| //===-- Collection of utils for sinf/cosf/sincosf ---------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_LIBC_SRC_MATH_GENERIC_SINCOSF_UTILS_H |
| #define LLVM_LIBC_SRC_MATH_GENERIC_SINCOSF_UTILS_H |
| |
| #include "src/__support/FPUtil/FPBits.h" |
| #include "src/__support/FPUtil/PolyEval.h" |
| #include "src/__support/macros/config.h" |
| #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA |
| |
| #if defined(LIBC_TARGET_CPU_HAS_FMA) |
| #include "range_reduction_fma.h" |
| // using namespace LIBC_NAMESPACE::fma; |
| using LIBC_NAMESPACE::fma::FAST_PASS_BOUND; |
| using LIBC_NAMESPACE::fma::large_range_reduction; |
| using LIBC_NAMESPACE::fma::small_range_reduction; |
| |
| #else |
| #include "range_reduction.h" |
| // using namespace LIBC_NAMESPACE::generic; |
| using LIBC_NAMESPACE::generic::FAST_PASS_BOUND; |
| using LIBC_NAMESPACE::generic::large_range_reduction; |
| using LIBC_NAMESPACE::generic::small_range_reduction; |
| #endif // LIBC_TARGET_CPU_HAS_FMA |
| |
| namespace LIBC_NAMESPACE_DECL { |
| |
| // Lookup table for sin(k * pi / 32) with k = 0, ..., 63. |
| // Table is generated with Sollya as follow: |
| // > display = hexadecimal; |
| // > for k from 0 to 63 do { D(sin(k * pi/32)); }; |
| const double SIN_K_PI_OVER_32[64] = { |
| 0x0.0000000000000p+0, 0x1.917a6bc29b42cp-4, 0x1.8f8b83c69a60bp-3, |
| 0x1.294062ed59f06p-2, 0x1.87de2a6aea963p-2, 0x1.e2b5d3806f63bp-2, |
| 0x1.1c73b39ae68c8p-1, 0x1.44cf325091dd6p-1, 0x1.6a09e667f3bcdp-1, |
| 0x1.8bc806b151741p-1, 0x1.a9b66290ea1a3p-1, 0x1.c38b2f180bdb1p-1, |
| 0x1.d906bcf328d46p-1, 0x1.e9f4156c62ddap-1, 0x1.f6297cff75cbp-1, |
| 0x1.fd88da3d12526p-1, 0x1.0000000000000p+0, 0x1.fd88da3d12526p-1, |
| 0x1.f6297cff75cbp-1, 0x1.e9f4156c62ddap-1, 0x1.d906bcf328d46p-1, |
| 0x1.c38b2f180bdb1p-1, 0x1.a9b66290ea1a3p-1, 0x1.8bc806b151741p-1, |
| 0x1.6a09e667f3bcdp-1, 0x1.44cf325091dd6p-1, 0x1.1c73b39ae68c8p-1, |
| 0x1.e2b5d3806f63bp-2, 0x1.87de2a6aea963p-2, 0x1.294062ed59f06p-2, |
| 0x1.8f8b83c69a60bp-3, 0x1.917a6bc29b42cp-4, 0x0.0000000000000p+0, |
| -0x1.917a6bc29b42cp-4, -0x1.8f8b83c69a60bp-3, -0x1.294062ed59f06p-2, |
| -0x1.87de2a6aea963p-2, -0x1.e2b5d3806f63bp-2, -0x1.1c73b39ae68c8p-1, |
| -0x1.44cf325091dd6p-1, -0x1.6a09e667f3bcdp-1, -0x1.8bc806b151741p-1, |
| -0x1.a9b66290ea1a3p-1, -0x1.c38b2f180bdb1p-1, -0x1.d906bcf328d46p-1, |
| -0x1.e9f4156c62ddap-1, -0x1.f6297cff75cbp-1, -0x1.fd88da3d12526p-1, |
| -0x1.0000000000000p+0, -0x1.fd88da3d12526p-1, -0x1.f6297cff75cbp-1, |
| -0x1.e9f4156c62ddap-1, -0x1.d906bcf328d46p-1, -0x1.c38b2f180bdb1p-1, |
