|  | //===- InstrProf.cpp - Instrumented profiling format support --------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains support for clang's instrumentation based PGO and | 
|  | // coverage. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ProfileData/InstrProf.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/SmallString.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/ADT/Triple.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/MDBuilder.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/ProfileData/InstrProfReader.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Compression.h" | 
|  | #include "llvm/Support/Endian.h" | 
|  | #include "llvm/Support/Error.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/LEB128.h" | 
|  | #include "llvm/Support/ManagedStatic.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/Path.h" | 
|  | #include "llvm/Support/SwapByteOrder.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstddef> | 
|  | #include <cstdint> | 
|  | #include <cstring> | 
|  | #include <memory> | 
|  | #include <string> | 
|  | #include <system_error> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | static cl::opt<bool> StaticFuncFullModulePrefix( | 
|  | "static-func-full-module-prefix", cl::init(true), cl::Hidden, | 
|  | cl::desc("Use full module build paths in the profile counter names for " | 
|  | "static functions.")); | 
|  |  | 
|  | // This option is tailored to users that have different top-level directory in | 
|  | // profile-gen and profile-use compilation. Users need to specific the number | 
|  | // of levels to strip. A value larger than the number of directories in the | 
|  | // source file will strip all the directory names and only leave the basename. | 
|  | // | 
|  | // Note current ThinLTO module importing for the indirect-calls assumes | 
|  | // the source directory name not being stripped. A non-zero option value here | 
|  | // can potentially prevent some inter-module indirect-call-promotions. | 
|  | static cl::opt<unsigned> StaticFuncStripDirNamePrefix( | 
|  | "static-func-strip-dirname-prefix", cl::init(0), cl::Hidden, | 
|  | cl::desc("Strip specified level of directory name from source path in " | 
|  | "the profile counter name for static functions.")); | 
|  |  | 
|  | static std::string getInstrProfErrString(instrprof_error Err) { | 
|  | switch (Err) { | 
|  | case instrprof_error::success: | 
|  | return "Success"; | 
|  | case instrprof_error::eof: | 
|  | return "End of File"; | 
|  | case instrprof_error::unrecognized_format: | 
|  | return "Unrecognized instrumentation profile encoding format"; | 
|  | case instrprof_error::bad_magic: | 
|  | return "Invalid instrumentation profile data (bad magic)"; | 
|  | case instrprof_error::bad_header: | 
|  | return "Invalid instrumentation profile data (file header is corrupt)"; | 
|  | case instrprof_error::unsupported_version: | 
|  | return "Unsupported instrumentation profile format version"; | 
|  | case instrprof_error::unsupported_hash_type: | 
|  | return "Unsupported instrumentation profile hash type"; | 
|  | case instrprof_error::too_large: | 
|  | return "Too much profile data"; | 
|  | case instrprof_error::truncated: | 
|  | return "Truncated profile data"; | 
|  | case instrprof_error::malformed: | 
|  | return "Malformed instrumentation profile data"; | 
|  | case instrprof_error::unknown_function: | 
|  | return "No profile data available for function"; | 
|  | case instrprof_error::hash_mismatch: | 
|  | return "Function control flow change detected (hash mismatch)"; | 
|  | case instrprof_error::count_mismatch: | 
|  | return "Function basic block count change detected (counter mismatch)"; | 
|  | case instrprof_error::counter_overflow: | 
|  | return "Counter overflow"; | 
|  | case instrprof_error::value_site_count_mismatch: | 
|  | return "Function value site count change detected (counter mismatch)"; | 
|  | case instrprof_error::compress_failed: | 
|  | return "Failed to compress data (zlib)"; | 
|  | case instrprof_error::uncompress_failed: | 
|  | return "Failed to uncompress data (zlib)"; | 
|  | case instrprof_error::empty_raw_profile: | 
|  | return "Empty raw profile file"; | 
|  | case instrprof_error::zlib_unavailable: | 
|  | return "Profile uses zlib compression but the profile reader was built without zlib support"; | 
|  | } | 
|  | llvm_unreachable("A value of instrprof_error has no message."); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // FIXME: This class is only here to support the transition to llvm::Error. It | 
|  | // will be removed once this transition is complete. Clients should prefer to | 
|  | // deal with the Error value directly, rather than converting to error_code. | 
|  | class InstrProfErrorCategoryType : public std::error_category { | 
|  | const char *name() const noexcept override { return "llvm.instrprof"; } | 
|  |  | 
|  | std::string message(int IE) const override { | 
|  | return getInstrProfErrString(static_cast<instrprof_error>(IE)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | static ManagedStatic<InstrProfErrorCategoryType> ErrorCategory; | 
|  |  | 
|  | const std::error_category &llvm::instrprof_category() { | 
|  | return *ErrorCategory; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | const char *InstrProfSectNameCommon[] = { | 
|  | #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix)      \ | 
|  | SectNameCommon, | 
|  | #include "llvm/ProfileData/InstrProfData.inc" | 
|  | }; | 
|  |  | 
|  | const char *InstrProfSectNameCoff[] = { | 
|  | #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix)      \ | 
|  | SectNameCoff, | 
|  | #include "llvm/ProfileData/InstrProfData.inc" | 
|  | }; | 
|  |  | 
|  | const char *InstrProfSectNamePrefix[] = { | 
|  | #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix)      \ | 
|  | Prefix, | 
|  | #include "llvm/ProfileData/InstrProfData.inc" | 
|  | }; | 
|  |  | 
|  | } // namespace | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | cl::opt<bool> DoInstrProfNameCompression( | 
|  | "enable-name-compression", | 
|  | cl::desc("Enable name/filename string compression"), cl::init(true)); | 
|  |  | 
|  | std::string getInstrProfSectionName(InstrProfSectKind IPSK, | 
|  | Triple::ObjectFormatType OF, | 
|  | bool AddSegmentInfo) { | 
