|  | //===- LoopCacheAnalysis.cpp - Loop Cache Analysis -------------------------==// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | /// | 
|  | /// \file | 
|  | /// This file defines the implementation for the loop cache analysis. | 
|  | /// The implementation is largely based on the following paper: | 
|  | /// | 
|  | ///       Compiler Optimizations for Improving Data Locality | 
|  | ///       By: Steve Carr, Katherine S. McKinley, Chau-Wen Tseng | 
|  | ///       http://www.cs.utexas.edu/users/mckinley/papers/asplos-1994.pdf | 
|  | /// | 
|  | /// The general approach taken to estimate the number of cache lines used by the | 
|  | /// memory references in an inner loop is: | 
|  | ///    1. Partition memory references that exhibit temporal or spacial reuse | 
|  | ///       into reference groups. | 
|  | ///    2. For each loop L in the a loop nest LN: | 
|  | ///       a. Compute the cost of the reference group | 
|  | ///       b. Compute the loop cost by summing up the reference groups costs | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/LoopCacheAnalysis.h" | 
|  | #include "llvm/ADT/BreadthFirstIterator.h" | 
|  | #include "llvm/ADT/Sequence.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/Analysis/ScalarEvolutionExpressions.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "loop-cache-cost" | 
|  |  | 
|  | static cl::opt<unsigned> DefaultTripCount( | 
|  | "default-trip-count", cl::init(100), cl::Hidden, | 
|  | cl::desc("Use this to specify the default trip count of a loop")); | 
|  |  | 
|  | // In this analysis two array references are considered to exhibit temporal | 
|  | // reuse if they access either the same memory location, or a memory location | 
|  | // with distance smaller than a configurable threshold. | 
|  | static cl::opt<unsigned> TemporalReuseThreshold( | 
|  | "temporal-reuse-threshold", cl::init(2), cl::Hidden, | 
|  | cl::desc("Use this to specify the max. distance between array elements " | 
|  | "accessed in a loop so that the elements are classified to have " | 
|  | "temporal reuse")); | 
|  |  | 
|  | /// Retrieve the innermost loop in the given loop nest \p Loops. It returns a | 
|  | /// nullptr if any loops in the loop vector supplied has more than one sibling. | 
|  | /// The loop vector is expected to contain loops collected in breadth-first | 
|  | /// order. | 
|  | static Loop *getInnerMostLoop(const LoopVectorTy &Loops) { | 
|  | assert(!Loops.empty() && "Expecting a non-empy loop vector"); | 
|  |  | 
|  | Loop *LastLoop = Loops.back(); | 
|  | Loop *ParentLoop = LastLoop->getParentLoop(); | 
|  |  | 
|  | if (ParentLoop == nullptr) { | 
|  | assert(Loops.size() == 1 && "Expecting a single loop"); | 
|  | return LastLoop; | 
|  | } | 
|  |  | 
|  | return (llvm::is_sorted(Loops, | 
|  | [](const Loop *L1, const Loop *L2) { | 
|  | return L1->getLoopDepth() < L2->getLoopDepth(); | 
|  | })) | 
|  | ? LastLoop | 
|  | : nullptr; | 
|  | } | 
|  |  | 
|  | static bool isOneDimensionalArray(const SCEV &AccessFn, const SCEV &ElemSize, | 
|  | const Loop &L, ScalarEvolution &SE) { | 
|  | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&AccessFn); | 
|  | if (!AR || !AR->isAffine()) | 
|  | return false; | 
|  |  | 
|  | assert(AR->getLoop() && "AR should have a loop"); | 
|  |  | 
|  | // Check that start and increment are not add recurrences. | 
|  | const SCEV *Start = AR->getStart(); | 
|  | const SCEV *Step = AR->getStepRecurrence(SE); | 
|  | if (isa<SCEVAddRecExpr>(Start) || isa<SCEVAddRecExpr>(Step)) | 
|  | return false; | 
|  |  | 
|  | // Check that start and increment are both invariant in the loop. | 
