|  | //===- DemandedBits.cpp - Determine demanded bits -------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass implements a demanded bits analysis. A demanded bit is one that | 
|  | // contributes to a result; bits that are not demanded can be either zero or | 
|  | // one without affecting control or data flow. For example in this sequence: | 
|  | // | 
|  | //   %1 = add i32 %x, %y | 
|  | //   %2 = trunc i32 %1 to i16 | 
|  | // | 
|  | // Only the lowest 16 bits of %1 are demanded; the rest are removed by the | 
|  | // trunc. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/DemandedBits.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/Analysis/AssumptionCache.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/InstIterator.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/PassManager.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Use.h" | 
|  | #include "llvm/InitializePasses.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/KnownBits.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | #include <cstdint> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::PatternMatch; | 
|  |  | 
|  | #define DEBUG_TYPE "demanded-bits" | 
|  |  | 
|  | char DemandedBitsWrapperPass::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(DemandedBitsWrapperPass, "demanded-bits", | 
|  | "Demanded bits analysis", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) | 
|  | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
|  | INITIALIZE_PASS_END(DemandedBitsWrapperPass, "demanded-bits", | 
|  | "Demanded bits analysis", false, false) | 
|  |  | 
|  | DemandedBitsWrapperPass::DemandedBitsWrapperPass() : FunctionPass(ID) { | 
|  | initializeDemandedBitsWrapperPassPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | void DemandedBitsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.setPreservesCFG(); | 
|  | AU.addRequired<AssumptionCacheTracker>(); | 
|  | AU.addRequired<DominatorTreeWrapperPass>(); | 
|  | AU.setPreservesAll(); | 
|  | } | 
|  |  | 
|  | void DemandedBitsWrapperPass::print(raw_ostream &OS, const Module *M) const { | 
|  | DB->print(OS); | 
|  | } | 
|  |  | 
|  | static bool isAlwaysLive(Instruction *I) { | 
|  | return I->isTerminator() || isa<DbgInfoIntrinsic>(I) || I->isEHPad() || | 
|  | I->mayHaveSideEffects(); | 
|  | } | 
|  |  | 
|  | void DemandedBits::determineLiveOperandBits( | 
|  | const Instruction *UserI, const Value *Val, unsigned OperandNo, | 
|  | const APInt &AOut, APInt &AB, KnownBits &Known, KnownBits &Known2, | 
|  | bool &KnownBitsComputed) { | 
|  | unsigned BitWidth = AB.getBitWidth(); | 
|  |  | 
|  | // We're called once per operand, but for some instructions, we need to | 
|  | // compute known bits of both operands in order to determine the live bits of | 
|  | // either (when both operands are instructions themselves). We don't, | 
|  | // however, want to do this twice, so we cache the result in APInts that live | 
|  | // in the caller. For the two-relevant-operands case, both operand values are | 
|  | // provided here. | 
|  | auto ComputeKnownBits = | 
|  | [&](unsigned BitWidth, const Value *V1, const Value *V2) { | 
|  | if (KnownBitsComputed) | 
|  | return; | 
|  | KnownBitsComputed = true; | 
|  |  | 
|  | const DataLayout &DL = UserI->getModule()->getDataLayout(); | 
|  | Known = KnownBits(BitWidth); | 
|  | computeKnownBits(V1, Known, DL, 0, &AC, UserI, &DT); | 
|  |  | 
|  | if (V2) { | 
|  | Known2 = KnownBits(BitWidth); | 
|  | computeKnownBits(V2, Known2, DL, 0, &AC, UserI, &DT); | 
|  | } | 
|  | }; | 
|  |  | 
|  | switch (UserI->getOpcode()) { | 
|  | default: break; | 
|  | case Instruction::Call: | 
|  | case Instruction::Invoke: | 
|  | if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI)) | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: break; | 
|  | case Intrinsic::bswap: | 
|  | // The alive bits of the input are the swapped alive bits of | 
|  | // the output. | 
|  | AB = AOut.byteSwap(); | 
|  | break; | 
|  | case Intrinsic::bitreverse: | 
|  | // The alive bits of the input are the reversed alive bits of | 
|  | // the output. | 
|  | AB = AOut.reverseBits(); | 
|  | break; | 
|  | case Intrinsic::ctlz: | 
|  | if (OperandNo == 0) { | 