|  | std::string SectName; | 
|  |  | 
|  | if (OF == Triple::MachO && AddSegmentInfo) | 
|  | SectName = InstrProfSectNamePrefix[IPSK]; | 
|  |  | 
|  | if (OF == Triple::COFF) | 
|  | SectName += InstrProfSectNameCoff[IPSK]; | 
|  | else | 
|  | SectName += InstrProfSectNameCommon[IPSK]; | 
|  |  | 
|  | if (OF == Triple::MachO && IPSK == IPSK_data && AddSegmentInfo) | 
|  | SectName += ",regular,live_support"; | 
|  |  | 
|  | return SectName; | 
|  | } | 
|  |  | 
|  | void SoftInstrProfErrors::addError(instrprof_error IE) { | 
|  | if (IE == instrprof_error::success) | 
|  | return; | 
|  |  | 
|  | if (FirstError == instrprof_error::success) | 
|  | FirstError = IE; | 
|  |  | 
|  | switch (IE) { | 
|  | case instrprof_error::hash_mismatch: | 
|  | ++NumHashMismatches; | 
|  | break; | 
|  | case instrprof_error::count_mismatch: | 
|  | ++NumCountMismatches; | 
|  | break; | 
|  | case instrprof_error::counter_overflow: | 
|  | ++NumCounterOverflows; | 
|  | break; | 
|  | case instrprof_error::value_site_count_mismatch: | 
|  | ++NumValueSiteCountMismatches; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Not a soft error"); | 
|  | } | 
|  | } | 
|  |  | 
|  | std::string InstrProfError::message() const { | 
|  | return getInstrProfErrString(Err); | 
|  | } | 
|  |  | 
|  | char InstrProfError::ID = 0; | 
|  |  | 
|  | std::string getPGOFuncName(StringRef RawFuncName, | 
|  | GlobalValue::LinkageTypes Linkage, | 
|  | StringRef FileName, | 
|  | uint64_t Version LLVM_ATTRIBUTE_UNUSED) { | 
|  | return GlobalValue::getGlobalIdentifier(RawFuncName, Linkage, FileName); | 
|  | } | 
|  |  | 
|  | // Strip NumPrefix level of directory name from PathNameStr. If the number of | 
|  | // directory separators is less than NumPrefix, strip all the directories and | 
|  | // leave base file name only. | 
|  | static StringRef stripDirPrefix(StringRef PathNameStr, uint32_t NumPrefix) { | 
|  | uint32_t Count = NumPrefix; | 
|  | uint32_t Pos = 0, LastPos = 0; | 
|  | for (auto & CI : PathNameStr) { | 
|  | ++Pos; | 
|  | if (llvm::sys::path::is_separator(CI)) { | 
|  | LastPos = Pos; | 
|  | --Count; | 
|  | } | 
|  | if (Count == 0) | 
|  | break; | 
|  | } | 
|  | return PathNameStr.substr(LastPos); | 
|  | } | 
|  |  | 
|  | // Return the PGOFuncName. This function has some special handling when called | 
|  | // in LTO optimization. The following only applies when calling in LTO passes | 
|  | // (when \c InLTO is true): LTO's internalization privatizes many global linkage | 
|  | // symbols. This happens after value profile annotation, but those internal | 
|  | // linkage functions should not have a source prefix. | 
|  | // Additionally, for ThinLTO mode, exported internal functions are promoted | 
|  | // and renamed. We need to ensure that the original internal PGO name is | 
|  | // used when computing the GUID that is compared against the profiled GUIDs. | 
|  | // To differentiate compiler generated internal symbols from original ones, | 
|  | // PGOFuncName meta data are created and attached to the original internal | 
|  | // symbols in the value profile annotation step | 
|  | // (PGOUseFunc::annotateIndirectCallSites). If a symbol does not have the meta | 
|  | // data, its original linkage must be non-internal. | 
|  | std::string getPGOFuncName(const Function &F, bool InLTO, uint64_t Version) { | 
|  | if (!InLTO) { | 
|  | StringRef FileName(F.getParent()->getSourceFileName()); | 
|  | uint32_t StripLevel = StaticFuncFullModulePrefix ? 0 : (uint32_t)-1; | 
|  | if (StripLevel < StaticFuncStripDirNamePrefix) | 
|  | StripLevel = StaticFuncStripDirNamePrefix; | 
|  | if (StripLevel) | 
|  | FileName = stripDirPrefix(FileName, StripLevel); | 
|  | return getPGOFuncName(F.getName(), F.getLinkage(), FileName, Version); | 
|  | } | 
|  |  | 
|  | // In LTO mode (when InLTO is true), first check if there is a meta data. | 
|  | if (MDNode *MD = getPGOFuncNameMetadata(F)) { | 
|  | StringRef S = cast<MDString>(MD->getOperand(0))->getString(); | 
|  | return S.str(); | 
|  | } | 
|  |  | 
|  | // If there is no meta data, the function must be a global before the value | 
|  | // profile annotation pass. Its current linkage may be internal if it is | 
|  | // internalized in LTO mode. | 
|  | return getPGOFuncName(F.getName(), GlobalValue::ExternalLinkage, ""); | 
|  | } | 
|  |  | 
|  | StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName, StringRef FileName) { | 
|  | if (FileName.empty()) | 
|  | return PGOFuncName; | 
|  | // Drop the file name including ':'. See also getPGOFuncName. | 
|  | if (PGOFuncName.startswith(FileName)) | 
|  | PGOFuncName = PGOFuncName.drop_front(FileName.size() + 1); | 
|  | return PGOFuncName; | 
|  | } | 
|  |  | 
|  | // \p FuncName is the string used as profile lookup key for the function. A | 
|  | // symbol is created to hold the name. Return the legalized symbol name. | 
|  | std::string getPGOFuncNameVarName(StringRef FuncName, | 
|  | GlobalValue::LinkageTypes Linkage) { | 
|  | std::string VarName = std::string(getInstrProfNameVarPrefix()); | 
|  | VarName += FuncName; | 
|  |  | 
|  | if (!GlobalValue::isLocalLinkage(Linkage)) | 
|  | return VarName; | 
|  |  | 
|  | // Now fix up illegal chars in local VarName that may upset the assembler. | 
|  | const char *InvalidChars = "-:<>/\"'"; | 
|  | size_t found = VarName.find_first_of(InvalidChars); | 
|  | while (found != std::string::npos) { | 
|  | VarName[found] = '_'; | 
|  | found = VarName.find_first_of(InvalidChars, found + 1); | 
|  | } | 
|  | return VarName; | 
|  | } | 
|  |  | 
|  | GlobalVariable *createPGOFuncNameVar(Module &M, | 
|  | GlobalValue::LinkageTypes Linkage, | 
|  | StringRef PGOFuncName) { | 
|  | // We generally want to match the function's linkage, but available_externally | 
|  | // and extern_weak both have the wrong semantics, and anything that doesn't | 
|  | // need to link across compilation units doesn't need to be visible at all. | 
|  | if (Linkage == GlobalValue::ExternalWeakLinkage) | 
|  | Linkage = GlobalValue::LinkOnceAnyLinkage; | 
|  | else if (Linkage == GlobalValue::AvailableExternallyLinkage) | 
|  | Linkage = GlobalValue::LinkOnceODRLinkage; | 
|  | else if (Linkage == GlobalValue::InternalLinkage || | 
|  | Linkage == GlobalValue::ExternalLinkage) | 