|  | if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L)) | 
|  | return false; | 
|  |  | 
|  | const SCEV *StepRec = AR->getStepRecurrence(SE); | 
|  | if (StepRec && SE.isKnownNegative(StepRec)) | 
|  | StepRec = SE.getNegativeSCEV(StepRec); | 
|  |  | 
|  | return StepRec == &ElemSize; | 
|  | } | 
|  |  | 
|  | /// Compute the trip count for the given loop \p L. Return the SCEV expression | 
|  | /// for the trip count or nullptr if it cannot be computed. | 
|  | static const SCEV *computeTripCount(const Loop &L, ScalarEvolution &SE) { | 
|  | const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(&L); | 
|  | if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || | 
|  | !isa<SCEVConstant>(BackedgeTakenCount)) | 
|  | return nullptr; | 
|  |  | 
|  | return SE.getAddExpr(BackedgeTakenCount, | 
|  | SE.getOne(BackedgeTakenCount->getType())); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // IndexedReference implementation | 
|  | // | 
|  | raw_ostream &llvm::operator<<(raw_ostream &OS, const IndexedReference &R) { | 
|  | if (!R.IsValid) { | 
|  | OS << R.StoreOrLoadInst; | 
|  | OS << ", IsValid=false."; | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | OS << *R.BasePointer; | 
|  | for (const SCEV *Subscript : R.Subscripts) | 
|  | OS << "[" << *Subscript << "]"; | 
|  |  | 
|  | OS << ", Sizes: "; | 
|  | for (const SCEV *Size : R.Sizes) | 
|  | OS << "[" << *Size << "]"; | 
|  |  | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | IndexedReference::IndexedReference(Instruction &StoreOrLoadInst, | 
|  | const LoopInfo &LI, ScalarEvolution &SE) | 
|  | : StoreOrLoadInst(StoreOrLoadInst), SE(SE) { | 
|  | assert((isa<StoreInst>(StoreOrLoadInst) || isa<LoadInst>(StoreOrLoadInst)) && | 
|  | "Expecting a load or store instruction"); | 
|  |  | 
|  | IsValid = delinearize(LI); | 
|  | if (IsValid) | 
|  | LLVM_DEBUG(dbgs().indent(2) << "Succesfully delinearized: " << *this | 
|  | << "\n"); | 
|  | } | 
|  |  | 
|  | Optional<bool> IndexedReference::hasSpacialReuse(const IndexedReference &Other, | 
|  | unsigned CLS, | 
|  | AliasAnalysis &AA) const { | 
|  | assert(IsValid && "Expecting a valid reference"); | 
|  |  | 
|  | if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) { | 
|  | LLVM_DEBUG(dbgs().indent(2) | 
|  | << "No spacial reuse: different base pointers\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned NumSubscripts = getNumSubscripts(); | 
|  | if (NumSubscripts != Other.getNumSubscripts()) { | 
|  | LLVM_DEBUG(dbgs().indent(2) | 
|  | << "No spacial reuse: different number of subscripts\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // all subscripts must be equal, except the leftmost one (the last one). | 
|  | for (auto SubNum : seq<unsigned>(0, NumSubscripts - 1)) { | 
|  | if (getSubscript(SubNum) != Other.getSubscript(SubNum)) { | 
|  | LLVM_DEBUG(dbgs().indent(2) << "No spacial reuse, different subscripts: " | 
|  | << "\n\t" << *getSubscript(SubNum) << "\n\t" | 
|  | << *Other.getSubscript(SubNum) << "\n"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // the difference between the last subscripts must be less than the cache line | 
|  | // size. | 
|  | const SCEV *LastSubscript = getLastSubscript(); | 
|  | const SCEV *OtherLastSubscript = Other.getLastSubscript(); | 
|  | const SCEVConstant *Diff = dyn_cast<SCEVConstant>( | 
|  | SE.getMinusSCEV(LastSubscript, OtherLastSubscript)); | 
|  |  | 
|  | if (Diff == nullptr) { | 
|  | LLVM_DEBUG(dbgs().indent(2) | 
|  | << "No spacial reuse, difference between subscript:\n\t" | 
