0 : f32) outs(%ssA : tensor<4x4xf32>) -> tensor<4x4xf32> |
| %rsA = tensor.insert_slice %FA into %sA[0, 0][4, 4][1, 1] : tensor<4x4xf32> into tensor<?x?xf32> |
| %rA = tensor.insert_slice %rsA into %A[0, 0][%idx, %idx][1, 1] : tensor<?x?xf32> into tensor<?x?xf32> |
| |
| // 3-level matching tensor.extract_slice / tensor.insert_slice into |
| // inplaceable %B. |
| // CHECK-NEXT: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "none", "none"]} |
| // CHECK-NEXT: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "none"]} |
| // CHECK-NEXT: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} |
| // CHECK-NEXT: fill |
| // CHECK-SAME: {__inplace_operands_attr__ = ["none", "true"]} |
| // CHECK-NEXT: tensor.insert_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true"]} |
| // CHECK-NEXT: tensor.insert_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true", "none"]} |
| // CHECK-NEXT: tensor.insert_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true", "none", "none"]} |
| %sB = tensor.extract_slice %B[0, 0][%idx, %idx][1, 1] : tensor<?x?xf32> to tensor<?x?xf32> |
| %ssB = tensor.extract_slice %sB[0, 0][4, %idx][1, 1] : tensor<?x?xf32> to tensor<4x?xf32> |
| %sssB = tensor.extract_slice %ssB[0, 0][4, 4][1, 1] : tensor<4x?xf32> to tensor<4x4xf32> |
| %FB = linalg.fill ins(%f0 : f32) outs(%sssB : tensor<4x4xf32>) -> tensor<4x4xf32> |
| %rssB = tensor.insert_slice %FB into %ssB[0, 0][4, 4][1, 1] : tensor<4x4xf32> into tensor<4x?xf32> |
| %rsB = tensor.insert_slice %rssB into %sB[0, 0][4, %idx][1, 1] : tensor<4x?xf32> into tensor<?x?xf32> |
| %rB = tensor.insert_slice %rsB into %B[0, 0][%idx, %idx][1, 1] : tensor<?x?xf32> into tensor<?x?xf32> |
| |
| // 2-level matching tensor.extract_slice / tensor.insert_slice into |
| // inplaceable %C with a twist. |
| // Throw a wrench in the system: %rsC production sizes do not match %ssC. |
| // CHECK-NEXT: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "none", "none"]} |
| // The tensor.insert_slice that would be candidate for matching does not actually |
| // match. That tensor.insert_slice can still be bufferized inplace nonetheless |
| // but this tensor.extract_slice, which bufferizes to an inplace write, cannot. |
| // CHECK-NEXT: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["false", "none"]} |
| // CHECK-NEXT: fill |
| // CHECK-SAME: {__inplace_operands_attr__ = ["none", "true"]} |
| // CHECK-NEXT: tensor.insert_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true", "none"]} |
| // CHECK-NEXT: tensor.insert_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true", "none", "none"]} |
| %sC = tensor.extract_slice %C[0, 0][%idx, %idx][1, 1] : tensor<?x?xf32> to tensor<?x?xf32> |
| %ssC = tensor.extract_slice %sC[0, 0][%sz1, 4][1, 1] : tensor<?x?xf32> to tensor<?x4xf32> |
| %FC = linalg.fill ins(%f0 : f32) outs(%ssC : tensor<?x4xf32>) -> tensor<?x4xf32> |
| %rsC = tensor.insert_slice %FC into %sC[0, 0][%sz2, 4][1, 1] : tensor<?x4xf32> into tensor<?x?xf32> |
| %rC = tensor.insert_slice %rsC into %C[0, 0][%idx, %idx][1, 1] : tensor<?x?xf32> into tensor<?x?xf32> |
| |
| // CHECK: return |
| // CHECK-SAME: __equivalent_func_args__ = [-1, 1, 2] |
| return %rA, %rB, %rC: tensor<?x?xf32>, tensor<?x?xf32>, tensor<?x?xf32> |
| } |
| |
| // ----- |
| |
| //===----------------------------------------------------------------------===// |
| // Cross function boundary cases. |
| //===----------------------------------------------------------------------===// |
| |
| func.func private @foo(tensor<64xf32>) |
| |
| // CHECK-LABEL: dependence_through_call |
| func.func @dependence_through_call(%I : tensor<64xf32> {bufferization.writable = true}) { |
| %f1 = arith.constant 1.000000e+00 : f32 |
| %f2 = arith.constant 2.000000e+00 : f32 |
| |
| // 2. %B already bufferizes inplace, %A would alias and have a different |
| // value. The calls to `foo` are determined to read conservatively, so %A |
| // cannot bufferize inplace. |
| // CHECK: fill |
| // CHECK-SAME: {__inplace_operands_attr__ = ["none", "false"]} |
| %A = linalg.fill ins(%f1 : f32) outs(%I : tensor<64xf32>) -> tensor<64xf32> |
| |
| // 1. Bufferizes inplace: no alias to %A is yet possible. |
| // CHECK: fill |
| // CHECK-SAME: {__inplace_operands_attr__ = ["none", "true"]} |
| %B = linalg.fill ins(%f2 : f32) outs(%I : tensor<64xf32>) -> tensor<64xf32> |
| |
| call @foo(%A) : (tensor<64xf32>) -> () |
| call @foo(%B) : (tensor<64xf32>) -> () |
| |
| return |
| } |
| |
| // ----- |
| |
| func.func private @foo(tensor<64xf32>) |
| |
| func.func private @bar(%A : tensor<64xf32>) { |
| call @foo(%A) : (tensor<64xf32>) -> () |
| return |
| } |
| |
| func.func @read_dependence_through_scf_and_call( |
| %I : tensor<64xf32> {bufferization.writable = true}, |
| %I2 : tensor<64xf32> {bufferization.writable = true}) { |
| %c0 = arith.constant 0 : index |
| %c1 = arith.constant 1 : index |
