|  | //===- BlockFrequencyImplInfo.cpp - Block Frequency Info Implementation ---===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Loops should be simplified before this analysis. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/BlockFrequencyInfoImpl.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/GraphTraits.h" | 
|  | #include "llvm/ADT/None.h" | 
|  | #include "llvm/ADT/SCCIterator.h" | 
|  | #include "llvm/Config/llvm-config.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/Support/BlockFrequency.h" | 
|  | #include "llvm/Support/BranchProbability.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ScaledNumber.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstddef> | 
|  | #include <cstdint> | 
|  | #include <iterator> | 
|  | #include <list> | 
|  | #include <numeric> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::bfi_detail; | 
|  |  | 
|  | #define DEBUG_TYPE "block-freq" | 
|  |  | 
|  | cl::opt<bool> CheckBFIUnknownBlockQueries( | 
|  | "check-bfi-unknown-block-queries", | 
|  | cl::init(false), cl::Hidden, | 
|  | cl::desc("Check if block frequency is queried for an unknown block " | 
|  | "for debugging missed BFI updates")); | 
|  |  | 
|  | ScaledNumber<uint64_t> BlockMass::toScaled() const { | 
|  | if (isFull()) | 
|  | return ScaledNumber<uint64_t>(1, 0); | 
|  | return ScaledNumber<uint64_t>(getMass() + 1, -64); | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | LLVM_DUMP_METHOD void BlockMass::dump() const { print(dbgs()); } | 
|  | #endif | 
|  |  | 
|  | static char getHexDigit(int N) { | 
|  | assert(N < 16); | 
|  | if (N < 10) | 
|  | return '0' + N; | 
|  | return 'a' + N - 10; | 
|  | } | 
|  |  | 
|  | raw_ostream &BlockMass::print(raw_ostream &OS) const { | 
|  | for (int Digits = 0; Digits < 16; ++Digits) | 
|  | OS << getHexDigit(Mass >> (60 - Digits * 4) & 0xf); | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | using BlockNode = BlockFrequencyInfoImplBase::BlockNode; | 
|  | using Distribution = BlockFrequencyInfoImplBase::Distribution; | 
|  | using WeightList = BlockFrequencyInfoImplBase::Distribution::WeightList; | 
|  | using Scaled64 = BlockFrequencyInfoImplBase::Scaled64; | 
|  | using LoopData = BlockFrequencyInfoImplBase::LoopData; | 
|  | using Weight = BlockFrequencyInfoImplBase::Weight; | 
|  | using FrequencyData = BlockFrequencyInfoImplBase::FrequencyData; | 
|  |  | 
|  | /// Dithering mass distributer. | 
|  | /// | 
|  | /// This class splits up a single mass into portions by weight, dithering to | 
|  | /// spread out error.  No mass is lost.  The dithering precision depends on the | 
|  | /// precision of the product of \a BlockMass and \a BranchProbability. | 
|  | /// | 
|  | /// The distribution algorithm follows. | 
|  | /// | 
|  | ///  1. Initialize by saving the sum of the weights in \a RemWeight and the | 
|  | ///     mass to distribute in \a RemMass. | 
|  | /// | 
|  | ///  2. For each portion: | 
|  | /// | 
|  | ///      1. Construct a branch probability, P, as the portion's weight divided | 
|  | ///         by the current value of \a RemWeight. | 
|  | ///      2. Calculate the portion's mass as \a RemMass times P. | 
|  | ///      3. Update \a RemWeight and \a RemMass at each portion by subtracting | 
|  | ///         the current portion's weight and mass. | 
|  | struct DitheringDistributer { | 
|  | uint32_t RemWeight; | 
|  | BlockMass RemMass; | 
|  |  | 
|  | DitheringDistributer(Distribution &Dist, const BlockMass &Mass); | 
|  |  | 
|  | BlockMass takeMass(uint32_t Weight); | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | DitheringDistributer::DitheringDistributer(Distribution &Dist, | 
|  | const BlockMass &Mass) { | 
|  | Dist.normalize(); | 
|  | RemWeight = Dist.Total; | 
|  | RemMass = Mass; | 
|  | } | 
|  |  | 
|  | BlockMass DitheringDistributer::takeMass(uint32_t Weight) { | 
|  | assert(Weight && "invalid weight"); | 
|  | assert(Weight <= RemWeight); | 
|  | BlockMass Mass = RemMass * BranchProbability(Weight, RemWeight); | 
|  |  | 
|  | // Decrement totals (dither). | 
