blob: 6b5c5f36cbd4b27ab1f076baf91c6387d36bcb9f [file] [log] [blame]
//===- lib/MC/AArch64ELFStreamer.cpp - ELF Object Output for AArch64 ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file assembles .s files and emits AArch64 ELF .o object files. Different
// from generic ELF streamer in emitting mapping symbols ($x and $d) to delimit
// regions of data and code.
//
//===----------------------------------------------------------------------===//
#include "AArch64ELFStreamer.h"
#include "AArch64MCTargetDesc.h"
#include "AArch64TargetStreamer.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCELFObjectWriter.h"
#include "llvm/MC/MCELFStreamer.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbolELF.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/MC/MCWinCOFFStreamer.h"
#include "llvm/Support/AArch64BuildAttributes.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace {
class AArch64ELFStreamer;
class AArch64TargetAsmStreamer : public AArch64TargetStreamer {
formatted_raw_ostream &OS;
std::string VendorTag;
void emitInst(uint32_t Inst) override;
void emitDirectiveVariantPCS(MCSymbol *Symbol) override {
OS << "\t.variant_pcs\t" << Symbol->getName() << "\n";
}
void emitARM64WinCFIAllocStack(unsigned Size) override {
OS << "\t.seh_stackalloc\t" << Size << "\n";
}
void emitARM64WinCFISaveR19R20X(int Offset) override {
OS << "\t.seh_save_r19r20_x\t" << Offset << "\n";
}
void emitARM64WinCFISaveFPLR(int Offset) override {
OS << "\t.seh_save_fplr\t" << Offset << "\n";
}
void emitARM64WinCFISaveFPLRX(int Offset) override {
OS << "\t.seh_save_fplr_x\t" << Offset << "\n";
}
void emitARM64WinCFISaveReg(unsigned Reg, int Offset) override {
OS << "\t.seh_save_reg\tx" << Reg << ", " << Offset << "\n";
}
void emitARM64WinCFISaveRegX(unsigned Reg, int Offset) override {
OS << "\t.seh_save_reg_x\tx" << Reg << ", " << Offset << "\n";
}
void emitARM64WinCFISaveRegP(unsigned Reg, int Offset) override {
OS << "\t.seh_save_regp\tx" << Reg << ", " << Offset << "\n";
}
void emitARM64WinCFISaveRegPX(unsigned Reg, int Offset) override {
OS << "\t.seh_save_regp_x\tx" << Reg << ", " << Offset << "\n";
}
void emitARM64WinCFISaveLRPair(unsigned Reg, int Offset) override {
OS << "\t.seh_save_lrpair\tx" << Reg << ", " << Offset << "\n";
}
void emitARM64WinCFISaveFReg(unsigned Reg, int Offset) override {
OS << "\t.seh_save_freg\td" << Reg << ", " << Offset << "\n";
}
void emitARM64WinCFISaveFRegX(unsigned Reg, int Offset) override {
OS << "\t.seh_save_freg_x\td" << Reg << ", " << Offset << "\n";
}
void emitARM64WinCFISaveFRegP(unsigned Reg, int Offset) override {
OS << "\t.seh_save_fregp\td" << Reg << ", " << Offset << "\n";
}
void emitARM64WinCFISaveFRegPX(unsigned Reg, int Offset) override {
OS << "\t.seh_save_fregp_x\td" << Reg << ", " << Offset << "\n";
}
void emitARM64WinCFISetFP() override { OS << "\t.seh_set_fp\n"; }
void emitARM64WinCFIAddFP(unsigned Size) override {
OS << "\t.seh_add_fp\t" << Size << "\n";
}
void emitARM64WinCFINop() override { OS << "\t.seh_nop\n"; }
void emitARM64WinCFISaveNext() override { OS << "\t.seh_save_next\n"; }
void emitARM64WinCFIPrologEnd() override { OS << "\t.seh_endprologue\n"; }
void emitARM64WinCFIEpilogStart() override { OS << "\t.seh_startepilogue\n"; }
void emitARM64WinCFIEpilogEnd() override { OS << "\t.seh_endepilogue\n"; }
void emitARM64WinCFITrapFrame() override { OS << "\t.seh_trap_frame\n"; }
void emitARM64WinCFIMachineFrame() override { OS << "\t.seh_pushframe\n"; }
void emitARM64WinCFIContext() override { OS << "\t.seh_context\n"; }
void emitARM64WinCFIECContext() override { OS << "\t.seh_ec_context\n"; }
void emitARM64WinCFIClearUnwoundToCall() override {
OS << "\t.seh_clear_unwound_to_call\n";
}
void emitARM64WinCFIPACSignLR() override {
OS << "\t.seh_pac_sign_lr\n";