| %c10 = arith.constant 10 : index |
| %f1 = arith.constant 1.000000e+00 : f32 |
| %f2 = arith.constant 2.000000e+00 : f32 |
| |
| // 5. %B bufferizes inplace, %A would alias and have a different value. |
| // The calls to `foo` are determined to read conservatively, so %A cannot |
| // bufferize inplace. |
| // CHECK: fill |
| // CHECK-SAME: {__inplace_operands_attr__ = ["none", "false"]} |
| %A = linalg.fill ins(%f1 : f32) outs(%I : tensor<64xf32>) -> tensor<64xf32> |
| |
| // 4. Bufferizes inplace: no alias to %A is yet possible. |
| // CHECK: fill |
| // CHECK-SAME: {__inplace_operands_attr__ = ["none", "true"]} |
| %B = linalg.fill ins(%f2 : f32) outs(%I : tensor<64xf32>) -> tensor<64xf32> |
| |
| // 3. Does not read or write, bufferizes inplace. |
| // CHECK: scf.for |
| // CHECK-NEXT: scf.yield |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true"]} |
| // CHECK: } {__inplace_operands_attr__ = ["none", "none", "none", "true", "true"]} |
| %r:2 = scf.for %i = %c0 to %c10 step %c1 iter_args(%0 = %A, %1 = %B) |
| -> (tensor<64xf32>, tensor<64xf32>) |
| { |
| scf.yield %0, %1 : tensor<64xf32>, tensor<64xf32> |
| } |
| call @foo(%r#0) : (tensor<64xf32>) -> () |
| call @foo(%r#1) : (tensor<64xf32>) -> () |
| |
| // 2. %B2 already bufferizes inplace, %A2 would alias and have a different |
| // value. The calls to `foo` are determined to read conservatively, so %A2 |
| // cannot bufferize inplace. |
| // CHECK: fill |
| // CHECK-SAME: {__inplace_operands_attr__ = ["none", "false"]} |
| %A2 = linalg.fill ins(%f1 : f32) outs(%I2 : tensor<64xf32>) -> tensor<64xf32> |
| |
| // 1. Bufferizes inplace: no alias to %A2 is yet possible. |
| // CHECK: fill |
| // CHECK-SAME: {__inplace_operands_attr__ = ["none", "true"]} |
| %B2 = linalg.fill ins(%f2 : f32) outs(%I2 : tensor<64xf32>) -> tensor<64xf32> |
| |
| call @bar(%A2) : (tensor<64xf32>) -> () |
| call @bar(%B2) : (tensor<64xf32>) -> () |
| return |
| } |
| |
| // ----- |
| |
| //===----------------------------------------------------------------------===// |
| // Transitive cases through extract_slice. |
| //===----------------------------------------------------------------------===// |
| |
| // CHECK-LABEL: func @write_into_constant_via_alias |
| func.func @write_into_constant_via_alias(%v : vector<5xi32>, |
| %s1 : index, %s2 : index, |
| %s3 : index) -> tensor<?xi32> { |
| %A = arith.constant dense<[1, 2, 3, 4]> : tensor<4xi32> |
| // CHECK: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["false", "none", "none"]} |
| %b = tensor.extract_slice %A[%s1][%s2][1] : tensor<4xi32> to tensor<?xi32> |
| // CHECK: vector.transfer_write |
| // CHECK-SAME: {__inplace_operands_attr__ = ["none", "true", "none"]} |
| %r = vector.transfer_write %v, %b[%s3] : vector<5xi32>, tensor<?xi32> |
| return %r : tensor<?xi32> |
| } |
| |
| // ----- |
| |
| func.func @matmul_on_tensors( |
| %arg0: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false}, |
| %arg1: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false}, |
| %arg2: tensor<256x256xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = true}) |
| -> tensor<256x256xf32> |
| { |
| %c0 = arith.constant 0 : index |
| %cst_0 = arith.constant 0.000000e+00 : f32 |
| %cst_1 = arith.constant 1.000000e+00 : f32 |
| |
| %7 = bufferization.alloc_tensor() : tensor<256x256xf32> |
| |
| // CHECK: linalg.fill |
| // CHECK-SAME: {__inplace_operands_attr__ = ["none", "false"]} |
| // CHECK: linalg.fill |
| // CHECK-SAME: {__inplace_operands_attr__ = ["none", "true"]} |
| %8 = linalg.fill ins(%cst_0 : f32) outs(%7 : tensor<256x256xf32>) -> tensor<256x256xf32> |
| %11 = linalg.fill ins(%cst_1 : f32) outs(%7 : tensor<256x256xf32>) -> tensor<256x256xf32> |
| |
| // CHECK: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} |
| // CHECK: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} |
| // CHECK: linalg.matmul |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true", "true"]} |
| %sA = tensor.extract_slice %8[0, 0][256, 16][1, 1]: tensor<256x256xf32> to tensor<256x16xf32> |
| %sB = tensor.extract_slice %11[0, 0][16, 256][1, 1]: tensor<256x256xf32> to tensor<16x256xf32> |
| %r = linalg.matmul |
| ins(%sA, %sB : tensor<256x16xf32>, tensor<16x256xf32>) |
| outs(%arg2 : tensor<256x256xf32>) -> tensor<256x256xf32> |
| |
| // CHECK: return |
| // CHECK-SAME: __equivalent_func_args__ = [2] |
| return %r : tensor<256x256xf32> |
| } |
| |
| // ----- |
| |
| func.func @matmul_on_tensors( |
| %arg0: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false}, |
| %arg1: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false}, |
| %arg2: tensor<256x256xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = true}) |
| -> tensor<256x256xf32> |
| { |
| %c0 = arith.constant 0 : index |
| %cst_0 = arith.constant 0.000000e+00 : f32 |
| %cst_1 = arith.constant 1.000000e+00 : f32 |
| |