|  | Linkage = GlobalValue::PrivateLinkage; | 
|  |  | 
|  | auto *Value = | 
|  | ConstantDataArray::getString(M.getContext(), PGOFuncName, false); | 
|  | auto FuncNameVar = | 
|  | new GlobalVariable(M, Value->getType(), true, Linkage, Value, | 
|  | getPGOFuncNameVarName(PGOFuncName, Linkage)); | 
|  |  | 
|  | // Hide the symbol so that we correctly get a copy for each executable. | 
|  | if (!GlobalValue::isLocalLinkage(FuncNameVar->getLinkage())) | 
|  | FuncNameVar->setVisibility(GlobalValue::HiddenVisibility); | 
|  |  | 
|  | return FuncNameVar; | 
|  | } | 
|  |  | 
|  | GlobalVariable *createPGOFuncNameVar(Function &F, StringRef PGOFuncName) { | 
|  | return createPGOFuncNameVar(*F.getParent(), F.getLinkage(), PGOFuncName); | 
|  | } | 
|  |  | 
|  | Error InstrProfSymtab::create(Module &M, bool InLTO) { | 
|  | for (Function &F : M) { | 
|  | // Function may not have a name: like using asm("") to overwrite the name. | 
|  | // Ignore in this case. | 
|  | if (!F.hasName()) | 
|  | continue; | 
|  | const std::string &PGOFuncName = getPGOFuncName(F, InLTO); | 
|  | if (Error E = addFuncName(PGOFuncName)) | 
|  | return E; | 
|  | MD5FuncMap.emplace_back(Function::getGUID(PGOFuncName), &F); | 
|  | // In ThinLTO, local function may have been promoted to global and have | 
|  | // suffix added to the function name. We need to add the stripped function | 
|  | // name to the symbol table so that we can find a match from profile. | 
|  | if (InLTO) { | 
|  | auto pos = PGOFuncName.find('.'); | 
|  | if (pos != std::string::npos) { | 
|  | const std::string &OtherFuncName = PGOFuncName.substr(0, pos); | 
|  | if (Error E = addFuncName(OtherFuncName)) | 
|  | return E; | 
|  | MD5FuncMap.emplace_back(Function::getGUID(OtherFuncName), &F); | 
|  | } | 
|  | } | 
|  | } | 
|  | Sorted = false; | 
|  | finalizeSymtab(); | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | uint64_t InstrProfSymtab::getFunctionHashFromAddress(uint64_t Address) { | 
|  | finalizeSymtab(); | 
|  | auto It = partition_point(AddrToMD5Map, [=](std::pair<uint64_t, uint64_t> A) { | 
|  | return A.first < Address; | 
|  | }); | 
|  | // Raw function pointer collected by value profiler may be from | 
|  | // external functions that are not instrumented. They won't have | 
|  | // mapping data to be used by the deserializer. Force the value to | 
|  | // be 0 in this case. | 
|  | if (It != AddrToMD5Map.end() && It->first == Address) | 
|  | return (uint64_t)It->second; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | Error collectPGOFuncNameStrings(ArrayRef<std::string> NameStrs, | 
|  | bool doCompression, std::string &Result) { | 
|  | assert(!NameStrs.empty() && "No name data to emit"); | 
|  |  | 
|  | uint8_t Header[16], *P = Header; | 
|  | std::string UncompressedNameStrings = | 
|  | join(NameStrs.begin(), NameStrs.end(), getInstrProfNameSeparator()); | 
|  |  | 
|  | assert(StringRef(UncompressedNameStrings) | 
|  | .count(getInstrProfNameSeparator()) == (NameStrs.size() - 1) && | 
|  | "PGO name is invalid (contains separator token)"); | 
|  |  | 
|  | unsigned EncLen = encodeULEB128(UncompressedNameStrings.length(), P); | 
|  | P += EncLen; | 
|  |  | 
|  | auto WriteStringToResult = [&](size_t CompressedLen, StringRef InputStr) { | 
|  | EncLen = encodeULEB128(CompressedLen, P); | 
|  | P += EncLen; | 
|  | char *HeaderStr = reinterpret_cast<char *>(&Header[0]); | 
|  | unsigned HeaderLen = P - &Header[0]; | 
|  | Result.append(HeaderStr, HeaderLen); | 
|  | Result += InputStr; | 
|  | return Error::success(); | 
|  | }; | 
|  |  | 
|  | if (!doCompression) { | 
|  | return WriteStringToResult(0, UncompressedNameStrings); | 
|  | } | 
|  |  | 
|  | SmallString<128> CompressedNameStrings; | 
|  | Error E = zlib::compress(StringRef(UncompressedNameStrings), | 
|  | CompressedNameStrings, zlib::BestSizeCompression); | 
|  | if (E) { | 
|  | consumeError(std::move(E)); | 
|  | return make_error<InstrProfError>(instrprof_error::compress_failed); | 
|  | } | 
|  |  | 
|  | return WriteStringToResult(CompressedNameStrings.size(), | 
|  | CompressedNameStrings); | 
|  | } | 
|  |  | 
|  | StringRef getPGOFuncNameVarInitializer(GlobalVariable *NameVar) { | 
|  | auto *Arr = cast<ConstantDataArray>(NameVar->getInitializer()); | 
|  | StringRef NameStr = | 
|  | Arr->isCString() ? Arr->getAsCString() : Arr->getAsString(); | 
|  | return NameStr; | 
|  | } | 
|  |  | 
|  | Error collectPGOFuncNameStrings(ArrayRef<GlobalVariable *> NameVars, | 
|  | std::string &Result, bool doCompression) { | 
|  | std::vector<std::string> NameStrs; | 
|  | for (auto *NameVar : NameVars) { | 
|  | NameStrs.push_back(std::string(getPGOFuncNameVarInitializer(NameVar))); | 
|  | } | 
|  | return collectPGOFuncNameStrings( | 
|  | NameStrs, zlib::isAvailable() && doCompression, Result); | 
|  | } | 
|  |  | 
|  | Error readPGOFuncNameStrings(StringRef NameStrings, InstrProfSymtab &Symtab) { | 
|  | const uint8_t *P = NameStrings.bytes_begin(); | 
|  | const uint8_t *EndP = NameStrings.bytes_end(); | 
|  | while (P < EndP) { | 
|  | uint32_t N; | 
|  | uint64_t UncompressedSize = decodeULEB128(P, &N); | 
|  | P += N; | 
|  | uint64_t CompressedSize = decodeULEB128(P, &N); | 
|  | P += N; | 
|  | bool isCompressed = (CompressedSize != 0); | 
|  | SmallString<128> UncompressedNameStrings; | 
|  | StringRef NameStrings; | 
|  | if (isCompressed) { | 
|  | if (!llvm::zlib::isAvailable()) | 
|  | return make_error<InstrProfError>(instrprof_error::zlib_unavailable); | 
|  |  | 
|  | StringRef CompressedNameStrings(reinterpret_cast<const char *>(P), | 
|  | CompressedSize); | 
|  | if (Error E = | 
|  | zlib::uncompress(CompressedNameStrings, UncompressedNameStrings, | 
|  | UncompressedSize)) { | 
|  | consumeError(std::move(E)); | 
|  | return make_error<InstrProfError>(instrprof_error::uncompress_failed); | 
|  | } | 
|  | P += CompressedSize; | 
|  | NameStrings = StringRef(UncompressedNameStrings.data(), | 
|  | UncompressedNameStrings.size()); | 
|  | } else { | 
|  | NameStrings = | 
|  | StringRef(reinterpret_cast<const char *>(P), UncompressedSize); | 
|  | P += UncompressedSize; | 
|  | } | 
|  | // Now parse the name strings. | 
|  | SmallVector<StringRef, 0> Names; | 
|  | NameStrings.split(Names, getInstrProfNameSeparator()); | 