}
void emitARM64WinCFISaveAnyRegI(unsigned Reg, int Offset) override {
OS << "\t.seh_save_any_reg\tx" << Reg << ", " << Offset << "\n";
}
void emitARM64WinCFISaveAnyRegIP(unsigned Reg, int Offset) override {
OS << "\t.seh_save_any_reg_p\tx" << Reg << ", " << Offset << "\n";
}
void emitARM64WinCFISaveAnyRegD(unsigned Reg, int Offset) override {
OS << "\t.seh_save_any_reg\td" << Reg << ", " << Offset << "\n";
}
void emitARM64WinCFISaveAnyRegDP(unsigned Reg, int Offset) override {
OS << "\t.seh_save_any_reg_p\td" << Reg << ", " << Offset << "\n";
}
void emitARM64WinCFISaveAnyRegQ(unsigned Reg, int Offset) override {
OS << "\t.seh_save_any_reg\tq" << Reg << ", " << Offset << "\n";
}
void emitARM64WinCFISaveAnyRegQP(unsigned Reg, int Offset) override {
OS << "\t.seh_save_any_reg_p\tq" << Reg << ", " << Offset << "\n";
}
void emitARM64WinCFISaveAnyRegIX(unsigned Reg, int Offset) override {
OS << "\t.seh_save_any_reg_x\tx" << Reg << ", " << Offset << "\n";
}
void emitARM64WinCFISaveAnyRegIPX(unsigned Reg, int Offset) override {
OS << "\t.seh_save_any_reg_px\tx" << Reg << ", " << Offset << "\n";
}
void emitARM64WinCFISaveAnyRegDX(unsigned Reg, int Offset) override {
OS << "\t.seh_save_any_reg_x\td" << Reg << ", " << Offset << "\n";
}
void emitARM64WinCFISaveAnyRegDPX(unsigned Reg, int Offset) override {
OS << "\t.seh_save_any_reg_px\td" << Reg << ", " << Offset << "\n";
}
void emitARM64WinCFISaveAnyRegQX(unsigned Reg, int Offset) override {
OS << "\t.seh_save_any_reg_x\tq" << Reg << ", " << Offset << "\n";
}
void emitARM64WinCFISaveAnyRegQPX(unsigned Reg, int Offset) override {
OS << "\t.seh_save_any_reg_px\tq" << Reg << ", " << Offset << "\n";
}
void emitAttribute(StringRef VendorName, unsigned Tag, unsigned Value,
std::string String, bool Override) override {
// AArch64 build attributes for assembly attribute form:
// .aeabi_attribute tag, value
if (unsigned(-1) == Value && "" == String) {
assert(0 && "Arguments error");
return;
}
unsigned VendorID = AArch64BuildAttrs::getVendorID(VendorName);
switch (VendorID) {
default:
assert(0 && "Subsection name error");
break;
case AArch64BuildAttrs::VENDOR_UNKNOWN:
if (unsigned(-1) != Value) {
OS << "\t.aeabi_attribute" << "\t" << Tag << ", " << Value;
AArch64TargetStreamer::emitAttribute(VendorName, Tag, Value, "",
Override);
}
if ("" != String) {
OS << "\t.aeabi_attribute" << "\t" << Tag << ", " << String;
AArch64TargetStreamer::emitAttribute(VendorName, Tag, unsigned(-1),
String, Override);
}
break;
// Note: AEABI_FEATURE_AND_BITS takes only unsigned values
case AArch64BuildAttrs::AEABI_FEATURE_AND_BITS:
switch (Tag) {
default: // allow emitting any attribute by number
OS << "\t.aeabi_attribute" << "\t" << Tag << ", " << Value;
// Keep the data structure consistent with the case of ELF emission
// (important for llvm-mc asm parsing)
AArch64TargetStreamer::emitAttribute(VendorName, Tag, Value, "",
Override);
break;
case AArch64BuildAttrs::TAG_FEATURE_BTI:
case AArch64BuildAttrs::TAG_FEATURE_GCS:
case AArch64BuildAttrs::TAG_FEATURE_PAC:
OS << "\t.aeabi_attribute" << "\t"
<< AArch64BuildAttrs::getFeatureAndBitsTagsStr(Tag) << ", " << Value;
AArch64TargetStreamer::emitAttribute(VendorName, Tag, Value, "",
Override);
break;
}
break;
// Note: AEABI_PAUTHABI takes only unsigned values
case AArch64BuildAttrs::AEABI_PAUTHABI:
switch (Tag) {
default: // allow emitting any attribute by number
OS << "\t.aeabi_attribute" << "\t" << Tag << ", " << Value;
// Keep the data structure consistent with the case of ELF emission
// (important for llvm-mc asm parsing)
AArch64TargetStreamer::emitAttribute(VendorName, Tag, Value, "",
Override);
break;
case AArch64BuildAttrs::TAG_PAUTH_PLATFORM:
case AArch64BuildAttrs::TAG_PAUTH_SCHEMA:
OS << "\t.aeabi_attribute" << "\t"
