| //===-- X86InstrFormats.td - X86 Instruction Formats -------*- tablegen -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| //===----------------------------------------------------------------------===// |
| // X86 Instruction Format Definitions. |
| // |
| |
| // Format specifies the encoding used by the instruction. This is part of the |
| // ad-hoc solution used to emit machine instruction encodings by our machine |
| // code emitter. |
| class Format<bits<7> val> { |
| bits<7> Value = val; |
| } |
| |
| def Pseudo : Format<0>; |
| def RawFrm : Format<1>; |
| def AddRegFrm : Format<2>; |
| def RawFrmMemOffs : Format<3>; |
| def RawFrmSrc : Format<4>; |
| def RawFrmDst : Format<5>; |
| def RawFrmDstSrc : Format<6>; |
| def RawFrmImm8 : Format<7>; |
| def RawFrmImm16 : Format<8>; |
| def AddCCFrm : Format<9>; |
| def PrefixByte : Format<10>; |
| def MRMDestRegCC : Format<18>; |
| def MRMDestMemCC : Format<19>; |
| def MRMDestMem4VOp3CC : Format<20>; |
| def MRMr0 : Format<21>; |
| def MRMSrcMemFSIB : Format<22>; |
| def MRMDestMemFSIB : Format<23>; |
| def MRMDestMem : Format<24>; |
| def MRMSrcMem : Format<25>; |
| def MRMSrcMem4VOp3 : Format<26>; |
| def MRMSrcMemOp4 : Format<27>; |
| def MRMSrcMemCC : Format<28>; |
| def MRMXmCC: Format<30>; |
| def MRMXm : Format<31>; |
| def MRM0m : Format<32>; def MRM1m : Format<33>; def MRM2m : Format<34>; |
| def MRM3m : Format<35>; def MRM4m : Format<36>; def MRM5m : Format<37>; |
| def MRM6m : Format<38>; def MRM7m : Format<39>; |
| def MRMDestReg : Format<40>; |
| def MRMSrcReg : Format<41>; |
| def MRMSrcReg4VOp3 : Format<42>; |
| def MRMSrcRegOp4 : Format<43>; |
| def MRMSrcRegCC : Format<44>; |
| def MRMXrCC: Format<46>; |
| def MRMXr : Format<47>; |
| def MRM0r : Format<48>; def MRM1r : Format<49>; def MRM2r : Format<50>; |
| def MRM3r : Format<51>; def MRM4r : Format<52>; def MRM5r : Format<53>; |
| def MRM6r : Format<54>; def MRM7r : Format<55>; |
| def MRM0X : Format<56>; def MRM1X : Format<57>; def MRM2X : Format<58>; |
| def MRM3X : Format<59>; def MRM4X : Format<60>; def MRM5X : Format<61>; |
| def MRM6X : Format<62>; def MRM7X : Format<63>; |
| def MRM_C0 : Format<64>; def MRM_C1 : Format<65>; def MRM_C2 : Format<66>; |
| def MRM_C3 : Format<67>; def MRM_C4 : Format<68>; def MRM_C5 : Format<69>; |
| def MRM_C6 : Format<70>; def MRM_C7 : Format<71>; def MRM_C8 : Format<72>; |
| def MRM_C9 : Format<73>; def MRM_CA : Format<74>; def MRM_CB : Format<75>; |
| def MRM_CC : Format<76>; def MRM_CD : Format<77>; def MRM_CE : Format<78>; |
| def MRM_CF : Format<79>; def MRM_D0 : Format<80>; def MRM_D1 : Format<81>; |
| def MRM_D2 : Format<82>; def MRM_D3 : Format<83>; def MRM_D4 : Format<84>; |
| def MRM_D5 : Format<85>; def MRM_D6 : Format<86>; def MRM_D7 : Format<87>; |
| def MRM_D8 : Format<88>; def MRM_D9 : Format<89>; def MRM_DA : Format<90>; |
| def MRM_DB : Format<91>; def MRM_DC : Format<92>; def MRM_DD : Format<93>; |
| def MRM_DE : Format<94>; def MRM_DF : Format<95>; def MRM_E0 : Format<96>; |
| def MRM_E1 : Format<97>; def MRM_E2 : Format<98>; def MRM_E3 : Format<99>; |
| def MRM_E4 : Format<100>; def MRM_E5 : Format<101>; def MRM_E6 : Format<102>; |