| %7 = bufferization.alloc_tensor() : tensor<256x256xf32> |
| |
| // CHECK: linalg.fill |
| // CHECK-SAME: {__inplace_operands_attr__ = ["none", "false"]} |
| // CHECK: vector.transfer_write |
| // CHECK-SAME: {__inplace_operands_attr__ = ["none", "true", "none", "none"] |
| %8 = linalg.fill ins(%cst_0 : f32) outs(%7 : tensor<256x256xf32>) -> tensor<256x256xf32> |
| %9 = vector.transfer_read %arg0[%c0, %c0], %cst_0 {in_bounds = [false, true]} : tensor<518x518xf32>, vector<256x256xf32> |
| %10 = vector.transfer_write %9, %8[%c0, %c0] {in_bounds = [true, true]} : vector<256x256xf32>, tensor<256x256xf32> |
| |
| // CHECK: linalg.fill |
| // CHECK-SAME: {__inplace_operands_attr__ = ["none", "true"]} |
| // CHECK: vector.transfer_write |
| // CHECK-SAME: {__inplace_operands_attr__ = ["none", "true", "none", "none"] |
| %11 = linalg.fill ins(%cst_1 : f32) outs(%7 : tensor<256x256xf32>) -> tensor<256x256xf32> |
| %12 = vector.transfer_read %arg1[%c0, %c0], %cst_0 {in_bounds = [false, true]} : tensor<518x518xf32>, vector<256x256xf32> |
| %13 = vector.transfer_write %12, %11[%c0, %c0] {in_bounds = [true, true]} : vector<256x256xf32>, tensor<256x256xf32> |
| |
| // CHECK: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} |
| // CHECK: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} |
| // CHECK: linalg.matmul |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true", "true"]} |
| %sA = tensor.extract_slice %10[0, 0][256, 16][1, 1]: tensor<256x256xf32> to tensor<256x16xf32> |
| %sB = tensor.extract_slice %13[0, 0][16, 256][1, 1]: tensor<256x256xf32> to tensor<16x256xf32> |
| %r = linalg.matmul |
| ins(%sA, %sB : tensor<256x16xf32>, tensor<16x256xf32>) |
| outs(%arg2 : tensor<256x256xf32>) -> tensor<256x256xf32> |
| |
| // CHECK: return |
| // CHECK-SAME: __equivalent_func_args__ = [2] |
| return %r : tensor<256x256xf32> |
| } |
| |
| // ----- |
| |
| //===----------------------------------------------------------------------===// |
| // Chain of tensor.insert_slice is better traversed in reverse order without |
| // prioritizing the tensor.insert_slice ops. |
| //===----------------------------------------------------------------------===// |
| |
| // CHECK-LABEL: func @insert_slice_chain( |
| func.func @insert_slice_chain( |
| %v1: vector<32x90xf32>, |
| %v2: vector<30x90xf32>, |
| %arg0: tensor<62x126xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false}, |
| // CHECK-SAME: bufferization.access = "none" |
| %arg1: tensor<126x90xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false}, |
| // CHECK-SAME: bufferization.access = "none" |
| %arg2: tensor<62x90xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = true}) |
| // CHECK-SAME: bufferization.access = "write" |
| -> tensor<62x90xf32> attributes {passthrough = [["prefer-vector-width", "512"]], target_cpu = "skylake-avx512"} |
| { |
| %c0 = arith.constant 0 : index |
| %cst = arith.constant 0.000000e+00 : f32 |
| |
| // CHECK: linalg.fill |
| // CHECK-SAME: {__inplace_operands_attr__ = ["none", "true"] |
| %0 = linalg.fill ins(%cst : f32) outs(%arg2 : tensor<62x90xf32>) -> tensor<62x90xf32> |
| |
| // CHECK: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true"] |
| %2 = tensor.extract_slice %0[0, 0] [32, 90] [1, 1] : tensor<62x90xf32> to tensor<32x90xf32> |
| // CHECK: vector.transfer_write |
| // CHECK-SAME: {__inplace_operands_attr__ = ["none", "true", "none", "none"] |
| %7 = vector.transfer_write %v1, %2[%c0, %c0] {in_bounds = [true, true]} : vector<32x90xf32>, tensor<32x90xf32> |
| // CHECK: tensor.insert_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true"] |
| %8 = tensor.insert_slice %7 into %0[0, 0] [32, 90] [1, 1] : tensor<32x90xf32> into tensor<62x90xf32> |
| |
| // CHECK: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true"] |
| %10 = tensor.extract_slice %8[32, 0] [30, 90] [1, 1] : tensor<62x90xf32> to tensor<30x90xf32> |
| // CHECK: vector.transfer_write |
| // CHECK-SAME: {__inplace_operands_attr__ = ["none", "true", "none", "none"] |
| %14 = vector.transfer_write %v2, %10[%c0, %c0] {in_bounds = [true, true]} : vector<30x90xf32>, tensor<30x90xf32> |
| // CHECK: tensor.insert_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true"] |
| %15 = tensor.insert_slice %14 into %8[32, 0] [30, 90] [1, 1] : tensor<30x90xf32> into tensor<62x90xf32> |
| |
| // CHECK: return |
| // CHECK-SAME: __equivalent_func_args__ = [4] |
| return %15 : tensor<62x90xf32> |
| } |
| |
| // ----- |
| |
| //===----------------------------------------------------------------------===// |
| // Insert point issue cases. |
| //===----------------------------------------------------------------------===// |
| |
| // Only test IR validity wrt dominance. |
| // CHECK-LABEL: func @ip |
| func.func @ip(%t: tensor<10x20xf32> {bufferization.writable = true}, |
| %x: index, %y: index, %v: vector<5x6xf32>) |
| -> tensor<10x20xf32> |
| { |