|  | << *LastSubscript << "\n\t" << OtherLastSubscript | 
|  | << "\nis not constant.\n"); | 
|  | return None; | 
|  | } | 
|  |  | 
|  | bool InSameCacheLine = (Diff->getValue()->getSExtValue() < CLS); | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | if (InSameCacheLine) | 
|  | dbgs().indent(2) << "Found spacial reuse.\n"; | 
|  | else | 
|  | dbgs().indent(2) << "No spacial reuse.\n"; | 
|  | }); | 
|  |  | 
|  | return InSameCacheLine; | 
|  | } | 
|  |  | 
|  | Optional<bool> IndexedReference::hasTemporalReuse(const IndexedReference &Other, | 
|  | unsigned MaxDistance, | 
|  | const Loop &L, | 
|  | DependenceInfo &DI, | 
|  | AliasAnalysis &AA) const { | 
|  | assert(IsValid && "Expecting a valid reference"); | 
|  |  | 
|  | if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) { | 
|  | LLVM_DEBUG(dbgs().indent(2) | 
|  | << "No temporal reuse: different base pointer\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | std::unique_ptr<Dependence> D = | 
|  | DI.depends(&StoreOrLoadInst, &Other.StoreOrLoadInst, true); | 
|  |  | 
|  | if (D == nullptr) { | 
|  | LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: no dependence\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (D->isLoopIndependent()) { | 
|  | LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check the dependence distance at every loop level. There is temporal reuse | 
|  | // if the distance at the given loop's depth is small (|d| <= MaxDistance) and | 
|  | // it is zero at every other loop level. | 
|  | int LoopDepth = L.getLoopDepth(); | 
|  | int Levels = D->getLevels(); | 
|  | for (int Level = 1; Level <= Levels; ++Level) { | 
|  | const SCEV *Distance = D->getDistance(Level); | 
|  | const SCEVConstant *SCEVConst = dyn_cast_or_null<SCEVConstant>(Distance); | 
|  |  | 
|  | if (SCEVConst == nullptr) { | 
|  | LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: distance unknown\n"); | 
|  | return None; | 
|  | } | 
|  |  | 
|  | const ConstantInt &CI = *SCEVConst->getValue(); | 
|  | if (Level != LoopDepth && !CI.isZero()) { | 
|  | LLVM_DEBUG(dbgs().indent(2) | 
|  | << "No temporal reuse: distance is not zero at depth=" << Level | 
|  | << "\n"); | 
|  | return false; | 
|  | } else if (Level == LoopDepth && CI.getSExtValue() > MaxDistance) { | 
|  | LLVM_DEBUG( | 
|  | dbgs().indent(2) | 
|  | << "No temporal reuse: distance is greater than MaxDistance at depth=" | 
|  | << Level << "\n"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | CacheCostTy IndexedReference::computeRefCost(const Loop &L, | 
|  | unsigned CLS) const { | 
|  | assert(IsValid && "Expecting a valid reference"); | 
|  | LLVM_DEBUG({ | 
|  | dbgs().indent(2) << "Computing cache cost for:\n"; | 
|  | dbgs().indent(4) << *this << "\n"; | 
|  | }); | 
|  |  | 
|  | // If the indexed reference is loop invariant the cost is one. | 
|  | if (isLoopInvariant(L)) { | 
|  | LLVM_DEBUG(dbgs().indent(4) << "Reference is loop invariant: RefCost=1\n"); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | const SCEV *TripCount = computeTripCount(L, SE); | 
|  | if (!TripCount) { | 
|  | LLVM_DEBUG(dbgs() << "Trip count of loop " << L.getName() | 
|  | << " could not be computed, using DefaultTripCount\n"); | 
|  | const SCEV *ElemSize = Sizes.back(); | 
|  | TripCount = SE.getConstant(ElemSize->getType(), DefaultTripCount); | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "TripCount=" << *TripCount << "\n"); | 
|  |  | 
|  | // If the indexed reference is 'consecutive' the cost is | 
|  | // (TripCount*Stride)/CLS, otherwise the cost is TripCount. | 
|  | const SCEV *RefCost = TripCount; | 
