blob: 19eeeb28fb08d24cd7a6ca101f969b38a3e008c9 [file] [log] [blame]
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef _LIBCPP_SRC_INCLUDE_FROM_CHARS_FLOATING_POINT_H
#define _LIBCPP_SRC_INCLUDE_FROM_CHARS_FLOATING_POINT_H
// These headers are in the shared LLVM-libc header library.
#include "shared/fp_bits.h"
#include "shared/str_to_float.h"
#include "shared/str_to_integer.h"
#include <__assert>
#include <__config>
#include <cctype>
#include <charconv>
#include <concepts>
#include <limits>
// Included for the _Floating_type_traits class
#include "to_chars_floating_point.h"
_LIBCPP_BEGIN_NAMESPACE_STD
// Parses an infinity string.
// Valid strings are case insensitive and contain INF or INFINITY.
//
// - __first is the first argument to std::from_chars. When the string is invalid
// this value is returned as ptr in the result.
// - __last is the last argument of std::from_chars.
// - __value is the value argument of std::from_chars,
// - __ptr is the current position is the input string. This is points beyond
// the initial I character.
// - __negative whether a valid string represents -inf or +inf.
template <floating_point _Fp>
__from_chars_result<_Fp>
__from_chars_floating_point_inf(const char* const __first, const char* __last, const char* __ptr, bool __negative) {
if (__last - __ptr < 2) [[unlikely]]
return {_Fp{0}, 0, errc::invalid_argument};
if (std::tolower(__ptr[0]) != 'n' || std::tolower(__ptr[1]) != 'f') [[unlikely]]
return {_Fp{0}, 0, errc::invalid_argument};
__ptr += 2;
// At this point the result is valid and contains INF.
// When the remaining part contains INITY this will be consumed. Otherwise
// only INF is consumed. For example INFINITZ will consume INF and ignore
// INITZ.
if (__last - __ptr >= 5 //
&& std::tolower(__ptr[0]) == 'i' //
&& std::tolower(__ptr[1]) == 'n' //
&& std::tolower(__ptr[2]) == 'i' //
&& std::tolower(__ptr[3]) == 't' //
&& std::tolower(__ptr[4]) == 'y')
__ptr += 5;
if constexpr (numeric_limits<_Fp>::has_infinity) {
if (__negative)
return {-std::numeric_limits<_Fp>::infinity(), __ptr - __first, std::errc{}};
return {std::numeric_limits<_Fp>::infinity(), __ptr - __first, std::errc{}};
} else {
return {_Fp{0}, __ptr - __first, errc::result_out_of_range};
}
}
// Parses a nan string.
// Valid strings are case insensitive and contain INF or INFINITY.
//
// - __first is the first argument to std::from_chars. When the string is invalid
// this value is returned as ptr in the result.
// - __last is the last argument of std::from_chars.
// - __value is the value argument of std::from_chars,
// - __ptr is the current position is the input string. This is points beyond
// the initial N character.
// - __negative whether a valid string represents -nan or +nan.
template <floating_point _Fp>
__from_chars_result<_Fp>
__from_chars_floating_point_nan(const char* const __first, const char* __last, const char* __ptr, bool __negative) {
if (__last - __ptr < 2) [[unlikely]]
return {_Fp{0}, 0, errc::invalid_argument};
if (std::tolower(__ptr[0]) != 'a' || std::tolower(__ptr[1]) != 'n') [[unlikely]]
return {_Fp{0}, 0, errc::invalid_argument};
__ptr += 2;
// At this point the result is valid and contains NAN. When the remaining
// part contains ( n-char-sequence_opt ) this will be consumed. Otherwise
// only NAN is consumed. For example NAN(abcd will consume NAN and ignore
// (abcd.
if (__last - __ptr >= 2 && __ptr[0] == '(') {
size_t __offset = 1;
do {
if (__ptr[__offset] == ')') {
__ptr += __offset + 1;
break;
}
if (__ptr[__offset] != '_' && !std::isalnum(__ptr[__offset]))
break;
++__offset;
} while (__ptr + __offset != __last);
}
if (__negative)
return {-std::numeric_limits<_Fp>::quiet_NaN(), __ptr - __first, std::errc{}};
return {std::numeric_limits<_Fp>::quiet_NaN(), __ptr - __first, std::errc{}};
}
template <class _Tp>
struct __fractional_constant_result {
size_t __offset{size_t(-1)};
_Tp __mantissa{0};
int __exponent{0};
bool __truncated{false};
bool __is_valid{false};
};
// Parses the hex constant part of the hexadecimal floating-point value.
