|  | //===- ASTDiff.cpp - AST differencing implementation-----------*- C++ -*- -===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains definitons for the AST differencing interface. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "clang/Tooling/ASTDiff/ASTDiff.h" | 
|  | #include "clang/AST/ParentMapContext.h" | 
|  | #include "clang/AST/RecursiveASTVisitor.h" | 
|  | #include "clang/Basic/SourceManager.h" | 
|  | #include "clang/Lex/Lexer.h" | 
|  | #include "llvm/ADT/PriorityQueue.h" | 
|  |  | 
|  | #include <limits> | 
|  | #include <memory> | 
|  | #include <optional> | 
|  | #include <unordered_set> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace clang; | 
|  |  | 
|  | namespace clang { | 
|  | namespace diff { | 
|  |  | 
|  | namespace { | 
|  | /// Maps nodes of the left tree to ones on the right, and vice versa. | 
|  | class Mapping { | 
|  | public: | 
|  | Mapping() = default; | 
|  | Mapping(Mapping &&Other) = default; | 
|  | Mapping &operator=(Mapping &&Other) = default; | 
|  |  | 
|  | Mapping(size_t Size) { | 
|  | SrcToDst = std::make_unique<NodeId[]>(Size); | 
|  | DstToSrc = std::make_unique<NodeId[]>(Size); | 
|  | } | 
|  |  | 
|  | void link(NodeId Src, NodeId Dst) { | 
|  | SrcToDst[Src] = Dst, DstToSrc[Dst] = Src; | 
|  | } | 
|  |  | 
|  | NodeId getDst(NodeId Src) const { return SrcToDst[Src]; } | 
|  | NodeId getSrc(NodeId Dst) const { return DstToSrc[Dst]; } | 
|  | bool hasSrc(NodeId Src) const { return getDst(Src).isValid(); } | 
|  | bool hasDst(NodeId Dst) const { return getSrc(Dst).isValid(); } | 
|  |  | 
|  | private: | 
|  | std::unique_ptr<NodeId[]> SrcToDst, DstToSrc; | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | class ASTDiff::Impl { | 
|  | public: | 
|  | SyntaxTree::Impl &T1, &T2; | 
|  | Mapping TheMapping; | 
|  |  | 
|  | Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2, | 
|  | const ComparisonOptions &Options); | 
|  |  | 
|  | /// Matches nodes one-by-one based on their similarity. | 
|  | void computeMapping(); | 
|  |  | 
|  | // Compute Change for each node based on similarity. | 
|  | void computeChangeKinds(Mapping &M); | 
|  |  | 
|  | NodeId getMapped(const std::unique_ptr<SyntaxTree::Impl> &Tree, | 
|  | NodeId Id) const { | 
|  | if (&*Tree == &T1) | 
|  | return TheMapping.getDst(Id); | 
|  | assert(&*Tree == &T2 && "Invalid tree."); | 
|  | return TheMapping.getSrc(Id); | 
|  | } | 
|  |  | 
|  | private: | 
|  | // Returns true if the two subtrees are identical. | 
|  | bool identical(NodeId Id1, NodeId Id2) const; | 
|  |  | 
|  | // Returns false if the nodes must not be mached. | 
|  | bool isMatchingPossible(NodeId Id1, NodeId Id2) const; | 
|  |  | 
|  | // Returns true if the nodes' parents are matched. | 
|  | bool haveSameParents(const Mapping &M, NodeId Id1, NodeId Id2) const; | 
|  |  | 
|  | // Uses an optimal albeit slow algorithm to compute a mapping between two | 
|  | // subtrees, but only if both have fewer nodes than MaxSize. | 
|  | void addOptimalMapping(Mapping &M, NodeId Id1, NodeId Id2) const; | 
|  |  | 
|  | // Computes the ratio of common descendants between the two nodes. | 
|  | // Descendants are only considered to be equal when they are mapped in M. | 
|  | double getJaccardSimilarity(const Mapping &M, NodeId Id1, NodeId Id2) const; | 
|  |  | 
|  | // Returns the node that has the highest degree of similarity. | 
|  | NodeId findCandidate(const Mapping &M, NodeId Id1) const; | 
|  |  | 
|  | // Returns a mapping of identical subtrees. | 
|  | Mapping matchTopDown() const; | 
|  |  | 
|  | // Tries to match any yet unmapped nodes, in a bottom-up fashion. | 
|  | void matchBottomUp(Mapping &M) const; | 
|  |  | 
|  | const ComparisonOptions &Options; | 
|  |  | 
|  | friend class ZhangShashaMatcher; | 
|  | }; | 
|  |  | 
|  | /// Represents the AST of a TranslationUnit. | 
|  | class SyntaxTree::Impl { | 
|  | public: | 
|  | Impl(SyntaxTree *Parent, ASTContext &AST); | 
|  | /// Constructs a tree from an AST node. | 
|  | Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST); | 
|  | Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST); | 
|  | template <class T> | 
|  | Impl(SyntaxTree *Parent, | 
|  | std::enable_if_t<std::is_base_of_v<Stmt, T>, T> *Node, ASTContext &AST) | 
|  | : Impl(Parent, dyn_cast<Stmt>(Node), AST) {} | 
|  | template <class T> | 
|  | Impl(SyntaxTree *Parent, | 
|  | std::enable_if_t<std::is_base_of_v<Decl, T>, T> *Node, ASTContext &AST) | 
|  | : Impl(Parent, dyn_cast<Decl>(Node), AST) {} | 
|  |  | 
|  | SyntaxTree *Parent; | 
|  | ASTContext &AST; | 
|  | PrintingPolicy TypePP; | 
|  | /// Nodes in preorder. | 
|  | std::vector<Node> Nodes; | 
|  | std::vector<NodeId> Leaves; | 