|  |  | 
|  | if (isConsecutive(L, CLS)) { | 
|  | const SCEV *Coeff = getLastCoefficient(); | 
|  | const SCEV *ElemSize = Sizes.back(); | 
|  | const SCEV *Stride = SE.getMulExpr(Coeff, ElemSize); | 
|  | const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS); | 
|  | Type *WiderType = SE.getWiderType(Stride->getType(), TripCount->getType()); | 
|  | if (SE.isKnownNegative(Stride)) | 
|  | Stride = SE.getNegativeSCEV(Stride); | 
|  | Stride = SE.getNoopOrAnyExtend(Stride, WiderType); | 
|  | TripCount = SE.getNoopOrAnyExtend(TripCount, WiderType); | 
|  | const SCEV *Numerator = SE.getMulExpr(Stride, TripCount); | 
|  | RefCost = SE.getUDivExpr(Numerator, CacheLineSize); | 
|  |  | 
|  | LLVM_DEBUG(dbgs().indent(4) | 
|  | << "Access is consecutive: RefCost=(TripCount*Stride)/CLS=" | 
|  | << *RefCost << "\n"); | 
|  | } else | 
|  | LLVM_DEBUG(dbgs().indent(4) | 
|  | << "Access is not consecutive: RefCost=TripCount=" << *RefCost | 
|  | << "\n"); | 
|  |  | 
|  | // Attempt to fold RefCost into a constant. | 
|  | if (auto ConstantCost = dyn_cast<SCEVConstant>(RefCost)) | 
|  | return ConstantCost->getValue()->getSExtValue(); | 
|  |  | 
|  | LLVM_DEBUG(dbgs().indent(4) | 
|  | << "RefCost is not a constant! Setting to RefCost=InvalidCost " | 
|  | "(invalid value).\n"); | 
|  |  | 
|  | return CacheCost::InvalidCost; | 
|  | } | 
|  |  | 
|  | bool IndexedReference::delinearize(const LoopInfo &LI) { | 
|  | assert(Subscripts.empty() && "Subscripts should be empty"); | 
|  | assert(Sizes.empty() && "Sizes should be empty"); | 
|  | assert(!IsValid && "Should be called once from the constructor"); | 
|  | LLVM_DEBUG(dbgs() << "Delinearizing: " << StoreOrLoadInst << "\n"); | 
|  |  | 
|  | const SCEV *ElemSize = SE.getElementSize(&StoreOrLoadInst); | 
|  | const BasicBlock *BB = StoreOrLoadInst.getParent(); | 
|  |  | 
|  | if (Loop *L = LI.getLoopFor(BB)) { | 
|  | const SCEV *AccessFn = | 
|  | SE.getSCEVAtScope(getPointerOperand(&StoreOrLoadInst), L); | 
|  |  | 
|  | BasePointer = dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFn)); | 
|  | if (BasePointer == nullptr) { | 
|  | LLVM_DEBUG( | 
|  | dbgs().indent(2) | 
|  | << "ERROR: failed to delinearize, can't identify base pointer\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | AccessFn = SE.getMinusSCEV(AccessFn, BasePointer); | 
|  |  | 
|  | LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L->getName() | 
|  | << "', AccessFn: " << *AccessFn << "\n"); | 
|  |  | 
|  | SE.delinearize(AccessFn, Subscripts, Sizes, | 
|  | SE.getElementSize(&StoreOrLoadInst)); | 
|  |  | 
|  | if (Subscripts.empty() || Sizes.empty() || | 
|  | Subscripts.size() != Sizes.size()) { | 
|  | // Attempt to determine whether we have a single dimensional array access. | 
|  | // before giving up. | 
|  | if (!isOneDimensionalArray(*AccessFn, *ElemSize, *L, SE)) { | 
|  | LLVM_DEBUG(dbgs().indent(2) | 
|  | << "ERROR: failed to delinearize reference\n"); | 
|  | Subscripts.clear(); | 
|  | Sizes.clear(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // The array may be accessed in reverse, for example: | 
|  | //   for (i = N; i > 0; i--) | 
|  | //     A[i] = 0; | 
|  | // In this case, reconstruct the access function using the absolute value | 
|  | // of the step recurrence. | 
|  | const SCEVAddRecExpr *AccessFnAR = dyn_cast<SCEVAddRecExpr>(AccessFn); | 
|  | const SCEV *StepRec = AccessFnAR ? AccessFnAR->getStepRecurrence(SE) : nullptr; | 
|  |  | 
|  | if (StepRec && SE.isKnownNegative(StepRec)) | 
|  | AccessFn = SE.getAddRecExpr(AccessFnAR->getStart(), | 
|  | SE.getNegativeSCEV(StepRec), | 