// - input start of buffer given to from_chars
// - __n the number of elements in the buffer
// - __offset where to start parsing. The input can have an optional sign, the
// offset starts after this sign.
template <class _Tp>
__fractional_constant_result<_Tp> __parse_fractional_hex_constant(const char* __input, size_t __n, size_t __offset) {
__fractional_constant_result<_Tp> __result;
const _Tp __mantissa_truncate_threshold = numeric_limits<_Tp>::max() / 16;
bool __fraction = false;
for (; __offset < __n; ++__offset) {
if (std::isxdigit(__input[__offset])) {
__result.__is_valid = true;
uint32_t __digit = __input[__offset] - '0';
switch (std::tolower(__input[__offset])) {
case 'a':
__digit = 10;
break;
case 'b':
__digit = 11;
break;
case 'c':
__digit = 12;
break;
case 'd':
__digit = 13;
break;
case 'e':
__digit = 14;
break;
case 'f':
__digit = 15;
break;
}
if (__result.__mantissa < __mantissa_truncate_threshold) {
__result.__mantissa = (__result.__mantissa * 16) + __digit;
if (__fraction)
__result.__exponent -= 4;
} else {
if (__digit > 0)
__result.__truncated = true;
if (!__fraction)
__result.__exponent += 4;
}
} else if (__input[__offset] == '.') {
if (__fraction)
break; // this means that __input[__offset] points to a second decimal point, ending the number.
__fraction = true;
} else
break;
}
__result.__offset = __offset;
return __result;
}
struct __exponent_result {
size_t __offset{size_t(-1)};
int __value{0};
bool __present{false};
};
// When the exponent is not present the result of the struct contains
// __offset, 0, false. This allows using the results unconditionally, the
// __present is important for the scientific notation, where the value is
// mandatory.
__exponent_result __parse_exponent(const char* __input, size_t __n, size_t __offset, char __marker) {
if (__offset + 1 < __n && // an exponent always needs at least one digit.
std::tolower(__input[__offset]) == __marker && //
!std::isspace(__input[__offset + 1]) // leading whitespace is not allowed.
) {
++__offset;
LIBC_NAMESPACE::shared::StrToNumResult<int32_t> __e =
LIBC_NAMESPACE::shared::strtointeger<int32_t>(__input + __offset, 10, __n - __offset);
// __result.error contains the errno value, 0 or ERANGE these are not interesting.
// If the number of characters parsed is 0 it means there was no number.
if (__e.parsed_len != 0)
return {__offset + __e.parsed_len, __e.value, true};
else
--__offset; // the assumption of a valid exponent was not true, undo eating the exponent character.
}
return {__offset, 0, false};
}
// Here we do this operation as int64 to avoid overflow.
int32_t __merge_exponents(int64_t __fractional, int64_t __exponent, int __max_biased_exponent) {
int64_t __sum = __fractional + __exponent;
if (__sum > __max_biased_exponent)
return __max_biased_exponent;
if (__sum < -__max_biased_exponent)
return -__max_biased_exponent;
return __sum;
}
template <class _Fp, class _Tp>
__from_chars_result<_Fp>
__calculate_result(_Tp __mantissa, int __exponent, bool __negative, __from_chars_result<_Fp> __result) {
auto __r = LIBC_NAMESPACE::shared::FPBits<_Fp>();
__r.set_mantissa(__mantissa);
__r.set_biased_exponent(__exponent);
// C17 7.12.1/6
// The result underflows if the magnitude of the mathematical result is so
// small that the mathematical result cannot be represented, without
// extraordinary roundoff error, in an object of the specified type.237) If
// the result underflows, the function returns an implementation-defined
// value whose magnitude is no greater than the smallest normalized positive
// number in the specified type; if the integer expression math_errhandling
// & MATH_ERRNO is nonzero, whether errno acquires the value ERANGE is
// implementation-defined; if the integer expression math_errhandling &
// MATH_ERREXCEPT is nonzero, whether the "underflow" floating-point
// exception is raised is implementation-defined.