|  | RemWeight -= Weight; | 
|  | RemMass -= Mass; | 
|  | return Mass; | 
|  | } | 
|  |  | 
|  | void Distribution::add(const BlockNode &Node, uint64_t Amount, | 
|  | Weight::DistType Type) { | 
|  | assert(Amount && "invalid weight of 0"); | 
|  | uint64_t NewTotal = Total + Amount; | 
|  |  | 
|  | // Check for overflow.  It should be impossible to overflow twice. | 
|  | bool IsOverflow = NewTotal < Total; | 
|  | assert(!(DidOverflow && IsOverflow) && "unexpected repeated overflow"); | 
|  | DidOverflow |= IsOverflow; | 
|  |  | 
|  | // Update the total. | 
|  | Total = NewTotal; | 
|  |  | 
|  | // Save the weight. | 
|  | Weights.push_back(Weight(Type, Node, Amount)); | 
|  | } | 
|  |  | 
|  | static void combineWeight(Weight &W, const Weight &OtherW) { | 
|  | assert(OtherW.TargetNode.isValid()); | 
|  | if (!W.Amount) { | 
|  | W = OtherW; | 
|  | return; | 
|  | } | 
|  | assert(W.Type == OtherW.Type); | 
|  | assert(W.TargetNode == OtherW.TargetNode); | 
|  | assert(OtherW.Amount && "Expected non-zero weight"); | 
|  | if (W.Amount > W.Amount + OtherW.Amount) | 
|  | // Saturate on overflow. | 
|  | W.Amount = UINT64_MAX; | 
|  | else | 
|  | W.Amount += OtherW.Amount; | 
|  | } | 
|  |  | 
|  | static void combineWeightsBySorting(WeightList &Weights) { | 
|  | // Sort so edges to the same node are adjacent. | 
|  | llvm::sort(Weights, [](const Weight &L, const Weight &R) { | 
|  | return L.TargetNode < R.TargetNode; | 
|  | }); | 
|  |  | 
|  | // Combine adjacent edges. | 
|  | WeightList::iterator O = Weights.begin(); | 
|  | for (WeightList::const_iterator I = O, L = O, E = Weights.end(); I != E; | 
|  | ++O, (I = L)) { | 
|  | *O = *I; | 
|  |  | 
|  | // Find the adjacent weights to the same node. | 
|  | for (++L; L != E && I->TargetNode == L->TargetNode; ++L) | 
|  | combineWeight(*O, *L); | 
|  | } | 
|  |  | 
|  | // Erase extra entries. | 
|  | Weights.erase(O, Weights.end()); | 
|  | } | 
|  |  | 
|  | static void combineWeightsByHashing(WeightList &Weights) { | 
|  | // Collect weights into a DenseMap. | 
|  | using HashTable = DenseMap<BlockNode::IndexType, Weight>; | 
|  |  | 
|  | HashTable Combined(NextPowerOf2(2 * Weights.size())); | 
|  | for (const Weight &W : Weights) | 
|  | combineWeight(Combined[W.TargetNode.Index], W); | 
|  |  | 
|  | // Check whether anything changed. | 
|  | if (Weights.size() == Combined.size()) | 
|  | return; | 
|  |  | 
|  | // Fill in the new weights. | 
|  | Weights.clear(); | 
|  | Weights.reserve(Combined.size()); | 
|  | for (const auto &I : Combined) | 
|  | Weights.push_back(I.second); | 
|  | } | 
|  |  | 
|  | static void combineWeights(WeightList &Weights) { | 
|  | // Use a hash table for many successors to keep this linear. | 
|  | if (Weights.size() > 128) { | 
|  | combineWeightsByHashing(Weights); | 
|  | return; | 
|  | } | 
|  |  | 
|  | combineWeightsBySorting(Weights); | 
|  | } | 
|  |  | 
|  | static uint64_t shiftRightAndRound(uint64_t N, int Shift) { | 
|  | assert(Shift >= 0); | 
|  | assert(Shift < 64); | 
|  | if (!Shift) | 
|  | return N; | 
|  | return (N >> Shift) + (UINT64_C(1) & N >> (Shift - 1)); | 
|  | } | 
|  |  | 
|  | void Distribution::normalize() { | 
|  | // Early exit for termination nodes. | 
|  | if (Weights.empty()) | 
|  | return; | 
|  |  | 
|  | // Only bother if there are multiple successors. | 
|  | if (Weights.size() > 1) | 
|  | combineWeights(Weights); | 
|  |  | 
|  | // Early exit when combined into a single successor. | 
|  | if (Weights.size() == 1) { | 
|  | Total = 1; | 
|  | Weights.front().Amount = 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Determine how much to shift right so that the total fits into 32-bits. | 
|  | // | 
|  | // If we shift at all, shift by 1 extra.  Otherwise, the lower limit of 1 | 
|  | // for each weight can cause a 32-bit overflow. | 
|  | int Shift = 0; | 
|  | if (DidOverflow) | 
|  | Shift = 33; | 
|  | else if (Total > UINT32_MAX) | 
|  | Shift = 33 - countLeadingZeros(Total); | 
|  |  | 
|  | // Early exit if nothing needs to be scaled. | 
