|  | //===- FuzzerMutate.cpp - Mutate a test input -----------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Mutate a test input. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "FuzzerDefs.h" | 
|  | #include "FuzzerExtFunctions.h" | 
|  | #include "FuzzerIO.h" | 
|  | #include "FuzzerMutate.h" | 
|  | #include "FuzzerOptions.h" | 
|  | #include "FuzzerTracePC.h" | 
|  |  | 
|  | namespace fuzzer { | 
|  |  | 
|  | const size_t Dictionary::kMaxDictSize; | 
|  |  | 
|  | static void PrintASCII(const Word &W, const char *PrintAfter) { | 
|  | PrintASCII(W.data(), W.size(), PrintAfter); | 
|  | } | 
|  |  | 
|  | MutationDispatcher::MutationDispatcher(Random &Rand, | 
|  | const FuzzingOptions &Options) | 
|  | : Rand(Rand), Options(Options) { | 
|  | DefaultMutators.insert( | 
|  | DefaultMutators.begin(), | 
|  | { | 
|  | {&MutationDispatcher::Mutate_EraseBytes, "EraseBytes"}, | 
|  | {&MutationDispatcher::Mutate_InsertByte, "InsertByte"}, | 
|  | {&MutationDispatcher::Mutate_InsertRepeatedBytes, | 
|  | "InsertRepeatedBytes"}, | 
|  | {&MutationDispatcher::Mutate_ChangeByte, "ChangeByte"}, | 
|  | {&MutationDispatcher::Mutate_ChangeBit, "ChangeBit"}, | 
|  | {&MutationDispatcher::Mutate_ShuffleBytes, "ShuffleBytes"}, | 
|  | {&MutationDispatcher::Mutate_ChangeASCIIInteger, "ChangeASCIIInt"}, | 
|  | {&MutationDispatcher::Mutate_ChangeBinaryInteger, "ChangeBinInt"}, | 
|  | {&MutationDispatcher::Mutate_CopyPart, "CopyPart"}, | 
|  | {&MutationDispatcher::Mutate_CrossOver, "CrossOver"}, | 
|  | {&MutationDispatcher::Mutate_AddWordFromManualDictionary, | 
|  | "ManualDict"}, | 
|  | {&MutationDispatcher::Mutate_AddWordFromPersistentAutoDictionary, | 
|  | "PersAutoDict"}, | 
|  | }); | 
|  | if(Options.UseCmp) | 
|  | DefaultMutators.push_back( | 
|  | {&MutationDispatcher::Mutate_AddWordFromTORC, "CMP"}); | 
|  |  | 
|  | if (EF->LLVMFuzzerCustomMutator) | 
|  | Mutators.push_back({&MutationDispatcher::Mutate_Custom, "Custom"}); | 
|  | else | 
|  | Mutators = DefaultMutators; | 
|  |  | 
|  | if (EF->LLVMFuzzerCustomCrossOver) | 
|  | Mutators.push_back( | 
|  | {&MutationDispatcher::Mutate_CustomCrossOver, "CustomCrossOver"}); | 
|  | } | 
|  |  | 
|  | static char RandCh(Random &Rand) { | 
|  | if (Rand.RandBool()) return Rand(256); | 
|  | const char Special[] = "!*'();:@&=+$,/?%#[]012Az-`~.\xff\x00"; | 
|  | return Special[Rand(sizeof(Special) - 1)]; | 
|  | } | 
|  |  | 
|  | size_t MutationDispatcher::Mutate_Custom(uint8_t *Data, size_t Size, | 
|  | size_t MaxSize) { | 
|  | return EF->LLVMFuzzerCustomMutator(Data, Size, MaxSize, Rand.Rand()); | 
|  | } | 
|  |  | 
|  | size_t MutationDispatcher::Mutate_CustomCrossOver(uint8_t *Data, size_t Size, | 
|  | size_t MaxSize) { | 
|  | if (Size == 0) | 
|  | return 0; | 
|  | if (!CrossOverWith) return 0; | 
|  | const Unit &Other = *CrossOverWith; | 
|  | if (Other.empty()) | 
|  | return 0; | 
|  | CustomCrossOverInPlaceHere.resize(MaxSize); | 
|  | auto &U = CustomCrossOverInPlaceHere; | 