| %c0 = arith.constant 0 : index |
| %c256 = arith.constant 256 : index |
| %c257 = arith.constant 257 : index |
| %r = scf.for %arg0 = %c0 to %c257 step %c256 iter_args(%arg1 = %t) -> (tensor<10x20xf32>) { |
| %t1 = tensor.extract_slice %arg1[%x, 0] [5, %y] [1, 1] : tensor<10x20xf32> to tensor<5x?xf32> |
| %t11 = tensor.extract_slice %t1[0, 0] [5, %y] [1, 1] : tensor<5x?xf32> to tensor<5x?xf32> |
| %t2 = vector.transfer_write %v, %t11[%c0, %c0] : vector<5x6xf32>, tensor<5x?xf32> |
| %t3 = tensor.insert_slice %t2 into %arg1[%x, 0] [5, %y] [1, 1] : tensor<5x?xf32> into tensor<10x20xf32> |
| scf.yield %t3 : tensor<10x20xf32> |
| } |
| |
| // CHECK: return |
| // CHECK-SAME: __equivalent_func_args__ = [0] |
| return %r : tensor<10x20xf32> |
| } |
| |
| // ----- |
| |
| #accesses = [ |
| affine_map<(i) -> (i)>, |
| affine_map<(i) -> (i)>, |
| affine_map<(i) -> (i)> |
| ] |
| #trait = { |
| indexing_maps = #accesses, |
| iterator_types = ["parallel"] |
| } |
| |
| // CHECK-LABEL: func @linalg_op_same_out_tensors( |
| func.func @linalg_op_same_out_tensors( |
| %t1: tensor<?xf32> {bufferization.writable = true}, |
| // CHECK-SAME: bufferization.access = "read" |
| %t2: tensor<?xf32> {bufferization.writable = true}) |
| // CHECK-SAME: bufferization.access = "write" |
| -> (tensor<?xf32>, tensor<?xf32>){ |
| |
| // CHECK: linalg.generic |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true", "false"] |
| %o:2 = linalg.generic #trait ins(%t1 : tensor<?xf32>) |
| outs (%t2, %t2 : tensor<?xf32>, tensor<?xf32>) { |
| ^bb(%0: f32, %1: f32, %2 : f32) : |
| linalg.yield %0, %0 : f32, f32 |
| } -> (tensor<?xf32>, tensor<?xf32>) |
| |
| // CHECK: return |
| // CHECK-SAME: __equivalent_func_args__ = [1, -1] |
| return %o#0, %o#1 : tensor<?xf32>, tensor<?xf32> |
| } |
| |
| // ----- |
| |
| #accesses = [ |
| affine_map<(i) -> (i)>, |
| affine_map<(i) -> (i)>, |
| affine_map<(i) -> (i)>, |
| affine_map<(i) -> (i)> |
| ] |
| #trait = { |
| indexing_maps = #accesses, |
| iterator_types = ["parallel"] |
| } |
| |
| // CHECK-LABEL: func @linalg_op_same_out_tensors_2( |
| func.func @linalg_op_same_out_tensors_2( |
| %t1: tensor<?xf32> {bufferization.writable = true}, |
| // CHECK-SAME: bufferization.access = "read" |
| %t2: tensor<?xf32> {bufferization.writable = true}) |
| // CHECK-SAME: bufferization.access = "write" |
| -> (tensor<?xf32>, tensor<?xf32>, tensor<?xf32>){ |
| |
| // CHECK: linalg.generic |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true", "false", "false"] |
| %o:3 = linalg.generic #trait |
| ins(%t1 : tensor<?xf32>) |
| outs (%t2, %t2, %t2 : tensor<?xf32>, tensor<?xf32>, tensor<?xf32>) { |
| ^bb(%0: f32, %1: f32, %2 : f32, %3 : f32) : |
| linalg.yield %0, %0, %0 : f32, f32, f32 |
| } -> (tensor<?xf32>, tensor<?xf32>, tensor<?xf32>) |
| |
| // CHECK: return |
| // CHECK-SAME: __equivalent_func_args__ = [1, -1, -1] |
| return %o#0, %o#1, %o#2 : tensor<?xf32>, tensor<?xf32>, tensor<?xf32> |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: func @double_insert_slice_into_alias |
| func.func @double_insert_slice_into_alias( |
| %v1: vector<32x90xf32>, |
| %v2: vector<30x90xf32>, |
| %arg2: tensor<62x90xf32> {bufferization.writable = true}, |
| %s1: index, %s2: index, %s3: index, %s4: index) |
| -> (tensor<62x90xf32>, tensor<?x?xf32>) |
| { |
| %c0 = arith.constant 0 : index |
| |
| // Cannot bufferize inplace this extract_slice because both operand and result |
| // are modified and returned separately. |
| // CHECK: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["false", "none", "none", "none", "none"] |
| %e = tensor.extract_slice %arg2[%s1, %s2][%s3, %s4][1, 1] : tensor<62x90xf32> to tensor<?x?xf32> |
| |
| // CHECK: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true"] |
| %2 = tensor.extract_slice %arg2[0, 0] [32, 90] [1, 1] : tensor<62x90xf32> to tensor<32x90xf32> |
| // CHECK: vector.transfer_write |
| // CHECK-SAME: {__inplace_operands_attr__ = ["none", "true", "none", "none"] |
| %7 = vector.transfer_write %v1, %2[%c0, %c0] {in_bounds = [true, true]} : vector<32x90xf32>, tensor<32x90xf32> |
| // CHECK: tensor.insert_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true"] |
| %8 = tensor.insert_slice %7 into %arg2[0, 0] [32, 90] [1, 1] : tensor<32x90xf32> into tensor<62x90xf32> |
| |
| // CHECK: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true"] |
| %10 = tensor.extract_slice %e[32, 0] [30, 90] [1, 1] : tensor<?x?xf32> to tensor<30x90xf32> |
| // CHECK: vector.transfer_write |
| // CHECK-SAME: {__inplace_operands_attr__ = ["none", "true", "none", "none"] |
| %14 = vector.transfer_write %v2, %10[%c0, %c0] {in_bounds = [true, true]} : vector<30x90xf32>, tensor<30x90xf32> |
| // CHECK: tensor.insert_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true"] |
| %15 = tensor.insert_slice %14 into %e[32, 0] [30, 90] [1, 1] : tensor<30x90xf32> into tensor<?x?xf32> |
| |
