blob: 1a60d0e13057e9de3e0b05f015929ed194a10801 [file] [log] [blame]
//===---HexagonLoadStoreWidening.cpp---------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// HexagonStoreWidening:
// Replace sequences of "narrow" stores to adjacent memory locations with
// a fewer "wide" stores that have the same effect.
// For example, replace:
// S4_storeirb_io %100, 0, 0 ; store-immediate-byte
// S4_storeirb_io %100, 1, 0 ; store-immediate-byte
// with
// S4_storeirh_io %100, 0, 0 ; store-immediate-halfword
// The above is the general idea. The actual cases handled by the code
// may be a bit more complex.
// The purpose of this pass is to reduce the number of outstanding stores,
// or as one could say, "reduce store queue pressure". Also, wide stores
// mean fewer stores, and since there are only two memory instructions allowed
// per packet, it also means fewer packets, and ultimately fewer cycles.
//
// HexagonLoadWidening does the same thing as HexagonStoreWidening but
// for Loads. Here, we try to replace 4-byte Loads with register-pair loads.
// For example:
// Replace
// %2:intregs = L2_loadri_io %1:intregs, 0 :: (load (s32) from %ptr1, align 8)
// %3:intregs = L2_loadri_io %1:intregs, 4 :: (load (s32) from %ptr2)
// with
// %4:doubleregs = L2_loadrd_io %1:intregs, 0 :: (load (s64) from %ptr1)
// %2:intregs = COPY %4.isub_lo:doubleregs
// %3:intregs = COPY %4.isub_hi:doubleregs
//
// LoadWidening for 8 and 16-bit loads is not useful as we end up generating 2N
// insts to replace N loads: 1 widened load, N bitwise and, N - 1 shifts
//===---------------------------------------------------------------------===//
#include "HexagonInstrInfo.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "hexagon-load-store-widening"
static cl::opt<unsigned> MaxMBBSizeForLoadStoreWidening(
"max-bb-size-for-load-store-widening", cl::Hidden, cl::init(1000),
cl::desc("Limit block size to analyze in load/store widening pass"));
namespace llvm {
FunctionPass *createHexagonStoreWidening();
FunctionPass *createHexagonLoadWidening();
void initializeHexagonStoreWideningPass(PassRegistry &);
void initializeHexagonLoadWideningPass(PassRegistry &);
} // end namespace llvm
namespace {
struct HexagonLoadStoreWidening {
enum WideningMode { Store, Load };
const HexagonInstrInfo *TII;
const HexagonRegisterInfo *TRI;
MachineRegisterInfo *MRI;
AliasAnalysis *AA;
MachineFunction *MF;
public:
HexagonLoadStoreWidening(const HexagonInstrInfo *TII,
const HexagonRegisterInfo *TRI,
MachineRegisterInfo *MRI, AliasAnalysis *AA,
MachineFunction *MF, bool StoreMode)
: TII(TII), TRI(TRI), MRI(MRI), AA(AA), MF(MF),
Mode(StoreMode ? WideningMode::Store : WideningMode::Load),
HII(MF->getSubtarget<HexagonSubtarget>().getInstrInfo()) {}
bool run();
private:
const bool Mode;
const unsigned MaxWideSize = 8;
const HexagonInstrInfo *HII = nullptr;
using InstrSet = SmallPtrSet<MachineInstr *, 16>;
using InstrGroup = SmallVector<MachineInstr *, 8>;
using InstrGroupList = SmallVector<InstrGroup, 8>;
InstrSet ProcessedInsts;
unsigned getBaseAddressRegister(const MachineInstr *MI);
int64_t getOffset(const MachineInstr *MI);
int64_t getPostIncrementValue(const MachineInstr *MI);
bool handledInstType(const MachineInstr *MI);
void createGroup(MachineInstr *BaseInst, InstrGroup &Group);
void createGroups(MachineBasicBlock &MBB, InstrGroupList &StoreGroups);
bool processBasicBlock(MachineBasicBlock &MBB);
bool processGroup(InstrGroup &Group);
bool selectInsts(InstrGroup::iterator Begin, InstrGroup::iterator End,
InstrGroup &OG, unsigned &TotalSize, unsigned MaxSize);
bool createWideInsts(InstrGroup &OG, InstrGroup &NG, unsigned TotalSize);
bool createWideStores(InstrGroup &OG, InstrGroup &NG, unsigned TotalSize);
bool createWideLoads(InstrGroup &OG, InstrGroup &NG, unsigned TotalSize);
bool replaceInsts(InstrGroup &OG, InstrGroup &NG);
bool areAdjacent(const MachineInstr *S1, const MachineInstr *S2);