|  | // Maps preorder indices to postorder ones. | 
|  | std::vector<int> PostorderIds; | 
|  | std::vector<NodeId> NodesBfs; | 
|  |  | 
|  | int getSize() const { return Nodes.size(); } | 
|  | NodeId getRootId() const { return 0; } | 
|  | PreorderIterator begin() const { return getRootId(); } | 
|  | PreorderIterator end() const { return getSize(); } | 
|  |  | 
|  | const Node &getNode(NodeId Id) const { return Nodes[Id]; } | 
|  | Node &getMutableNode(NodeId Id) { return Nodes[Id]; } | 
|  | bool isValidNodeId(NodeId Id) const { return Id >= 0 && Id < getSize(); } | 
|  | void addNode(Node &N) { Nodes.push_back(N); } | 
|  | int getNumberOfDescendants(NodeId Id) const; | 
|  | bool isInSubtree(NodeId Id, NodeId SubtreeRoot) const; | 
|  | int findPositionInParent(NodeId Id, bool Shifted = false) const; | 
|  |  | 
|  | std::string getRelativeName(const NamedDecl *ND, | 
|  | const DeclContext *Context) const; | 
|  | std::string getRelativeName(const NamedDecl *ND) const; | 
|  |  | 
|  | std::string getNodeValue(NodeId Id) const; | 
|  | std::string getNodeValue(const Node &Node) const; | 
|  | std::string getDeclValue(const Decl *D) const; | 
|  | std::string getStmtValue(const Stmt *S) const; | 
|  |  | 
|  | private: | 
|  | void initTree(); | 
|  | void setLeftMostDescendants(); | 
|  | }; | 
|  |  | 
|  | static bool isSpecializedNodeExcluded(const Decl *D) { return D->isImplicit(); } | 
|  | static bool isSpecializedNodeExcluded(const Stmt *S) { return false; } | 
|  | static bool isSpecializedNodeExcluded(CXXCtorInitializer *I) { | 
|  | return !I->isWritten(); | 
|  | } | 
|  |  | 
|  | template <class T> | 
|  | static bool isNodeExcluded(const SourceManager &SrcMgr, T *N) { | 
|  | if (!N) | 
|  | return true; | 
|  | SourceLocation SLoc = N->getSourceRange().getBegin(); | 
|  | if (SLoc.isValid()) { | 
|  | // Ignore everything from other files. | 
|  | if (!SrcMgr.isInMainFile(SLoc)) | 
|  | return true; | 
|  | // Ignore macros. | 
|  | if (SLoc != SrcMgr.getSpellingLoc(SLoc)) | 
|  | return true; | 
|  | } | 
|  | return isSpecializedNodeExcluded(N); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | // Sets Height, Parent and Children for each node. | 
|  | struct PreorderVisitor : public RecursiveASTVisitor<PreorderVisitor> { | 
|  | int Id = 0, Depth = 0; | 
|  | NodeId Parent; | 
|  | SyntaxTree::Impl &Tree; | 
|  |  | 
|  | PreorderVisitor(SyntaxTree::Impl &Tree) : Tree(Tree) {} | 
|  |  | 
|  | template <class T> std::tuple<NodeId, NodeId> PreTraverse(T *ASTNode) { | 
|  | NodeId MyId = Id; | 
|  | Tree.Nodes.emplace_back(); | 
|  | Node &N = Tree.getMutableNode(MyId); | 
|  | N.Parent = Parent; | 
|  | N.Depth = Depth; | 
|  | N.ASTNode = DynTypedNode::create(*ASTNode); | 
|  | assert(!N.ASTNode.getNodeKind().isNone() && | 
|  | "Expected nodes to have a valid kind."); | 
|  | if (Parent.isValid()) { | 
|  | Node &P = Tree.getMutableNode(Parent); | 
|  | P.Children.push_back(MyId); | 
|  | } | 
|  | Parent = MyId; | 
|  | ++Id; | 
|  | ++Depth; | 
|  | return std::make_tuple(MyId, Tree.getNode(MyId).Parent); | 
|  | } | 
|  | void PostTraverse(std::tuple<NodeId, NodeId> State) { | 
|  | NodeId MyId, PreviousParent; | 
|  | std::tie(MyId, PreviousParent) = State; | 
|  | assert(MyId.isValid() && "Expecting to only traverse valid nodes."); | 
|  | Parent = PreviousParent; | 
|  | --Depth; | 
|  | Node &N = Tree.getMutableNode(MyId); | 
|  | N.RightMostDescendant = Id - 1; | 
|  | assert(N.RightMostDescendant >= 0 && | 
|  | N.RightMostDescendant < Tree.getSize() && | 
|  | "Rightmost descendant must be a valid tree node."); | 
|  | if (N.isLeaf()) | 
|  | Tree.Leaves.push_back(MyId); | 
|  | N.Height = 1; | 
|  | for (NodeId Child : N.Children) | 
|  | N.Height = std::max(N.Height, 1 + Tree.getNode(Child).Height); | 
|  | } | 
|  | bool TraverseDecl(Decl *D) { | 
|  | if (isNodeExcluded(Tree.AST.getSourceManager(), D)) | 
|  | return true; | 
|  | auto SavedState = PreTraverse(D); | 
|  | RecursiveASTVisitor<PreorderVisitor>::TraverseDecl(D); | 
|  | PostTraverse(SavedState); | 
|  | return true; | 
|  | } | 
|  | bool TraverseStmt(Stmt *S) { | 
|  | if (auto *E = dyn_cast_or_null<Expr>(S)) | 
|  | S = E->IgnoreImplicit(); | 
|  | if (isNodeExcluded(Tree.AST.getSourceManager(), S)) | 
|  | return true; | 
|  | auto SavedState = PreTraverse(S); | 
|  | RecursiveASTVisitor<PreorderVisitor>::TraverseStmt(S); | 
|  | PostTraverse(SavedState); | 
|  | return true; | 
|  | } | 
|  | bool TraverseType(QualType T) { return true; } | 
|  | bool TraverseConstructorInitializer(CXXCtorInitializer *Init) { | 
|  | if (isNodeExcluded(Tree.AST.getSourceManager(), Init)) | 
|  | return true; | 