<< AArch64BuildAttrs::getPauthABITagsStr(Tag) << ", " << Value;
AArch64TargetStreamer::emitAttribute(VendorName, Tag, Value, "",
Override);
break;
}
break;
}
OS << "\n";
}
void emitAtributesSubsection(
StringRef SubsectionName, AArch64BuildAttrs::SubsectionOptional Optional,
AArch64BuildAttrs::SubsectionType ParameterType) override {
// The AArch64 build attributes assembly subsection header format:
// ".aeabi_subsection name, optional, parameter type"
// optional: required (0) optional (1)
// parameter type: uleb128 or ULEB128 (0) ntbs or NTBS (1)
unsigned SubsectionID = AArch64BuildAttrs::getVendorID(SubsectionName);
assert((0 == Optional || 1 == Optional) &&
AArch64BuildAttrs::getSubsectionOptionalUnknownError().data());
assert((0 == ParameterType || 1 == ParameterType) &&
AArch64BuildAttrs::getSubsectionTypeUnknownError().data());
std::string SubsectionTag = ".aeabi_subsection";
StringRef OptionalStr = getOptionalStr(Optional);
StringRef ParameterStr = getTypeStr(ParameterType);
switch (SubsectionID) {
default: {
// Treated as a private subsection
break;
}
case AArch64BuildAttrs::AEABI_PAUTHABI: {
assert(AArch64BuildAttrs::REQUIRED == Optional &&
"subsection .aeabi-pauthabi should be marked as "
"required and not as optional");
assert(AArch64BuildAttrs::ULEB128 == ParameterType &&
"subsection .aeabi-pauthabi should be "
"marked as uleb128 and not as ntbs");
break;
}
case AArch64BuildAttrs::AEABI_FEATURE_AND_BITS: {
assert(AArch64BuildAttrs::OPTIONAL == Optional &&
"subsection .aeabi_feature_and_bits should be "
"marked as optional and not as required");
assert(AArch64BuildAttrs::ULEB128 == ParameterType &&
"subsection .aeabi_feature_and_bits should "
"be marked as uleb128 and not as ntbs");
break;
}
}
OS << "\t" << SubsectionTag << "\t" << SubsectionName << ", " << OptionalStr
<< ", " << ParameterStr;
// Keep the data structure consistent with the case of ELF emission
// (important for llvm-mc asm parsing)
AArch64TargetStreamer::emitAtributesSubsection(SubsectionName, Optional,
ParameterType);
OS << "\n";
}
public:
AArch64TargetAsmStreamer(MCStreamer &S, formatted_raw_ostream &OS);
};
AArch64TargetAsmStreamer::AArch64TargetAsmStreamer(MCStreamer &S,
formatted_raw_ostream &OS)
: AArch64TargetStreamer(S), OS(OS) {}
void AArch64TargetAsmStreamer::emitInst(uint32_t Inst) {
OS << "\t.inst\t0x" << Twine::utohexstr(Inst) << "\n";
}
/// Extend the generic ELFStreamer class so that it can emit mapping symbols at
/// the appropriate points in the object files. These symbols are defined in the
/// AArch64 ELF ABI:
/// infocenter.arm.com/help/topic/com.arm.doc.ihi0056a/IHI0056A_aaelf64.pdf
///
/// In brief: $x or $d should be emitted at the start of each contiguous region
/// of A64 code or data in a section. In practice, this emission does not rely
/// on explicit assembler directives but on inherent properties of the
/// directives doing the emission (e.g. ".byte" is data, "add x0, x0, x0" an
/// instruction).
///
/// As a result this system is orthogonal to the DataRegion infrastructure used
/// by MachO. Beware!
class AArch64ELFStreamer : public MCELFStreamer {
public:
friend AArch64TargetELFStreamer;
AArch64ELFStreamer(MCContext &Context, std::unique_ptr<MCAsmBackend> TAB,
std::unique_ptr<MCObjectWriter> OW,
std::unique_ptr<MCCodeEmitter> Emitter)
: MCELFStreamer(Context, std::move(TAB), std::move(OW),
std::move(Emitter)),
LastEMS(EMS_None) {
auto *TO = getContext().getTargetOptions();
ImplicitMapSyms = TO && TO->ImplicitMapSyms;
}
void changeSection(MCSection *Section, uint32_t Subsection = 0) override {
// Save the mapping symbol state for potential reuse when revisiting the
// section. When ImplicitMapSyms is true, the initial state is
// EMS_A64 for text sections and EMS_Data for the others.