bool canSwapInstructions(const MachineInstr *A, const MachineInstr *B);
};
struct HexagonStoreWidening : public MachineFunctionPass {
static char ID;
HexagonStoreWidening() : MachineFunctionPass(ID) {
initializeHexagonStoreWideningPass(*PassRegistry::getPassRegistry());
}
StringRef getPassName() const override { return "Hexagon Store Widening"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AAResultsWrapperPass>();
AU.addPreserved<AAResultsWrapperPass>();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool runOnMachineFunction(MachineFunction &MFn) override {
if (skipFunction(MFn.getFunction()))
return false;
auto &ST = MFn.getSubtarget<HexagonSubtarget>();
const HexagonInstrInfo *TII = ST.getInstrInfo();
const HexagonRegisterInfo *TRI = ST.getRegisterInfo();
MachineRegisterInfo *MRI = &MFn.getRegInfo();
AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
return HexagonLoadStoreWidening(TII, TRI, MRI, AA, &MFn, true).run();
}
};
struct HexagonLoadWidening : public MachineFunctionPass {
static char ID;
HexagonLoadWidening() : MachineFunctionPass(ID) {
initializeHexagonLoadWideningPass(*PassRegistry::getPassRegistry());
}
StringRef getPassName() const override { return "Hexagon Load Widening"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AAResultsWrapperPass>();
AU.addPreserved<AAResultsWrapperPass>();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool runOnMachineFunction(MachineFunction &MFn) override {
if (skipFunction(MFn.getFunction()))
return false;
auto &ST = MFn.getSubtarget<HexagonSubtarget>();
const HexagonInstrInfo *TII = ST.getInstrInfo();
const HexagonRegisterInfo *TRI = ST.getRegisterInfo();
MachineRegisterInfo *MRI = &MFn.getRegInfo();
AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
return HexagonLoadStoreWidening(TII, TRI, MRI, AA, &MFn, false).run();
}
};
char HexagonStoreWidening::ID = 0;
char HexagonLoadWidening::ID = 0;
} // end anonymous namespace
INITIALIZE_PASS_BEGIN(HexagonStoreWidening, "hexagon-widen-stores",
"Hexagon Store Widening", false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(HexagonStoreWidening, "hexagon-widen-stores",
"Hexagon Store Widening", false, false)
INITIALIZE_PASS_BEGIN(HexagonLoadWidening, "hexagon-widen-loads",
"Hexagon Load Widening", false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(HexagonLoadWidening, "hexagon-widen-loads",
"Hexagon Load Widening", false, false)
static const MachineMemOperand &getMemTarget(const MachineInstr *MI) {
assert(!MI->memoperands_empty() && "Expecting memory operands");
return **MI->memoperands_begin();
}
unsigned
HexagonLoadStoreWidening::getBaseAddressRegister(const MachineInstr *MI) {
assert(HexagonLoadStoreWidening::handledInstType(MI) && "Unhandled opcode");
unsigned Base, Offset;
HII->getBaseAndOffsetPosition(*MI, Base, Offset);
const MachineOperand &MO = MI->getOperand(Base);
assert(MO.isReg() && "Expecting register operand");
return MO.getReg();
}
int64_t HexagonLoadStoreWidening::getOffset(const MachineInstr *MI) {
assert(HexagonLoadStoreWidening::handledInstType(MI) && "Unhandled opcode");
// On Hexagon, post-incs always have an offset of 0
// There is no Offset operand to post-incs
if (HII->isPostIncrement(*MI))
return 0;
unsigned Base, Offset;
HII->getBaseAndOffsetPosition(*MI, Base, Offset);
const MachineOperand &MO = MI->getOperand(Offset);
switch (MO.getType()) {
case MachineOperand::MO_Immediate:
return MO.getImm();
case MachineOperand::MO_GlobalAddress:
return MO.getOffset();
default:
break;
}
llvm_unreachable("Expecting an immediate or global operand");
}
inline int64_t
HexagonLoadStoreWidening::getPostIncrementValue(const MachineInstr *MI) {
unsigned Base, PostIncIdx;
HII->getBaseAndOffsetPosition(*MI, Base, PostIncIdx);
const MachineOperand &MO = MI->getOperand(PostIncIdx);
return MO.getImm();
}
// Filtering function: any loads/stores whose opcodes are not "approved" of by
// this function will not be subjected to widening.