|  | auto SavedState = PreTraverse(Init); | 
|  | RecursiveASTVisitor<PreorderVisitor>::TraverseConstructorInitializer(Init); | 
|  | PostTraverse(SavedState); | 
|  | return true; | 
|  | } | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | SyntaxTree::Impl::Impl(SyntaxTree *Parent, ASTContext &AST) | 
|  | : Parent(Parent), AST(AST), TypePP(AST.getLangOpts()) { | 
|  | TypePP.AnonymousTagLocations = false; | 
|  | } | 
|  |  | 
|  | SyntaxTree::Impl::Impl(SyntaxTree *Parent, Decl *N, ASTContext &AST) | 
|  | : Impl(Parent, AST) { | 
|  | PreorderVisitor PreorderWalker(*this); | 
|  | PreorderWalker.TraverseDecl(N); | 
|  | initTree(); | 
|  | } | 
|  |  | 
|  | SyntaxTree::Impl::Impl(SyntaxTree *Parent, Stmt *N, ASTContext &AST) | 
|  | : Impl(Parent, AST) { | 
|  | PreorderVisitor PreorderWalker(*this); | 
|  | PreorderWalker.TraverseStmt(N); | 
|  | initTree(); | 
|  | } | 
|  |  | 
|  | static std::vector<NodeId> getSubtreePostorder(const SyntaxTree::Impl &Tree, | 
|  | NodeId Root) { | 
|  | std::vector<NodeId> Postorder; | 
|  | std::function<void(NodeId)> Traverse = [&](NodeId Id) { | 
|  | const Node &N = Tree.getNode(Id); | 
|  | for (NodeId Child : N.Children) | 
|  | Traverse(Child); | 
|  | Postorder.push_back(Id); | 
|  | }; | 
|  | Traverse(Root); | 
|  | return Postorder; | 
|  | } | 
|  |  | 
|  | static std::vector<NodeId> getSubtreeBfs(const SyntaxTree::Impl &Tree, | 
|  | NodeId Root) { | 
|  | std::vector<NodeId> Ids; | 
|  | size_t Expanded = 0; | 
|  | Ids.push_back(Root); | 
|  | while (Expanded < Ids.size()) | 
|  | for (NodeId Child : Tree.getNode(Ids[Expanded++]).Children) | 
|  | Ids.push_back(Child); | 
|  | return Ids; | 
|  | } | 
|  |  | 
|  | void SyntaxTree::Impl::initTree() { | 
|  | setLeftMostDescendants(); | 
|  | int PostorderId = 0; | 
|  | PostorderIds.resize(getSize()); | 
|  | std::function<void(NodeId)> PostorderTraverse = [&](NodeId Id) { | 
|  | for (NodeId Child : getNode(Id).Children) | 
|  | PostorderTraverse(Child); | 
|  | PostorderIds[Id] = PostorderId; | 
|  | ++PostorderId; | 
|  | }; | 
|  | PostorderTraverse(getRootId()); | 
|  | NodesBfs = getSubtreeBfs(*this, getRootId()); | 
|  | } | 
|  |  | 
|  | void SyntaxTree::Impl::setLeftMostDescendants() { | 
|  | for (NodeId Leaf : Leaves) { | 
|  | getMutableNode(Leaf).LeftMostDescendant = Leaf; | 
|  | NodeId Parent, Cur = Leaf; | 
|  | while ((Parent = getNode(Cur).Parent).isValid() && | 
|  | getNode(Parent).Children[0] == Cur) { | 
|  | Cur = Parent; | 
|  | getMutableNode(Cur).LeftMostDescendant = Leaf; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | int SyntaxTree::Impl::getNumberOfDescendants(NodeId Id) const { | 
|  | return getNode(Id).RightMostDescendant - Id + 1; | 
|  | } | 
|  |  | 
|  | bool SyntaxTree::Impl::isInSubtree(NodeId Id, NodeId SubtreeRoot) const { | 
|  | return Id >= SubtreeRoot && Id <= getNode(SubtreeRoot).RightMostDescendant; | 
|  | } | 
|  |  | 
|  | int SyntaxTree::Impl::findPositionInParent(NodeId Id, bool Shifted) const { | 
|  | NodeId Parent = getNode(Id).Parent; | 
|  | if (Parent.isInvalid()) | 
|  | return 0; | 
|  | const auto &Siblings = getNode(Parent).Children; | 
|  | int Position = 0; | 
|  | for (size_t I = 0, E = Siblings.size(); I < E; ++I) { | 
|  | if (Shifted) | 
|  | Position += getNode(Siblings[I]).Shift; | 
|  | if (Siblings[I] == Id) { | 
|  | Position += I; | 
|  | return Position; | 
|  | } | 
|  | } | 
|  | llvm_unreachable("Node not found in parent's children."); | 
|  | } | 
|  |  | 
|  | // Returns the qualified name of ND. If it is subordinate to Context, | 
|  | // then the prefix of the latter is removed from the returned value. | 
|  | std::string | 
|  | SyntaxTree::Impl::getRelativeName(const NamedDecl *ND, | 
|  | const DeclContext *Context) const { | 
|  | std::string Val = ND->getQualifiedNameAsString(); | 
|  | std::string ContextPrefix; | 
|  | if (!Context) | 
|  | return Val; | 
|  | if (auto *Namespace = dyn_cast<NamespaceDecl>(Context)) | 
|  | ContextPrefix = Namespace->getQualifiedNameAsString(); | 
|  | else if (auto *Record = dyn_cast<RecordDecl>(Context)) | 
|  | ContextPrefix = Record->getQualifiedNameAsString(); | 
|  | else if (AST.getLangOpts().CPlusPlus11) | 
|  | if (auto *Tag = dyn_cast<TagDecl>(Context)) | 
|  | ContextPrefix = Tag->getQualifiedNameAsString(); | 
|  | // Strip the qualifier, if Val refers to something in the current scope. | 
|  | // But leave one leading ':' in place, so that we know that this is a | 
|  | // relative path. | 
|  | if (!ContextPrefix.empty() && StringRef(Val).starts_with(ContextPrefix)) | 
|  | Val = Val.substr(ContextPrefix.size() + 1); | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | std::string SyntaxTree::Impl::getRelativeName(const NamedDecl *ND) const { | 