LastMappingSymbols[getCurrentSection().first] = LastEMS;
auto It = LastMappingSymbols.find(Section);
if (It != LastMappingSymbols.end())
LastEMS = It->second;
else if (ImplicitMapSyms)
LastEMS = Section->isText() ? EMS_A64 : EMS_Data;
else
LastEMS = EMS_None;
MCELFStreamer::changeSection(Section, Subsection);
}
// Reset state between object emissions
void reset() override {
MCELFStreamer::reset();
LastMappingSymbols.clear();
LastEMS = EMS_None;
}
/// This function is the one used to emit instruction data into the ELF
/// streamer. We override it to add the appropriate mapping symbol if
/// necessary.
void emitInstruction(const MCInst &Inst,
const MCSubtargetInfo &STI) override {
emitA64MappingSymbol();
MCELFStreamer::emitInstruction(Inst, STI);
}
/// Emit a 32-bit value as an instruction. This is only used for the .inst
/// directive, EmitInstruction should be used in other cases.
void emitInst(uint32_t Inst) {
char Buffer[4];
// We can't just use EmitIntValue here, as that will emit a data mapping
// symbol, and swap the endianness on big-endian systems (instructions are
// always little-endian).
for (char &C : Buffer) {
C = uint8_t(Inst);
Inst >>= 8;
}
emitA64MappingSymbol();
MCELFStreamer::emitBytes(StringRef(Buffer, 4));
}
/// This is one of the functions used to emit data into an ELF section, so the
/// AArch64 streamer overrides it to add the appropriate mapping symbol ($d)
/// if necessary.
void emitBytes(StringRef Data) override {
emitDataMappingSymbol();
MCELFStreamer::emitBytes(Data);
}
/// This is one of the functions used to emit data into an ELF section, so the
/// AArch64 streamer overrides it to add the appropriate mapping symbol ($d)
/// if necessary.
void emitValueImpl(const MCExpr *Value, unsigned Size, SMLoc Loc) override {
emitDataMappingSymbol();
MCELFStreamer::emitValueImpl(Value, Size, Loc);
}
void emitFill(const MCExpr &NumBytes, uint64_t FillValue,
SMLoc Loc) override {
emitDataMappingSymbol();
MCObjectStreamer::emitFill(NumBytes, FillValue, Loc);
}
private:
enum ElfMappingSymbol {
EMS_None,
EMS_A64,
EMS_Data
};
void emitDataMappingSymbol() {
if (LastEMS == EMS_Data)
return;
emitMappingSymbol("$d");
LastEMS = EMS_Data;
}
void emitA64MappingSymbol() {
if (LastEMS == EMS_A64)
return;
emitMappingSymbol("$x");
LastEMS = EMS_A64;
}
MCSymbol *emitMappingSymbol(StringRef Name) {
auto *Symbol = cast<MCSymbolELF>(getContext().createLocalSymbol(Name));
emitLabel(Symbol);
return Symbol;
}
DenseMap<const MCSection *, ElfMappingSymbol> LastMappingSymbols;
ElfMappingSymbol LastEMS;
bool ImplicitMapSyms;
};
} // end anonymous namespace
AArch64ELFStreamer &AArch64TargetELFStreamer::getStreamer() {
return static_cast<AArch64ELFStreamer &>(Streamer);
}
void AArch64TargetELFStreamer::emitAtributesSubsection(
StringRef VendorName, AArch64BuildAttrs::SubsectionOptional IsOptional,
AArch64BuildAttrs::SubsectionType ParameterType) {
AArch64TargetStreamer::emitAtributesSubsection(VendorName, IsOptional,
ParameterType);
}
void AArch64TargetELFStreamer::emitAttribute(StringRef VendorName, unsigned Tag,
unsigned Value, std::string String,
bool Override) {
if (unsigned(-1) != Value)
AArch64TargetStreamer::emitAttribute(VendorName, Tag, Value, "", Override);
if ("" != String)
AArch64TargetStreamer::emitAttribute(VendorName, Tag, unsigned(-1), String,
Override);
}
void AArch64TargetELFStreamer::emitInst(uint32_t Inst) {
getStreamer().emitInst(Inst);
}
void AArch64TargetELFStreamer::emitDirectiveVariantPCS(MCSymbol *Symbol) {
getStreamer().getAssembler().registerSymbol(*Symbol);
cast<MCSymbolELF>(Symbol)->setOther(ELF::STO_AARCH64_VARIANT_PCS);
}
void AArch64TargetELFStreamer::finish() {
AArch64TargetStreamer::finish();
AArch64ELFStreamer &S = getStreamer();
MCContext &Ctx = S.getContext();
auto &Asm = S.getAssembler();
S.emitAttributesSection(AttributeSection, ".ARM.attributes",
ELF::SHT_AARCH64_ATTRIBUTES, AttributeSubSections);
// If ImplicitMapSyms is specified, ensure that text sections end with
// the A64 state while non-text sections end with the data state. When
// sections are combined by the linker, the subsequent section will start with
// the right state. The ending mapping symbol is added right after the last
// symbol relative to the section. When a dumb linker combines (.text.0; .word
// 0) and (.text.1; .word 0), the ending $x of .text.0 precedes the $d of
// .text.1, even if they have the same address.