|  | if (!Shift) { | 
|  | // If we didn't overflow then combineWeights() shouldn't have changed the | 
|  | // sum of the weights, but let's double-check. | 
|  | assert(Total == std::accumulate(Weights.begin(), Weights.end(), UINT64_C(0), | 
|  | [](uint64_t Sum, const Weight &W) { | 
|  | return Sum + W.Amount; | 
|  | }) && | 
|  | "Expected total to be correct"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Recompute the total through accumulation (rather than shifting it) so that | 
|  | // it's accurate after shifting and any changes combineWeights() made above. | 
|  | Total = 0; | 
|  |  | 
|  | // Sum the weights to each node and shift right if necessary. | 
|  | for (Weight &W : Weights) { | 
|  | // Scale down below UINT32_MAX.  Since Shift is larger than necessary, we | 
|  | // can round here without concern about overflow. | 
|  | assert(W.TargetNode.isValid()); | 
|  | W.Amount = std::max(UINT64_C(1), shiftRightAndRound(W.Amount, Shift)); | 
|  | assert(W.Amount <= UINT32_MAX); | 
|  |  | 
|  | // Update the total. | 
|  | Total += W.Amount; | 
|  | } | 
|  | assert(Total <= UINT32_MAX); | 
|  | } | 
|  |  | 
|  | void BlockFrequencyInfoImplBase::clear() { | 
|  | // Swap with a default-constructed std::vector, since std::vector<>::clear() | 
|  | // does not actually clear heap storage. | 
|  | std::vector<FrequencyData>().swap(Freqs); | 
|  | IsIrrLoopHeader.clear(); | 
|  | std::vector<WorkingData>().swap(Working); | 
|  | Loops.clear(); | 
|  | } | 
|  |  | 
|  | /// Clear all memory not needed downstream. | 
|  | /// | 
|  | /// Releases all memory not used downstream.  In particular, saves Freqs. | 
|  | static void cleanup(BlockFrequencyInfoImplBase &BFI) { | 
|  | std::vector<FrequencyData> SavedFreqs(std::move(BFI.Freqs)); | 
|  | SparseBitVector<> SavedIsIrrLoopHeader(std::move(BFI.IsIrrLoopHeader)); | 
|  | BFI.clear(); | 
|  | BFI.Freqs = std::move(SavedFreqs); | 
|  | BFI.IsIrrLoopHeader = std::move(SavedIsIrrLoopHeader); | 
|  | } | 
|  |  | 
|  | bool BlockFrequencyInfoImplBase::addToDist(Distribution &Dist, | 
|  | const LoopData *OuterLoop, | 
|  | const BlockNode &Pred, | 
|  | const BlockNode &Succ, | 
|  | uint64_t Weight) { | 
|  | if (!Weight) | 
|  | Weight = 1; | 
|  |  | 
|  | auto isLoopHeader = [&OuterLoop](const BlockNode &Node) { | 
|  | return OuterLoop && OuterLoop->isHeader(Node); | 
|  | }; | 
|  |  | 
|  | BlockNode Resolved = Working[Succ.Index].getResolvedNode(); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | auto debugSuccessor = [&](const char *Type) { | 
|  | dbgs() << "  =>" | 
|  | << " [" << Type << "] weight = " << Weight; | 
|  | if (!isLoopHeader(Resolved)) | 
|  | dbgs() << ", succ = " << getBlockName(Succ); | 
|  | if (Resolved != Succ) | 
|  | dbgs() << ", resolved = " << getBlockName(Resolved); | 
|  | dbgs() << "\n"; | 
|  | }; | 
|  | (void)debugSuccessor; | 
|  | #endif | 
|  |  | 
|  | if (isLoopHeader(Resolved)) { | 
|  | LLVM_DEBUG(debugSuccessor("backedge")); | 
|  | Dist.addBackedge(Resolved, Weight); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (Working[Resolved.Index].getContainingLoop() != OuterLoop) { | 
|  | LLVM_DEBUG(debugSuccessor("  exit  ")); | 
|  | Dist.addExit(Resolved, Weight); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (Resolved < Pred) { | 
|  | if (!isLoopHeader(Pred)) { | 
|  | // If OuterLoop is an irreducible loop, we can't actually handle this. | 
|  | assert((!OuterLoop || !OuterLoop->isIrreducible()) && | 
|  | "unhandled irreducible control flow"); | 
|  |  | 
|  | // Irreducible backedge.  Abort. | 
|  | LLVM_DEBUG(debugSuccessor("abort!!!")); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If "Pred" is a loop header, then this isn't really a backedge; rather, | 
|  | // OuterLoop must be irreducible.  These false backedges can come only from | 
|  | // secondary loop headers. | 
|  | assert(OuterLoop && OuterLoop->isIrreducible() && !isLoopHeader(Resolved) && | 
|  | "unhandled irreducible control flow"); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(debugSuccessor(" local  ")); | 