|  | // We need some output bits, so we need all bits of the | 
|  | // input to the left of, and including, the leftmost bit | 
|  | // known to be one. | 
|  | ComputeKnownBits(BitWidth, Val, nullptr); | 
|  | AB = APInt::getHighBitsSet(BitWidth, | 
|  | std::min(BitWidth, Known.countMaxLeadingZeros()+1)); | 
|  | } | 
|  | break; | 
|  | case Intrinsic::cttz: | 
|  | if (OperandNo == 0) { | 
|  | // We need some output bits, so we need all bits of the | 
|  | // input to the right of, and including, the rightmost bit | 
|  | // known to be one. | 
|  | ComputeKnownBits(BitWidth, Val, nullptr); | 
|  | AB = APInt::getLowBitsSet(BitWidth, | 
|  | std::min(BitWidth, Known.countMaxTrailingZeros()+1)); | 
|  | } | 
|  | break; | 
|  | case Intrinsic::fshl: | 
|  | case Intrinsic::fshr: { | 
|  | const APInt *SA; | 
|  | if (OperandNo == 2) { | 
|  | // Shift amount is modulo the bitwidth. For powers of two we have | 
|  | // SA % BW == SA & (BW - 1). | 
|  | if (isPowerOf2_32(BitWidth)) | 
|  | AB = BitWidth - 1; | 
|  | } else if (match(II->getOperand(2), m_APInt(SA))) { | 
|  | // Normalize to funnel shift left. APInt shifts of BitWidth are well- | 
|  | // defined, so no need to special-case zero shifts here. | 
|  | uint64_t ShiftAmt = SA->urem(BitWidth); | 
|  | if (II->getIntrinsicID() == Intrinsic::fshr) | 
|  | ShiftAmt = BitWidth - ShiftAmt; | 
|  |  | 
|  | if (OperandNo == 0) | 
|  | AB = AOut.lshr(ShiftAmt); | 
|  | else if (OperandNo == 1) | 
|  | AB = AOut.shl(BitWidth - ShiftAmt); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::Mul: | 
|  | // Find the highest live output bit. We don't need any more input | 
|  | // bits than that (adds, and thus subtracts, ripple only to the | 
|  | // left). | 
|  | AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits()); | 
|  | break; | 
|  | case Instruction::Shl: | 
|  | if (OperandNo == 0) { | 
|  | const APInt *ShiftAmtC; | 
|  | if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) { | 
|  | uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1); | 
|  | AB = AOut.lshr(ShiftAmt); | 
|  |  | 
|  | // If the shift is nuw/nsw, then the high bits are not dead | 
|  | // (because we've promised that they *must* be zero). | 
|  | const ShlOperator *S = cast<ShlOperator>(UserI); | 
|  | if (S->hasNoSignedWrap()) | 
|  | AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1); | 
|  | else if (S->hasNoUnsignedWrap()) | 
|  | AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case Instruction::LShr: | 
|  | if (OperandNo == 0) { | 
|  | const APInt *ShiftAmtC; | 
|  | if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) { | 
|  | uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1); | 
|  | AB = AOut.shl(ShiftAmt); | 
|  |  | 
|  | // If the shift is exact, then the low bits are not dead | 
|  | // (they must be zero). | 
|  | if (cast<LShrOperator>(UserI)->isExact()) | 
|  | AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case Instruction::AShr: | 
|  | if (OperandNo == 0) { | 
|  | const APInt *ShiftAmtC; | 
|  | if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) { | 
|  | uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1); | 
|  | AB = AOut.shl(ShiftAmt); | 
|  | // Because the high input bit is replicated into the | 
|  | // high-order bits of the result, if we need any of those | 
|  | // bits, then we must keep the highest input bit. | 
|  | if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt)) | 
|  | .getBoolValue()) | 
|  | AB.setSignBit(); | 
|  |  | 
|  | // If the shift is exact, then the low bits are not dead | 
|  | // (they must be zero). | 
|  | if (cast<AShrOperator>(UserI)->isExact()) | 
|  | AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case Instruction::And: | 
|  | AB = AOut; | 
|  |  | 
|  | // For bits that are known zero, the corresponding bits in the | 
|  | // other operand are dead (unless they're both zero, in which | 
|  | // case they can't both be dead, so just mark the LHS bits as | 
|  | // dead). | 
|  | ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1)); | 
|  | if (OperandNo == 0) | 
|  | AB &= ~Known2.Zero; | 
|  | else | 
|  | AB &= ~(Known.Zero & ~Known2.Zero); | 
|  | break; | 
|  | case Instruction::Or: | 