if (S.ImplicitMapSyms) {
auto &Syms = Asm.getSymbols();
const size_t NumSyms = Syms.size();
DenseMap<MCSection *, std::pair<size_t, MCSymbol *>> EndMapSym;
for (MCSection &Sec : Asm) {
S.switchSection(&Sec);
if (S.LastEMS == (Sec.isText() ? AArch64ELFStreamer::EMS_Data
: AArch64ELFStreamer::EMS_A64))
EndMapSym.insert(
{&Sec, {NumSyms, S.emitMappingSymbol(Sec.isText() ? "$x" : "$d")}});
}
if (Syms.size() != NumSyms) {
SmallVector<const MCSymbol *, 0> NewSyms;
DenseMap<MCSection *, size_t> Cnt;
Syms.truncate(NumSyms);
// Find the last symbol index for each candidate section.
for (auto [I, Sym] : llvm::enumerate(Syms)) {
if (!Sym->isInSection())
continue;
auto It = EndMapSym.find(&Sym->getSection());
if (It != EndMapSym.end())
It->second.first = I;
}
SmallVector<size_t, 0> Idx;
for (auto [I, Sym] : llvm::enumerate(Syms)) {
NewSyms.push_back(Sym);
if (!Sym->isInSection())
continue;
auto It = EndMapSym.find(&Sym->getSection());
// If `Sym` is the last symbol relative to the section, add the ending
// mapping symbol after `Sym`.
if (It != EndMapSym.end() && I == It->second.first) {
NewSyms.push_back(It->second.second);
Idx.push_back(I);
}
}
Syms = std::move(NewSyms);
// F.second holds the number of symbols added before the FILE symbol.
// Take into account the inserted mapping symbols.
for (auto &F : S.getWriter().getFileNames())
F.second += llvm::lower_bound(Idx, F.second) - Idx.begin();
}
}
MCSectionELF *MemtagSec = nullptr;
for (const MCSymbol &Symbol : Asm.symbols()) {
const auto &Sym = cast<MCSymbolELF>(Symbol);
if (Sym.isMemtag()) {
MemtagSec = Ctx.getELFSection(".memtag.globals.static",
ELF::SHT_AARCH64_MEMTAG_GLOBALS_STATIC, 0);
break;
}
}
if (!MemtagSec)
return;
// switchSection registers the section symbol and invalidates symbols(). We
// need a separate symbols() loop.
S.switchSection(MemtagSec);
const auto *Zero = MCConstantExpr::create(0, Ctx);
for (const MCSymbol &Symbol : Asm.symbols()) {
const auto &Sym = cast<MCSymbolELF>(Symbol);
if (!Sym.isMemtag())
continue;
auto *SRE = MCSymbolRefExpr::create(&Sym, MCSymbolRefExpr::VK_None, Ctx);
(void)S.emitRelocDirective(*Zero, "BFD_RELOC_NONE", SRE, SMLoc(),
*Ctx.getSubtargetInfo());
}
}
MCTargetStreamer *
llvm::createAArch64AsmTargetStreamer(MCStreamer &S, formatted_raw_ostream &OS,
MCInstPrinter *InstPrint) {
return new AArch64TargetAsmStreamer(S, OS);
}
MCELFStreamer *
llvm::createAArch64ELFStreamer(MCContext &Context,
std::unique_ptr<MCAsmBackend> TAB,
std::unique_ptr<MCObjectWriter> OW,
std::unique_ptr<MCCodeEmitter> Emitter) {
AArch64ELFStreamer *S = new AArch64ELFStreamer(
Context, std::move(TAB), std::move(OW), std::move(Emitter));
return S;
}