|  | Dist.addLocal(Resolved, Weight); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool BlockFrequencyInfoImplBase::addLoopSuccessorsToDist( | 
|  | const LoopData *OuterLoop, LoopData &Loop, Distribution &Dist) { | 
|  | // Copy the exit map into Dist. | 
|  | for (const auto &I : Loop.Exits) | 
|  | if (!addToDist(Dist, OuterLoop, Loop.getHeader(), I.first, | 
|  | I.second.getMass())) | 
|  | // Irreducible backedge. | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Compute the loop scale for a loop. | 
|  | void BlockFrequencyInfoImplBase::computeLoopScale(LoopData &Loop) { | 
|  | // Compute loop scale. | 
|  | LLVM_DEBUG(dbgs() << "compute-loop-scale: " << getLoopName(Loop) << "\n"); | 
|  |  | 
|  | // Infinite loops need special handling. If we give the back edge an infinite | 
|  | // mass, they may saturate all the other scales in the function down to 1, | 
|  | // making all the other region temperatures look exactly the same. Choose an | 
|  | // arbitrary scale to avoid these issues. | 
|  | // | 
|  | // FIXME: An alternate way would be to select a symbolic scale which is later | 
|  | // replaced to be the maximum of all computed scales plus 1. This would | 
|  | // appropriately describe the loop as having a large scale, without skewing | 
|  | // the final frequency computation. | 
|  | const Scaled64 InfiniteLoopScale(1, 12); | 
|  |  | 
|  | // LoopScale == 1 / ExitMass | 
|  | // ExitMass == HeadMass - BackedgeMass | 
|  | BlockMass TotalBackedgeMass; | 
|  | for (auto &Mass : Loop.BackedgeMass) | 
|  | TotalBackedgeMass += Mass; | 
|  | BlockMass ExitMass = BlockMass::getFull() - TotalBackedgeMass; | 
|  |  | 
|  | // Block scale stores the inverse of the scale. If this is an infinite loop, | 
|  | // its exit mass will be zero. In this case, use an arbitrary scale for the | 
|  | // loop scale. | 
|  | Loop.Scale = | 
|  | ExitMass.isEmpty() ? InfiniteLoopScale : ExitMass.toScaled().inverse(); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << " - exit-mass = " << ExitMass << " (" | 
|  | << BlockMass::getFull() << " - " << TotalBackedgeMass | 
|  | << ")\n" | 
|  | << " - scale = " << Loop.Scale << "\n"); | 
|  | } | 
|  |  | 
|  | /// Package up a loop. | 
|  | void BlockFrequencyInfoImplBase::packageLoop(LoopData &Loop) { | 
|  | LLVM_DEBUG(dbgs() << "packaging-loop: " << getLoopName(Loop) << "\n"); | 
|  |  | 
|  | // Clear the subloop exits to prevent quadratic memory usage. | 
|  | for (const BlockNode &M : Loop.Nodes) { | 
|  | if (auto *Loop = Working[M.Index].getPackagedLoop()) | 
|  | Loop->Exits.clear(); | 
|  | LLVM_DEBUG(dbgs() << " - node: " << getBlockName(M.Index) << "\n"); | 
|  | } | 
|  | Loop.IsPackaged = true; | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | static void debugAssign(const BlockFrequencyInfoImplBase &BFI, | 
|  | const DitheringDistributer &D, const BlockNode &T, | 
|  | const BlockMass &M, const char *Desc) { | 
|  | dbgs() << "  => assign " << M << " (" << D.RemMass << ")"; | 
|  | if (Desc) | 
|  | dbgs() << " [" << Desc << "]"; | 
|  | if (T.isValid()) | 
|  | dbgs() << " to " << BFI.getBlockName(T); | 
|  | dbgs() << "\n"; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void BlockFrequencyInfoImplBase::distributeMass(const BlockNode &Source, | 
|  | LoopData *OuterLoop, | 
|  | Distribution &Dist) { | 
|  | BlockMass Mass = Working[Source.Index].getMass(); | 
|  | LLVM_DEBUG(dbgs() << "  => mass:  " << Mass << "\n"); | 
|  |  | 
|  | // Distribute mass to successors as laid out in Dist. | 
|  | DitheringDistributer D(Dist, Mass); | 
|  |  | 
|  | for (const Weight &W : Dist.Weights) { | 
|  | // Check for a local edge (non-backedge and non-exit). | 
|  | BlockMass Taken = D.takeMass(W.Amount); | 
|  | if (W.Type == Weight::Local) { | 
|  | Working[W.TargetNode.Index].getMass() += Taken; | 
|  | LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Backedges and exits only make sense if we're processing a loop. | 
|  | assert(OuterLoop && "backedge or exit outside of loop"); | 