|  | AccessFnAR->getLoop(), | 
|  | AccessFnAR->getNoWrapFlags()); | 
|  | const SCEV *Div = SE.getUDivExactExpr(AccessFn, ElemSize); | 
|  | Subscripts.push_back(Div); | 
|  | Sizes.push_back(ElemSize); | 
|  | } | 
|  |  | 
|  | return all_of(Subscripts, [&](const SCEV *Subscript) { | 
|  | return isSimpleAddRecurrence(*Subscript, *L); | 
|  | }); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool IndexedReference::isLoopInvariant(const Loop &L) const { | 
|  | Value *Addr = getPointerOperand(&StoreOrLoadInst); | 
|  | assert(Addr != nullptr && "Expecting either a load or a store instruction"); | 
|  | assert(SE.isSCEVable(Addr->getType()) && "Addr should be SCEVable"); | 
|  |  | 
|  | if (SE.isLoopInvariant(SE.getSCEV(Addr), &L)) | 
|  | return true; | 
|  |  | 
|  | // The indexed reference is loop invariant if none of the coefficients use | 
|  | // the loop induction variable. | 
|  | bool allCoeffForLoopAreZero = all_of(Subscripts, [&](const SCEV *Subscript) { | 
|  | return isCoeffForLoopZeroOrInvariant(*Subscript, L); | 
|  | }); | 
|  |  | 
|  | return allCoeffForLoopAreZero; | 
|  | } | 
|  |  | 
|  | bool IndexedReference::isConsecutive(const Loop &L, unsigned CLS) const { | 
|  | // The indexed reference is 'consecutive' if the only coefficient that uses | 
|  | // the loop induction variable is the last one... | 
|  | const SCEV *LastSubscript = Subscripts.back(); | 
|  | for (const SCEV *Subscript : Subscripts) { | 
|  | if (Subscript == LastSubscript) | 
|  | continue; | 
|  | if (!isCoeffForLoopZeroOrInvariant(*Subscript, L)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // ...and the access stride is less than the cache line size. | 
|  | const SCEV *Coeff = getLastCoefficient(); | 
|  | const SCEV *ElemSize = Sizes.back(); | 
|  | const SCEV *Stride = SE.getMulExpr(Coeff, ElemSize); | 
|  | const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS); | 
|  |  | 
|  | Stride = SE.isKnownNegative(Stride) ? SE.getNegativeSCEV(Stride) : Stride; | 
|  | return SE.isKnownPredicate(ICmpInst::ICMP_ULT, Stride, CacheLineSize); | 
|  | } | 
|  |  | 
|  | const SCEV *IndexedReference::getLastCoefficient() const { | 
|  | const SCEV *LastSubscript = getLastSubscript(); | 
|  | assert(isa<SCEVAddRecExpr>(LastSubscript) && | 
|  | "Expecting a SCEV add recurrence expression"); | 
|  | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LastSubscript); | 
|  | return AR->getStepRecurrence(SE); | 
|  | } | 
|  |  | 
|  | bool IndexedReference::isCoeffForLoopZeroOrInvariant(const SCEV &Subscript, | 
|  | const Loop &L) const { | 
|  | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&Subscript); | 
|  | return (AR != nullptr) ? AR->getLoop() != &L | 
|  | : SE.isLoopInvariant(&Subscript, &L); | 
|  | } | 
|  |  | 
|  | bool IndexedReference::isSimpleAddRecurrence(const SCEV &Subscript, | 
|  | const Loop &L) const { | 
|  | if (!isa<SCEVAddRecExpr>(Subscript)) | 
|  | return false; | 
|  |  | 
|  | const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(&Subscript); | 
|  | assert(AR->getLoop() && "AR should have a loop"); | 
|  |  | 
|  | if (!AR->isAffine()) | 
|  | return false; | 
|  |  | 
|  | const SCEV *Start = AR->getStart(); | 
|  | const SCEV *Step = AR->getStepRecurrence(SE); | 
|  |  | 
|  | if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool IndexedReference::isAliased(const IndexedReference &Other, | 
|  | AliasAnalysis &AA) const { | 
|  | const auto &Loc1 = MemoryLocation::get(&StoreOrLoadInst); | 
|  | const auto &Loc2 = MemoryLocation::get(&Other.StoreOrLoadInst); | 