| // CHECK: return |
| // CHECK-SAME: __equivalent_func_args__ = [2, -1] |
| return %8, %15 : tensor<62x90xf32>, tensor<?x?xf32> |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: func @interleaved_extract_insert_slice_chain_1 |
| func.func @interleaved_extract_insert_slice_chain_1( |
| %arg2: tensor<62x90xf32> {bufferization.writable = true}) |
| -> (tensor<62x90xf32>) |
| { |
| // CHECK: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true"] |
| %2 = tensor.extract_slice %arg2[0, 0] [32, 90] [1, 1] : tensor<62x90xf32> to tensor<32x90xf32> |
| |
| // TODO: This should bufferize inplace once we have a proper range analysis. |
| // CHECK: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["false"] |
| %10 = tensor.extract_slice %arg2[32, 0] [30, 90] [1, 1] : tensor<62x90xf32> to tensor<30x90xf32> |
| |
| |
| // CHECK: tensor.insert_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true"] |
| %8 = tensor.insert_slice %2 into %arg2[0, 0] [32, 90] [1, 1] : tensor<32x90xf32> into tensor<62x90xf32> |
| |
| |
| // CHECK: tensor.insert_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true"] |
| %15 = tensor.insert_slice %10 into %8[32, 0] [30, 90] [1, 1] : tensor<30x90xf32> into tensor<62x90xf32> |
| |
| // CHECK: return |
| // CHECK-SAME: __equivalent_func_args__ = [0] |
| return %15 : tensor<62x90xf32> |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: func @interleaved_extract_insert_slice_chain_2 |
| func.func @interleaved_extract_insert_slice_chain_2( |
| %arg2: tensor<62x90xf32> {bufferization.writable = true}) |
| -> (tensor<62x90xf32>) |
| { |
| // CHECK: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true"] |
| %2 = tensor.extract_slice %arg2[0, 0] [32, 90] [1, 1] : tensor<62x90xf32> to tensor<32x90xf32> |
| |
| // The slices are overlapping, so this can never bufferize inplace. |
| // CHECK: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["false"] |
| %10 = tensor.extract_slice %arg2[31, 0] [30, 90] [1, 1] : tensor<62x90xf32> to tensor<30x90xf32> |
| |
| |
| // CHECK: tensor.insert_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true"] |
| %8 = tensor.insert_slice %2 into %arg2[0, 0] [32, 90] [1, 1] : tensor<32x90xf32> into tensor<62x90xf32> |
| |
| |
| // CHECK: tensor.insert_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true"] |
| %15 = tensor.insert_slice %10 into %8[31, 0] [30, 90] [1, 1] : tensor<30x90xf32> into tensor<62x90xf32> |
| |
| // CHECK: return |
| // CHECK-SAME: __equivalent_func_args__ = [0] |
| return %15 : tensor<62x90xf32> |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: func @extract_once_insert_twice |
| func.func @extract_once_insert_twice( |
| %arg2: tensor<62x90xf32> {bufferization.writable = true}) |
| -> (tensor<62x90xf32>) |
| { |
| // CHECK: tensor.extract_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["false"] |
| %2 = tensor.extract_slice %arg2[0, 0] [32, 90] [1, 1] : tensor<62x90xf32> to tensor<32x90xf32> |
| |
| // CHECK: tensor.insert_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true"] |
| %8 = tensor.insert_slice %2 into %arg2[0, 0] [32, 90] [1, 1] : tensor<32x90xf32> into tensor<62x90xf32> |
| |
| // CHECK: tensor.insert_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true"] |
| %15 = tensor.insert_slice %2 into %8[15, 0] [32, 90] [1, 1] : tensor<32x90xf32> into tensor<62x90xf32> |
| |
| // CHECK: return |
| // CHECK-SAME: __equivalent_func_args__ = [0] |
| return %15 : tensor<62x90xf32> |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: func @some_use |
| func.func @some_use(%A : tensor<?xf32> {bufferization.writable = true}, |
| %v : vector<5xf32>) -> (tensor<?xf32>) { |
| %idx = arith.constant 0 : index |
| // CHECK: vector.transfer_write |
| // CHECK-SAME: {__inplace_operands_attr__ = ["none", "true", "none"] |
| %0 = vector.transfer_write %v, %A[%idx] : vector<5xf32>, tensor<?xf32> |
| return %0 : tensor<?xf32> |
| } |
| |
| |
| // CHECK-LABEL: func @main_func |
| func.func @main_func(%A : tensor<?xf32> {bufferization.writable = true}, |
| %v : vector<5xf32>) -> (tensor<?xf32>) { |
| // CHECK: call |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "none"] |
| %0 = call @some_use(%A, %v) : (tensor<?xf32>, vector<5xf32>) -> (tensor<?xf32>) |
| return %0 : tensor<?xf32> |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: func @to_tensor_op_not_writable |
| func.func @to_tensor_op_not_writable(%m: memref<?xf32>, %v: vector<5xf32>, |
| %idx1: index, %idx2: index) |
| -> vector<10xf32> { |
| %0 = bufferization.to_tensor %m restrict : memref<?xf32> to tensor<?xf32> |
| |
| // Write to the tensor. Cannot be inplace due to tensor_load. |
| // CHECK: vector.transfer_write |
| // CHECK-SAME: {__inplace_operands_attr__ = ["none", "false", "none"] |
| %w = vector.transfer_write %v, %0[%idx1] : vector<5xf32>, tensor<?xf32> |
| |
| // Read from the tensor and return result. |