| def MRM_E7 : Format<103>; def MRM_E8 : Format<104>; def MRM_E9 : Format<105>; |
| def MRM_EA : Format<106>; def MRM_EB : Format<107>; def MRM_EC : Format<108>; |
| def MRM_ED : Format<109>; def MRM_EE : Format<110>; def MRM_EF : Format<111>; |
| def MRM_F0 : Format<112>; def MRM_F1 : Format<113>; def MRM_F2 : Format<114>; |
| def MRM_F3 : Format<115>; def MRM_F4 : Format<116>; def MRM_F5 : Format<117>; |
| def MRM_F6 : Format<118>; def MRM_F7 : Format<119>; def MRM_F8 : Format<120>; |
| def MRM_F9 : Format<121>; def MRM_FA : Format<122>; def MRM_FB : Format<123>; |
| def MRM_FC : Format<124>; def MRM_FD : Format<125>; def MRM_FE : Format<126>; |
| def MRM_FF : Format<127>; |
| |
| // ImmType - This specifies the immediate type used by an instruction. This is |
| // part of the ad-hoc solution used to emit machine instruction encodings by our |
| // machine code emitter. |
| class ImmType<bits<4> val> { |
| bits<4> Value = val; |
| } |
| def NoImm : ImmType<0>; |
| def Imm8 : ImmType<1>; |
| def Imm8PCRel : ImmType<2>; |
| def Imm8Reg : ImmType<3>; // Register encoded in [7:4]. |
| def Imm16 : ImmType<4>; |
| def Imm16PCRel : ImmType<5>; |
| def Imm32 : ImmType<6>; |
| def Imm32PCRel : ImmType<7>; |
| def Imm32S : ImmType<8>; |
| def Imm64 : ImmType<9>; |
| |
| // FPFormat - This specifies what form this FP instruction has. This is used by |
| // the Floating-Point stackifier pass. |
| class FPFormat<bits<3> val> { |
| bits<3> Value = val; |
| } |
| def NotFP : FPFormat<0>; |
| def ZeroArgFP : FPFormat<1>; |
| def OneArgFP : FPFormat<2>; |
| def OneArgFPRW : FPFormat<3>; |
| def TwoArgFP : FPFormat<4>; |
| def CompareFP : FPFormat<5>; |
| def CondMovFP : FPFormat<6>; |
| def SpecialFP : FPFormat<7>; |
| |
| // Class specifying the SSE execution domain, used by the SSEDomainFix pass. |
| // Keep in sync with tables in X86InstrInfo.cpp. |
| class Domain<bits<2> val> { |
| bits<2> Value = val; |
| } |
| def GenericDomain : Domain<0>; |
| def SSEPackedSingle : Domain<1>; |
| def SSEPackedDouble : Domain<2>; |
| def SSEPackedInt : Domain<3>; |
| |
| // Class specifying the vector form of the decompressed |
| // displacement of 8-bit. |
| class CD8VForm<bits<3> val> { |
| bits<3> Value = val; |
| } |
| def CD8VF : CD8VForm<0>; // v := VL |
| def CD8VH : CD8VForm<1>; // v := VL/2 |
| def CD8VQ : CD8VForm<2>; // v := VL/4 |
| def CD8VO : CD8VForm<3>; // v := VL/8 |
| // The tuple (subvector) forms. |
| def CD8VT1 : CD8VForm<4>; // v := 1 |
| def CD8VT2 : CD8VForm<5>; // v := 2 |
| def CD8VT4 : CD8VForm<6>; // v := 4 |
| def CD8VT8 : CD8VForm<7>; // v := 8 |
| |
| // Class specifying the prefix used an opcode extension. |
| class Prefix<bits<3> val> { |
| bits<3> Value = val; |
| } |
| def NoPrfx : Prefix<0>; |
| def PD : Prefix<1>; |
| def XS : Prefix<2>; |
| def XD : Prefix<3>; |
| def PS : Prefix<4>; // Similar to NoPrfx, but disassembler uses this to know |
| // that other instructions with this opcode use PD/XS/XD |
| // and if any of those is not supported they shouldn't |
| // decode to this instruction. e.g. ANDSS/ANDSD don't |
| // exist, but the 0xf2/0xf3 encoding shouldn't |
| // disable to ANDPS. |
| |
| // Class specifying the opcode map. |
| class Map<bits<4> val> { |