|  | for (StringRef &Name : Names) | 
|  | if (Error E = Symtab.addFuncName(Name)) | 
|  | return E; | 
|  |  | 
|  | while (P < EndP && *P == 0) | 
|  | P++; | 
|  | } | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | void InstrProfRecord::accumulateCounts(CountSumOrPercent &Sum) const { | 
|  | uint64_t FuncSum = 0; | 
|  | Sum.NumEntries += Counts.size(); | 
|  | for (size_t F = 0, E = Counts.size(); F < E; ++F) | 
|  | FuncSum += Counts[F]; | 
|  | Sum.CountSum += FuncSum; | 
|  |  | 
|  | for (uint32_t VK = IPVK_First; VK <= IPVK_Last; ++VK) { | 
|  | uint64_t KindSum = 0; | 
|  | uint32_t NumValueSites = getNumValueSites(VK); | 
|  | for (size_t I = 0; I < NumValueSites; ++I) { | 
|  | uint32_t NV = getNumValueDataForSite(VK, I); | 
|  | std::unique_ptr<InstrProfValueData[]> VD = getValueForSite(VK, I); | 
|  | for (uint32_t V = 0; V < NV; V++) | 
|  | KindSum += VD[V].Count; | 
|  | } | 
|  | Sum.ValueCounts[VK] += KindSum; | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstrProfValueSiteRecord::overlap(InstrProfValueSiteRecord &Input, | 
|  | uint32_t ValueKind, | 
|  | OverlapStats &Overlap, | 
|  | OverlapStats &FuncLevelOverlap) { | 
|  | this->sortByTargetValues(); | 
|  | Input.sortByTargetValues(); | 
|  | double Score = 0.0f, FuncLevelScore = 0.0f; | 
|  | auto I = ValueData.begin(); | 
|  | auto IE = ValueData.end(); | 
|  | auto J = Input.ValueData.begin(); | 
|  | auto JE = Input.ValueData.end(); | 
|  | while (I != IE && J != JE) { | 
|  | if (I->Value == J->Value) { | 
|  | Score += OverlapStats::score(I->Count, J->Count, | 
|  | Overlap.Base.ValueCounts[ValueKind], | 
|  | Overlap.Test.ValueCounts[ValueKind]); | 
|  | FuncLevelScore += OverlapStats::score( | 
|  | I->Count, J->Count, FuncLevelOverlap.Base.ValueCounts[ValueKind], | 
|  | FuncLevelOverlap.Test.ValueCounts[ValueKind]); | 
|  | ++I; | 
|  | } else if (I->Value < J->Value) { | 
|  | ++I; | 
|  | continue; | 
|  | } | 
|  | ++J; | 
|  | } | 
|  | Overlap.Overlap.ValueCounts[ValueKind] += Score; | 
|  | FuncLevelOverlap.Overlap.ValueCounts[ValueKind] += FuncLevelScore; | 
|  | } | 
|  |  | 
|  | // Return false on mismatch. | 
|  | void InstrProfRecord::overlapValueProfData(uint32_t ValueKind, | 
|  | InstrProfRecord &Other, | 
|  | OverlapStats &Overlap, | 
|  | OverlapStats &FuncLevelOverlap) { | 
|  | uint32_t ThisNumValueSites = getNumValueSites(ValueKind); | 
|  | assert(ThisNumValueSites == Other.getNumValueSites(ValueKind)); | 
|  | if (!ThisNumValueSites) | 
|  | return; | 
|  |  | 
|  | std::vector<InstrProfValueSiteRecord> &ThisSiteRecords = | 
|  | getOrCreateValueSitesForKind(ValueKind); | 
|  | MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords = | 
|  | Other.getValueSitesForKind(ValueKind); | 
|  | for (uint32_t I = 0; I < ThisNumValueSites; I++) | 
|  | ThisSiteRecords[I].overlap(OtherSiteRecords[I], ValueKind, Overlap, | 
|  | FuncLevelOverlap); | 
|  | } | 
|  |  | 
|  | void InstrProfRecord::overlap(InstrProfRecord &Other, OverlapStats &Overlap, | 
|  | OverlapStats &FuncLevelOverlap, | 
|  | uint64_t ValueCutoff) { | 
|  | // FuncLevel CountSum for other should already computed and nonzero. | 
|  | assert(FuncLevelOverlap.Test.CountSum >= 1.0f); | 
|  | accumulateCounts(FuncLevelOverlap.Base); | 
|  | bool Mismatch = (Counts.size() != Other.Counts.size()); | 
|  |  | 
|  | // Check if the value profiles mismatch. | 
|  | if (!Mismatch) { | 
|  | for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) { | 
|  | uint32_t ThisNumValueSites = getNumValueSites(Kind); | 
|  | uint32_t OtherNumValueSites = Other.getNumValueSites(Kind); | 
|  | if (ThisNumValueSites != OtherNumValueSites) { | 
|  | Mismatch = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (Mismatch) { | 
|  | Overlap.addOneMismatch(FuncLevelOverlap.Test); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Compute overlap for value counts. | 
|  | for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) | 
|  | overlapValueProfData(Kind, Other, Overlap, FuncLevelOverlap); | 
|  |  | 
|  | double Score = 0.0; | 
|  | uint64_t MaxCount = 0; | 
|  | // Compute overlap for edge counts. | 
|  | for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) { | 
|  | Score += OverlapStats::score(Counts[I], Other.Counts[I], | 
|  | Overlap.Base.CountSum, Overlap.Test.CountSum); | 
|  | MaxCount = std::max(Other.Counts[I], MaxCount); | 
|  | } | 
|  | Overlap.Overlap.CountSum += Score; | 
|  | Overlap.Overlap.NumEntries += 1; | 
|  |  | 
|  | if (MaxCount >= ValueCutoff) { | 
|  | double FuncScore = 0.0; | 
|  | for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) | 
|  | FuncScore += OverlapStats::score(Counts[I], Other.Counts[I], | 
|  | FuncLevelOverlap.Base.CountSum, | 
|  | FuncLevelOverlap.Test.CountSum); | 
|  | FuncLevelOverlap.Overlap.CountSum = FuncScore; | 
|  | FuncLevelOverlap.Overlap.NumEntries = Other.Counts.size(); | 
|  | FuncLevelOverlap.Valid = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstrProfValueSiteRecord::merge(InstrProfValueSiteRecord &Input, | 
|  | uint64_t Weight, | 
|  | function_ref<void(instrprof_error)> Warn) { | 
|  | this->sortByTargetValues(); | 
|  | Input.sortByTargetValues(); | 
|  | auto I = ValueData.begin(); | 
|  | auto IE = ValueData.end(); | 
|  | for (auto J = Input.ValueData.begin(), JE = Input.ValueData.end(); J != JE; | 
|  | ++J) { | 
|  | while (I != IE && I->Value < J->Value) | 
|  | ++I; | 
|  | if (I != IE && I->Value == J->Value) { | 
|  | bool Overflowed; | 
|  | I->Count = SaturatingMultiplyAdd(J->Count, Weight, I->Count, &Overflowed); | 
|  | if (Overflowed) | 
|  | Warn(instrprof_error::counter_overflow); | 
|  | ++I; | 
|  | continue; | 
|  | } | 
|  | ValueData.insert(I, *J); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InstrProfValueSiteRecord::scale(uint64_t Weight, | 
|  | function_ref<void(instrprof_error)> Warn) { | 
|  | for (auto I = ValueData.begin(), IE = ValueData.end(); I != IE; ++I) { | 
|  | bool Overflowed; | 
|  | I->Count = SaturatingMultiply(I->Count, Weight, &Overflowed); | 
|  | if (Overflowed) | 
|  | Warn(instrprof_error::counter_overflow); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Merge Value Profile data from Src record to this record for ValueKind. | 
|  | // Scale merged value counts by \p Weight. | 
|  | void InstrProfRecord::mergeValueProfData( | 