|  | return getRelativeName(ND, ND->getDeclContext()); | 
|  | } | 
|  |  | 
|  | static const DeclContext *getEnclosingDeclContext(ASTContext &AST, | 
|  | const Stmt *S) { | 
|  | while (S) { | 
|  | const auto &Parents = AST.getParents(*S); | 
|  | if (Parents.empty()) | 
|  | return nullptr; | 
|  | const auto &P = Parents[0]; | 
|  | if (const auto *D = P.get<Decl>()) | 
|  | return D->getDeclContext(); | 
|  | S = P.get<Stmt>(); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static std::string getInitializerValue(const CXXCtorInitializer *Init, | 
|  | const PrintingPolicy &TypePP) { | 
|  | if (Init->isAnyMemberInitializer()) | 
|  | return std::string(Init->getAnyMember()->getName()); | 
|  | if (Init->isBaseInitializer()) | 
|  | return QualType(Init->getBaseClass(), 0).getAsString(TypePP); | 
|  | if (Init->isDelegatingInitializer()) | 
|  | return Init->getTypeSourceInfo()->getType().getAsString(TypePP); | 
|  | llvm_unreachable("Unknown initializer type"); | 
|  | } | 
|  |  | 
|  | std::string SyntaxTree::Impl::getNodeValue(NodeId Id) const { | 
|  | return getNodeValue(getNode(Id)); | 
|  | } | 
|  |  | 
|  | std::string SyntaxTree::Impl::getNodeValue(const Node &N) const { | 
|  | const DynTypedNode &DTN = N.ASTNode; | 
|  | if (auto *S = DTN.get<Stmt>()) | 
|  | return getStmtValue(S); | 
|  | if (auto *D = DTN.get<Decl>()) | 
|  | return getDeclValue(D); | 
|  | if (auto *Init = DTN.get<CXXCtorInitializer>()) | 
|  | return getInitializerValue(Init, TypePP); | 
|  | llvm_unreachable("Fatal: unhandled AST node.\n"); | 
|  | } | 
|  |  | 
|  | std::string SyntaxTree::Impl::getDeclValue(const Decl *D) const { | 
|  | std::string Value; | 
|  | if (auto *V = dyn_cast<ValueDecl>(D)) | 
|  | return getRelativeName(V) + "(" + V->getType().getAsString(TypePP) + ")"; | 
|  | if (auto *N = dyn_cast<NamedDecl>(D)) | 
|  | Value += getRelativeName(N) + ";"; | 
|  | if (auto *T = dyn_cast<TypedefNameDecl>(D)) | 
|  | return Value + T->getUnderlyingType().getAsString(TypePP) + ";"; | 
|  | if (auto *T = dyn_cast<TypeDecl>(D)) | 
|  | if (T->getTypeForDecl()) | 
|  | Value += | 
|  | T->getTypeForDecl()->getCanonicalTypeInternal().getAsString(TypePP) + | 
|  | ";"; | 
|  | if (auto *U = dyn_cast<UsingDirectiveDecl>(D)) | 
|  | return std::string(U->getNominatedNamespace()->getName()); | 
|  | if (auto *A = dyn_cast<AccessSpecDecl>(D)) { | 
|  | CharSourceRange Range(A->getSourceRange(), false); | 
|  | return std::string( | 
|  | Lexer::getSourceText(Range, AST.getSourceManager(), AST.getLangOpts())); | 
|  | } | 
|  | return Value; | 
|  | } | 
|  |  | 
|  | std::string SyntaxTree::Impl::getStmtValue(const Stmt *S) const { | 
|  | if (auto *U = dyn_cast<UnaryOperator>(S)) | 
|  | return std::string(UnaryOperator::getOpcodeStr(U->getOpcode())); | 
|  | if (auto *B = dyn_cast<BinaryOperator>(S)) | 
|  | return std::string(B->getOpcodeStr()); | 
|  | if (auto *M = dyn_cast<MemberExpr>(S)) | 
|  | return getRelativeName(M->getMemberDecl()); | 
|  | if (auto *I = dyn_cast<IntegerLiteral>(S)) { | 
|  | SmallString<256> Str; | 
|  | I->getValue().toString(Str, /*Radix=*/10, /*Signed=*/false); | 
|  | return std::string(Str); | 
|  | } | 
|  | if (auto *F = dyn_cast<FloatingLiteral>(S)) { | 
|  | SmallString<256> Str; | 
|  | F->getValue().toString(Str); | 
|  | return std::string(Str); | 
|  | } | 
|  | if (auto *D = dyn_cast<DeclRefExpr>(S)) | 
|  | return getRelativeName(D->getDecl(), getEnclosingDeclContext(AST, S)); | 
|  | if (auto *String = dyn_cast<StringLiteral>(S)) | 
|  | return std::string(String->getString()); | 
|  | if (auto *B = dyn_cast<CXXBoolLiteralExpr>(S)) | 
|  | return B->getValue() ? "true" : "false"; | 
|  | return ""; | 
|  | } | 
|  |  | 
|  | /// Identifies a node in a subtree by its postorder offset, starting at 1. | 
|  | struct SNodeId { | 
|  | int Id = 0; | 
|  |  | 
|  | explicit SNodeId(int Id) : Id(Id) {} | 
|  | explicit SNodeId() = default; | 
|  |  | 
|  | operator int() const { return Id; } | 
|  | SNodeId &operator++() { return ++Id, *this; } | 
|  | SNodeId &operator--() { return --Id, *this; } | 
|  | SNodeId operator+(int Other) const { return SNodeId(Id + Other); } | 
|  | }; | 
|  |  | 
|  | class Subtree { | 
|  | private: | 
|  | /// The parent tree. | 
|  | const SyntaxTree::Impl &Tree; | 
|  | /// Maps SNodeIds to original ids. | 
|  | std::vector<NodeId> RootIds; | 
|  | /// Maps subtree nodes to their leftmost descendants wtihin the subtree. | 
|  | std::vector<SNodeId> LeftMostDescendants; | 
|  |  | 
|  | public: | 
|  | std::vector<SNodeId> KeyRoots; | 
|  |  | 
|  | Subtree(const SyntaxTree::Impl &Tree, NodeId SubtreeRoot) : Tree(Tree) { | 