| bits<4> Value = val; |
| } |
| def OB : Map<0>; |
| def TB : Map<1>; |
| def T8 : Map<2>; |
| def TA : Map<3>; |
| def XOP8 : Map<4>; |
| def XOP9 : Map<5>; |
| def XOPA : Map<6>; |
| def ThreeDNow : Map<7>; |
| def T_MAP4 : Map<8>; |
| def T_MAP5 : Map<9>; |
| def T_MAP6 : Map<10>; |
| def T_MAP7 : Map<11>; |
| |
| // Class specifying the encoding |
| class Encoding<bits<2> val> { |
| bits<2> Value = val; |
| } |
| def EncNormal : Encoding<0>; |
| def EncVEX : Encoding<1>; |
| def EncXOP : Encoding<2>; |
| def EncEVEX : Encoding<3>; |
| |
| // Operand size for encodings that change based on mode. |
| class OperandSize<bits<2> val> { |
| bits<2> Value = val; |
| } |
| def OpSizeFixed : OperandSize<0>; // Never needs a 0x66 prefix. |
| def OpSize16 : OperandSize<1>; // Needs 0x66 prefix in 32/64-bit mode. |
| def OpSize32 : OperandSize<2>; // Needs 0x66 prefix in 16-bit mode. |
| |
| // Address size for encodings that change based on mode. |
| class AddressSize<bits<2> val> { |
| bits<2> Value = val; |
| } |
| def AdSizeX : AddressSize<0>; // Address size determined using addr operand. |
| def AdSize16 : AddressSize<1>; // Encodes a 16-bit address. |
| def AdSize32 : AddressSize<2>; // Encodes a 32-bit address. |
| def AdSize64 : AddressSize<3>; // Encodes a 64-bit address. |
| |
| // Force the instruction to use REX2/VEX/EVEX encoding. |
| class ExplicitOpPrefix<bits<2> val> { |
| bits<2> Value = val; |
| } |
| def NoExplicitOpPrefix : ExplicitOpPrefix<0>; |
| def ExplicitREX2 : ExplicitOpPrefix<1>; |
| def ExplicitVEX : ExplicitOpPrefix<2>; |
| def ExplicitEVEX : ExplicitOpPrefix<3>; |
| |
| class X86Inst<bits<8> opcod, Format f, ImmType i, dag outs, dag ins, |
| string AsmStr, Domain d = GenericDomain> |
| : Instruction { |
| let Namespace = "X86"; |
| |
| bits<8> Opcode = opcod; |
| Format Form = f; |
| bits<7> FormBits = Form.Value; |
| ImmType ImmT = i; |
| |
| dag OutOperandList = outs; |
| dag InOperandList = ins; |
| string AsmString = AsmStr; |
| |
| // If this is a pseudo instruction, mark it isCodeGenOnly. |
| let isCodeGenOnly = !eq(!cast<string>(f), "Pseudo"); |
| |
| let HasPositionOrder = 1; |
| |
| // |
| // Attributes specific to X86 instructions... |
| // |
| bit ForceDisassemble = 0; // Force instruction to disassemble even though it's |
| // isCodeGenonly. Needed to hide an ambiguous |
| // AsmString from the parser, but still disassemble. |
| |
| OperandSize OpSize = OpSizeFixed; // Does this instruction's encoding change |
| // based on operand size of the mode? |
| bits<2> OpSizeBits = OpSize.Value; |
| AddressSize AdSize = AdSizeX; // Does this instruction's encoding change |
| // based on address size of the mode? |
| bits<2> AdSizeBits = AdSize.Value; |
| |
| Encoding OpEnc = EncNormal; // Encoding used by this instruction |
| // Which prefix byte does this inst have? |
| Prefix OpPrefix = !if(!eq(OpEnc, EncNormal), NoPrfx, PS); |
| bits<3> OpPrefixBits = OpPrefix.Value; |
| Map OpMap = OB; // Which opcode map does this inst have? |
| bits<4> OpMapBits = OpMap.Value; |
| bit hasREX_W = 0; // Does this inst require the REX.W prefix? |
| FPFormat FPForm = NotFP; // What flavor of FP instruction is this? |