|  | uint32_t ValueKind, InstrProfRecord &Src, uint64_t Weight, | 
|  | function_ref<void(instrprof_error)> Warn) { | 
|  | uint32_t ThisNumValueSites = getNumValueSites(ValueKind); | 
|  | uint32_t OtherNumValueSites = Src.getNumValueSites(ValueKind); | 
|  | if (ThisNumValueSites != OtherNumValueSites) { | 
|  | Warn(instrprof_error::value_site_count_mismatch); | 
|  | return; | 
|  | } | 
|  | if (!ThisNumValueSites) | 
|  | return; | 
|  | std::vector<InstrProfValueSiteRecord> &ThisSiteRecords = | 
|  | getOrCreateValueSitesForKind(ValueKind); | 
|  | MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords = | 
|  | Src.getValueSitesForKind(ValueKind); | 
|  | for (uint32_t I = 0; I < ThisNumValueSites; I++) | 
|  | ThisSiteRecords[I].merge(OtherSiteRecords[I], Weight, Warn); | 
|  | } | 
|  |  | 
|  | void InstrProfRecord::merge(InstrProfRecord &Other, uint64_t Weight, | 
|  | function_ref<void(instrprof_error)> Warn) { | 
|  | // If the number of counters doesn't match we either have bad data | 
|  | // or a hash collision. | 
|  | if (Counts.size() != Other.Counts.size()) { | 
|  | Warn(instrprof_error::count_mismatch); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) { | 
|  | bool Overflowed; | 
|  | Counts[I] = | 
|  | SaturatingMultiplyAdd(Other.Counts[I], Weight, Counts[I], &Overflowed); | 
|  | if (Overflowed) | 
|  | Warn(instrprof_error::counter_overflow); | 
|  | } | 
|  |  | 
|  | for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) | 
|  | mergeValueProfData(Kind, Other, Weight, Warn); | 
|  | } | 
|  |  | 
|  | void InstrProfRecord::scaleValueProfData( | 
|  | uint32_t ValueKind, uint64_t Weight, | 
|  | function_ref<void(instrprof_error)> Warn) { | 
|  | for (auto &R : getValueSitesForKind(ValueKind)) | 
|  | R.scale(Weight, Warn); | 
|  | } | 
|  |  | 
|  | void InstrProfRecord::scale(uint64_t Weight, | 
|  | function_ref<void(instrprof_error)> Warn) { | 
|  | for (auto &Count : this->Counts) { | 
|  | bool Overflowed; | 
|  | Count = SaturatingMultiply(Count, Weight, &Overflowed); | 
|  | if (Overflowed) | 
|  | Warn(instrprof_error::counter_overflow); | 
|  | } | 
|  | for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) | 
|  | scaleValueProfData(Kind, Weight, Warn); | 
|  | } | 
|  |  | 
|  | // Map indirect call target name hash to name string. | 
|  | uint64_t InstrProfRecord::remapValue(uint64_t Value, uint32_t ValueKind, | 
|  | InstrProfSymtab *SymTab) { | 
|  | if (!SymTab) | 
|  | return Value; | 
|  |  | 
|  | if (ValueKind == IPVK_IndirectCallTarget) | 
|  | return SymTab->getFunctionHashFromAddress(Value); | 
|  |  | 
|  | return Value; | 
|  | } | 
|  |  | 
|  | void InstrProfRecord::addValueData(uint32_t ValueKind, uint32_t Site, | 
|  | InstrProfValueData *VData, uint32_t N, | 
|  | InstrProfSymtab *ValueMap) { | 
|  | for (uint32_t I = 0; I < N; I++) { | 
|  | VData[I].Value = remapValue(VData[I].Value, ValueKind, ValueMap); | 
|  | } | 
|  | std::vector<InstrProfValueSiteRecord> &ValueSites = | 
|  | getOrCreateValueSitesForKind(ValueKind); | 
|  | if (N == 0) | 
|  | ValueSites.emplace_back(); | 
|  | else | 
|  | ValueSites.emplace_back(VData, VData + N); | 
|  | } | 
|  |  | 
|  | #define INSTR_PROF_COMMON_API_IMPL | 
|  | #include "llvm/ProfileData/InstrProfData.inc" | 
|  |  | 
|  | /*! | 
|  | * ValueProfRecordClosure Interface implementation for  InstrProfRecord | 
|  | *  class. These C wrappers are used as adaptors so that C++ code can be | 
|  | *  invoked as callbacks. | 
|  | */ | 
|  | uint32_t getNumValueKindsInstrProf(const void *Record) { | 
|  | return reinterpret_cast<const InstrProfRecord *>(Record)->getNumValueKinds(); | 
|  | } | 
|  |  | 
|  | uint32_t getNumValueSitesInstrProf(const void *Record, uint32_t VKind) { | 
|  | return reinterpret_cast<const InstrProfRecord *>(Record) | 
|  | ->getNumValueSites(VKind); | 
|  | } | 
|  |  | 
|  | uint32_t getNumValueDataInstrProf(const void *Record, uint32_t VKind) { | 
|  | return reinterpret_cast<const InstrProfRecord *>(Record) | 
|  | ->getNumValueData(VKind); | 
|  | } | 
|  |  | 
|  | uint32_t getNumValueDataForSiteInstrProf(const void *R, uint32_t VK, | 
|  | uint32_t S) { | 
|  | return reinterpret_cast<const InstrProfRecord *>(R) | 
|  | ->getNumValueDataForSite(VK, S); | 
|  | } | 
|  |  | 
|  | void getValueForSiteInstrProf(const void *R, InstrProfValueData *Dst, | 
|  | uint32_t K, uint32_t S) { | 
|  | reinterpret_cast<const InstrProfRecord *>(R)->getValueForSite(Dst, K, S); | 
|  | } | 
|  |  | 
|  | ValueProfData *allocValueProfDataInstrProf(size_t TotalSizeInBytes) { | 
|  | ValueProfData *VD = | 
|  | (ValueProfData *)(new (::operator new(TotalSizeInBytes)) ValueProfData()); | 
|  | memset(VD, 0, TotalSizeInBytes); | 
|  | return VD; | 
|  | } | 
|  |  | 
|  | static ValueProfRecordClosure InstrProfRecordClosure = { | 
|  | nullptr, | 
|  | getNumValueKindsInstrProf, | 
|  | getNumValueSitesInstrProf, | 
|  | getNumValueDataInstrProf, | 
|  | getNumValueDataForSiteInstrProf, | 
|  | nullptr, | 
|  | getValueForSiteInstrProf, | 
|  | allocValueProfDataInstrProf}; | 
|  |  | 
|  | // Wrapper implementation using the closure mechanism. | 
|  | uint32_t ValueProfData::getSize(const InstrProfRecord &Record) { | 
|  | auto Closure = InstrProfRecordClosure; | 
|  | Closure.Record = &Record; | 
|  | return getValueProfDataSize(&Closure); | 
|  | } | 
|  |  | 
|  | // Wrapper implementation using the closure mechanism. | 
|  | std::unique_ptr<ValueProfData> | 
|  | ValueProfData::serializeFrom(const InstrProfRecord &Record) { | 
|  | InstrProfRecordClosure.Record = &Record; | 
|  |  | 
|  | std::unique_ptr<ValueProfData> VPD( | 
|  | serializeValueProfDataFrom(&InstrProfRecordClosure, nullptr)); | 
|  | return VPD; | 
|  | } | 
|  |  | 
|  | void ValueProfRecord::deserializeTo(InstrProfRecord &Record, | 
|  | InstrProfSymtab *SymTab) { | 
|  | Record.reserveSites(Kind, NumValueSites); | 
|  |  | 
|  | InstrProfValueData *ValueData = getValueProfRecordValueData(this); | 
|  | for (uint64_t VSite = 0; VSite < NumValueSites; ++VSite) { | 
|  | uint8_t ValueDataCount = this->SiteCountArray[VSite]; | 
|  | Record.addValueData(Kind, VSite, ValueData, ValueDataCount, SymTab); | 
|  | ValueData += ValueDataCount; | 
|  | } | 
|  | } | 
|  |  | 