inline bool HexagonLoadStoreWidening::handledInstType(const MachineInstr *MI) {
unsigned Opc = MI->getOpcode();
if (Mode == WideningMode::Store) {
switch (Opc) {
case Hexagon::S4_storeirb_io:
case Hexagon::S4_storeirh_io:
case Hexagon::S4_storeiri_io:
case Hexagon::S2_storeri_io:
// Base address must be a register. (Implement FI later.)
return MI->getOperand(0).isReg();
case Hexagon::S2_storeri_pi:
return MI->getOperand(1).isReg();
}
} else {
// LoadWidening for 8 and 16 bit loads needs 2x instructions to replace x
// loads. So we only widen 32 bit loads as we don't need to select the
// right bits with AND & SHIFT ops.
switch (Opc) {
case Hexagon::L2_loadri_io:
// Base address must be a register and offset must be immediate.
return !MI->memoperands_empty() && MI->getOperand(1).isReg() &&
MI->getOperand(2).isImm();
case Hexagon::L2_loadri_pi:
return !MI->memoperands_empty() && MI->getOperand(2).isReg();
}
}
return false;
}
static void addDefsUsesToList(const MachineInstr *MI,
DenseSet<Register> &RegDefs,
DenseSet<Register> &RegUses) {
for (const auto &Op : MI->operands()) {
if (!Op.isReg())
continue;
if (Op.isDef())
RegDefs.insert(Op.getReg());
if (Op.readsReg())
RegUses.insert(Op.getReg());
}
}
bool HexagonLoadStoreWidening::canSwapInstructions(const MachineInstr *A,
const MachineInstr *B) {
DenseSet<Register> ARegDefs;
DenseSet<Register> ARegUses;
addDefsUsesToList(A, ARegDefs, ARegUses);
if (A->mayLoadOrStore() && B->mayLoadOrStore() &&
(A->mayStore() || B->mayStore()) && A->mayAlias(AA, *B, true))
return false;
for (const auto &BOp : B->operands()) {
if (!BOp.isReg())
continue;
if ((BOp.isDef() || BOp.readsReg()) && ARegDefs.contains(BOp.getReg()))
return false;
if (BOp.isDef() && ARegUses.contains(BOp.getReg()))
return false;
}
return true;
}
// Inspect a machine basic block, and generate groups out of loads/stores
// encountered in the block.
//
// A load/store group is a group of loads or stores that use the same base
// register, and which can be reordered within that group without altering the
// semantics of the program. A single group could be widened as
// a whole, if there existed a single load/store instruction with the same
// semantics as the entire group. In many cases, a single group may need more
// than one wide load or store.
void HexagonLoadStoreWidening::createGroups(MachineBasicBlock &MBB,
InstrGroupList &StoreGroups) {
// Traverse all instructions and if we encounter
// a load/store, then try to create a group starting at that instruction
// i.e. a sequence of independent loads/stores that can be widened.
for (auto I = MBB.begin(); I != MBB.end(); ++I) {
MachineInstr *MI = &(*I);
if (!handledInstType(MI))
continue;
if (ProcessedInsts.count(MI))
continue;
// Found a store. Try to create a store group.