|  | size_t NewSize = EF->LLVMFuzzerCustomCrossOver( | 
|  | Data, Size, Other.data(), Other.size(), U.data(), U.size(), Rand.Rand()); | 
|  | if (!NewSize) | 
|  | return 0; | 
|  | assert(NewSize <= MaxSize && "CustomCrossOver returned overisized unit"); | 
|  | memcpy(Data, U.data(), NewSize); | 
|  | return NewSize; | 
|  | } | 
|  |  | 
|  | size_t MutationDispatcher::Mutate_ShuffleBytes(uint8_t *Data, size_t Size, | 
|  | size_t MaxSize) { | 
|  | if (Size > MaxSize || Size == 0) return 0; | 
|  | size_t ShuffleAmount = | 
|  | Rand(std::min(Size, (size_t)8)) + 1; // [1,8] and <= Size. | 
|  | size_t ShuffleStart = Rand(Size - ShuffleAmount); | 
|  | assert(ShuffleStart + ShuffleAmount <= Size); | 
|  | std::shuffle(Data + ShuffleStart, Data + ShuffleStart + ShuffleAmount, Rand); | 
|  | return Size; | 
|  | } | 
|  |  | 
|  | size_t MutationDispatcher::Mutate_EraseBytes(uint8_t *Data, size_t Size, | 
|  | size_t MaxSize) { | 
|  | if (Size <= 1) return 0; | 
|  | size_t N = Rand(Size / 2) + 1; | 
|  | assert(N < Size); | 
|  | size_t Idx = Rand(Size - N + 1); | 
|  | // Erase Data[Idx:Idx+N]. | 
|  | memmove(Data + Idx, Data + Idx + N, Size - Idx - N); | 
|  | // Printf("Erase: %zd %zd => %zd; Idx %zd\n", N, Size, Size - N, Idx); | 
|  | return Size - N; | 
|  | } | 
|  |  | 
|  | size_t MutationDispatcher::Mutate_InsertByte(uint8_t *Data, size_t Size, | 
|  | size_t MaxSize) { | 
|  | if (Size >= MaxSize) return 0; | 
|  | size_t Idx = Rand(Size + 1); | 
|  | // Insert new value at Data[Idx]. | 
|  | memmove(Data + Idx + 1, Data + Idx, Size - Idx); | 
|  | Data[Idx] = RandCh(Rand); | 
|  | return Size + 1; | 
|  | } | 
|  |  | 
|  | size_t MutationDispatcher::Mutate_InsertRepeatedBytes(uint8_t *Data, | 
|  | size_t Size, | 
|  | size_t MaxSize) { | 
|  | const size_t kMinBytesToInsert = 3; | 
|  | if (Size + kMinBytesToInsert >= MaxSize) return 0; | 
|  | size_t MaxBytesToInsert = std::min(MaxSize - Size, (size_t)128); | 
|  | size_t N = Rand(MaxBytesToInsert - kMinBytesToInsert + 1) + kMinBytesToInsert; | 
|  | assert(Size + N <= MaxSize && N); | 
|  | size_t Idx = Rand(Size + 1); | 
|  | // Insert new values at Data[Idx]. | 
|  | memmove(Data + Idx + N, Data + Idx, Size - Idx); | 
|  | // Give preference to 0x00 and 0xff. | 
|  | uint8_t Byte = Rand.RandBool() ? Rand(256) : (Rand.RandBool() ? 0 : 255); | 
|  | for (size_t i = 0; i < N; i++) | 
|  | Data[Idx + i] = Byte; | 
|  | return Size + N; | 
|  | } | 
|  |  | 
|  | size_t MutationDispatcher::Mutate_ChangeByte(uint8_t *Data, size_t Size, | 
|  | size_t MaxSize) { | 
|  | if (Size > MaxSize) return 0; | 
|  | size_t Idx = Rand(Size); | 
|  | Data[Idx] = RandCh(Rand); | 
|  | return Size; | 
|  | } | 
|  |  | 
|  | size_t MutationDispatcher::Mutate_ChangeBit(uint8_t *Data, size_t Size, | 
|  | size_t MaxSize) { | 
|  | if (Size > MaxSize) return 0; | 
|  | size_t Idx = Rand(Size); | 
|  | Data[Idx] ^= 1 << Rand(8); | 
|  | return Size; | 
|  | } | 
|  |  | 
|  | size_t MutationDispatcher::Mutate_AddWordFromManualDictionary(uint8_t *Data, | 