|  | // For writing/serializing,  Old is the host endianness, and  New is | 
|  | // byte order intended on disk. For Reading/deserialization, Old | 
|  | // is the on-disk source endianness, and New is the host endianness. | 
|  | void ValueProfRecord::swapBytes(support::endianness Old, | 
|  | support::endianness New) { | 
|  | using namespace support; | 
|  |  | 
|  | if (Old == New) | 
|  | return; | 
|  |  | 
|  | if (getHostEndianness() != Old) { | 
|  | sys::swapByteOrder<uint32_t>(NumValueSites); | 
|  | sys::swapByteOrder<uint32_t>(Kind); | 
|  | } | 
|  | uint32_t ND = getValueProfRecordNumValueData(this); | 
|  | InstrProfValueData *VD = getValueProfRecordValueData(this); | 
|  |  | 
|  | // No need to swap byte array: SiteCountArrray. | 
|  | for (uint32_t I = 0; I < ND; I++) { | 
|  | sys::swapByteOrder<uint64_t>(VD[I].Value); | 
|  | sys::swapByteOrder<uint64_t>(VD[I].Count); | 
|  | } | 
|  | if (getHostEndianness() == Old) { | 
|  | sys::swapByteOrder<uint32_t>(NumValueSites); | 
|  | sys::swapByteOrder<uint32_t>(Kind); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ValueProfData::deserializeTo(InstrProfRecord &Record, | 
|  | InstrProfSymtab *SymTab) { | 
|  | if (NumValueKinds == 0) | 
|  | return; | 
|  |  | 
|  | ValueProfRecord *VR = getFirstValueProfRecord(this); | 
|  | for (uint32_t K = 0; K < NumValueKinds; K++) { | 
|  | VR->deserializeTo(Record, SymTab); | 
|  | VR = getValueProfRecordNext(VR); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class T> | 
|  | static T swapToHostOrder(const unsigned char *&D, support::endianness Orig) { | 
|  | using namespace support; | 
|  |  | 
|  | if (Orig == little) | 
|  | return endian::readNext<T, little, unaligned>(D); | 
|  | else | 
|  | return endian::readNext<T, big, unaligned>(D); | 
|  | } | 
|  |  | 
|  | static std::unique_ptr<ValueProfData> allocValueProfData(uint32_t TotalSize) { | 
|  | return std::unique_ptr<ValueProfData>(new (::operator new(TotalSize)) | 
|  | ValueProfData()); | 
|  | } | 
|  |  | 
|  | Error ValueProfData::checkIntegrity() { | 
|  | if (NumValueKinds > IPVK_Last + 1) | 
|  | return make_error<InstrProfError>(instrprof_error::malformed); | 
|  | // Total size needs to be mulltiple of quadword size. | 
|  | if (TotalSize % sizeof(uint64_t)) | 
|  | return make_error<InstrProfError>(instrprof_error::malformed); | 
|  |  | 
|  | ValueProfRecord *VR = getFirstValueProfRecord(this); | 
|  | for (uint32_t K = 0; K < this->NumValueKinds; K++) { | 
|  | if (VR->Kind > IPVK_Last) | 
|  | return make_error<InstrProfError>(instrprof_error::malformed); | 
|  | VR = getValueProfRecordNext(VR); | 
|  | if ((char *)VR - (char *)this > (ptrdiff_t)TotalSize) | 
|  | return make_error<InstrProfError>(instrprof_error::malformed); | 
|  | } | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | Expected<std::unique_ptr<ValueProfData>> | 
|  | ValueProfData::getValueProfData(const unsigned char *D, | 
|  | const unsigned char *const BufferEnd, | 
|  | support::endianness Endianness) { | 
|  | using namespace support; | 
|  |  | 
|  | if (D + sizeof(ValueProfData) > BufferEnd) | 
|  | return make_error<InstrProfError>(instrprof_error::truncated); | 
|  |  | 
|  | const unsigned char *Header = D; | 
|  | uint32_t TotalSize = swapToHostOrder<uint32_t>(Header, Endianness); | 
|  | if (D + TotalSize > BufferEnd) | 
|  | return make_error<InstrProfError>(instrprof_error::too_large); | 
|  |  | 
|  | std::unique_ptr<ValueProfData> VPD = allocValueProfData(TotalSize); | 
|  | memcpy(VPD.get(), D, TotalSize); | 
|  | // Byte swap. | 
|  | VPD->swapBytesToHost(Endianness); | 
|  |  | 
|  | Error E = VPD->checkIntegrity(); | 
|  | if (E) | 
|  | return std::move(E); | 
|  |  | 
|  | return std::move(VPD); | 
|  | } | 
|  |  | 
|  | void ValueProfData::swapBytesToHost(support::endianness Endianness) { | 
|  | using namespace support; | 
|  |  | 
|  | if (Endianness == getHostEndianness()) | 
|  | return; | 
|  |  | 
|  | sys::swapByteOrder<uint32_t>(TotalSize); | 
|  | sys::swapByteOrder<uint32_t>(NumValueKinds); | 
|  |  | 
|  | ValueProfRecord *VR = getFirstValueProfRecord(this); | 
|  | for (uint32_t K = 0; K < NumValueKinds; K++) { | 
|  | VR->swapBytes(Endianness, getHostEndianness()); | 
|  | VR = getValueProfRecordNext(VR); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ValueProfData::swapBytesFromHost(support::endianness Endianness) { | 
|  | using namespace support; | 
|  |  | 
|  | if (Endianness == getHostEndianness()) | 
|  | return; | 
|  |  | 
|  | ValueProfRecord *VR = getFirstValueProfRecord(this); | 
|  | for (uint32_t K = 0; K < NumValueKinds; K++) { | 
|  | ValueProfRecord *NVR = getValueProfRecordNext(VR); | 
|  | VR->swapBytes(getHostEndianness(), Endianness); | 
|  | VR = NVR; | 
|  | } | 
|  | sys::swapByteOrder<uint32_t>(TotalSize); | 
|  | sys::swapByteOrder<uint32_t>(NumValueKinds); | 
|  | } | 
|  |  | 
|  | void annotateValueSite(Module &M, Instruction &Inst, | 
|  | const InstrProfRecord &InstrProfR, | 
|  | InstrProfValueKind ValueKind, uint32_t SiteIdx, | 
|  | uint32_t MaxMDCount) { | 
|  | uint32_t NV = InstrProfR.getNumValueDataForSite(ValueKind, SiteIdx); | 
|  | if (!NV) | 
|  | return; | 
|  |  | 
|  | uint64_t Sum = 0; | 
|  | std::unique_ptr<InstrProfValueData[]> VD = | 
|  | InstrProfR.getValueForSite(ValueKind, SiteIdx, &Sum); | 
|  |  | 
|  | ArrayRef<InstrProfValueData> VDs(VD.get(), NV); | 
|  | annotateValueSite(M, Inst, VDs, Sum, ValueKind, MaxMDCount); | 
|  | } | 
|  |  | 
|  | void annotateValueSite(Module &M, Instruction &Inst, | 
|  | ArrayRef<InstrProfValueData> VDs, | 
|  | uint64_t Sum, InstrProfValueKind ValueKind, | 
|  | uint32_t MaxMDCount) { | 
|  | LLVMContext &Ctx = M.getContext(); | 
|  | MDBuilder MDHelper(Ctx); | 
|  | SmallVector<Metadata *, 3> Vals; | 
|  | // Tag | 
|  | Vals.push_back(MDHelper.createString("VP")); | 
|  | // Value Kind | 
|  | Vals.push_back(MDHelper.createConstant( | 
|  | ConstantInt::get(Type::getInt32Ty(Ctx), ValueKind))); | 
|  | // Total Count | 
|  | Vals.push_back( | 
|  | MDHelper.createConstant(ConstantInt::get(Type::getInt64Ty(Ctx), Sum))); | 
|  |  | 
|  | // Value Profile Data | 
|  | uint32_t MDCount = MaxMDCount; | 
|  | for (auto &VD : VDs) { | 
|  | Vals.push_back(MDHelper.createConstant( | 
|  | ConstantInt::get(Type::getInt64Ty(Ctx), VD.Value))); | 