InstrGroup G;
createGroup(MI, G);
if (G.size() > 1)
StoreGroups.push_back(G);
}
}
// Create a single load/store group. The insts need to be independent between
// themselves, and also there cannot be other instructions between them
// that could read or modify storage being read from or stored into.
void HexagonLoadStoreWidening::createGroup(MachineInstr *BaseInst,
InstrGroup &Group) {
assert(handledInstType(BaseInst) && "Unexpected instruction");
unsigned BaseReg = getBaseAddressRegister(BaseInst);
InstrGroup Other;
Group.push_back(BaseInst);
LLVM_DEBUG(dbgs() << "BaseInst: "; BaseInst->dump());
auto End = BaseInst->getParent()->end();
auto I = BaseInst->getIterator();
while (true) {
I = std::next(I);
if (I == End)
break;
MachineInstr *MI = &(*I);
// Assume calls are aliased to everything.
if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
MI->hasOrderedMemoryRef())
return;
if (!handledInstType(MI)) {
if (MI->mayLoadOrStore())
Other.push_back(MI);
continue;
}
// We have a handledInstType instruction
// If this load/store instruction is aliased with anything already in the
// group, terminate the group now.
for (auto GI : Group)
if (GI->mayAlias(AA, *MI, true))
return;
if (Mode == WideningMode::Load) {
// Check if current load MI can be moved to the first load instruction
// in Group. If any load instruction aliases with memory instructions in
// Other, terminate the group.
for (auto MemI : Other)
if (!canSwapInstructions(MI, MemI))
return;
} else {
// Check if store instructions in the group can be moved to current
// store MI. If any store instruction aliases with memory instructions
// in Other, terminate the group.
for (auto MemI : Other) {
if (std::distance(Group.back()->getIterator(), MemI->getIterator()) <=
0)
continue;
for (auto GI : Group)
if (!canSwapInstructions(MemI, GI))
return;
}
}
unsigned BR = getBaseAddressRegister(MI);
if (BR == BaseReg) {
LLVM_DEBUG(dbgs() << "Added MI to group: "; MI->dump());
Group.push_back(MI);
ProcessedInsts.insert(MI);
}
} // while
}
// Check if load/store instructions S1 and S2 are adjacent. More precisely,
// S2 has to access memory immediately following that accessed by S1.
bool HexagonLoadStoreWidening::areAdjacent(const MachineInstr *S1,
const MachineInstr *S2) {
if (!handledInstType(S1) || !handledInstType(S2))
return false;
const MachineMemOperand &S1MO = getMemTarget(S1);
// Currently only handling immediate stores.
int Off1 = getOffset(S1);
int Off2 = getOffset(S2);
return (Off1 >= 0) ? Off1 + S1MO.getSize().getValue() == unsigned(Off2)
: int(Off1 + S1MO.getSize().getValue()) == Off2;
}
/// Given a sequence of adjacent loads/stores, and a maximum size of a single
/// wide inst, pick a group of insts that can be replaced by a single load/store
/// of size not exceeding MaxSize. The selected sequence will be recorded
/// in OG ("old group" of instructions).
/// OG should be empty on entry, and should be left empty if the function
/// fails.
bool HexagonLoadStoreWidening::selectInsts(InstrGroup::iterator Begin,
InstrGroup::iterator End,
InstrGroup &OG, unsigned &TotalSize,
unsigned MaxSize) {
assert(Begin != End && "No instructions to analyze");
assert(OG.empty() && "Old group not empty on entry");
if (std::distance(Begin, End) <= 1)
return false;
MachineInstr *FirstMI = *Begin;
assert(!FirstMI->memoperands_empty() && "Expecting some memory operands");
const MachineMemOperand &FirstMMO = getMemTarget(FirstMI);
if (!FirstMMO.getType().isValid())
return false;
unsigned Alignment = FirstMMO.getAlign().value();
unsigned SizeAccum = FirstMMO.getSize().getValue();
unsigned FirstOffset = getOffset(FirstMI);
// The initial value of SizeAccum should always be a power of 2.
assert(isPowerOf2_32(SizeAccum) && "First store size not a power of 2");
// If the size of the first store equals to or exceeds the limit, do nothing.
if (SizeAccum >= MaxSize)
return false;
// If the size of the first load/store is greater than or equal to the address
// stored to, then the inst cannot be made any wider.
if (SizeAccum >= Alignment) {
LLVM_DEBUG(
dbgs() << "Size of load/store greater than equal to its alignment\n");
return false;
}
// The offset of a load/store will put restrictions on how wide the inst can
// be. Offsets in loads/stores of size 2^n bytes need to have the n lowest
// bits be 0. If the first inst already exhausts the offset limits, quit.
// Test this by checking if the next wider size would exceed the limit.