|  | size_t Size, | 
|  | size_t MaxSize) { | 
|  | return AddWordFromDictionary(ManualDictionary, Data, Size, MaxSize); | 
|  | } | 
|  |  | 
|  | size_t MutationDispatcher::ApplyDictionaryEntry(uint8_t *Data, size_t Size, | 
|  | size_t MaxSize, | 
|  | DictionaryEntry &DE) { | 
|  | const Word &W = DE.GetW(); | 
|  | bool UsePositionHint = DE.HasPositionHint() && | 
|  | DE.GetPositionHint() + W.size() < Size && | 
|  | Rand.RandBool(); | 
|  | if (Rand.RandBool()) {  // Insert W. | 
|  | if (Size + W.size() > MaxSize) return 0; | 
|  | size_t Idx = UsePositionHint ? DE.GetPositionHint() : Rand(Size + 1); | 
|  | memmove(Data + Idx + W.size(), Data + Idx, Size - Idx); | 
|  | memcpy(Data + Idx, W.data(), W.size()); | 
|  | Size += W.size(); | 
|  | } else {  // Overwrite some bytes with W. | 
|  | if (W.size() > Size) return 0; | 
|  | size_t Idx = UsePositionHint ? DE.GetPositionHint() : Rand(Size - W.size()); | 
|  | memcpy(Data + Idx, W.data(), W.size()); | 
|  | } | 
|  | return Size; | 
|  | } | 
|  |  | 
|  | // Somewhere in the past we have observed a comparison instructions | 
|  | // with arguments Arg1 Arg2. This function tries to guess a dictionary | 
|  | // entry that will satisfy that comparison. | 
|  | // It first tries to find one of the arguments (possibly swapped) in the | 
|  | // input and if it succeeds it creates a DE with a position hint. | 
|  | // Otherwise it creates a DE with one of the arguments w/o a position hint. | 
|  | DictionaryEntry MutationDispatcher::MakeDictionaryEntryFromCMP( | 
|  | const void *Arg1, const void *Arg2, | 
|  | const void *Arg1Mutation, const void *Arg2Mutation, | 
|  | size_t ArgSize, const uint8_t *Data, | 
|  | size_t Size) { | 
|  | bool HandleFirst = Rand.RandBool(); | 
|  | const void *ExistingBytes, *DesiredBytes; | 
|  | Word W; | 
|  | const uint8_t *End = Data + Size; | 
|  | for (int Arg = 0; Arg < 2; Arg++) { | 
|  | ExistingBytes = HandleFirst ? Arg1 : Arg2; | 
|  | DesiredBytes = HandleFirst ? Arg2Mutation : Arg1Mutation; | 
|  | HandleFirst = !HandleFirst; | 
|  | W.Set(reinterpret_cast<const uint8_t*>(DesiredBytes), ArgSize); | 
|  | const size_t kMaxNumPositions = 8; | 
|  | size_t Positions[kMaxNumPositions]; | 
|  | size_t NumPositions = 0; | 
|  | for (const uint8_t *Cur = Data; | 
|  | Cur < End && NumPositions < kMaxNumPositions; Cur++) { | 
|  | Cur = | 
|  | (const uint8_t *)SearchMemory(Cur, End - Cur, ExistingBytes, ArgSize); | 
|  | if (!Cur) break; | 
|  | Positions[NumPositions++] = Cur - Data; | 
|  | } | 
|  | if (!NumPositions) continue; | 
|  | return DictionaryEntry(W, Positions[Rand(NumPositions)]); | 
|  | } | 
|  | DictionaryEntry DE(W); | 
|  | return DE; | 
|  | } | 
|  |  | 
|  |  | 
|  | template <class T> | 
|  | DictionaryEntry MutationDispatcher::MakeDictionaryEntryFromCMP( | 
|  | T Arg1, T Arg2, const uint8_t *Data, size_t Size) { | 
|  | if (Rand.RandBool()) Arg1 = Bswap(Arg1); | 
|  | if (Rand.RandBool()) Arg2 = Bswap(Arg2); | 
|  | T Arg1Mutation = Arg1 + Rand(-1, 1); | 