| %cst = arith.constant 0.0 : f32 |
| %r = vector.transfer_read %w[%idx2], %cst : tensor<?xf32>, vector<10xf32> |
| return %r : vector<10xf32> |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: func @inner_func |
| func.func @inner_func(%t: tensor<?xf32>) -> tensor<?xf32> { |
| // CHECK: return |
| // CHECK-SAME: __equivalent_func_args__ = [0] |
| return %t : tensor<?xf32> |
| } |
| |
| func.func @equivalent_func_arg(%c0: index, %c10: index, %c1: index, %t0: tensor<?xf32>) -> tensor<?xf32> { |
| // This test does not check IR. It just asserts there is no failure due to |
| // non-equivalent scf.for yield values. |
| %1 = scf.for %iv = %c0 to %c10 step %c1 iter_args(%t1 = %t0) -> (tensor<?xf32>) { |
| %3 = func.call @inner_func(%t1) : (tensor<?xf32>) -> tensor<?xf32> |
| scf.yield %3 : tensor<?xf32> |
| } |
| return %1: tensor<?xf32> |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: func @inner_func_2 |
| func.func @inner_func_2(%t: tensor<?xf32>) -> tensor<?xf32> { |
| %f = arith.constant 1.0 : f32 |
| %c0 = arith.constant 0 : index |
| %0 = tensor.insert %f into %t[%c0] : tensor<?xf32> |
| // CHECK: return |
| // CHECK-SAME: __equivalent_func_args__ = [0] |
| return %0 : tensor<?xf32> |
| } |
| |
| func.func @equivalent_func_arg_2(%c0: index, %c10: index, %c1: index, %t0: tensor<?xf32>) -> tensor<?xf32> { |
| // This test does not check IR. It just asserts there is no failure due to |
| // non-equivalent scf.for yield values. |
| %1 = scf.for %iv = %c0 to %c10 step %c1 iter_args(%t1 = %t0) -> (tensor<?xf32>) { |
| %3 = func.call @inner_func_2(%t1) : (tensor<?xf32>) -> tensor<?xf32> |
| scf.yield %3 : tensor<?xf32> |
| } |
| return %1: tensor<?xf32> |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: func @write_after_select_read_one |
| // CHECK-SAME: %[[t1:.*]]: tensor<?xf32> {{.*}}, %[[t2:.*]]: tensor<?xf32> |
| func.func @write_after_select_read_one( |
| %t1 : tensor<?xf32> {bufferization.writable = true}, |
| %t2 : tensor<?xf32> {bufferization.writable = true}, |
| %c : i1) |
| -> (f32, tensor<?xf32>) |
| { |
| %cst = arith.constant 0.0 : f32 |
| %idx = arith.constant 0 : index |
| |
| // CHECK: arith.select %{{.*}}, %[[t1]], %[[t2]] |
| // CHECK-SAME: {__inplace_operands_attr__ = ["none", "false", "true"]} |
| %s = arith.select %c, %t1, %t2 : tensor<?xf32> |
| // CHECK: tensor.insert |
| // CHECK-SAME: {__inplace_operands_attr__ = ["none", "true", "none"]} |
| %w = tensor.insert %cst into %s[%idx] : tensor<?xf32> |
| // CHECK: tensor.extract |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "none"]} |
| %f = tensor.extract %t1[%idx] : tensor<?xf32> |
| |
| return %f, %w : f32, tensor<?xf32> |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: func @write_after_select_read_both |
| // CHECK-SAME: %[[t1:.*]]: tensor<?xf32> {{.*}}, %[[t2:.*]]: tensor<?xf32> |
| func.func @write_after_select_read_both( |
| %t1 : tensor<?xf32> {bufferization.writable = true}, |
| %t2 : tensor<?xf32> {bufferization.writable = true}, |
| %c : i1) |
| -> (f32, f32, tensor<?xf32>) |
| { |
| %cst = arith.constant 0.0 : f32 |
| %idx = arith.constant 0 : index |
| |
| // CHECK: arith.select %{{.*}}, %[[t1]], %[[t2]] |
| // CHECK-SAME: {__inplace_operands_attr__ = ["none", "false", "false"]} |
| %s = arith.select %c, %t1, %t2 : tensor<?xf32> |
| // CHECK: tensor.insert |
| // CHECK-SAME: {__inplace_operands_attr__ = ["none", "true", "none"]} |
| %w = tensor.insert %cst into %s[%idx] : tensor<?xf32> |
| // CHECK: tensor.extract |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "none"]} |
| %f = tensor.extract %t1[%idx] : tensor<?xf32> |
| // CHECK: tensor.extract |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "none"]} |
| %f2 = tensor.extract %t2[%idx] : tensor<?xf32> |
| |
| return %f, %f2, %w : f32, f32, tensor<?xf32> |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: func @write_after_select_no_conflict |
| // CHECK-SAME: %[[t1:.*]]: tensor<?xf32> {{.*}}, %[[t2:.*]]: tensor<?xf32> |
| func.func @write_after_select_no_conflict( |
| %t1 : tensor<?xf32> {bufferization.writable = true}, |
| %t2 : tensor<?xf32> {bufferization.writable = true}, |
| %c : i1) |
| -> (f32, tensor<?xf32>) |
| { |
| %cst = arith.constant 0.0 : f32 |
| %idx = arith.constant 0 : index |
| |
| // CHECK: arith.select %{{.*}}, %[[t1]], %[[t2]] |
| // CHECK-SAME: {__inplace_operands_attr__ = ["none", "true", "true"]} |
| %s = arith.select %c, %t1, %t2 : tensor<?xf32> |
| // CHECK: tensor.insert |
| // CHECK-SAME: {__inplace_operands_attr__ = ["none", "true", "none"]} |
| %w = tensor.insert %cst into %s[%idx] : tensor<?xf32> |
| // CHECK: tensor.extract |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "none"]} |
| %f = tensor.extract %w[%idx] : tensor<?xf32> |
| |
| return %f, %w : f32, tensor<?xf32> |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: func @write_to_same_tensor_in_loop_out_of_place( |