|  | RootIds = getSubtreePostorder(Tree, SubtreeRoot); | 
|  | int NumLeaves = setLeftMostDescendants(); | 
|  | computeKeyRoots(NumLeaves); | 
|  | } | 
|  | int getSize() const { return RootIds.size(); } | 
|  | NodeId getIdInRoot(SNodeId Id) const { | 
|  | assert(Id > 0 && Id <= getSize() && "Invalid subtree node index."); | 
|  | return RootIds[Id - 1]; | 
|  | } | 
|  | const Node &getNode(SNodeId Id) const { | 
|  | return Tree.getNode(getIdInRoot(Id)); | 
|  | } | 
|  | SNodeId getLeftMostDescendant(SNodeId Id) const { | 
|  | assert(Id > 0 && Id <= getSize() && "Invalid subtree node index."); | 
|  | return LeftMostDescendants[Id - 1]; | 
|  | } | 
|  | /// Returns the postorder index of the leftmost descendant in the subtree. | 
|  | NodeId getPostorderOffset() const { | 
|  | return Tree.PostorderIds[getIdInRoot(SNodeId(1))]; | 
|  | } | 
|  | std::string getNodeValue(SNodeId Id) const { | 
|  | return Tree.getNodeValue(getIdInRoot(Id)); | 
|  | } | 
|  |  | 
|  | private: | 
|  | /// Returns the number of leafs in the subtree. | 
|  | int setLeftMostDescendants() { | 
|  | int NumLeaves = 0; | 
|  | LeftMostDescendants.resize(getSize()); | 
|  | for (int I = 0; I < getSize(); ++I) { | 
|  | SNodeId SI(I + 1); | 
|  | const Node &N = getNode(SI); | 
|  | NumLeaves += N.isLeaf(); | 
|  | assert(I == Tree.PostorderIds[getIdInRoot(SI)] - getPostorderOffset() && | 
|  | "Postorder traversal in subtree should correspond to traversal in " | 
|  | "the root tree by a constant offset."); | 
|  | LeftMostDescendants[I] = SNodeId(Tree.PostorderIds[N.LeftMostDescendant] - | 
|  | getPostorderOffset()); | 
|  | } | 
|  | return NumLeaves; | 
|  | } | 
|  | void computeKeyRoots(int Leaves) { | 
|  | KeyRoots.resize(Leaves); | 
|  | std::unordered_set<int> Visited; | 
|  | int K = Leaves - 1; | 
|  | for (SNodeId I(getSize()); I > 0; --I) { | 
|  | SNodeId LeftDesc = getLeftMostDescendant(I); | 
|  | if (Visited.count(LeftDesc)) | 
|  | continue; | 
|  | assert(K >= 0 && "K should be non-negative"); | 
|  | KeyRoots[K] = I; | 
|  | Visited.insert(LeftDesc); | 
|  | --K; | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Implementation of Zhang and Shasha's Algorithm for tree edit distance. | 
|  | /// Computes an optimal mapping between two trees using only insertion, | 
|  | /// deletion and update as edit actions (similar to the Levenshtein distance). | 
|  | class ZhangShashaMatcher { | 
|  | const ASTDiff::Impl &DiffImpl; | 
|  | Subtree S1; | 
|  | Subtree S2; | 
|  | std::unique_ptr<std::unique_ptr<double[]>[]> TreeDist, ForestDist; | 
|  |  | 
|  | public: | 
|  | ZhangShashaMatcher(const ASTDiff::Impl &DiffImpl, const SyntaxTree::Impl &T1, | 
|  | const SyntaxTree::Impl &T2, NodeId Id1, NodeId Id2) | 
|  | : DiffImpl(DiffImpl), S1(T1, Id1), S2(T2, Id2) { | 
|  | TreeDist = std::make_unique<std::unique_ptr<double[]>[]>( | 
|  | size_t(S1.getSize()) + 1); | 
|  | ForestDist = std::make_unique<std::unique_ptr<double[]>[]>( | 
|  | size_t(S1.getSize()) + 1); | 
|  | for (int I = 0, E = S1.getSize() + 1; I < E; ++I) { | 
|  | TreeDist[I] = std::make_unique<double[]>(size_t(S2.getSize()) + 1); | 
|  | ForestDist[I] = std::make_unique<double[]>(size_t(S2.getSize()) + 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | std::vector<std::pair<NodeId, NodeId>> getMatchingNodes() { | 
|  | std::vector<std::pair<NodeId, NodeId>> Matches; | 
|  | std::vector<std::pair<SNodeId, SNodeId>> TreePairs; | 
|  |  | 
|  | computeTreeDist(); | 
|  |  | 
|  | bool RootNodePair = true; | 
|  |  | 
|  | TreePairs.emplace_back(SNodeId(S1.getSize()), SNodeId(S2.getSize())); | 
|  |  | 
|  | while (!TreePairs.empty()) { | 
|  | SNodeId LastRow, LastCol, FirstRow, FirstCol, Row, Col; | 
|  | std::tie(LastRow, LastCol) = TreePairs.back(); | 
|  | TreePairs.pop_back(); | 
|  |  | 
|  | if (!RootNodePair) { | 
|  | computeForestDist(LastRow, LastCol); | 
|  | } | 
|  |  | 
|  | RootNodePair = false; | 
|  |  | 
|  | FirstRow = S1.getLeftMostDescendant(LastRow); | 
|  | FirstCol = S2.getLeftMostDescendant(LastCol); | 
|  |  | 
|  | Row = LastRow; | 
|  | Col = LastCol; | 
|  |  | 
|  | while (Row > FirstRow || Col > FirstCol) { | 
|  | if (Row > FirstRow && | 
|  | ForestDist[Row - 1][Col] + 1 == ForestDist[Row][Col]) { | 
|  | --Row; | 
|  | } else if (Col > FirstCol && | 
|  | ForestDist[Row][Col - 1] + 1 == ForestDist[Row][Col]) { | 
|  | --Col; | 
|  | } else { | 
|  | SNodeId LMD1 = S1.getLeftMostDescendant(Row); | 
|  | SNodeId LMD2 = S2.getLeftMostDescendant(Col); | 
|  | if (LMD1 == S1.getLeftMostDescendant(LastRow) && | 
|  | LMD2 == S2.getLeftMostDescendant(LastCol)) { | 
|  | NodeId Id1 = S1.getIdInRoot(Row); | 