|  |  | 
|  | // Check for a backedge. | 
|  | if (W.Type == Weight::Backedge) { | 
|  | OuterLoop->BackedgeMass[OuterLoop->getHeaderIndex(W.TargetNode)] += Taken; | 
|  | LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "back")); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // This must be an exit. | 
|  | assert(W.Type == Weight::Exit); | 
|  | OuterLoop->Exits.push_back(std::make_pair(W.TargetNode, Taken)); | 
|  | LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "exit")); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void convertFloatingToInteger(BlockFrequencyInfoImplBase &BFI, | 
|  | const Scaled64 &Min, const Scaled64 &Max) { | 
|  | // Scale the Factor to a size that creates integers.  Ideally, integers would | 
|  | // be scaled so that Max == UINT64_MAX so that they can be best | 
|  | // differentiated.  However, in the presence of large frequency values, small | 
|  | // frequencies are scaled down to 1, making it impossible to differentiate | 
|  | // small, unequal numbers. When the spread between Min and Max frequencies | 
|  | // fits well within MaxBits, we make the scale be at least 8. | 
|  | const unsigned MaxBits = 64; | 
|  | const unsigned SpreadBits = (Max / Min).lg(); | 
|  | Scaled64 ScalingFactor; | 
|  | if (SpreadBits <= MaxBits - 3) { | 
|  | // If the values are small enough, make the scaling factor at least 8 to | 
|  | // allow distinguishing small values. | 
|  | ScalingFactor = Min.inverse(); | 
|  | ScalingFactor <<= 3; | 
|  | } else { | 
|  | // If the values need more than MaxBits to be represented, saturate small | 
|  | // frequency values down to 1 by using a scaling factor that benefits large | 
|  | // frequency values. | 
|  | ScalingFactor = Scaled64(1, MaxBits) / Max; | 
|  | } | 
|  |  | 
|  | // Translate the floats to integers. | 
|  | LLVM_DEBUG(dbgs() << "float-to-int: min = " << Min << ", max = " << Max | 
|  | << ", factor = " << ScalingFactor << "\n"); | 
|  | for (size_t Index = 0; Index < BFI.Freqs.size(); ++Index) { | 
|  | Scaled64 Scaled = BFI.Freqs[Index].Scaled * ScalingFactor; | 
|  | BFI.Freqs[Index].Integer = std::max(UINT64_C(1), Scaled.toInt<uint64_t>()); | 
|  | LLVM_DEBUG(dbgs() << " - " << BFI.getBlockName(Index) << ": float = " | 
|  | << BFI.Freqs[Index].Scaled << ", scaled = " << Scaled | 
|  | << ", int = " << BFI.Freqs[Index].Integer << "\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Unwrap a loop package. | 
|  | /// | 
|  | /// Visits all the members of a loop, adjusting their BlockData according to | 
|  | /// the loop's pseudo-node. | 
|  | static void unwrapLoop(BlockFrequencyInfoImplBase &BFI, LoopData &Loop) { | 
|  | LLVM_DEBUG(dbgs() << "unwrap-loop-package: " << BFI.getLoopName(Loop) | 
|  | << ": mass = " << Loop.Mass << ", scale = " << Loop.Scale | 
|  | << "\n"); | 
|  | Loop.Scale *= Loop.Mass.toScaled(); | 
|  | Loop.IsPackaged = false; | 
|  | LLVM_DEBUG(dbgs() << "  => combined-scale = " << Loop.Scale << "\n"); | 
|  |  | 
|  | // Propagate the head scale through the loop.  Since members are visited in | 
|  | // RPO, the head scale will be updated by the loop scale first, and then the | 
|  | // final head scale will be used for updated the rest of the members. | 
|  | for (const BlockNode &N : Loop.Nodes) { | 
|  | const auto &Working = BFI.Working[N.Index]; | 
|  | Scaled64 &F = Working.isAPackage() ? Working.getPackagedLoop()->Scale | 
|  | : BFI.Freqs[N.Index].Scaled; | 
|  | Scaled64 New = Loop.Scale * F; | 
|  | LLVM_DEBUG(dbgs() << " - " << BFI.getBlockName(N) << ": " << F << " => " | 
|  | << New << "\n"); | 
|  | F = New; | 
|  | } | 
|  | } | 
|  |  | 
|  | void BlockFrequencyInfoImplBase::unwrapLoops() { | 
|  | // Set initial frequencies from loop-local masses. | 
|  | for (size_t Index = 0; Index < Working.size(); ++Index) | 
|  | Freqs[Index].Scaled = Working[Index].Mass.toScaled(); | 
|  |  | 
|  | for (LoopData &Loop : Loops) | 
|  | unwrapLoop(*this, Loop); | 
|  | } | 
|  |  | 
|  | void BlockFrequencyInfoImplBase::finalizeMetrics() { | 