|  | Vals.push_back(MDHelper.createConstant( | 
|  | ConstantInt::get(Type::getInt64Ty(Ctx), VD.Count))); | 
|  | if (--MDCount == 0) | 
|  | break; | 
|  | } | 
|  | Inst.setMetadata(LLVMContext::MD_prof, MDNode::get(Ctx, Vals)); | 
|  | } | 
|  |  | 
|  | bool getValueProfDataFromInst(const Instruction &Inst, | 
|  | InstrProfValueKind ValueKind, | 
|  | uint32_t MaxNumValueData, | 
|  | InstrProfValueData ValueData[], | 
|  | uint32_t &ActualNumValueData, uint64_t &TotalC) { | 
|  | MDNode *MD = Inst.getMetadata(LLVMContext::MD_prof); | 
|  | if (!MD) | 
|  | return false; | 
|  |  | 
|  | unsigned NOps = MD->getNumOperands(); | 
|  |  | 
|  | if (NOps < 5) | 
|  | return false; | 
|  |  | 
|  | // Operand 0 is a string tag "VP": | 
|  | MDString *Tag = cast<MDString>(MD->getOperand(0)); | 
|  | if (!Tag) | 
|  | return false; | 
|  |  | 
|  | if (!Tag->getString().equals("VP")) | 
|  | return false; | 
|  |  | 
|  | // Now check kind: | 
|  | ConstantInt *KindInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); | 
|  | if (!KindInt) | 
|  | return false; | 
|  | if (KindInt->getZExtValue() != ValueKind) | 
|  | return false; | 
|  |  | 
|  | // Get total count | 
|  | ConstantInt *TotalCInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); | 
|  | if (!TotalCInt) | 
|  | return false; | 
|  | TotalC = TotalCInt->getZExtValue(); | 
|  |  | 
|  | ActualNumValueData = 0; | 
|  |  | 
|  | for (unsigned I = 3; I < NOps; I += 2) { | 
|  | if (ActualNumValueData >= MaxNumValueData) | 
|  | break; | 
|  | ConstantInt *Value = mdconst::dyn_extract<ConstantInt>(MD->getOperand(I)); | 
|  | ConstantInt *Count = | 
|  | mdconst::dyn_extract<ConstantInt>(MD->getOperand(I + 1)); | 
|  | if (!Value || !Count) | 
|  | return false; | 
|  | ValueData[ActualNumValueData].Value = Value->getZExtValue(); | 
|  | ValueData[ActualNumValueData].Count = Count->getZExtValue(); | 
|  | ActualNumValueData++; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | MDNode *getPGOFuncNameMetadata(const Function &F) { | 
|  | return F.getMetadata(getPGOFuncNameMetadataName()); | 
|  | } | 
|  |  | 
|  | void createPGOFuncNameMetadata(Function &F, StringRef PGOFuncName) { | 
|  | // Only for internal linkage functions. | 
|  | if (PGOFuncName == F.getName()) | 
|  | return; | 
|  | // Don't create duplicated meta-data. | 
|  | if (getPGOFuncNameMetadata(F)) | 
|  | return; | 
|  | LLVMContext &C = F.getContext(); | 
|  | MDNode *N = MDNode::get(C, MDString::get(C, PGOFuncName)); | 
|  | F.setMetadata(getPGOFuncNameMetadataName(), N); | 
|  | } | 
|  |  | 
|  | bool needsComdatForCounter(const Function &F, const Module &M) { | 
|  | if (F.hasComdat()) | 
|  | return true; | 
|  |  | 
|  | if (!Triple(M.getTargetTriple()).supportsCOMDAT()) | 
|  | return false; | 
|  |  | 
|  | // See createPGOFuncNameVar for more details. To avoid link errors, profile | 
|  | // counters for function with available_externally linkage needs to be changed | 
|  | // to linkonce linkage. On ELF based systems, this leads to weak symbols to be | 
|  | // created. Without using comdat, duplicate entries won't be removed by the | 
|  | // linker leading to increased data segement size and raw profile size. Even | 
|  | // worse, since the referenced counter from profile per-function data object | 
|  | // will be resolved to the common strong definition, the profile counts for | 
|  | // available_externally functions will end up being duplicated in raw profile | 
|  | // data. This can result in distorted profile as the counts of those dups | 
|  | // will be accumulated by the profile merger. | 
|  | GlobalValue::LinkageTypes Linkage = F.getLinkage(); | 
|  | if (Linkage != GlobalValue::ExternalWeakLinkage && | 
|  | Linkage != GlobalValue::AvailableExternallyLinkage) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check if INSTR_PROF_RAW_VERSION_VAR is defined. | 
|  | bool isIRPGOFlagSet(const Module *M) { | 
|  | auto IRInstrVar = | 
|  | M->getNamedGlobal(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR)); | 
|  | if (!IRInstrVar || IRInstrVar->isDeclaration() || | 
|  | IRInstrVar->hasLocalLinkage()) | 
|  | return false; | 
|  |  | 
|  | // Check if the flag is set. | 
|  | if (!IRInstrVar->hasInitializer()) | 
|  | return false; | 
|  |  | 
|  | auto *InitVal = dyn_cast_or_null<ConstantInt>(IRInstrVar->getInitializer()); | 
|  | if (!InitVal) | 
|  | return false; | 
|  | return (InitVal->getZExtValue() & VARIANT_MASK_IR_PROF) != 0; | 
|  | } | 
|  |  | 
|  | // Check if we can safely rename this Comdat function. | 
|  | bool canRenameComdatFunc(const Function &F, bool CheckAddressTaken) { | 
|  | if (F.getName().empty()) | 
|  | return false; | 
|  | if (!needsComdatForCounter(F, *(F.getParent()))) | 
|  | return false; | 
|  | // Unsafe to rename the address-taken function (which can be used in | 
|  | // function comparison). | 
|  | if (CheckAddressTaken && F.hasAddressTaken()) | 
|  | return false; | 
|  | // Only safe to do if this function may be discarded if it is not used | 
|  | // in the compilation unit. | 
|  | if (!GlobalValue::isDiscardableIfUnused(F.getLinkage())) | 
|  | return false; | 
|  |  | 
|  | // For AvailableExternallyLinkage functions. | 
|  | if (!F.hasComdat()) { | 
|  | assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage); | 
|  | return true; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Parse the value profile options. | 
|  | void getMemOPSizeRangeFromOption(StringRef MemOPSizeRange, int64_t &RangeStart, | 
|  | int64_t &RangeLast) { | 
|  | static const int64_t DefaultMemOPSizeRangeStart = 0; | 
|  | static const int64_t DefaultMemOPSizeRangeLast = 8; | 
|  | RangeStart = DefaultMemOPSizeRangeStart; | 
|  | RangeLast = DefaultMemOPSizeRangeLast; | 
|  |  | 
|  | if (!MemOPSizeRange.empty()) { | 
|  | auto Pos = MemOPSizeRange.find(':'); | 
|  | if (Pos != std::string::npos) { | 
|  | if (Pos > 0) | 
|  | MemOPSizeRange.substr(0, Pos).getAsInteger(10, RangeStart); | 
|  | if (Pos < MemOPSizeRange.size() - 1) | 
|  | MemOPSizeRange.substr(Pos + 1).getAsInteger(10, RangeLast); | 
|  | } else | 
|  | MemOPSizeRange.getAsInteger(10, RangeLast); | 
|  | } | 
|  | assert(RangeLast >= RangeStart); | 
|  | } | 
|  |  | 
|  | // Create a COMDAT variable INSTR_PROF_RAW_VERSION_VAR to make the runtime | 