//
// LLVM-LIBC sets ERAGNE for subnormal values
//
// [charconv.from.chars]/1
// ... If the parsed value is not in the range representable by the type of
// value, value is unmodified and the member ec of the return value is
// equal to errc::result_out_of_range. ...
//
// Undo the ERANGE for subnormal values.
if (__result.__ec == errc::result_out_of_range && __r.is_subnormal() && !__r.is_zero())
__result.__ec = errc{};
if (__negative)
__result.__value = -__r.get_val();
else
__result.__value = __r.get_val();
return __result;
}
// Implements from_chars for decimal floating-point values.
// __first forwarded from from_chars
// __last forwarded from from_chars
// __value forwarded from from_chars
// __fmt forwarded from from_chars
// __ptr the start of the buffer to parse. This is after the optional sign character.
// __negative should __value be set to a negative value?
//
// This function and __from_chars_floating_point_decimal are similar. However
// the similar parts are all in helper functions. So the amount of code
// duplication is minimal.
template <floating_point _Fp>
__from_chars_result<_Fp>
__from_chars_floating_point_hex(const char* const __first, const char* __last, const char* __ptr, bool __negative) {
size_t __n = __last - __first;
ptrdiff_t __offset = __ptr - __first;
auto __fractional =
std::__parse_fractional_hex_constant<typename _Floating_type_traits<_Fp>::_Uint_type>(__first, __n, __offset);
if (!__fractional.__is_valid)
return {_Fp{0}, 0, errc::invalid_argument};
auto __parsed_exponent = std::__parse_exponent(__first, __n, __fractional.__offset, 'p');
__offset = __parsed_exponent.__offset;
int __exponent = std::__merge_exponents(
__fractional.__exponent, __parsed_exponent.__value, LIBC_NAMESPACE::shared::FPBits<_Fp>::MAX_BIASED_EXPONENT);
__from_chars_result<_Fp> __result{_Fp{0}, __offset, {}};
LIBC_NAMESPACE::shared::ExpandedFloat<_Fp> __expanded_float = {0, 0};
if (__fractional.__mantissa != 0) {
auto __temp = LIBC_NAMESPACE::shared::binary_exp_to_float<_Fp>(
{__fractional.__mantissa, __exponent},
__fractional.__truncated,
LIBC_NAMESPACE::shared::RoundDirection::Nearest);
__expanded_float = __temp.num;
if (__temp.error == ERANGE) {
__result.__ec = errc::result_out_of_range;
}
}
return std::__calculate_result<_Fp>(__expanded_float.mantissa, __expanded_float.exponent, __negative, __result);
}
// Parses the hex constant part of the decimal float value.
// - input start of buffer given to from_chars
// - __n the number of elements in the buffer
// - __offset where to start parsing. The input can have an optional sign, the
// offset starts after this sign.
template <class _Tp>
__fractional_constant_result<_Tp>
__parse_fractional_decimal_constant(const char* __input, ptrdiff_t __n, ptrdiff_t __offset) {
__fractional_constant_result<_Tp> __result;
const _Tp __mantissa_truncate_threshold = numeric_limits<_Tp>::max() / 10;
bool __fraction = false;
for (; __offset < __n; ++__offset) {
if (std::isdigit(__input[__offset])) {
__result.__is_valid = true;
uint32_t __digit = __input[__offset] - '0';
if (__result.__mantissa < __mantissa_truncate_threshold) {
__result.__mantissa = (__result.__mantissa * 10) + __digit;
if (__fraction)
--__result.__exponent;
} else {
if (__digit > 0)
__result.__truncated = true;
if (!__fraction)
++__result.__exponent;
}
} else if (__input[__offset] == '.') {
if (__fraction)
break; // this means that __input[__offset] points to a second decimal point, ending the number.
__fraction = true;
} else
break;
}
__result.__offset = __offset;
return __result;
}
// Implements from_chars for decimal floating-point values.
// __first forwarded from from_chars
// __last forwarded from from_chars
// __value forwarded from from_chars
// __fmt forwarded from from_chars
// __ptr the start of the buffer to parse. This is after the optional sign character.