// For post-increment instructions, the increment amount needs to follow the
// same rule.
unsigned OffsetOrIncVal = 0;
if (HII->isPostIncrement(*FirstMI))
OffsetOrIncVal = getPostIncrementValue(FirstMI);
else
OffsetOrIncVal = FirstOffset;
if ((2 * SizeAccum - 1) & OffsetOrIncVal) {
LLVM_DEBUG(dbgs() << "Instruction cannot be widened as the offset/postinc"
<< " value: " << getPostIncrementValue(FirstMI)
<< " is invalid in the widened version\n");
return false;
}
OG.push_back(FirstMI);
MachineInstr *S1 = FirstMI;
// Pow2Num will be the largest number of elements in OG such that the sum
// of sizes of loads/stores 0...Pow2Num-1 will be a power of 2.
unsigned Pow2Num = 1;
unsigned Pow2Size = SizeAccum;
bool HavePostInc = HII->isPostIncrement(*S1);
// Be greedy: keep accumulating insts as long as they are to adjacent
// memory locations, and as long as the total number of bytes stored
// does not exceed the limit (MaxSize).
// Keep track of when the total size covered is a power of 2, since
// this is a size a single load/store can cover.
for (InstrGroup::iterator I = Begin + 1; I != End; ++I) {
MachineInstr *S2 = *I;
// Insts are sorted, so if S1 and S2 are not adjacent, there won't be
// any other store to fill the "hole".
if (!areAdjacent(S1, S2))
break;
// Cannot widen two post increments, need to return two registers
// with incremented values
if (HavePostInc && HII->isPostIncrement(*S2))
break;
unsigned S2Size = getMemTarget(S2).getSize().getValue();
if (SizeAccum + S2Size > std::min(MaxSize, Alignment))
break;
OG.push_back(S2);
SizeAccum += S2Size;
if (isPowerOf2_32(SizeAccum)) {
Pow2Num = OG.size();
Pow2Size = SizeAccum;
}
if ((2 * Pow2Size - 1) & FirstOffset)
break;
S1 = S2;
}
// The insts don't add up to anything that can be widened. Clean up.
if (Pow2Num <= 1) {
OG.clear();
return false;
}
// Only leave the loads/stores being widened.
OG.resize(Pow2Num);
TotalSize = Pow2Size;
return true;
}
/// Given an "old group" OG of insts, create a "new group" NG of instructions
/// to replace them.
bool HexagonLoadStoreWidening::createWideInsts(InstrGroup &OG, InstrGroup &NG,
unsigned TotalSize) {
if (Mode == WideningMode::Store) {
return createWideStores(OG, NG, TotalSize);
}
return createWideLoads(OG, NG, TotalSize);
}
/// Given an "old group" OG of stores, create a "new group" NG of instructions
/// to replace them. Ideally, NG would only have a single instruction in it,
/// but that may only be possible for store-immediate.
bool HexagonLoadStoreWidening::createWideStores(InstrGroup &OG, InstrGroup &NG,
unsigned TotalSize) {
// XXX Current limitations:
// - only handle a TotalSize of up to 8
LLVM_DEBUG(dbgs() << "Creating wide stores\n");
if (TotalSize > MaxWideSize)
return false;
uint64_t Acc = 0; // Value accumulator.
unsigned Shift = 0;
bool HaveImm = false;
bool HaveReg = false;
for (MachineInstr *MI : OG) {
const MachineMemOperand &MMO = getMemTarget(MI);
MachineOperand &SO = HII->isPostIncrement(*MI)
? MI->getOperand(3)
: MI->getOperand(2); // Source.
unsigned NBits;
uint64_t Mask;
uint64_t Val;
switch (SO.getType()) {
case MachineOperand::MO_Immediate:
LLVM_DEBUG(dbgs() << "Have store immediate\n");
HaveImm = true;
NBits = MMO.getSizeInBits().toRaw();
Mask = (0xFFFFFFFFFFFFFFFFU >> (64 - NBits));
Val = (SO.getImm() & Mask) << Shift;
Acc |= Val;
Shift += NBits;
break;
case MachineOperand::MO_Register:
HaveReg = true;
break;
default:
LLVM_DEBUG(dbgs() << "Unhandled store\n");
return false;
}
}
if (HaveImm && HaveReg) {
LLVM_DEBUG(dbgs() << "Cannot merge store register and store imm\n");
return false;
}
MachineInstr *FirstSt = OG.front();
DebugLoc DL = OG.back()->getDebugLoc();
const MachineMemOperand &OldM = getMemTarget(FirstSt);
MachineMemOperand *NewM =
MF->getMachineMemOperand(OldM.getPointerInfo(), OldM.getFlags(),
TotalSize, OldM.getAlign(), OldM.getAAInfo());
MachineInstr *StI;
MachineOperand &MR =
(HII->isPostIncrement(*FirstSt) ? FirstSt->getOperand(1)
: FirstSt->getOperand(0));
auto SecondSt = OG.back();
if (HaveReg) {
MachineOperand FReg =
(HII->isPostIncrement(*FirstSt) ? FirstSt->getOperand(3)
: FirstSt->getOperand(2));
// Post increments appear first in the sorted group.
