|  | // ---------------------------------------------------------------------- | 
|  | // CycleClock | 
|  | //    A CycleClock tells you the current time in Cycles.  The "time" | 
|  | //    is actually time since power-on.  This is like time() but doesn't | 
|  | //    involve a system call and is much more precise. | 
|  | // | 
|  | // NOTE: Not all cpu/platform/kernel combinations guarantee that this | 
|  | // clock increments at a constant rate or is synchronized across all logical | 
|  | // cpus in a system. | 
|  | // | 
|  | // If you need the above guarantees, please consider using a different | 
|  | // API. There are efforts to provide an interface which provides a millisecond | 
|  | // granularity and implemented as a memory read. A memory read is generally | 
|  | // cheaper than the CycleClock for many architectures. | 
|  | // | 
|  | // Also, in some out of order CPU implementations, the CycleClock is not | 
|  | // serializing. So if you're trying to count at cycles granularity, your | 
|  | // data might be inaccurate due to out of order instruction execution. | 
|  | // ---------------------------------------------------------------------- | 
|  |  | 
|  | #ifndef BENCHMARK_CYCLECLOCK_H_ | 
|  | #define BENCHMARK_CYCLECLOCK_H_ | 
|  |  | 
|  | #include <cstdint> | 
|  |  | 
|  | #include "benchmark/benchmark.h" | 
|  | #include "internal_macros.h" | 
|  |  | 
|  | #if defined(BENCHMARK_OS_MACOSX) | 
|  | #include <mach/mach_time.h> | 
|  | #endif | 
|  | // For MSVC, we want to use '_asm rdtsc' when possible (since it works | 
|  | // with even ancient MSVC compilers), and when not possible the | 
|  | // __rdtsc intrinsic, declared in <intrin.h>.  Unfortunately, in some | 
|  | // environments, <windows.h> and <intrin.h> have conflicting | 
|  | // declarations of some other intrinsics, breaking compilation. | 
|  | // Therefore, we simply declare __rdtsc ourselves. See also | 
|  | // http://connect.microsoft.com/VisualStudio/feedback/details/262047 | 
|  | #if defined(COMPILER_MSVC) && !defined(_M_IX86) | 
|  | extern "C" uint64_t __rdtsc(); | 
|  | #pragma intrinsic(__rdtsc) | 
|  | #endif | 
|  |  | 
|  | #if !defined(BENCHMARK_OS_WINDOWS) || defined(BENCHMARK_OS_MINGW) | 
|  | #include <sys/time.h> | 
|  | #include <time.h> | 
|  | #endif | 
|  |  | 
|  | #ifdef BENCHMARK_OS_EMSCRIPTEN | 
|  | #include <emscripten.h> | 
|  | #endif | 
|  |  | 
|  | namespace benchmark { | 
|  | // NOTE: only i386 and x86_64 have been well tested. | 
|  | // PPC, sparc, alpha, and ia64 are based on | 
|  | //    http://peter.kuscsik.com/wordpress/?p=14 | 
|  | // with modifications by m3b.  See also | 
|  | //    https://setisvn.ssl.berkeley.edu/svn/lib/fftw-3.0.1/kernel/cycle.h | 
|  | namespace cycleclock { | 
|  | // This should return the number of cycles since power-on.  Thread-safe. | 
|  | inline BENCHMARK_ALWAYS_INLINE int64_t Now() { | 
|  | #if defined(BENCHMARK_OS_MACOSX) | 
|  | // this goes at the top because we need ALL Macs, regardless of | 
|  | // architecture, to return the number of "mach time units" that | 
|  | // have passed since startup.  See sysinfo.cc where | 
|  | // InitializeSystemInfo() sets the supposed cpu clock frequency of | 