| func.func @write_to_same_tensor_in_loop_out_of_place( |
| %A : tensor<?xf32> {bufferization.writable = true}, |
| %B : tensor<?xf32> {bufferization.writable = true}, |
| %lb : index, %ub : index, %step : index, %sz: index) |
| -> (tensor<?xf32>) |
| { |
| // CHECK: scf.for {{.*}} { |
| %r0 = scf.for %i = %lb to %ub step %step iter_args(%t = %A) -> (tensor<?xf32>) { |
| %i2 = arith.index_cast %i : index to i32 |
| %i3 = arith.sitofp %i2 : i32 to f32 |
| // The tensor.insert is out-of-place because the %B is written multiple |
| // times inside a loop. |
| // CHECK: tensor.insert |
| // CHECK-SAME: {__inplace_operands_attr__ = ["none", "false", "none"]} |
| %B2 = tensor.insert %i3 into %B[%i] : tensor<?xf32> |
| // CHECK: tensor.insert_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true", "none", "none"]} |
| %A2 = tensor.insert_slice %B2 into %t[%i][%sz][1] : tensor<?xf32> into tensor<?xf32> |
| scf.yield %A2 : tensor<?xf32> |
| } |
| // CHECK: } {__inplace_operands_attr__ = ["none", "none", "none", "true"]} |
| |
| return %r0 : tensor<?xf32> |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: func @write_to_same_alloc_tensor_in_place( |
| func.func @write_to_same_alloc_tensor_in_place( |
| %A : tensor<?xf32> {bufferization.writable = true}, |
| %lb : index, %ub : index, %step : index, %sz: index, %sz2: index) |
| -> (tensor<?xf32>) |
| { |
| %B = bufferization.alloc_tensor(%sz2) : tensor<?xf32> |
| |
| // CHECK: scf.for {{.*}} { |
| %r0 = scf.for %i = %lb to %ub step %step iter_args(%t = %A) -> (tensor<?xf32>) { |
| %i2 = arith.index_cast %i : index to i32 |
| %i3 = arith.sitofp %i2 : i32 to f32 |
| // %B is written multiple times inside a loop, but it is an alloc_tensor. |
| // CHECK: tensor.insert |
| // CHECK-SAME: {__inplace_operands_attr__ = ["none", "true", "none"]} |
| %B2 = tensor.insert %i3 into %B[%i] : tensor<?xf32> |
| // CHECK: tensor.insert_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true", "none", "none"]} |
| %A2 = tensor.insert_slice %B2 into %t[%i][%sz][1] : tensor<?xf32> into tensor<?xf32> |
| scf.yield %A2 : tensor<?xf32> |
| } |
| // CHECK: } {__inplace_operands_attr__ = ["none", "none", "none", "true"]} |
| |
| return %r0 : tensor<?xf32> |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: func @write_to_same_alloc_tensor_out_of_place( |
| func.func @write_to_same_alloc_tensor_out_of_place( |
| %A : tensor<?xf32> {bufferization.writable = true}, |
| %lb : index, %ub : index, %step : index, %sz: index, %sz2: index, %f: f32) |
| -> (tensor<?xf32>) |
| { |
| %B = bufferization.alloc_tensor(%sz2) : tensor<?xf32> |
| %C = tensor.insert %f into %B[%lb] : tensor<?xf32> |
| |
| // CHECK: scf.for {{.*}} { |
| %r0 = scf.for %i = %lb to %ub step %step iter_args(%t = %A) -> (tensor<?xf32>) { |
| %i2 = arith.index_cast %i : index to i32 |
| %i3 = arith.sitofp %i2 : i32 to f32 |
| // %C is written multiple times inside a loop. Even though %C aliases with |
| // an alloc_tensor, out-of-bounds bufferization is necessary because there |
| // is another alias (%C) outside of the loop. |
| // CHECK: tensor.insert |
| // CHECK-SAME: {__inplace_operands_attr__ = ["none", "false", "none"]} |
| %B2 = tensor.insert %i3 into %C[%i] : tensor<?xf32> |
| // CHECK: tensor.insert_slice |
| // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true", "none", "none"]} |
| %A2 = tensor.insert_slice %B2 into %t[%i][%sz][1] : tensor<?xf32> into tensor<?xf32> |
| scf.yield %A2 : tensor<?xf32> |
| } |
| // CHECK: } {__inplace_operands_attr__ = ["none", "none", "none", "true"]} |
| |
| return %r0 : tensor<?xf32> |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: func.func private @ext_func(tensor<?xf32> {bufferization.access = "read-write"}) |
| func.func private @ext_func(%t: tensor<?xf32>) |
| |
| // CHECK: func.func @private_func_read_write(%{{.*}}: tensor<5xf32> {bufferization.access = "read"}) |
| func.func @private_func_read_write(%t: tensor<5xf32>) -> f32 { |
| %c0 = arith.constant 0 : index |
| // Bufferizes out-of-place because `ext_func` may modify the buffer. |
| // CHECK: tensor.cast {{.*}} {__inplace_operands_attr__ = ["false"]} |
| %0 = tensor.cast %t : tensor<5xf32> to tensor<?xf32> |
| func.call @ext_func(%0) : (tensor<?xf32>) -> () |
| %1 = tensor.extract %t[%c0] : tensor<5xf32> |
| return %1 : f32 |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: func.func private @print_buffer(tensor<*xf32> {bufferization.access = "read"}) |
| func.func private @print_buffer(%t: tensor<*xf32> {bufferization.access = "read"}) |
| |
| // CHECK: func.func @private_func_read(%{{.*}}: tensor<5xf32> {bufferization.access = "read"}) |
| func.func @private_func_read(%t: tensor<5xf32>) -> f32 { |
| %c0 = arith.constant 0 : index |
| // Bufferizes in-place because `print_buffer` is read-only. |
| // CHECK: tensor.cast {{.*}} {__inplace_operands_attr__ = ["true"]} |