|  | // Unwrap loop packages in reverse post-order, tracking min and max | 
|  | // frequencies. | 
|  | auto Min = Scaled64::getLargest(); | 
|  | auto Max = Scaled64::getZero(); | 
|  | for (size_t Index = 0; Index < Working.size(); ++Index) { | 
|  | // Update min/max scale. | 
|  | Min = std::min(Min, Freqs[Index].Scaled); | 
|  | Max = std::max(Max, Freqs[Index].Scaled); | 
|  | } | 
|  |  | 
|  | // Convert to integers. | 
|  | convertFloatingToInteger(*this, Min, Max); | 
|  |  | 
|  | // Clean up data structures. | 
|  | cleanup(*this); | 
|  |  | 
|  | // Print out the final stats. | 
|  | LLVM_DEBUG(dump()); | 
|  | } | 
|  |  | 
|  | BlockFrequency | 
|  | BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode &Node) const { | 
|  | if (!Node.isValid()) { | 
|  | #ifndef NDEBUG | 
|  | if (CheckBFIUnknownBlockQueries) { | 
|  | SmallString<256> Msg; | 
|  | raw_svector_ostream OS(Msg); | 
|  | OS << "*** Detected BFI query for unknown block " << getBlockName(Node); | 
|  | report_fatal_error(OS.str()); | 
|  | } | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  | return Freqs[Node.Index].Integer; | 
|  | } | 
|  |  | 
|  | Optional<uint64_t> | 
|  | BlockFrequencyInfoImplBase::getBlockProfileCount(const Function &F, | 
|  | const BlockNode &Node, | 
|  | bool AllowSynthetic) const { | 
|  | return getProfileCountFromFreq(F, getBlockFreq(Node).getFrequency(), | 
|  | AllowSynthetic); | 
|  | } | 
|  |  | 
|  | Optional<uint64_t> | 
|  | BlockFrequencyInfoImplBase::getProfileCountFromFreq(const Function &F, | 
|  | uint64_t Freq, | 
|  | bool AllowSynthetic) const { | 
|  | auto EntryCount = F.getEntryCount(AllowSynthetic); | 
|  | if (!EntryCount) | 
|  | return None; | 
|  | // Use 128 bit APInt to do the arithmetic to avoid overflow. | 
|  | APInt BlockCount(128, EntryCount.getCount()); | 
|  | APInt BlockFreq(128, Freq); | 
|  | APInt EntryFreq(128, getEntryFreq()); | 
|  | BlockCount *= BlockFreq; | 
|  | // Rounded division of BlockCount by EntryFreq. Since EntryFreq is unsigned | 
|  | // lshr by 1 gives EntryFreq/2. | 
|  | BlockCount = (BlockCount + EntryFreq.lshr(1)).udiv(EntryFreq); | 
|  | return BlockCount.getLimitedValue(); | 
|  | } | 
|  |  | 
|  | bool | 
|  | BlockFrequencyInfoImplBase::isIrrLoopHeader(const BlockNode &Node) { | 
|  | if (!Node.isValid()) | 
|  | return false; | 
|  | return IsIrrLoopHeader.test(Node.Index); | 
|  | } | 
|  |  | 
|  | Scaled64 | 
|  | BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode &Node) const { | 
|  | if (!Node.isValid()) | 
|  | return Scaled64::getZero(); | 
|  | return Freqs[Node.Index].Scaled; | 
|  | } | 
|  |  | 
|  | void BlockFrequencyInfoImplBase::setBlockFreq(const BlockNode &Node, | 
|  | uint64_t Freq) { | 
|  | assert(Node.isValid() && "Expected valid node"); | 
|  | assert(Node.Index < Freqs.size() && "Expected legal index"); | 
|  | Freqs[Node.Index].Integer = Freq; | 
|  | } | 
|  |  | 
|  | std::string | 
|  | BlockFrequencyInfoImplBase::getBlockName(const BlockNode &Node) const { | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | std::string | 
|  | BlockFrequencyInfoImplBase::getLoopName(const LoopData &Loop) const { | 
|  | return getBlockName(Loop.getHeader()) + (Loop.isIrreducible() ? "**" : "*"); | 
|  | } | 
|  |  | 
|  | raw_ostream & | 
|  | BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS, | 
|  | const BlockNode &Node) const { | 
|  | return OS << getFloatingBlockFreq(Node); | 
|  | } | 
|  |  | 
|  | raw_ostream & | 
|  | BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS, | 
|  | const BlockFrequency &Freq) const { | 
|  | Scaled64 Block(Freq.getFrequency(), 0); | 
|  | Scaled64 Entry(getEntryFreq(), 0); | 
|  |  | 
|  | return OS << Block / Entry; | 
|  | } | 
|  |  | 
|  | void IrreducibleGraph::addNodesInLoop(const BFIBase::LoopData &OuterLoop) { | 
|  | Start = OuterLoop.getHeader(); | 
|  | Nodes.reserve(OuterLoop.Nodes.size()); | 
|  | for (auto N : OuterLoop.Nodes) | 
|  | addNode(N); | 
|  | indexNodes(); | 
|  | } | 
|  |  | 