|  | // macs to the number of mach time units per second, not actual | 
|  | // CPU clock frequency (which can change in the face of CPU | 
|  | // frequency scaling).  Also note that when the Mac sleeps, this | 
|  | // counter pauses; it does not continue counting, nor does it | 
|  | // reset to zero. | 
|  | return mach_absolute_time(); | 
|  | #elif defined(BENCHMARK_OS_EMSCRIPTEN) | 
|  | // this goes above x86-specific code because old versions of Emscripten | 
|  | // define __x86_64__, although they have nothing to do with it. | 
|  | return static_cast<int64_t>(emscripten_get_now() * 1e+6); | 
|  | #elif defined(__i386__) | 
|  | int64_t ret; | 
|  | __asm__ volatile("rdtsc" : "=A"(ret)); | 
|  | return ret; | 
|  | #elif defined(__x86_64__) || defined(__amd64__) | 
|  | uint64_t low, high; | 
|  | __asm__ volatile("rdtsc" : "=a"(low), "=d"(high)); | 
|  | return (high << 32) | low; | 
|  | #elif defined(__powerpc__) || defined(__ppc__) | 
|  | // This returns a time-base, which is not always precisely a cycle-count. | 
|  | #if defined(__powerpc64__) || defined(__ppc64__) | 
|  | int64_t tb; | 
|  | asm volatile("mfspr %0, 268" : "=r"(tb)); | 
|  | return tb; | 
|  | #else | 
|  | uint32_t tbl, tbu0, tbu1; | 
|  | asm volatile( | 
|  | "mftbu %0\n" | 
|  | "mftbl %1\n" | 
|  | "mftbu %2" | 
|  | : "=r"(tbu0), "=r"(tbl), "=r"(tbu1)); | 
|  | tbl &= -static_cast<int32_t>(tbu0 == tbu1); | 
|  | // high 32 bits in tbu1; low 32 bits in tbl  (tbu0 is no longer needed) | 
|  | return (static_cast<uint64_t>(tbu1) << 32) | tbl; | 
|  | #endif | 
|  | #elif defined(__sparc__) | 
|  | int64_t tick; | 
|  | asm(".byte 0x83, 0x41, 0x00, 0x00"); | 
|  | asm("mov   %%g1, %0" : "=r"(tick)); | 
|  | return tick; | 
|  | #elif defined(__ia64__) | 
|  | int64_t itc; | 
|  | asm("mov %0 = ar.itc" : "=r"(itc)); | 
|  | return itc; | 
|  | #elif defined(COMPILER_MSVC) && defined(_M_IX86) | 
|  | // Older MSVC compilers (like 7.x) don't seem to support the | 
|  | // __rdtsc intrinsic properly, so I prefer to use _asm instead | 
|  | // when I know it will work.  Otherwise, I'll use __rdtsc and hope | 
|  | // the code is being compiled with a non-ancient compiler. | 
|  | _asm rdtsc | 
|  | #elif defined(COMPILER_MSVC) | 
|  | return __rdtsc(); | 
|  | #elif defined(BENCHMARK_OS_NACL) | 
|  | // Native Client validator on x86/x86-64 allows RDTSC instructions, | 
|  | // and this case is handled above. Native Client validator on ARM | 
|  | // rejects MRC instructions (used in the ARM-specific sequence below), | 
|  | // so we handle it here. Portable Native Client compiles to | 
|  | // architecture-agnostic bytecode, which doesn't provide any | 
|  | // cycle counter access mnemonics. | 
|  |  | 
|  | // Native Client does not provide any API to access cycle counter. | 
|  | // Use clock_gettime(CLOCK_MONOTONIC, ...) instead of gettimeofday | 
|  | // because is provides nanosecond resolution (which is noticable at | 
|  | // least for PNaCl modules running on x86 Mac & Linux). | 
|  | // Initialize to always return 0 if clock_gettime fails. | 
|  | struct timespec ts = {0, 0}; | 
|  | clock_gettime(CLOCK_MONOTONIC, &ts); | 
|  | return static_cast<int64_t>(ts.tv_sec) * 1000000000 + ts.tv_nsec; | 