|  | NodeId Id2 = S2.getIdInRoot(Col); | 
|  | assert(DiffImpl.isMatchingPossible(Id1, Id2) && | 
|  | "These nodes must not be matched."); | 
|  | Matches.emplace_back(Id1, Id2); | 
|  | --Row; | 
|  | --Col; | 
|  | } else { | 
|  | TreePairs.emplace_back(Row, Col); | 
|  | Row = LMD1; | 
|  | Col = LMD2; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return Matches; | 
|  | } | 
|  |  | 
|  | private: | 
|  | /// We use a simple cost model for edit actions, which seems good enough. | 
|  | /// Simple cost model for edit actions. This seems to make the matching | 
|  | /// algorithm perform reasonably well. | 
|  | /// The values range between 0 and 1, or infinity if this edit action should | 
|  | /// always be avoided. | 
|  | static constexpr double DeletionCost = 1; | 
|  | static constexpr double InsertionCost = 1; | 
|  |  | 
|  | double getUpdateCost(SNodeId Id1, SNodeId Id2) { | 
|  | if (!DiffImpl.isMatchingPossible(S1.getIdInRoot(Id1), S2.getIdInRoot(Id2))) | 
|  | return std::numeric_limits<double>::max(); | 
|  | return S1.getNodeValue(Id1) != S2.getNodeValue(Id2); | 
|  | } | 
|  |  | 
|  | void computeTreeDist() { | 
|  | for (SNodeId Id1 : S1.KeyRoots) | 
|  | for (SNodeId Id2 : S2.KeyRoots) | 
|  | computeForestDist(Id1, Id2); | 
|  | } | 
|  |  | 
|  | void computeForestDist(SNodeId Id1, SNodeId Id2) { | 
|  | assert(Id1 > 0 && Id2 > 0 && "Expecting offsets greater than 0."); | 
|  | SNodeId LMD1 = S1.getLeftMostDescendant(Id1); | 
|  | SNodeId LMD2 = S2.getLeftMostDescendant(Id2); | 
|  |  | 
|  | ForestDist[LMD1][LMD2] = 0; | 
|  | for (SNodeId D1 = LMD1 + 1; D1 <= Id1; ++D1) { | 
|  | ForestDist[D1][LMD2] = ForestDist[D1 - 1][LMD2] + DeletionCost; | 
|  | for (SNodeId D2 = LMD2 + 1; D2 <= Id2; ++D2) { | 
|  | ForestDist[LMD1][D2] = ForestDist[LMD1][D2 - 1] + InsertionCost; | 
|  | SNodeId DLMD1 = S1.getLeftMostDescendant(D1); | 
|  | SNodeId DLMD2 = S2.getLeftMostDescendant(D2); | 
|  | if (DLMD1 == LMD1 && DLMD2 == LMD2) { | 
|  | double UpdateCost = getUpdateCost(D1, D2); | 
|  | ForestDist[D1][D2] = | 
|  | std::min({ForestDist[D1 - 1][D2] + DeletionCost, | 
|  | ForestDist[D1][D2 - 1] + InsertionCost, | 
|  | ForestDist[D1 - 1][D2 - 1] + UpdateCost}); | 
|  | TreeDist[D1][D2] = ForestDist[D1][D2]; | 
|  | } else { | 
|  | ForestDist[D1][D2] = | 
|  | std::min({ForestDist[D1 - 1][D2] + DeletionCost, | 
|  | ForestDist[D1][D2 - 1] + InsertionCost, | 
|  | ForestDist[DLMD1][DLMD2] + TreeDist[D1][D2]}); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | ASTNodeKind Node::getType() const { return ASTNode.getNodeKind(); } | 
|  |  | 
|  | StringRef Node::getTypeLabel() const { return getType().asStringRef(); } | 
|  |  | 
|  | std::optional<std::string> Node::getQualifiedIdentifier() const { | 
|  | if (auto *ND = ASTNode.get<NamedDecl>()) { | 
|  | if (ND->getDeclName().isIdentifier()) | 
|  | return ND->getQualifiedNameAsString(); | 
|  | } | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | std::optional<StringRef> Node::getIdentifier() const { | 
|  | if (auto *ND = ASTNode.get<NamedDecl>()) { | 
|  | if (ND->getDeclName().isIdentifier()) | 
|  | return ND->getName(); | 
|  | } | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | // Compares nodes by their depth. | 
|  | struct HeightLess { | 
|  | const SyntaxTree::Impl &Tree; | 
|  | HeightLess(const SyntaxTree::Impl &Tree) : Tree(Tree) {} | 
|  | bool operator()(NodeId Id1, NodeId Id2) const { | 
|  | return Tree.getNode(Id1).Height < Tree.getNode(Id2).Height; | 
|  | } | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | namespace { | 
|  | // Priority queue for nodes, sorted descendingly by their height. | 
|  | class PriorityList { | 
|  | const SyntaxTree::Impl &Tree; | 
|  | HeightLess Cmp; | 
|  | std::vector<NodeId> Container; | 
|  | PriorityQueue<NodeId, std::vector<NodeId>, HeightLess> List; | 
|  |  | 
|  | public: | 
|  | PriorityList(const SyntaxTree::Impl &Tree) | 
|  | : Tree(Tree), Cmp(Tree), List(Cmp, Container) {} | 
|  |  | 
|  | void push(NodeId id) { List.push(id); } | 
|  |  | 
|  | std::vector<NodeId> pop() { | 
|  | int Max = peekMax(); | 
|  | std::vector<NodeId> Result; | 
|  | if (Max == 0) | 
|  | return Result; | 
|  | while (peekMax() == Max) { | 
|  | Result.push_back(List.top()); | 
|  | List.pop(); | 
|  | } | 
|  | // TODO this is here to get a stable output, not a good heuristic | 
|  | llvm::sort(Result); | 
|  | return Result; | 
|  | } | 
|  | int peekMax() const { | 
|  | if (List.empty()) | 
|  | return 0; | 
|  | return Tree.getNode(List.top()).Height; | 
|  | } | 
|  | void open(NodeId Id) { | 
|  | for (NodeId Child : Tree.getNode(Id).Children) | 
|  | push(Child); | 