// Cannot have a post increment for the second instruction
assert(!HII->isPostIncrement(*SecondSt) && "Unexpected PostInc");
MachineOperand SReg = SecondSt->getOperand(2);
assert(FReg.isReg() && SReg.isReg() &&
"Cannot merge store register and store imm");
const MCInstrDesc &CombD = TII->get(Hexagon::A2_combinew);
Register VReg =
MF->getRegInfo().createVirtualRegister(&Hexagon::DoubleRegsRegClass);
MachineInstr *CombI = BuildMI(*MF, DL, CombD, VReg).add(SReg).add(FReg);
NG.push_back(CombI);
if (FirstSt->getOpcode() == Hexagon::S2_storeri_pi) {
const MCInstrDesc &StD = TII->get(Hexagon::S2_storerd_pi);
auto IncDestMO = FirstSt->getOperand(0);
auto IncMO = FirstSt->getOperand(2);
StI =
BuildMI(*MF, DL, StD).add(IncDestMO).add(MR).add(IncMO).addReg(VReg);
} else {
const MCInstrDesc &StD = TII->get(Hexagon::S2_storerd_io);
auto OffMO = FirstSt->getOperand(1);
StI = BuildMI(*MF, DL, StD).add(MR).add(OffMO).addReg(VReg);
}
StI->addMemOperand(*MF, NewM);
NG.push_back(StI);
return true;
}
// Handle store immediates
// There are no post increment store immediates on Hexagon
assert(!HII->isPostIncrement(*FirstSt) && "Unexpected PostInc");
auto Off = FirstSt->getOperand(1).getImm();
if (TotalSize == 8) {
// Create vreg = A2_tfrsi #Acc; nreg = combine(#s32, vreg); memd = nreg
uint64_t Mask = 0xFFFFFFFFU;
int LowerAcc = int(Mask & Acc);
int UpperAcc = Acc >> 32;
Register DReg =
MF->getRegInfo().createVirtualRegister(&Hexagon::DoubleRegsRegClass);
MachineInstr *CombI;
if (Acc != 0) {
const MCInstrDesc &TfrD = TII->get(Hexagon::A2_tfrsi);
const TargetRegisterClass *RC = TII->getRegClass(TfrD, 0, TRI, *MF);
Register VReg = MF->getRegInfo().createVirtualRegister(RC);
MachineInstr *TfrI = BuildMI(*MF, DL, TfrD, VReg).addImm(LowerAcc);
NG.push_back(TfrI);
const MCInstrDesc &CombD = TII->get(Hexagon::A4_combineir);
CombI = BuildMI(*MF, DL, CombD, DReg)
.addImm(UpperAcc)
.addReg(VReg, RegState::Kill);
}
// If immediates are 0, we do not need A2_tfrsi
else {
const MCInstrDesc &CombD = TII->get(Hexagon::A4_combineii);
CombI = BuildMI(*MF, DL, CombD, DReg).addImm(0).addImm(0);
}
NG.push_back(CombI);
const MCInstrDesc &StD = TII->get(Hexagon::S2_storerd_io);
StI =
BuildMI(*MF, DL, StD).add(MR).addImm(Off).addReg(DReg, RegState::Kill);
} else if (Acc < 0x10000) {
// Create mem[hw] = #Acc
unsigned WOpc = (TotalSize == 2) ? Hexagon::S4_storeirh_io
: (TotalSize == 4) ? Hexagon::S4_storeiri_io
: 0;
assert(WOpc && "Unexpected size");
int Val = (TotalSize == 2) ? int16_t(Acc) : int(Acc);
const MCInstrDesc &StD = TII->get(WOpc);
StI = BuildMI(*MF, DL, StD).add(MR).addImm(Off).addImm(Val);
} else {
// Create vreg = A2_tfrsi #Acc; mem[hw] = vreg
const MCInstrDesc &TfrD = TII->get(Hexagon::A2_tfrsi);
const TargetRegisterClass *RC = TII->getRegClass(TfrD, 0, TRI, *MF);
Register VReg = MF->getRegInfo().createVirtualRegister(RC);
MachineInstr *TfrI = BuildMI(*MF, DL, TfrD, VReg).addImm(int(Acc));