|  | #elif defined(__aarch64__) | 
|  | // System timer of ARMv8 runs at a different frequency than the CPU's. | 
|  | // The frequency is fixed, typically in the range 1-50MHz.  It can be | 
|  | // read at CNTFRQ special register.  We assume the OS has set up | 
|  | // the virtual timer properly. | 
|  | int64_t virtual_timer_value; | 
|  | asm volatile("mrs %0, cntvct_el0" : "=r"(virtual_timer_value)); | 
|  | return virtual_timer_value; | 
|  | #elif defined(__ARM_ARCH) | 
|  | // V6 is the earliest arch that has a standard cyclecount | 
|  | // Native Client validator doesn't allow MRC instructions. | 
|  | #if (__ARM_ARCH >= 6) | 
|  | uint32_t pmccntr; | 
|  | uint32_t pmuseren; | 
|  | uint32_t pmcntenset; | 
|  | // Read the user mode perf monitor counter access permissions. | 
|  | asm volatile("mrc p15, 0, %0, c9, c14, 0" : "=r"(pmuseren)); | 
|  | if (pmuseren & 1) {  // Allows reading perfmon counters for user mode code. | 
|  | asm volatile("mrc p15, 0, %0, c9, c12, 1" : "=r"(pmcntenset)); | 
|  | if (pmcntenset & 0x80000000ul) {  // Is it counting? | 
|  | asm volatile("mrc p15, 0, %0, c9, c13, 0" : "=r"(pmccntr)); | 
|  | // The counter is set up to count every 64th cycle | 
|  | return static_cast<int64_t>(pmccntr) * 64;  // Should optimize to << 6 | 
|  | } | 
|  | } | 
|  | #endif | 
|  | struct timeval tv; | 
|  | gettimeofday(&tv, nullptr); | 
|  | return static_cast<int64_t>(tv.tv_sec) * 1000000 + tv.tv_usec; | 
|  | #elif defined(__mips__) | 
|  | // mips apparently only allows rdtsc for superusers, so we fall | 
|  | // back to gettimeofday.  It's possible clock_gettime would be better. | 
|  | struct timeval tv; | 
|  | gettimeofday(&tv, nullptr); | 
|  | return static_cast<int64_t>(tv.tv_sec) * 1000000 + tv.tv_usec; | 
|  | #elif defined(__s390__)  // Covers both s390 and s390x. | 
|  | // Return the CPU clock. | 
|  | uint64_t tsc; | 
|  | asm("stck %0" : "=Q"(tsc) : : "cc"); | 
|  | return tsc; | 
|  | #elif defined(__riscv) // RISC-V | 
|  | // Use RDCYCLE (and RDCYCLEH on riscv32) | 
|  | #if __riscv_xlen == 32 | 
|  | uint32_t cycles_lo, cycles_hi0, cycles_hi1; | 
|  | // This asm also includes the PowerPC overflow handling strategy, as above. | 
|  | // Implemented in assembly because Clang insisted on branching. | 
|  | asm volatile( | 
|  | "rdcycleh %0\n" | 
|  | "rdcycle %1\n" | 
|  | "rdcycleh %2\n" | 
|  | "sub %0, %0, %2\n" | 
|  | "seqz %0, %0\n" | 
|  | "sub %0, zero, %0\n" | 
|  | "and %1, %1, %0\n" | 
|  | : "=r"(cycles_hi0), "=r"(cycles_lo), "=r"(cycles_hi1)); | 
|  | return (static_cast<uint64_t>(cycles_hi1) << 32) | cycles_lo; | 
|  | #else | 
|  | uint64_t cycles; | 
|  | asm volatile("rdcycle %0" : "=r"(cycles)); | 
|  | return cycles; | 
|  | #endif | 
|  | #else | 
|  | // The soft failover to a generic implementation is automatic only for ARM. | 
|  | // For other platforms the developer is expected to make an attempt to create | 
|  | // a fast implementation and use generic version if nothing better is available. | 
|  | #error You need to define CycleTimer for your OS and CPU | 
|  | #endif | 
|  | } | 
|  | }  // end namespace cycleclock | 
|  | }  // end namespace benchmark | 
|  |  | 
|  | #endif  // BENCHMARK_CYCLECLOCK_H_ |