|  | void IrreducibleGraph::addNodesInFunction() { | 
|  | Start = 0; | 
|  | for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index) | 
|  | if (!BFI.Working[Index].isPackaged()) | 
|  | addNode(Index); | 
|  | indexNodes(); | 
|  | } | 
|  |  | 
|  | void IrreducibleGraph::indexNodes() { | 
|  | for (auto &I : Nodes) | 
|  | Lookup[I.Node.Index] = &I; | 
|  | } | 
|  |  | 
|  | void IrreducibleGraph::addEdge(IrrNode &Irr, const BlockNode &Succ, | 
|  | const BFIBase::LoopData *OuterLoop) { | 
|  | if (OuterLoop && OuterLoop->isHeader(Succ)) | 
|  | return; | 
|  | auto L = Lookup.find(Succ.Index); | 
|  | if (L == Lookup.end()) | 
|  | return; | 
|  | IrrNode &SuccIrr = *L->second; | 
|  | Irr.Edges.push_back(&SuccIrr); | 
|  | SuccIrr.Edges.push_front(&Irr); | 
|  | ++SuccIrr.NumIn; | 
|  | } | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | template <> struct GraphTraits<IrreducibleGraph> { | 
|  | using GraphT = bfi_detail::IrreducibleGraph; | 
|  | using NodeRef = const GraphT::IrrNode *; | 
|  | using ChildIteratorType = GraphT::IrrNode::iterator; | 
|  |  | 
|  | static NodeRef getEntryNode(const GraphT &G) { return G.StartIrr; } | 
|  | static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); } | 
|  | static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); } | 
|  | }; | 
|  |  | 
|  | } // end namespace llvm | 
|  |  | 
|  | /// Find extra irreducible headers. | 
|  | /// | 
|  | /// Find entry blocks and other blocks with backedges, which exist when \c G | 
|  | /// contains irreducible sub-SCCs. | 
|  | static void findIrreducibleHeaders( | 
|  | const BlockFrequencyInfoImplBase &BFI, | 
|  | const IrreducibleGraph &G, | 
|  | const std::vector<const IrreducibleGraph::IrrNode *> &SCC, | 
|  | LoopData::NodeList &Headers, LoopData::NodeList &Others) { | 
|  | // Map from nodes in the SCC to whether it's an entry block. | 
|  | SmallDenseMap<const IrreducibleGraph::IrrNode *, bool, 8> InSCC; | 
|  |  | 
|  | // InSCC also acts the set of nodes in the graph.  Seed it. | 
|  | for (const auto *I : SCC) | 
|  | InSCC[I] = false; | 
|  |  | 
|  | for (auto I = InSCC.begin(), E = InSCC.end(); I != E; ++I) { | 
|  | auto &Irr = *I->first; | 
|  | for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) { | 
|  | if (InSCC.count(P)) | 
|  | continue; | 
|  |  | 
|  | // This is an entry block. | 
|  | I->second = true; | 
|  | Headers.push_back(Irr.Node); | 
|  | LLVM_DEBUG(dbgs() << "  => entry = " << BFI.getBlockName(Irr.Node) | 
|  | << "\n"); | 
|  | break; | 
|  | } | 
|  | } | 
|  | assert(Headers.size() >= 2 && | 
|  | "Expected irreducible CFG; -loop-info is likely invalid"); | 
|  | if (Headers.size() == InSCC.size()) { | 
|  | // Every block is a header. | 
|  | llvm::sort(Headers); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Look for extra headers from irreducible sub-SCCs. | 
|  | for (const auto &I : InSCC) { | 
|  | // Entry blocks are already headers. | 
|  | if (I.second) | 
|  | continue; | 
|  |  | 
|  | auto &Irr = *I.first; | 
|  | for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) { | 
|  | // Skip forward edges. | 
|  | if (P->Node < Irr.Node) | 
|  | continue; | 
|  |  | 
|  | // Skip predecessors from entry blocks.  These can have inverted | 
|  | // ordering. | 
|  | if (InSCC.lookup(P)) | 
|  | continue; | 
|  |  | 
|  | // Store the extra header. | 
|  | Headers.push_back(Irr.Node); | 
|  | LLVM_DEBUG(dbgs() << "  => extra = " << BFI.getBlockName(Irr.Node) | 
|  | << "\n"); | 
|  | break; | 
|  | } | 
|  | if (Headers.back() == Irr.Node) | 
|  | // Added this as a header. | 
|  | continue; | 
|  |  | 
|  | // This is not a header. | 
|  | Others.push_back(Irr.Node); | 
|  | LLVM_DEBUG(dbgs() << "  => other = " << BFI.getBlockName(Irr.Node) << "\n"); | 
|  | } | 
|  | llvm::sort(Headers); | 
|  | llvm::sort(Others); | 
|  | } | 
|  |  | 
|  | static void createIrreducibleLoop( | 
|  | BlockFrequencyInfoImplBase &BFI, const IrreducibleGraph &G, | 
|  | LoopData *OuterLoop, std::list<LoopData>::iterator Insert, | 