| bit hasLockPrefix = 0; // Does this inst have a 0xF0 prefix? |
| Domain ExeDomain = d; |
| bit hasREPPrefix = 0; // Does this inst have a REP prefix? |
| bits<2> OpEncBits = OpEnc.Value; |
| bit IgnoresW = 0; // Does this inst ignore REX_W field? |
| bit hasVEX_4V = 0; // Does this inst require the VEX.VVVV field? |
| bit hasVEX_L = 0; // Does this inst use large (256-bit) registers? |
| bit ignoresVEX_L = 0; // Does this instruction ignore the L-bit |
| bit hasEVEX_K = 0; // Does this inst require masking? |
| bit hasEVEX_Z = 0; // Does this inst set the EVEX_Z field? |
| bit hasEVEX_L2 = 0; // Does this inst set the EVEX_L2 field? |
| bit hasEVEX_B = 0; // Does this inst set the EVEX_B field? |
| bit hasEVEX_NF = 0; // Does this inst set the EVEX_NF field? |
| bit hasTwoConditionalOps = 0; // Does this inst have two conditional operands? |
| bits<3> CD8_Form = 0; // Compressed disp8 form - vector-width. |
| // Declare it int rather than bits<4> so that all bits are defined when |
| // assigning to bits<7>. |
| int CD8_EltSize = 0; // Compressed disp8 form - element-size in bytes. |
| bit hasEVEX_RC = 0; // Explicitly specified rounding control in FP instruction. |
| bit hasNoTrackPrefix = 0; // Does this inst has 0x3E (NoTrack) prefix? |
| |
| // Vector size in bytes. |
| bits<7> VectSize = !if(hasEVEX_L2, 64, !if(hasVEX_L, 32, 16)); |
| |
| // The scaling factor for AVX512's compressed displacement is either |
| // - the size of a power-of-two number of elements or |
| // - the size of a single element for broadcasts or |
| // - the total vector size divided by a power-of-two number. |
| // Possible values are: 0 (non-AVX512 inst), 1, 2, 4, 8, 16, 32 and 64. |
| bits<7> CD8_Scale = !if (!eq (OpEnc.Value, EncEVEX.Value), |
| !if (CD8_Form{2}, |
| !shl(CD8_EltSize, CD8_Form{1-0}), |
| !if (hasEVEX_B, |
| CD8_EltSize, |
| !srl(VectSize, CD8_Form{1-0}))), 0); |
| |
| ExplicitOpPrefix explicitOpPrefix = NoExplicitOpPrefix; |
| bits<2> explicitOpPrefixBits = explicitOpPrefix.Value; |
| bit hasEVEX_U = 0; // Does this inst set the EVEX_U field? |
| // TSFlags layout should be kept in sync with X86BaseInfo.h. |
| let TSFlags{6-0} = FormBits; |
| let TSFlags{8-7} = OpSizeBits; |
| let TSFlags{10-9} = AdSizeBits; |
| // No need for 3rd bit, we don't need to distinguish NoPrfx from PS. |
| let TSFlags{12-11} = OpPrefixBits{1-0}; |
| let TSFlags{16-13} = OpMapBits; |
| let TSFlags{17} = hasREX_W; |
| let TSFlags{21-18} = ImmT.Value; |
| let TSFlags{24-22} = FPForm.Value; |
| let TSFlags{25} = hasLockPrefix; |
| let TSFlags{26} = hasREPPrefix; |
| let TSFlags{28-27} = ExeDomain.Value; |
| let TSFlags{30-29} = OpEncBits; |
| let TSFlags{38-31} = Opcode; |
| let TSFlags{39} = hasVEX_4V; |
| let TSFlags{40} = hasVEX_L; |
| let TSFlags{41} = hasEVEX_K; |
| let TSFlags{42} = hasEVEX_Z; |
| let TSFlags{43} = hasEVEX_L2; |
| let TSFlags{44} = hasEVEX_B; |
| let TSFlags{47-45} = !if(!eq(CD8_Scale, 0), 0, !add(!logtwo(CD8_Scale), 1)); |
| let TSFlags{48} = hasEVEX_RC; |
| let TSFlags{49} = hasNoTrackPrefix; |
| let TSFlags{51-50} = explicitOpPrefixBits; |
| let TSFlags{52} = hasEVEX_NF; |
| let TSFlags{53} = hasTwoConditionalOps; |
| let TSFlags{54} = hasEVEX_U; |
| } |