| //===----------------------------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| // <random> |
| |
| // template <class UIntType, UIntType a, UIntType c, UIntType m> |
| // class linear_congruential_engine; |
| |
| // result_type operator()(); |
| |
| #include <random> |
| #include <cassert> |
| |
| #include "test_macros.h" |
| |
| int main(int, char**) |
| { |
| typedef unsigned long long T; |
| |
| // m might overflow, but the overflow is OK so it shouldn't use Schrage's algorithm |
| typedef std::linear_congruential_engine<T, 25214903917ull, 1, (1ull << 48)> E1; |
| E1 e1; |
| // make sure the right algorithm was used |
| assert(e1() == 25214903918ull); |
| assert(e1() == 205774354444503ull); |
| assert(e1() == 158051849450892ull); |
| // make sure result is in bounds |
| assert(e1() < (1ull << 48)); |
| assert(e1() < (1ull << 48)); |
| assert(e1() < (1ull << 48)); |
| assert(e1() < (1ull << 48)); |
| assert(e1() < (1ull << 48)); |
| |
| // m might overflow. The overflow is not OK and result will be in bounds |
| // so we should use Schrage's algorithm |
| typedef std::linear_congruential_engine<T, (1ull << 32), 0, (1ull << 63) + 1ull> E2; |
| E2 e2; |
| // make sure Schrage's algorithm is used (it would be 0s after the first otherwise) |
| assert(e2() == (1ull << 32)); |
| assert(e2() == (1ull << 63) - 1ull); |
| assert(e2() == (1ull << 63) - 0x1ffffffffull); |
| // make sure result is in bounds |
| assert(e2() < (1ull << 63) + 1); |
| assert(e2() < (1ull << 63) + 1); |
| assert(e2() < (1ull << 63) + 1); |
| assert(e2() < (1ull << 63) + 1); |
| assert(e2() < (1ull << 63) + 1); |
| |
| // m might overflow. The overflow is not OK and result will be in bounds |
| // so we should use Schrage's algorithm. m is even |
| typedef std::linear_congruential_engine<T, 0x18000001ull, 0x12347ull, (3ull << 56)> E3; |
| E3 e3; |
| // make sure Schrage's algorithm is used |
| assert(e3() == 0x18012348ull); |
| assert(e3() == 0x2401b4ed802468full); |
| assert(e3() == 0x18051ec400369d6ull); |
| // make sure result is in bounds |
| assert(e3() < (3ull << 56)); |
| assert(e3() < (3ull << 56)); |
| assert(e3() < (3ull << 56)); |
| assert(e3() < (3ull << 56)); |
| assert(e3() < (3ull << 56)); |
| |
| // 32-bit case: |
| // m might overflow. The overflow is not OK, result will be in bounds, |
| // and Schrage's algorithm is incompatible here. Need to use 64 bit arithmetic. |
| typedef std::linear_congruential_engine<unsigned, 0x10009u, 0u, 0x7fffffffu> E4; |
| E4 e4; |
| // make sure enough precision is used |
| assert(e4() == 0x10009u); |
| assert(e4() == 0x120053u); |
| assert(e4() == 0xf5030fu); |
| // make sure result is in bounds |
| assert(e4() < 0x7fffffffu); |
| assert(e4() < 0x7fffffffu); |
| assert(e4() < 0x7fffffffu); |
| assert(e4() < 0x7fffffffu); |
| assert(e4() < 0x7fffffffu); |
| |
| #ifndef TEST_HAS_NO_INT128 |
| // m might overflow. The overflow is not OK, result will be in bounds, |
| // and Schrage's algorithm is incompatible here. Need to use 128 bit arithmetic. |
| typedef std::linear_congruential_engine<T, 0x100000001ull, 0ull, (1ull << 61) - 1ull> E5; |
| E5 e5; |
| // make sure enough precision is used |
| assert(e5() == 0x100000001ull); |
| assert(e5() == 0x200000009ull); |
| assert(e5() == 0xb00000019ull); |
| // make sure result is in bounds |
| assert(e5() < (1ull << 61) - 1ull); |
| assert(e5() < (1ull << 61) - 1ull); |
| assert(e5() < (1ull << 61) - 1ull); |
| assert(e5() < (1ull << 61) - 1ull); |
| assert(e5() < (1ull << 61) - 1ull); |
| #endif |
| |
| // m will not overflow so we should not use Schrage's algorithm |
| typedef std::linear_congruential_engine<T, 1ull, 1, (1ull << 48)> E6; |
| E6 e6; |
| // make sure the correct algorithm was used |
| assert(e6() == 2ull); |
| assert(e6() == 3ull); |
| assert(e6() == 4ull); |
| // make sure result is in bounds |
| assert(e6() < (1ull << 48)); |
| assert(e6() < (1ull << 48)); |
| assert(e6() < (1ull << 48)); |
| assert(e6() < (1ull << 48)); |
| assert(e6() < (1ull << 48)); |
| |
| return 0; |
| } |