|  | // aware this is an ir_level profile so it can set the version flag. | 
|  | void createIRLevelProfileFlagVar(Module &M, bool IsCS) { | 
|  | const StringRef VarName(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR)); | 
|  | Type *IntTy64 = Type::getInt64Ty(M.getContext()); | 
|  | uint64_t ProfileVersion = (INSTR_PROF_RAW_VERSION | VARIANT_MASK_IR_PROF); | 
|  | if (IsCS) | 
|  | ProfileVersion |= VARIANT_MASK_CSIR_PROF; | 
|  | auto IRLevelVersionVariable = new GlobalVariable( | 
|  | M, IntTy64, true, GlobalValue::WeakAnyLinkage, | 
|  | Constant::getIntegerValue(IntTy64, APInt(64, ProfileVersion)), VarName); | 
|  | IRLevelVersionVariable->setVisibility(GlobalValue::DefaultVisibility); | 
|  | Triple TT(M.getTargetTriple()); | 
|  | if (TT.supportsCOMDAT()) { | 
|  | IRLevelVersionVariable->setLinkage(GlobalValue::ExternalLinkage); | 
|  | IRLevelVersionVariable->setComdat(M.getOrInsertComdat(VarName)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create the variable for the profile file name. | 
|  | void createProfileFileNameVar(Module &M, StringRef InstrProfileOutput) { | 
|  | if (InstrProfileOutput.empty()) | 
|  | return; | 
|  | Constant *ProfileNameConst = | 
|  | ConstantDataArray::getString(M.getContext(), InstrProfileOutput, true); | 
|  | GlobalVariable *ProfileNameVar = new GlobalVariable( | 
|  | M, ProfileNameConst->getType(), true, GlobalValue::WeakAnyLinkage, | 
|  | ProfileNameConst, INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR)); | 
|  | Triple TT(M.getTargetTriple()); | 
|  | if (TT.supportsCOMDAT()) { | 
|  | ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage); | 
|  | ProfileNameVar->setComdat(M.getOrInsertComdat( | 
|  | StringRef(INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR)))); | 
|  | } | 
|  | } | 
|  |  | 
|  | Error OverlapStats::accumulateCounts(const std::string &BaseFilename, | 
|  | const std::string &TestFilename, | 
|  | bool IsCS) { | 
|  | auto getProfileSum = [IsCS](const std::string &Filename, | 
|  | CountSumOrPercent &Sum) -> Error { | 
|  | auto ReaderOrErr = InstrProfReader::create(Filename); | 
|  | if (Error E = ReaderOrErr.takeError()) { | 
|  | return E; | 
|  | } | 
|  | auto Reader = std::move(ReaderOrErr.get()); | 
|  | Reader->accumulateCounts(Sum, IsCS); | 
|  | return Error::success(); | 
|  | }; | 
|  | auto Ret = getProfileSum(BaseFilename, Base); | 
|  | if (Ret) | 
|  | return Ret; | 
|  | Ret = getProfileSum(TestFilename, Test); | 
|  | if (Ret) | 
|  | return Ret; | 
|  | this->BaseFilename = &BaseFilename; | 
|  | this->TestFilename = &TestFilename; | 
|  | Valid = true; | 
|  | return Error::success(); | 
|  | } | 
|  |  | 
|  | void OverlapStats::addOneMismatch(const CountSumOrPercent &MismatchFunc) { | 
|  | Mismatch.NumEntries += 1; | 
|  | Mismatch.CountSum += MismatchFunc.CountSum / Test.CountSum; | 
|  | for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) { | 
|  | if (Test.ValueCounts[I] >= 1.0f) | 
|  | Mismatch.ValueCounts[I] += | 
|  | MismatchFunc.ValueCounts[I] / Test.ValueCounts[I]; | 
|  | } | 
|  | } | 
|  |  | 
|  | void OverlapStats::addOneUnique(const CountSumOrPercent &UniqueFunc) { | 
|  | Unique.NumEntries += 1; | 
|  | Unique.CountSum += UniqueFunc.CountSum / Test.CountSum; | 
|  | for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) { | 
|  | if (Test.ValueCounts[I] >= 1.0f) | 
|  | Unique.ValueCounts[I] += UniqueFunc.ValueCounts[I] / Test.ValueCounts[I]; | 
|  | } | 
|  | } | 
|  |  | 
|  | void OverlapStats::dump(raw_fd_ostream &OS) const { | 
|  | if (!Valid) | 
|  | return; | 
|  |  | 
|  | const char *EntryName = | 
|  | (Level == ProgramLevel ? "functions" : "edge counters"); | 
|  | if (Level == ProgramLevel) { | 
|  | OS << "Profile overlap infomation for base_profile: " << *BaseFilename | 
|  | << " and test_profile: " << *TestFilename << "\nProgram level:\n"; | 
|  | } else { | 
|  | OS << "Function level:\n" | 
|  | << "  Function: " << FuncName << " (Hash=" << FuncHash << ")\n"; | 
|  | } | 
|  |  | 
|  | OS << "  # of " << EntryName << " overlap: " << Overlap.NumEntries << "\n"; | 
|  | if (Mismatch.NumEntries) | 
|  | OS << "  # of " << EntryName << " mismatch: " << Mismatch.NumEntries | 
|  | << "\n"; | 
|  | if (Unique.NumEntries) | 
|  | OS << "  # of " << EntryName | 
|  | << " only in test_profile: " << Unique.NumEntries << "\n"; | 
|  |  | 
|  | OS << "  Edge profile overlap: " << format("%.3f%%", Overlap.CountSum * 100) | 
|  | << "\n"; | 
|  | if (Mismatch.NumEntries) | 
|  | OS << "  Mismatched count percentage (Edge): " | 
|  | << format("%.3f%%", Mismatch.CountSum * 100) << "\n"; | 
|  | if (Unique.NumEntries) | 
|  | OS << "  Percentage of Edge profile only in test_profile: " | 
|  | << format("%.3f%%", Unique.CountSum * 100) << "\n"; | 
|  | OS << "  Edge profile base count sum: " << format("%.0f", Base.CountSum) | 
|  | << "\n" | 
|  | << "  Edge profile test count sum: " << format("%.0f", Test.CountSum) | 
|  | << "\n"; | 
|  |  | 
|  | for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) { | 
|  | if (Base.ValueCounts[I] < 1.0f && Test.ValueCounts[I] < 1.0f) | 
|  | continue; | 
|  | char ProfileKindName[20]; | 
|  | switch (I) { | 
|  | case IPVK_IndirectCallTarget: | 
|  | strncpy(ProfileKindName, "IndirectCall", 19); | 
|  | break; | 
|  | case IPVK_MemOPSize: | 
|  | strncpy(ProfileKindName, "MemOP", 19); | 
|  | break; | 
|  | default: | 
|  | snprintf(ProfileKindName, 19, "VP[%d]", I); | 
|  | break; | 
|  | } | 
|  | OS << "  " << ProfileKindName | 
|  | << " profile overlap: " << format("%.3f%%", Overlap.ValueCounts[I] * 100) | 
|  | << "\n"; | 
|  | if (Mismatch.NumEntries) | 
|  | OS << "  Mismatched count percentage (" << ProfileKindName | 
|  | << "): " << format("%.3f%%", Mismatch.ValueCounts[I] * 100) << "\n"; | 
|  | if (Unique.NumEntries) | 
|  | OS << "  Percentage of " << ProfileKindName | 
|  | << " profile only in test_profile: " | 
|  | << format("%.3f%%", Unique.ValueCounts[I] * 100) << "\n"; | 
|  | OS << "  " << ProfileKindName | 
|  | << " profile base count sum: " << format("%.0f", Base.ValueCounts[I]) | 
|  | << "\n" | 
|  | << "  " << ProfileKindName | 
|  | << " profile test count sum: " << format("%.0f", Test.ValueCounts[I]) | 
|  | << "\n"; | 
|  | } | 
|  | } | 
|  |  | 
|  | } // end namespace llvm |