|  | return AA.isMustAlias(Loc1, Loc2); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // CacheCost implementation | 
|  | // | 
|  | raw_ostream &llvm::operator<<(raw_ostream &OS, const CacheCost &CC) { | 
|  | for (const auto &LC : CC.LoopCosts) { | 
|  | const Loop *L = LC.first; | 
|  | OS << "Loop '" << L->getName() << "' has cost = " << LC.second << "\n"; | 
|  | } | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | CacheCost::CacheCost(const LoopVectorTy &Loops, const LoopInfo &LI, | 
|  | ScalarEvolution &SE, TargetTransformInfo &TTI, | 
|  | AliasAnalysis &AA, DependenceInfo &DI, | 
|  | Optional<unsigned> TRT) | 
|  | : Loops(Loops), TripCounts(), LoopCosts(), | 
|  | TRT((TRT == None) ? Optional<unsigned>(TemporalReuseThreshold) : TRT), | 
|  | LI(LI), SE(SE), TTI(TTI), AA(AA), DI(DI) { | 
|  | assert(!Loops.empty() && "Expecting a non-empty loop vector."); | 
|  |  | 
|  | for (const Loop *L : Loops) { | 
|  | unsigned TripCount = SE.getSmallConstantTripCount(L); | 
|  | TripCount = (TripCount == 0) ? DefaultTripCount : TripCount; | 
|  | TripCounts.push_back({L, TripCount}); | 
|  | } | 
|  |  | 
|  | calculateCacheFootprint(); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<CacheCost> | 
|  | CacheCost::getCacheCost(Loop &Root, LoopStandardAnalysisResults &AR, | 
|  | DependenceInfo &DI, Optional<unsigned> TRT) { | 
|  | if (Root.getParentLoop()) { | 
|  | LLVM_DEBUG(dbgs() << "Expecting the outermost loop in a loop nest\n"); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | LoopVectorTy Loops; | 
|  | for (Loop *L : breadth_first(&Root)) | 
|  | Loops.push_back(L); | 
|  |  | 
|  | if (!getInnerMostLoop(Loops)) { | 
|  | LLVM_DEBUG(dbgs() << "Cannot compute cache cost of loop nest with more " | 
|  | "than one innermost loop\n"); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | return std::make_unique<CacheCost>(Loops, AR.LI, AR.SE, AR.TTI, AR.AA, DI, TRT); | 
|  | } | 
|  |  | 
|  | void CacheCost::calculateCacheFootprint() { | 
|  | LLVM_DEBUG(dbgs() << "POPULATING REFERENCE GROUPS\n"); | 
|  | ReferenceGroupsTy RefGroups; | 
|  | if (!populateReferenceGroups(RefGroups)) | 
|  | return; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "COMPUTING LOOP CACHE COSTS\n"); | 
|  | for (const Loop *L : Loops) { | 
|  | assert((std::find_if(LoopCosts.begin(), LoopCosts.end(), | 
|  | [L](const LoopCacheCostTy &LCC) { | 
|  | return LCC.first == L; | 
|  | }) == LoopCosts.end()) && | 
|  | "Should not add duplicate element"); | 
|  | CacheCostTy LoopCost = computeLoopCacheCost(*L, RefGroups); | 
|  | LoopCosts.push_back(std::make_pair(L, LoopCost)); | 
|  | } | 
|  |  | 
|  | sortLoopCosts(); | 
|  | RefGroups.clear(); | 
|  | } | 
|  |  | 
|  | bool CacheCost::populateReferenceGroups(ReferenceGroupsTy &RefGroups) const { | 
|  | assert(RefGroups.empty() && "Reference groups should be empty"); | 
|  |  | 
|  | unsigned CLS = TTI.getCacheLineSize(); | 
|  | Loop *InnerMostLoop = getInnerMostLoop(Loops); | 
|  | assert(InnerMostLoop != nullptr && "Expecting a valid innermost loop"); | 
|  |  | 
|  | for (BasicBlock *BB : InnerMostLoop->getBlocks()) { | 
|  | for (Instruction &I : *BB) { | 
|  | if (!isa<StoreInst>(I) && !isa<LoadInst>(I)) | 
|  | continue; | 
|  |  | 
|  | std::unique_ptr<IndexedReference> R(new IndexedReference(I, LI, SE)); | 
|  | if (!R->isValid()) | 
|  | continue; | 
|  |  | 
|  | bool Added = false; | 
|  | for (ReferenceGroupTy &RefGroup : RefGroups) { | 
|  | const IndexedReference &Representative = *RefGroup.front().get(); | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "References:\n"; | 
|  | dbgs().indent(2) << *R << "\n"; | 