|  | T Arg2Mutation = Arg2 + Rand(-1, 1); | 
|  | return MakeDictionaryEntryFromCMP(&Arg1, &Arg2, &Arg1Mutation, &Arg2Mutation, | 
|  | sizeof(Arg1), Data, Size); | 
|  | } | 
|  |  | 
|  | DictionaryEntry MutationDispatcher::MakeDictionaryEntryFromCMP( | 
|  | const Word &Arg1, const Word &Arg2, const uint8_t *Data, size_t Size) { | 
|  | return MakeDictionaryEntryFromCMP(Arg1.data(), Arg2.data(), Arg1.data(), | 
|  | Arg2.data(), Arg1.size(), Data, Size); | 
|  | } | 
|  |  | 
|  | size_t MutationDispatcher::Mutate_AddWordFromTORC( | 
|  | uint8_t *Data, size_t Size, size_t MaxSize) { | 
|  | Word W; | 
|  | DictionaryEntry DE; | 
|  | switch (Rand(4)) { | 
|  | case 0: { | 
|  | auto X = TPC.TORC8.Get(Rand.Rand()); | 
|  | DE = MakeDictionaryEntryFromCMP(X.A, X.B, Data, Size); | 
|  | } break; | 
|  | case 1: { | 
|  | auto X = TPC.TORC4.Get(Rand.Rand()); | 
|  | if ((X.A >> 16) == 0 && (X.B >> 16) == 0 && Rand.RandBool()) | 
|  | DE = MakeDictionaryEntryFromCMP((uint16_t)X.A, (uint16_t)X.B, Data, Size); | 
|  | else | 
|  | DE = MakeDictionaryEntryFromCMP(X.A, X.B, Data, Size); | 
|  | } break; | 
|  | case 2: { | 
|  | auto X = TPC.TORCW.Get(Rand.Rand()); | 
|  | DE = MakeDictionaryEntryFromCMP(X.A, X.B, Data, Size); | 
|  | } break; | 
|  | case 3: if (Options.UseMemmem) { | 
|  | auto X = TPC.MMT.Get(Rand.Rand()); | 
|  | DE = DictionaryEntry(X); | 
|  | } break; | 
|  | default: | 
|  | assert(0); | 
|  | } | 
|  | if (!DE.GetW().size()) return 0; | 
|  | Size = ApplyDictionaryEntry(Data, Size, MaxSize, DE); | 
|  | if (!Size) return 0; | 
|  | DictionaryEntry &DERef = | 
|  | CmpDictionaryEntriesDeque[CmpDictionaryEntriesDequeIdx++ % | 
|  | kCmpDictionaryEntriesDequeSize]; | 
|  | DERef = DE; | 
|  | CurrentDictionaryEntrySequence.push_back(&DERef); | 
|  | return Size; | 
|  | } | 
|  |  | 
|  | size_t MutationDispatcher::Mutate_AddWordFromPersistentAutoDictionary( | 
|  | uint8_t *Data, size_t Size, size_t MaxSize) { | 
|  | return AddWordFromDictionary(PersistentAutoDictionary, Data, Size, MaxSize); | 
|  | } | 
|  |  | 
|  | size_t MutationDispatcher::AddWordFromDictionary(Dictionary &D, uint8_t *Data, | 
|  | size_t Size, size_t MaxSize) { | 
|  | if (Size > MaxSize) return 0; | 
|  | if (D.empty()) return 0; | 
|  | DictionaryEntry &DE = D[Rand(D.size())]; | 
|  | Size = ApplyDictionaryEntry(Data, Size, MaxSize, DE); | 
|  | if (!Size) return 0; | 
|  | DE.IncUseCount(); | 
|  | CurrentDictionaryEntrySequence.push_back(&DE); | 
|  | return Size; | 
|  | } | 
|  |  | 
|  | // Overwrites part of To[0,ToSize) with a part of From[0,FromSize). | 
|  | // Returns ToSize. | 
|  | size_t MutationDispatcher::CopyPartOf(const uint8_t *From, size_t FromSize, | 
|  | uint8_t *To, size_t ToSize) { | 
|  | // Copy From[FromBeg, FromBeg + CopySize) into To[ToBeg, ToBeg + CopySize). | 
|  | size_t ToBeg = Rand(ToSize); | 
|  | size_t CopySize = Rand(ToSize - ToBeg) + 1; | 
|  | assert(ToBeg + CopySize <= ToSize); | 
|  | CopySize = std::min(CopySize, FromSize); | 
|  | size_t FromBeg = