| ; NOTE: Assertions have been autogenerated by utils/update_test_checks.py |
| ; RUN: opt < %s -passes=aggressive-instcombine -mtriple x86_64-- -S | FileCheck %s |
| |
| declare float @sqrtf(float) |
| declare double @sqrt(double) |
| declare fp128 @sqrtl(fp128) |
| declare float @llvm.fabs.f32(float) |
| declare void @llvm.assume(i1 noundef) |
| |
| ; "nnan" implies no setting of errno and the target can lower this to an |
| ; instruction, so transform to an intrinsic. |
| |
| define float @sqrt_call_nnan_f32(float %x) { |
| ; CHECK-LABEL: @sqrt_call_nnan_f32( |
| ; CHECK-NEXT: [[SQRT1:%.*]] = call nnan float @llvm.sqrt.f32(float [[X:%.*]]) |
| ; CHECK-NEXT: ret float [[SQRT1]] |
| ; |
| %sqrt = call nnan float @sqrtf(float %x) |
| ret float %sqrt |
| } |
| |
| ; Verify that other FMF are propagated to the intrinsic call. |
| ; We don't care about propagating 'tail' because this is not going to be a lowered as a call. |
| |
| define double @sqrt_call_nnan_f64(double %x) { |
| ; CHECK-LABEL: @sqrt_call_nnan_f64( |
| ; CHECK-NEXT: [[SQRT1:%.*]] = call nnan ninf double @llvm.sqrt.f64(double [[X:%.*]]) |
| ; CHECK-NEXT: ret double [[SQRT1]] |
| ; |
| %sqrt = tail call nnan ninf double @sqrt(double %x) |
| ret double %sqrt |
| } |
| |
| ; We don't change this because it will be lowered to a call that could |
| ; theoretically still change errno and affect other accessors of errno. |
| |
| define fp128 @sqrt_call_nnan_f128(fp128 %x) { |
| ; CHECK-LABEL: @sqrt_call_nnan_f128( |
| ; CHECK-NEXT: [[SQRT:%.*]] = call nnan fp128 @sqrtl(fp128 [[X:%.*]]) |
| ; CHECK-NEXT: ret fp128 [[SQRT]] |
| ; |
| %sqrt = call nnan fp128 @sqrtl(fp128 %x) |
| ret fp128 %sqrt |
| } |
| |
| ; Don't alter a no-builtin libcall. |
| |
| define float @sqrt_call_nnan_f32_nobuiltin(float %x) { |
| ; CHECK-LABEL: @sqrt_call_nnan_f32_nobuiltin( |
| ; CHECK-NEXT: [[SQRT:%.*]] = call nnan float @sqrtf(float [[X:%.*]]) #[[ATTR2:[0-9]+]] |
| ; CHECK-NEXT: ret float [[SQRT]] |
| ; |
| %sqrt = call nnan float @sqrtf(float %x) nobuiltin |
| ret float %sqrt |
| } |
| |
| define float @sqrt_call_f32_squared(float %x) { |
| ; CHECK-LABEL: @sqrt_call_f32_squared( |
| ; CHECK-NEXT: [[X2:%.*]] = fmul float [[X:%.*]], [[X]] |
| ; CHECK-NEXT: [[SQRT1:%.*]] = call float @llvm.sqrt.f32(float [[X2]]) |
| ; CHECK-NEXT: ret float [[SQRT1]] |
| ; |
| %x2 = fmul float %x, %x |
| %sqrt = call float @sqrtf(float %x2) |
| ret float %sqrt |
| } |
| |
| define float @sqrt_call_f32_fabs(float %x) { |
| ; CHECK-LABEL: @sqrt_call_f32_fabs( |
| ; CHECK-NEXT: [[A:%.*]] = call float @llvm.fabs.f32(float [[X:%.*]]) |
| ; CHECK-NEXT: [[SQRT1:%.*]] = call float @llvm.sqrt.f32(float [[A]]) |
| ; CHECK-NEXT: ret float [[SQRT1]] |
| ; |
| %a = call float @llvm.fabs.f32(float %x) |
| %sqrt = call float @sqrtf(float %a) |
| ret float %sqrt |
| } |
| |
| define float @sqrt_call_f32_assume_oge_n0(float %x) { |
| ; CHECK-LABEL: @sqrt_call_f32_assume_oge_n0( |
| ; CHECK-NEXT: [[IS_POS:%.*]] = fcmp oge float [[X:%.*]], -0.000000e+00 |
| ; CHECK-NEXT: call void @llvm.assume(i1 [[IS_POS]]) |
| ; CHECK-NEXT: [[SQRT1:%.*]] = call float @llvm.sqrt.f32(float [[X]]) |
| ; CHECK-NEXT: ret float [[SQRT1]] |
| ; |
| %is.pos = fcmp oge float %x, -0.0 |
| call void @llvm.assume(i1 %is.pos) |
| %sqrt = call float @sqrtf(float %x) |
| ret float %sqrt |
| } |