|  | } | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | bool ASTDiff::Impl::identical(NodeId Id1, NodeId Id2) const { | 
|  | const Node &N1 = T1.getNode(Id1); | 
|  | const Node &N2 = T2.getNode(Id2); | 
|  | if (N1.Children.size() != N2.Children.size() || | 
|  | !isMatchingPossible(Id1, Id2) || | 
|  | T1.getNodeValue(Id1) != T2.getNodeValue(Id2)) | 
|  | return false; | 
|  | for (size_t Id = 0, E = N1.Children.size(); Id < E; ++Id) | 
|  | if (!identical(N1.Children[Id], N2.Children[Id])) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ASTDiff::Impl::isMatchingPossible(NodeId Id1, NodeId Id2) const { | 
|  | return Options.isMatchingAllowed(T1.getNode(Id1), T2.getNode(Id2)); | 
|  | } | 
|  |  | 
|  | bool ASTDiff::Impl::haveSameParents(const Mapping &M, NodeId Id1, | 
|  | NodeId Id2) const { | 
|  | NodeId P1 = T1.getNode(Id1).Parent; | 
|  | NodeId P2 = T2.getNode(Id2).Parent; | 
|  | return (P1.isInvalid() && P2.isInvalid()) || | 
|  | (P1.isValid() && P2.isValid() && M.getDst(P1) == P2); | 
|  | } | 
|  |  | 
|  | void ASTDiff::Impl::addOptimalMapping(Mapping &M, NodeId Id1, | 
|  | NodeId Id2) const { | 
|  | if (std::max(T1.getNumberOfDescendants(Id1), T2.getNumberOfDescendants(Id2)) > | 
|  | Options.MaxSize) | 
|  | return; | 
|  | ZhangShashaMatcher Matcher(*this, T1, T2, Id1, Id2); | 
|  | std::vector<std::pair<NodeId, NodeId>> R = Matcher.getMatchingNodes(); | 
|  | for (const auto &Tuple : R) { | 
|  | NodeId Src = Tuple.first; | 
|  | NodeId Dst = Tuple.second; | 
|  | if (!M.hasSrc(Src) && !M.hasDst(Dst)) | 
|  | M.link(Src, Dst); | 
|  | } | 
|  | } | 
|  |  | 
|  | double ASTDiff::Impl::getJaccardSimilarity(const Mapping &M, NodeId Id1, | 
|  | NodeId Id2) const { | 
|  | int CommonDescendants = 0; | 
|  | const Node &N1 = T1.getNode(Id1); | 
|  | // Count the common descendants, excluding the subtree root. | 
|  | for (NodeId Src = Id1 + 1; Src <= N1.RightMostDescendant; ++Src) { | 
|  | NodeId Dst = M.getDst(Src); | 
|  | CommonDescendants += int(Dst.isValid() && T2.isInSubtree(Dst, Id2)); | 
|  | } | 
|  | // We need to subtract 1 to get the number of descendants excluding the root. | 
|  | double Denominator = T1.getNumberOfDescendants(Id1) - 1 + | 
|  | T2.getNumberOfDescendants(Id2) - 1 - CommonDescendants; | 
|  | // CommonDescendants is less than the size of one subtree. | 
|  | assert(Denominator >= 0 && "Expected non-negative denominator."); | 
|  | if (Denominator == 0) | 
|  | return 0; | 
|  | return CommonDescendants / Denominator; | 
|  | } | 
|  |  | 
|  | NodeId ASTDiff::Impl::findCandidate(const Mapping &M, NodeId Id1) const { | 
|  | NodeId Candidate; | 
|  | double HighestSimilarity = 0.0; | 
|  | for (NodeId Id2 : T2) { | 
|  | if (!isMatchingPossible(Id1, Id2)) | 
|  | continue; | 
|  | if (M.hasDst(Id2)) | 
|  | continue; | 
|  | double Similarity = getJaccardSimilarity(M, Id1, Id2); | 
|  | if (Similarity >= Options.MinSimilarity && Similarity > HighestSimilarity) { | 
|  | HighestSimilarity = Similarity; | 
|  | Candidate = Id2; | 
|  | } | 
|  | } | 
|  | return Candidate; | 
|  | } | 
|  |  | 
|  | void ASTDiff::Impl::matchBottomUp(Mapping &M) const { | 
|  | std::vector<NodeId> Postorder = getSubtreePostorder(T1, T1.getRootId()); | 
|  | for (NodeId Id1 : Postorder) { | 
|  | if (Id1 == T1.getRootId() && !M.hasSrc(T1.getRootId()) && | 
|  | !M.hasDst(T2.getRootId())) { | 
|  | if (isMatchingPossible(T1.getRootId(), T2.getRootId())) { | 
|  | M.link(T1.getRootId(), T2.getRootId()); | 
|  | addOptimalMapping(M, T1.getRootId(), T2.getRootId()); | 
|  | } | 
|  | break; | 
|  | } | 
|  | bool Matched = M.hasSrc(Id1); | 
|  | const Node &N1 = T1.getNode(Id1); | 
|  | bool MatchedChildren = llvm::any_of( | 
|  | N1.Children, [&](NodeId Child) { return M.hasSrc(Child); }); | 
|  | if (Matched || !MatchedChildren) | 
|  | continue; | 
|  | NodeId Id2 = findCandidate(M, Id1); | 
|  | if (Id2.isValid()) { | 
|  | M.link(Id1, Id2); | 
|  | addOptimalMapping(M, Id1, Id2); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Mapping ASTDiff::Impl::matchTopDown() const { | 
|  | PriorityList L1(T1); | 
|  | PriorityList L2(T2); | 
|  |  | 
|  | Mapping M(T1.getSize() + T2.getSize()); | 
|  |  | 
|  | L1.push(T1.getRootId()); | 
|  | L2.push(T2.getRootId()); | 
|  |  | 
|  | int Max1, Max2; | 
|  | while (std::min(Max1 = L1.peekMax(), Max2 = L2.peekMax()) > | 
|  | Options.MinHeight) { | 
|  | if (Max1 > Max2) { | 
|  | for (NodeId Id : L1.pop()) | 
|  | L1.open(Id); | 
|  | continue; | 
|  | } | 
|  | if (Max2 > Max1) { | 
|  | for (NodeId Id : L2.pop()) | 
|  | L2.open(Id); | 
|  | continue; | 
|  | } | 
|  | std::vector<NodeId> H1, H2; | 
|  | H1 = L1.pop(); | 
|  | H2 = L2.pop(); | 
|  | for (NodeId Id1 : H1) { | 