|  | AB = AOut; | 
|  |  | 
|  | // For bits that are known one, the corresponding bits in the | 
|  | // other operand are dead (unless they're both one, in which | 
|  | // case they can't both be dead, so just mark the LHS bits as | 
|  | // dead). | 
|  | ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1)); | 
|  | if (OperandNo == 0) | 
|  | AB &= ~Known2.One; | 
|  | else | 
|  | AB &= ~(Known.One & ~Known2.One); | 
|  | break; | 
|  | case Instruction::Xor: | 
|  | case Instruction::PHI: | 
|  | AB = AOut; | 
|  | break; | 
|  | case Instruction::Trunc: | 
|  | AB = AOut.zext(BitWidth); | 
|  | break; | 
|  | case Instruction::ZExt: | 
|  | AB = AOut.trunc(BitWidth); | 
|  | break; | 
|  | case Instruction::SExt: | 
|  | AB = AOut.trunc(BitWidth); | 
|  | // Because the high input bit is replicated into the | 
|  | // high-order bits of the result, if we need any of those | 
|  | // bits, then we must keep the highest input bit. | 
|  | if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(), | 
|  | AOut.getBitWidth() - BitWidth)) | 
|  | .getBoolValue()) | 
|  | AB.setSignBit(); | 
|  | break; | 
|  | case Instruction::Select: | 
|  | if (OperandNo != 0) | 
|  | AB = AOut; | 
|  | break; | 
|  | case Instruction::ExtractElement: | 
|  | if (OperandNo == 0) | 
|  | AB = AOut; | 
|  | break; | 
|  | case Instruction::InsertElement: | 
|  | case Instruction::ShuffleVector: | 
|  | if (OperandNo == 0 || OperandNo == 1) | 
|  | AB = AOut; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool DemandedBitsWrapperPass::runOnFunction(Function &F) { | 
|  | auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); | 
|  | auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | 
|  | DB.emplace(F, AC, DT); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void DemandedBitsWrapperPass::releaseMemory() { | 
|  | DB.reset(); | 
|  | } | 
|  |  | 
|  | void DemandedBits::performAnalysis() { | 
|  | if (Analyzed) | 
|  | // Analysis already completed for this function. | 
|  | return; | 
|  | Analyzed = true; | 
|  |  | 
|  | Visited.clear(); | 
|  | AliveBits.clear(); | 
|  | DeadUses.clear(); | 
|  |  | 
|  | SmallSetVector<Instruction*, 16> Worklist; | 
|  |  | 
|  | // Collect the set of "root" instructions that are known live. | 
|  | for (Instruction &I : instructions(F)) { | 
|  | if (!isAlwaysLive(&I)) | 
|  | continue; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n"); | 
|  | // For integer-valued instructions, set up an initial empty set of alive | 
|  | // bits and add the instruction to the work list. For other instructions | 
|  | // add their operands to the work list (for integer values operands, mark | 
|  | // all bits as live). | 
|  | Type *T = I.getType(); | 
|  | if (T->isIntOrIntVectorTy()) { | 
|  | if (AliveBits.try_emplace(&I, T->getScalarSizeInBits(), 0).second) | 
|  | Worklist.insert(&I); | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Non-integer-typed instructions... | 
|  | for (Use &OI : I.operands()) { | 
|  | if (Instruction *J = dyn_cast<Instruction>(OI)) { | 
|  | Type *T = J->getType(); | 
|  | if (T->isIntOrIntVectorTy()) | 
|  | AliveBits[J] = APInt::getAllOnesValue(T->getScalarSizeInBits()); | 
|  | else | 
|  | Visited.insert(J); | 
|  | Worklist.insert(J); | 
|  | } | 
|  | } | 
|  | // To save memory, we don't add I to the Visited set here. Instead, we | 
|  | // check isAlwaysLive on every instruction when searching for dead | 
|  | // instructions later (we need to check isAlwaysLive for the | 
|  | // integer-typed instructions anyway). | 
|  | } | 
|  |  | 
|  | // Propagate liveness backwards to operands. | 
|  | while (!Worklist.empty()) { | 
|  | Instruction *UserI = Worklist.pop_back_val(); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI); | 
|  | APInt AOut; | 
|  | bool InputIsKnownDead = false; | 
|  | if (UserI->getType()->isIntOrIntVectorTy()) { | 
|  | AOut = AliveBits[UserI]; | 
|  | LLVM_DEBUG(dbgs() << " Alive Out: 0x" | 
|  | << Twine::utohexstr(AOut.getLimitedValue())); | 
|  |  | 
|  | // If all bits of the output are dead, then all bits of the input | 
|  | // are also dead. | 
|  | InputIsKnownDead = !AOut && !isAlwaysLive(UserI); | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "\n"); | 