|  | dbgs().indent(2) << Representative << "\n"; | 
|  | }); | 
|  |  | 
|  |  | 
|  | // FIXME: Both positive and negative access functions will be placed | 
|  | // into the same reference group, resulting in a bi-directional array | 
|  | // access such as: | 
|  | //   for (i = N; i > 0; i--) | 
|  | //     A[i] = A[N - i]; | 
|  | // having the same cost calculation as a single dimention access pattern | 
|  | //   for (i = 0; i < N; i++) | 
|  | //     A[i] = A[i]; | 
|  | // when in actuality, depending on the array size, the first example | 
|  | // should have a cost closer to 2x the second due to the two cache | 
|  | // access per iteration from opposite ends of the array | 
|  | Optional<bool> HasTemporalReuse = | 
|  | R->hasTemporalReuse(Representative, *TRT, *InnerMostLoop, DI, AA); | 
|  | Optional<bool> HasSpacialReuse = | 
|  | R->hasSpacialReuse(Representative, CLS, AA); | 
|  |  | 
|  | if ((HasTemporalReuse.hasValue() && *HasTemporalReuse) || | 
|  | (HasSpacialReuse.hasValue() && *HasSpacialReuse)) { | 
|  | RefGroup.push_back(std::move(R)); | 
|  | Added = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Added) { | 
|  | ReferenceGroupTy RG; | 
|  | RG.push_back(std::move(R)); | 
|  | RefGroups.push_back(std::move(RG)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (RefGroups.empty()) | 
|  | return false; | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "\nIDENTIFIED REFERENCE GROUPS:\n"; | 
|  | int n = 1; | 
|  | for (const ReferenceGroupTy &RG : RefGroups) { | 
|  | dbgs().indent(2) << "RefGroup " << n << ":\n"; | 
|  | for (const auto &IR : RG) | 
|  | dbgs().indent(4) << *IR << "\n"; | 
|  | n++; | 
|  | } | 
|  | dbgs() << "\n"; | 
|  | }); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | CacheCostTy | 
|  | CacheCost::computeLoopCacheCost(const Loop &L, | 
|  | const ReferenceGroupsTy &RefGroups) const { | 
|  | if (!L.isLoopSimplifyForm()) | 
|  | return InvalidCost; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Considering loop '" << L.getName() | 
|  | << "' as innermost loop.\n"); | 
|  |  | 
|  | // Compute the product of the trip counts of each other loop in the nest. | 
|  | CacheCostTy TripCountsProduct = 1; | 
|  | for (const auto &TC : TripCounts) { | 
|  | if (TC.first == &L) | 
|  | continue; | 
|  | TripCountsProduct *= TC.second; | 
|  | } | 
|  |  | 
|  | CacheCostTy LoopCost = 0; | 
|  | for (const ReferenceGroupTy &RG : RefGroups) { | 
|  | CacheCostTy RefGroupCost = computeRefGroupCacheCost(RG, L); | 
|  | LoopCost += RefGroupCost * TripCountsProduct; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs().indent(2) << "Loop '" << L.getName() | 
|  | << "' has cost=" << LoopCost << "\n"); | 
|  |  | 
|  | return LoopCost; | 
|  | } | 
|  |  | 
|  | CacheCostTy CacheCost::computeRefGroupCacheCost(const ReferenceGroupTy &RG, | 
|  | const Loop &L) const { | 
|  | assert(!RG.empty() && "Reference group should have at least one member."); | 
|  |  | 
|  | const IndexedReference *Representative = RG.front().get(); | 
|  | return Representative->computeRefCost(L, TTI.getCacheLineSize()); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // LoopCachePrinterPass implementation | 
|  | // | 
|  | PreservedAnalyses LoopCachePrinterPass::run(Loop &L, LoopAnalysisManager &AM, | 
|  | LoopStandardAnalysisResults &AR, | 
|  | LPMUpdater &U) { | 
|  | Function *F = L.getHeader()->getParent(); | 
|  | DependenceInfo DI(F, &AR.AA, &AR.SE, &AR.LI); | 
|  |  | 
|  | if (auto CC = CacheCost::getCacheCost(L, AR, DI)) | 
|  | OS << *CC; | 
|  |  | 
|  | return PreservedAnalyses::all(); | 
|  | } |