|  | for (NodeId Id2 : H2) { | 
|  | if (identical(Id1, Id2) && !M.hasSrc(Id1) && !M.hasDst(Id2)) { | 
|  | for (int I = 0, E = T1.getNumberOfDescendants(Id1); I < E; ++I) | 
|  | M.link(Id1 + I, Id2 + I); | 
|  | } | 
|  | } | 
|  | } | 
|  | for (NodeId Id1 : H1) { | 
|  | if (!M.hasSrc(Id1)) | 
|  | L1.open(Id1); | 
|  | } | 
|  | for (NodeId Id2 : H2) { | 
|  | if (!M.hasDst(Id2)) | 
|  | L2.open(Id2); | 
|  | } | 
|  | } | 
|  | return M; | 
|  | } | 
|  |  | 
|  | ASTDiff::Impl::Impl(SyntaxTree::Impl &T1, SyntaxTree::Impl &T2, | 
|  | const ComparisonOptions &Options) | 
|  | : T1(T1), T2(T2), Options(Options) { | 
|  | computeMapping(); | 
|  | computeChangeKinds(TheMapping); | 
|  | } | 
|  |  | 
|  | void ASTDiff::Impl::computeMapping() { | 
|  | TheMapping = matchTopDown(); | 
|  | if (Options.StopAfterTopDown) | 
|  | return; | 
|  | matchBottomUp(TheMapping); | 
|  | } | 
|  |  | 
|  | void ASTDiff::Impl::computeChangeKinds(Mapping &M) { | 
|  | for (NodeId Id1 : T1) { | 
|  | if (!M.hasSrc(Id1)) { | 
|  | T1.getMutableNode(Id1).Change = Delete; | 
|  | T1.getMutableNode(Id1).Shift -= 1; | 
|  | } | 
|  | } | 
|  | for (NodeId Id2 : T2) { | 
|  | if (!M.hasDst(Id2)) { | 
|  | T2.getMutableNode(Id2).Change = Insert; | 
|  | T2.getMutableNode(Id2).Shift -= 1; | 
|  | } | 
|  | } | 
|  | for (NodeId Id1 : T1.NodesBfs) { | 
|  | NodeId Id2 = M.getDst(Id1); | 
|  | if (Id2.isInvalid()) | 
|  | continue; | 
|  | if (!haveSameParents(M, Id1, Id2) || | 
|  | T1.findPositionInParent(Id1, true) != | 
|  | T2.findPositionInParent(Id2, true)) { | 
|  | T1.getMutableNode(Id1).Shift -= 1; | 
|  | T2.getMutableNode(Id2).Shift -= 1; | 
|  | } | 
|  | } | 
|  | for (NodeId Id2 : T2.NodesBfs) { | 
|  | NodeId Id1 = M.getSrc(Id2); | 
|  | if (Id1.isInvalid()) | 
|  | continue; | 
|  | Node &N1 = T1.getMutableNode(Id1); | 
|  | Node &N2 = T2.getMutableNode(Id2); | 
|  | if (Id1.isInvalid()) | 
|  | continue; | 
|  | if (!haveSameParents(M, Id1, Id2) || | 
|  | T1.findPositionInParent(Id1, true) != | 
|  | T2.findPositionInParent(Id2, true)) { | 
|  | N1.Change = N2.Change = Move; | 
|  | } | 
|  | if (T1.getNodeValue(Id1) != T2.getNodeValue(Id2)) { | 
|  | N1.Change = N2.Change = (N1.Change == Move ? UpdateMove : Update); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ASTDiff::ASTDiff(SyntaxTree &T1, SyntaxTree &T2, | 
|  | const ComparisonOptions &Options) | 
|  | : DiffImpl(std::make_unique<Impl>(*T1.TreeImpl, *T2.TreeImpl, Options)) {} | 
|  |  | 
|  | ASTDiff::~ASTDiff() = default; | 
|  |  | 
|  | NodeId ASTDiff::getMapped(const SyntaxTree &SourceTree, NodeId Id) const { | 
|  | return DiffImpl->getMapped(SourceTree.TreeImpl, Id); | 
|  | } | 
|  |  | 
|  | SyntaxTree::SyntaxTree(ASTContext &AST) | 
|  | : TreeImpl(std::make_unique<SyntaxTree::Impl>( | 
|  | this, AST.getTranslationUnitDecl(), AST)) {} | 
|  |  | 
|  | SyntaxTree::~SyntaxTree() = default; | 
|  |  | 
|  | const ASTContext &SyntaxTree::getASTContext() const { return TreeImpl->AST; } | 
|  |  | 
|  | const Node &SyntaxTree::getNode(NodeId Id) const { | 
|  | return TreeImpl->getNode(Id); | 
|  | } | 
|  |  | 
|  | int SyntaxTree::getSize() const { return TreeImpl->getSize(); } | 
|  | NodeId SyntaxTree::getRootId() const { return TreeImpl->getRootId(); } | 
|  | SyntaxTree::PreorderIterator SyntaxTree::begin() const { | 
|  | return TreeImpl->begin(); | 
|  | } | 
|  | SyntaxTree::PreorderIterator SyntaxTree::end() const { return TreeImpl->end(); } | 
|  |  | 
|  | int SyntaxTree::findPositionInParent(NodeId Id) const { | 
|  | return TreeImpl->findPositionInParent(Id); | 
|  | } | 
|  |  | 
|  | std::pair<unsigned, unsigned> | 
|  | SyntaxTree::getSourceRangeOffsets(const Node &N) const { | 
|  | const SourceManager &SrcMgr = TreeImpl->AST.getSourceManager(); | 
|  | SourceRange Range = N.ASTNode.getSourceRange(); | 
|  | SourceLocation BeginLoc = Range.getBegin(); | 
|  | SourceLocation EndLoc = Lexer::getLocForEndOfToken( | 
|  | Range.getEnd(), /*Offset=*/0, SrcMgr, TreeImpl->AST.getLangOpts()); | 
|  | if (auto *ThisExpr = N.ASTNode.get<CXXThisExpr>()) { | 
|  | if (ThisExpr->isImplicit()) | 
|  | EndLoc = BeginLoc; | 
|  | } | 
|  | unsigned Begin = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(BeginLoc)); | 
|  | unsigned End = SrcMgr.getFileOffset(SrcMgr.getExpansionLoc(EndLoc)); | 
|  | return {Begin, End}; | 
|  | } | 
|  |  | 
|  | std::string SyntaxTree::getNodeValue(NodeId Id) const { | 
|  | return TreeImpl->getNodeValue(Id); | 
|  | } | 
|  |  | 
|  | std::string SyntaxTree::getNodeValue(const Node &N) const { | 
|  | return TreeImpl->getNodeValue(N); | 
|  | } | 
|  |  | 
|  | } // end namespace diff | 
|  | } // end namespace clang |