|  |  | 
|  | KnownBits Known, Known2; | 
|  | bool KnownBitsComputed = false; | 
|  | // Compute the set of alive bits for each operand. These are anded into the | 
|  | // existing set, if any, and if that changes the set of alive bits, the | 
|  | // operand is added to the work-list. | 
|  | for (Use &OI : UserI->operands()) { | 
|  | // We also want to detect dead uses of arguments, but will only store | 
|  | // demanded bits for instructions. | 
|  | Instruction *I = dyn_cast<Instruction>(OI); | 
|  | if (!I && !isa<Argument>(OI)) | 
|  | continue; | 
|  |  | 
|  | Type *T = OI->getType(); | 
|  | if (T->isIntOrIntVectorTy()) { | 
|  | unsigned BitWidth = T->getScalarSizeInBits(); | 
|  | APInt AB = APInt::getAllOnesValue(BitWidth); | 
|  | if (InputIsKnownDead) { | 
|  | AB = APInt(BitWidth, 0); | 
|  | } else { | 
|  | // Bits of each operand that are used to compute alive bits of the | 
|  | // output are alive, all others are dead. | 
|  | determineLiveOperandBits(UserI, OI, OI.getOperandNo(), AOut, AB, | 
|  | Known, Known2, KnownBitsComputed); | 
|  |  | 
|  | // Keep track of uses which have no demanded bits. | 
|  | if (AB.isNullValue()) | 
|  | DeadUses.insert(&OI); | 
|  | else | 
|  | DeadUses.erase(&OI); | 
|  | } | 
|  |  | 
|  | if (I) { | 
|  | // If we've added to the set of alive bits (or the operand has not | 
|  | // been previously visited), then re-queue the operand to be visited | 
|  | // again. | 
|  | auto Res = AliveBits.try_emplace(I); | 
|  | if (Res.second || (AB |= Res.first->second) != Res.first->second) { | 
|  | Res.first->second = std::move(AB); | 
|  | Worklist.insert(I); | 
|  | } | 
|  | } | 
|  | } else if (I && Visited.insert(I).second) { | 
|  | Worklist.insert(I); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | APInt DemandedBits::getDemandedBits(Instruction *I) { | 
|  | performAnalysis(); | 
|  |  | 
|  | auto Found = AliveBits.find(I); | 
|  | if (Found != AliveBits.end()) | 
|  | return Found->second; | 
|  |  | 
|  | const DataLayout &DL = I->getModule()->getDataLayout(); | 
|  | return APInt::getAllOnesValue( | 
|  | DL.getTypeSizeInBits(I->getType()->getScalarType())); | 
|  | } | 
|  |  | 
|  | bool DemandedBits::isInstructionDead(Instruction *I) { | 
|  | performAnalysis(); | 
|  |  | 
|  | return !Visited.count(I) && AliveBits.find(I) == AliveBits.end() && | 
|  | !isAlwaysLive(I); | 
|  | } | 
|  |  | 
|  | bool DemandedBits::isUseDead(Use *U) { | 
|  | // We only track integer uses, everything else is assumed live. | 
|  | if (!(*U)->getType()->isIntOrIntVectorTy()) | 
|  | return false; | 
|  |  | 
|  | // Uses by always-live instructions are never dead. | 
|  | Instruction *UserI = cast<Instruction>(U->getUser()); | 
|  | if (isAlwaysLive(UserI)) | 
|  | return false; | 
|  |  | 
|  | performAnalysis(); | 
|  | if (DeadUses.count(U)) | 
|  | return true; | 
|  |  | 
|  | // If no output bits are demanded, no input bits are demanded and the use | 
|  | // is dead. These uses might not be explicitly present in the DeadUses map. | 
|  | if (UserI->getType()->isIntOrIntVectorTy()) { | 
|  | auto Found = AliveBits.find(UserI); | 
|  | if (Found != AliveBits.end() && Found->second.isNullValue()) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void DemandedBits::print(raw_ostream &OS) { | 
|  | performAnalysis(); | 
|  | for (auto &KV : AliveBits) { | 
|  | OS << "DemandedBits: 0x" << Twine::utohexstr(KV.second.getLimitedValue()) | 
|  | << " for " << *KV.first << '\n'; | 
|  | } | 
|  | } | 
|  |  | 
|  | FunctionPass *llvm::createDemandedBitsWrapperPass() { | 
|  | return new DemandedBitsWrapperPass(); | 
|  | } | 
|  |  | 
|  | AnalysisKey DemandedBitsAnalysis::Key; | 
|  |  | 
|  | DemandedBits DemandedBitsAnalysis::run(Function &F, | 
|  | FunctionAnalysisManager &AM) { | 
|  | auto &AC = AM.getResult<AssumptionAnalysis>(F); | 
|  | auto &DT = AM.getResult<DominatorTreeAnalysis>(F); | 
|  | return DemandedBits(F, AC, DT); | 
|  | } | 
|  |  | 
|  | PreservedAnalyses DemandedBitsPrinterPass::run(Function &F, | 
|  | FunctionAnalysisManager &AM) { | 
|  | AM.getResult<DemandedBitsAnalysis>(F).print(OS); | 
|  | return PreservedAnalyses::all(); | 
|  | } |