// __negative should __value be set to a negative value?
template <floating_point _Fp>
__from_chars_result<_Fp> __from_chars_floating_point_decimal(
const char* const __first, const char* __last, chars_format __fmt, const char* __ptr, bool __negative) {
ptrdiff_t __n = __last - __first;
ptrdiff_t __offset = __ptr - __first;
auto __fractional =
std::__parse_fractional_decimal_constant<typename _Floating_type_traits<_Fp>::_Uint_type>(__first, __n, __offset);
if (!__fractional.__is_valid)
return {_Fp{0}, 0, errc::invalid_argument};
__offset = __fractional.__offset;
// LWG3456 Pattern used by std::from_chars is underspecified
// This changes fixed to ignore a possible exponent instead of making its
// existance an error.
int __exponent;
if (__fmt == chars_format::fixed) {
__exponent =
std::__merge_exponents(__fractional.__exponent, 0, LIBC_NAMESPACE::shared::FPBits<_Fp>::MAX_BIASED_EXPONENT);
} else {
auto __parsed_exponent = std::__parse_exponent(__first, __n, __offset, 'e');
if (__fmt == chars_format::scientific && !__parsed_exponent.__present) {
// [charconv.from.chars]/6.2 if fmt has chars_format::scientific set but not chars_format::fixed,
// the otherwise optional exponent part shall appear;
return {_Fp{0}, 0, errc::invalid_argument};
}
__offset = __parsed_exponent.__offset;
__exponent = std::__merge_exponents(
__fractional.__exponent, __parsed_exponent.__value, LIBC_NAMESPACE::shared::FPBits<_Fp>::MAX_BIASED_EXPONENT);
}
__from_chars_result<_Fp> __result{_Fp{0}, __offset, {}};
LIBC_NAMESPACE::shared::ExpandedFloat<_Fp> __expanded_float = {0, 0};
if (__fractional.__mantissa != 0) {
// This function expects to parse a positive value. This means it does not
// take a __first, __n as arguments, since __first points to '-' for
// negative values.
auto __temp = LIBC_NAMESPACE::shared::decimal_exp_to_float<_Fp>(
{__fractional.__mantissa, __exponent},
__fractional.__truncated,
LIBC_NAMESPACE::shared::RoundDirection::Nearest,
__ptr,
__last - __ptr);
__expanded_float = __temp.num;
if (__temp.error == ERANGE) {
__result.__ec = errc::result_out_of_range;
}
}
return std::__calculate_result(__expanded_float.mantissa, __expanded_float.exponent, __negative, __result);
}
template <floating_point _Fp>
__from_chars_result<_Fp>
__from_chars_floating_point_impl(const char* const __first, const char* __last, chars_format __fmt) {
if (__first == __last) [[unlikely]]
return {_Fp{0}, 0, errc::invalid_argument};
const char* __ptr = __first;
bool __negative = *__ptr == '-';
if (__negative) {
++__ptr;
if (__ptr == __last) [[unlikely]]
return {_Fp{0}, 0, errc::invalid_argument};
}
// [charconv.from.chars]
// [Note 1: If the pattern allows for an optional sign, but the string has
// no digit characters following the sign, no characters match the pattern.
// -- end note]
// This is true for integrals, floating point allows -.0
// [charconv.from.chars]/6.2
// if fmt has chars_format::scientific set but not chars_format::fixed, the
// otherwise optional exponent part shall appear;
// Since INF/NAN do not have an exponent this value is not valid.
//
// LWG3456 Pattern used by std::from_chars is underspecified
// Does not address this point, but proposed option B does solve this issue,
// Both MSVC STL and libstdc++ implement this this behaviour.
switch (std::tolower(*__ptr)) {
case 'i':
return std::__from_chars_floating_point_inf<_Fp>(__first, __last, __ptr + 1, __negative);
case 'n':
if constexpr (numeric_limits<_Fp>::has_quiet_NaN)
// NOTE: The pointer passed here will be parsed in the default C locale.
// This is standard behavior (see https://eel.is/c++draft/charconv.from.chars), but may be unexpected.
return std::__from_chars_floating_point_nan<_Fp>(__first, __last, __ptr + 1, __negative);
return {_Fp{0}, 0, errc::invalid_argument};
}
if (__fmt == chars_format::hex)
return std::__from_chars_floating_point_hex<_Fp>(__first, __last, __ptr, __negative);
return std::__from_chars_floating_point_decimal<_Fp>(__first, __last, __fmt, __ptr, __negative);
}
_LIBCPP_END_NAMESPACE_STD
#endif //_LIBCPP_SRC_INCLUDE_FROM_CHARS_FLOATING_POINT_H