| -0x1.a9b66290ea1a3p-1, -0x1.8bc806b151741p-1, -0x1.6a09e667f3bcdp-1, |
| -0x1.44cf325091dd6p-1, -0x1.1c73b39ae68c8p-1, -0x1.e2b5d3806f63bp-2, |
| -0x1.87de2a6aea963p-2, -0x1.294062ed59f06p-2, -0x1.8f8b83c69a60bp-3, |
| -0x1.917a6bc29b42cp-4, |
| }; |
| |
| static LIBC_INLINE void sincosf_poly_eval(int64_t k, double y, double &sin_k, |
| double &cos_k, double &sin_y, |
| double &cosm1_y) { |
| // After range reduction, k = round(x * 32 / pi) and y = (x * 32 / pi) - k. |
| // So k is an integer and -0.5 <= y <= 0.5. |
| // Then sin(x) = sin((k + y)*pi/32) |
| // = sin(y*pi/32) * cos(k*pi/32) + cos(y*pi/32) * sin(k*pi/32) |
| |
| sin_k = SIN_K_PI_OVER_32[k & 63]; |
| // cos(k * pi/32) = sin(k * pi/32 + pi/2) = sin((k + 16) * pi/32). |
| // cos_k = cos(k * pi/32) |
| cos_k = SIN_K_PI_OVER_32[(k + 16) & 63]; |
| |
| double ysq = y * y; |
| |
| // Degree-6 minimax even polynomial for sin(y*pi/32)/y generated by Sollya |
| // with: |
| // > Q = fpminimax(sin(y*pi/32)/y, [|0, 2, 4, 6|], [|D...|], [0, 0.5]); |
| sin_y = |
| y * fputil::polyeval(ysq, 0x1.921fb54442d18p-4, -0x1.4abbce625abb1p-13, |
| 0x1.466bc624f2776p-24, -0x1.32c3a619d4a7ep-36); |
| // Degree-6 minimax even polynomial for cos(y*pi/32) generated by Sollya with: |
| // > P = fpminimax(cos(x*pi/32), [|0, 2, 4, 6|], [|1, D...|], [0, 0.5]); |
| // Note that cosm1_y = cos(y*pi/32) - 1. |
| cosm1_y = ysq * fputil::polyeval(ysq, -0x1.3bd3cc9be430bp-8, |
| 0x1.03c1f070c2e27p-18, -0x1.55cc84bd942p-30); |
| } |
| |
| LIBC_INLINE void sincosf_eval(double xd, uint32_t x_abs, double &sin_k, |
| double &cos_k, double &sin_y, double &cosm1_y) { |
| int64_t k; |
| double y; |
| |
| if (LIBC_LIKELY(x_abs < FAST_PASS_BOUND)) { |
| k = small_range_reduction(xd, y); |
| } else { |
| fputil::FPBits<float> x_bits(x_abs); |
| k = large_range_reduction(xd, x_bits.get_exponent(), y); |
| } |
| |
| sincosf_poly_eval(k, y, sin_k, cos_k, sin_y, cosm1_y); |
| } |
| |
| // Return k and y, where |
| // k = round(x * 32) and y = (x * 32) - k. |
| // => pi * x = (k + y) * pi / 32 |
| static LIBC_INLINE int64_t range_reduction_sincospi(double x, double &y) { |
| double kd = fputil::nearest_integer(x * 32); |
| y = fputil::multiply_add<double>(x, 32.0, -kd); |
| |
| return static_cast<int64_t>(kd); |
| } |
| |
| LIBC_INLINE void sincospif_eval(double xd, double &sin_k, double &cos_k, |
| double &sin_y, double &cosm1_y) { |
| double y; |
| int64_t k = range_reduction_sincospi(xd, y); |
| sincosf_poly_eval(k, y, sin_k, cos_k, sin_y, cosm1_y); |
| } |
| |
| } // namespace LIBC_NAMESPACE_DECL |
| |
| #endif // LLVM_LIBC_SRC_MATH_GENERIC_SINCOSF_UTILS_H |