| %0 = tensor.cast %t : tensor<5xf32> to tensor<*xf32> |
| // CHECK: call @print_buffer(%cast) {__inplace_operands_attr__ = ["true"]} |
| func.call @print_buffer(%0) : (tensor<*xf32>) -> () |
| %1 = tensor.extract %t[%c0] : tensor<5xf32> |
| return %1 : f32 |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: func.func private @ext_func(tensor<?xf32> {bufferization.access = "read-write"}, tensor<?xf32> {bufferization.access = "read-write"}) |
| func.func private @ext_func(%t1: tensor<?xf32>, %t2: tensor<?xf32>) |
| |
| // CHECK: func.func @private_func_two_params_writing(%{{.*}}: tensor<?xf32> {bufferization.access = "read"}) |
| func.func @private_func_two_params_writing(%t: tensor<?xf32>) { |
| // Both operands bufferize out-of-place because both bufferize to a memory |
| // write. |
| // CHECK: call @ext_func(%{{.*}}, %{{.*}}) {__inplace_operands_attr__ = ["false", "false"]} |
| func.call @ext_func(%t, %t) : (tensor<?xf32>, tensor<?xf32>) -> () |
| return |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: func.func private @ext_func(tensor<?xf32> {bufferization.access = "read-write"}) -> (tensor<5xf32>, tensor<6xf32>) |
| func.func private @ext_func(%t: tensor<?xf32>) -> (tensor<5xf32>, tensor<6xf32>) |
| |
| // CHECK: func.func @private_func_aliasing(%{{.*}}: tensor<?xf32> {bufferization.access = "read"}) |
| func.func @private_func_aliasing(%t: tensor<?xf32>) -> f32 { |
| %c0 = arith.constant 0 : index |
| // Bufferizes out-of-place because either one of the two reuslts may alias |
| // with the argument and one of the results is read afterwards. |
| // CHECK: call @ext_func(%{{.*}}) {__inplace_operands_attr__ = ["false"]} : (tensor<?xf32>) -> (tensor<5xf32>, tensor<6xf32>) |
| %0, %1 = func.call @ext_func(%t) : (tensor<?xf32>) -> (tensor<5xf32>, tensor<6xf32>) |
| %2 = tensor.extract %1[%c0] : tensor<6xf32> |
| return %2 : f32 |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: func @recursive_function |
| func.func @recursive_function(%a: tensor<?xf32>, %b: tensor<?xf32>) -> (tensor<?xf32>, tensor<?xf32>) { |
| // The analysis does not support recursive function calls and is conservative |
| // around them. |
| // CHECK: call @recursive_function |
| // CHECK-SAME: {__inplace_operands_attr__ = ["false", "false"]} |
| %0:2 = call @recursive_function(%a, %b) : (tensor<?xf32>, tensor<?xf32>) -> (tensor<?xf32>, tensor<?xf32>) |
| return %0#0, %0#1 : tensor<?xf32>, tensor<?xf32> |
| } |
| |
| // ----- |
| |
| // CHECK-ALIAS-SETS-LABEL: func @multiple_returns( |
| func.func @multiple_returns(%c: i1, %t0: tensor<5xf32>, %t1: tensor<5xf32>, %t2: tensor<5xf32>) -> tensor<5xf32> { |
| cf.cond_br %c, ^bb1, ^bb2 |
| ^bb1: |
| return %t0 : tensor<5xf32> |
| ^bb2: |
| return %t1 : tensor<5xf32> |
| } |
| |
| // CHECK-ALIAS-SETS: func @caller( |
| // CHECK-ALIAS-SETS-SAME: %{{.*}}: i1, %[[t0:.*]]: tensor<5xf32> {bufferization.access = "read"}, %[[t1:.*]]: tensor<5xf32> {bufferization.access = "read"}, %[[t2:.*]]: tensor<5xf32> {bufferization.access = "none"}) |
| func.func @caller(%c: i1, %t0: tensor<5xf32>, %t1: tensor<5xf32>, %t2: tensor<5xf32>) { |
| // Check that alias sets are computed correctly. |
| // CHECK-ALIAS-SETS: %[[result:.*]] = call @multiple_returns |
| // CHECK-ALIAS-SETS-SAME: {__inplace_operands_attr__ = ["none", "true", "true", "true"], |
| // CHECK-ALIAS-SETS-SAME: __opresult_alias_set_attr__ = [{{\[}}"%[[result]]", "%[[t0]]", "%[[t1]]"]]} |
| call @multiple_returns(%c, %t0, %t1, %t2) : (i1, tensor<5xf32>, tensor<5xf32>, tensor<5xf32>) -> (tensor<5xf32>) |
| return |
| } |
| |
| // ----- |
| |
| // CHECK-ALIAS-SETS-LABEL: func @multiple_equivalent_returns( |
| func.func @multiple_equivalent_returns(%c: i1, %t0: tensor<5xf32>, %t1: tensor<5xf32>, %t2: tensor<5xf32>) -> tensor<5xf32> { |
| cf.cond_br %c, ^bb1, ^bb2 |
| ^bb1: |
| return %t0 : tensor<5xf32> |
| ^bb2: |
| return %t0 : tensor<5xf32> |
| } |
| |
| // CHECK-ALIAS-SETS: func @caller( |
| // CHECK-ALIAS-SETS-SAME: %{{.*}}: i1, %[[t0:.*]]: tensor<5xf32> {bufferization.access = "read"}, %[[t1:.*]]: tensor<5xf32> {bufferization.access = "none"}, %[[t2:.*]]: tensor<5xf32> {bufferization.access = "none"}) |
| func.func @caller(%c: i1, %t0: tensor<5xf32>, %t1: tensor<5xf32>, %t2: tensor<5xf32>) -> tensor<5xf32> { |
| // Check that equivalence sets are computed correctly. |
| // CHECK-ALIAS-SETS: %[[result:.*]] = call @multiple_equivalent_returns |
| // CHECK-ALIAS-SETS-SAME: {__inplace_operands_attr__ = ["none", "true", "true", "true"], |
| // CHECK-ALIAS-SETS-SAME: __opresult_alias_set_attr__ = [{{\[}}"%[[result]]", "%[[t0]]"]]} |
| %r = call @multiple_equivalent_returns(%c, %t0, %t1, %t2) : (i1, tensor<5xf32>, tensor<5xf32>, tensor<5xf32>) -> (tensor<5xf32>) |
| // CHECK-ALIAS-SETS-SAME: {__equivalent_func_args__ = [1], __inplace_operands_attr__ = ["true"]} %[[result]] : tensor<5xf32> |
| return %r : tensor<5xf32> |
| } |
| |