NG.push_back(TfrI);
unsigned WOpc = (TotalSize == 2) ? Hexagon::S2_storerh_io
: (TotalSize == 4) ? Hexagon::S2_storeri_io
: 0;
assert(WOpc && "Unexpected size");
const MCInstrDesc &StD = TII->get(WOpc);
StI =
BuildMI(*MF, DL, StD).add(MR).addImm(Off).addReg(VReg, RegState::Kill);
}
StI->addMemOperand(*MF, NewM);
NG.push_back(StI);
return true;
}
/// Given an "old group" OG of loads, create a "new group" NG of instructions
/// to replace them. Ideally, NG would only have a single instruction in it,
/// but that may only be possible for double register loads.
bool HexagonLoadStoreWidening::createWideLoads(InstrGroup &OG, InstrGroup &NG,
unsigned TotalSize) {
LLVM_DEBUG(dbgs() << "Creating wide loads\n");
// XXX Current limitations:
// - only expect stores of immediate values in OG,
// - only handle a TotalSize of up to 8
if (TotalSize > MaxWideSize)
return false;
assert(OG.size() == 2 && "Expecting two elements in Instruction Group.");
MachineInstr *FirstLd = OG.front();
const MachineMemOperand &OldM = getMemTarget(FirstLd);
MachineMemOperand *NewM =
MF->getMachineMemOperand(OldM.getPointerInfo(), OldM.getFlags(),
TotalSize, OldM.getAlign(), OldM.getAAInfo());
MachineOperand &MR = FirstLd->getOperand(0);
MachineOperand &MRBase =
(HII->isPostIncrement(*FirstLd) ? FirstLd->getOperand(2)
: FirstLd->getOperand(1));
DebugLoc DL = OG.back()->getDebugLoc();
// Create the double register Load Instruction.
Register NewMR = MRI->createVirtualRegister(&Hexagon::DoubleRegsRegClass);
MachineInstr *LdI;
// Post increments appear first in the sorted group
if (FirstLd->getOpcode() == Hexagon::L2_loadri_pi) {
auto IncDestMO = FirstLd->getOperand(1);
auto IncMO = FirstLd->getOperand(3);
LdI = BuildMI(*MF, DL, TII->get(Hexagon::L2_loadrd_pi))
.addDef(NewMR, getKillRegState(MR.isKill()), MR.getSubReg())
.add(IncDestMO)
.add(MRBase)
.add(IncMO);
LdI->addMemOperand(*MF, NewM);
} else {
auto OffMO = FirstLd->getOperand(2);
LdI = BuildMI(*MF, DL, TII->get(Hexagon::L2_loadrd_io))
.addDef(NewMR, getKillRegState(MR.isKill()), MR.getSubReg())
.add(MRBase)
.add(OffMO);
LdI->addMemOperand(*MF, NewM);
}
NG.push_back(LdI);
auto getHalfReg = [&](MachineInstr *DoubleReg, unsigned SubReg,
MachineInstr *DstReg) {
Register DestReg = DstReg->getOperand(0).getReg();
return BuildMI(*MF, DL, TII->get(Hexagon::COPY), DestReg)
.addReg(NewMR, getKillRegState(LdI->isKill()), SubReg);
};
MachineInstr *LdI_lo = getHalfReg(LdI, Hexagon::isub_lo, FirstLd);
MachineInstr *LdI_hi = getHalfReg(LdI, Hexagon::isub_hi, OG.back());
NG.push_back(LdI_lo);
NG.push_back(LdI_hi);
return true;
}
// Replace instructions from the old group OG with instructions from the
// new group NG. Conceptually, remove all instructions in OG, and then
// insert all instructions in NG, starting at where the first instruction
// from OG was (in the order in which they appeared in the basic block).