|  | const std::vector<const IrreducibleGraph::IrrNode *> &SCC) { | 
|  | // Translate the SCC into RPO. | 
|  | LLVM_DEBUG(dbgs() << " - found-scc\n"); | 
|  |  | 
|  | LoopData::NodeList Headers; | 
|  | LoopData::NodeList Others; | 
|  | findIrreducibleHeaders(BFI, G, SCC, Headers, Others); | 
|  |  | 
|  | auto Loop = BFI.Loops.emplace(Insert, OuterLoop, Headers.begin(), | 
|  | Headers.end(), Others.begin(), Others.end()); | 
|  |  | 
|  | // Update loop hierarchy. | 
|  | for (const auto &N : Loop->Nodes) | 
|  | if (BFI.Working[N.Index].isLoopHeader()) | 
|  | BFI.Working[N.Index].Loop->Parent = &*Loop; | 
|  | else | 
|  | BFI.Working[N.Index].Loop = &*Loop; | 
|  | } | 
|  |  | 
|  | iterator_range<std::list<LoopData>::iterator> | 
|  | BlockFrequencyInfoImplBase::analyzeIrreducible( | 
|  | const IrreducibleGraph &G, LoopData *OuterLoop, | 
|  | std::list<LoopData>::iterator Insert) { | 
|  | assert((OuterLoop == nullptr) == (Insert == Loops.begin())); | 
|  | auto Prev = OuterLoop ? std::prev(Insert) : Loops.end(); | 
|  |  | 
|  | for (auto I = scc_begin(G); !I.isAtEnd(); ++I) { | 
|  | if (I->size() < 2) | 
|  | continue; | 
|  |  | 
|  | // Translate the SCC into RPO. | 
|  | createIrreducibleLoop(*this, G, OuterLoop, Insert, *I); | 
|  | } | 
|  |  | 
|  | if (OuterLoop) | 
|  | return make_range(std::next(Prev), Insert); | 
|  | return make_range(Loops.begin(), Insert); | 
|  | } | 
|  |  | 
|  | void | 
|  | BlockFrequencyInfoImplBase::updateLoopWithIrreducible(LoopData &OuterLoop) { | 
|  | OuterLoop.Exits.clear(); | 
|  | for (auto &Mass : OuterLoop.BackedgeMass) | 
|  | Mass = BlockMass::getEmpty(); | 
|  | auto O = OuterLoop.Nodes.begin() + 1; | 
|  | for (auto I = O, E = OuterLoop.Nodes.end(); I != E; ++I) | 
|  | if (!Working[I->Index].isPackaged()) | 
|  | *O++ = *I; | 
|  | OuterLoop.Nodes.erase(O, OuterLoop.Nodes.end()); | 
|  | } | 
|  |  | 
|  | void BlockFrequencyInfoImplBase::adjustLoopHeaderMass(LoopData &Loop) { | 
|  | assert(Loop.isIrreducible() && "this only makes sense on irreducible loops"); | 
|  |  | 
|  | // Since the loop has more than one header block, the mass flowing back into | 
|  | // each header will be different. Adjust the mass in each header loop to | 
|  | // reflect the masses flowing through back edges. | 
|  | // | 
|  | // To do this, we distribute the initial mass using the backedge masses | 
|  | // as weights for the distribution. | 
|  | BlockMass LoopMass = BlockMass::getFull(); | 
|  | Distribution Dist; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "adjust-loop-header-mass:\n"); | 
|  | for (uint32_t H = 0; H < Loop.NumHeaders; ++H) { | 
|  | auto &HeaderNode = Loop.Nodes[H]; | 
|  | auto &BackedgeMass = Loop.BackedgeMass[Loop.getHeaderIndex(HeaderNode)]; | 
|  | LLVM_DEBUG(dbgs() << " - Add back edge mass for node " | 
|  | << getBlockName(HeaderNode) << ": " << BackedgeMass | 
|  | << "\n"); | 
|  | if (BackedgeMass.getMass() > 0) | 
|  | Dist.addLocal(HeaderNode, BackedgeMass.getMass()); | 
|  | else | 
|  | LLVM_DEBUG(dbgs() << "   Nothing added. Back edge mass is zero\n"); | 
|  | } | 
|  |  | 
|  | DitheringDistributer D(Dist, LoopMass); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << " Distribute loop mass " << LoopMass | 
|  | << " to headers using above weights\n"); | 
|  | for (const Weight &W : Dist.Weights) { | 
|  | BlockMass Taken = D.takeMass(W.Amount); | 
|  | assert(W.Type == Weight::Local && "all weights should be local"); | 
|  | Working[W.TargetNode.Index].getMass() = Taken; | 
|  | LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void BlockFrequencyInfoImplBase::distributeIrrLoopHeaderMass(Distribution &Dist) { | 
|  | BlockMass LoopMass = BlockMass::getFull(); | 
|  | DitheringDistributer D(Dist, LoopMass); | 
|  | for (const Weight &W : Dist.Weights) { | 
|  | BlockMass Taken = D.takeMass(W.Amount); | 
|  | assert(W.Type == Weight::Local && "all weights should be local"); | 
|  | Working[W.TargetNode.Index].getMass() = Taken; | 
|  | LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr)); | 
|  | } | 
|  | } |