// (The ordering in OG does not have to match the order in the basic block.)
bool HexagonLoadStoreWidening::replaceInsts(InstrGroup &OG, InstrGroup &NG) {
LLVM_DEBUG({
dbgs() << "Replacing:\n";
for (auto I : OG)
dbgs() << " " << *I;
dbgs() << "with\n";
for (auto I : NG)
dbgs() << " " << *I;
});
MachineBasicBlock *MBB = OG.back()->getParent();
MachineBasicBlock::iterator InsertAt = MBB->end();
// Need to establish the insertion point.
// For loads the best one is right before the first load in the OG,
// but in the order in which the insts occur in the program list.
// For stores the best point is right after the last store in the OG.
// Since the ordering in OG does not correspond
// to the order in the program list, we need to do some work to find
// the insertion point.
// Create a set of all instructions in OG (for quick lookup).
InstrSet OldMemInsts;
for (auto *I : OG)
OldMemInsts.insert(I);
if (Mode == WideningMode::Load) {
// Find the first load instruction in the block that is present in OG.
for (auto &I : *MBB) {
if (OldMemInsts.count(&I)) {
InsertAt = I;
break;
}
}
assert((InsertAt != MBB->end()) && "Cannot locate any load from the group");
for (auto *I : NG)
MBB->insert(InsertAt, I);
} else {
// Find the last store instruction in the block that is present in OG.
auto I = MBB->rbegin();
for (; I != MBB->rend(); ++I) {
if (OldMemInsts.count(&(*I))) {
InsertAt = (*I).getIterator();
break;
}
}
assert((I != MBB->rend()) && "Cannot locate any store from the group");
for (auto I = NG.rbegin(); I != NG.rend(); ++I)
MBB->insertAfter(InsertAt, *I);
}
for (auto *I : OG)
I->eraseFromParent();
return true;
}
// Break up the group into smaller groups, each of which can be replaced by
// a single wide load/store. Widen each such smaller group and replace the old
// instructions with the widened ones.
bool HexagonLoadStoreWidening::processGroup(InstrGroup &Group) {
bool Changed = false;
InstrGroup::iterator I = Group.begin(), E = Group.end();
InstrGroup OG, NG; // Old and new groups.
unsigned CollectedSize;
while (I != E) {
OG.clear();
NG.clear();
bool Succ = selectInsts(I++, E, OG, CollectedSize, MaxWideSize) &&
createWideInsts(OG, NG, CollectedSize) && replaceInsts(OG, NG);
if (!Succ)
continue;
assert(OG.size() > 1 && "Created invalid group");
assert(std::distance(I, E) + 1 >= int(OG.size()) && "Too many elements");
I += OG.size() - 1;
Changed = true;
}
return Changed;
}
// Process a single basic block: create the load/store groups, and replace them
// with the widened insts, if possible. Processing of each basic block
// is independent from processing of any other basic block. This transfor-
// mation could be stopped after having processed any basic block without
// any ill effects (other than not having performed widening in the unpro-
// cessed blocks). Also, the basic blocks can be processed in any order.
bool HexagonLoadStoreWidening::processBasicBlock(MachineBasicBlock &MBB) {
InstrGroupList SGs;
bool Changed = false;
// To prevent long compile time check for max BB size.
if (MBB.size() > MaxMBBSizeForLoadStoreWidening)
return false;
createGroups(MBB, SGs);
auto Less = [this](const MachineInstr *A, const MachineInstr *B) -> bool {
return getOffset(A) < getOffset(B);
};
for (auto &G : SGs) {
assert(G.size() > 1 && "Group with fewer than 2 elements");
llvm::sort(G, Less);
Changed |= processGroup(G);
}
return Changed;
}
bool HexagonLoadStoreWidening::run() {
bool Changed = false;
for (auto &B : *MF)
Changed |= processBasicBlock(B);
return Changed;
}
FunctionPass *llvm::createHexagonStoreWidening() {
return new HexagonStoreWidening();
}
FunctionPass *llvm::createHexagonLoadWidening() {
return new HexagonLoadWidening();
}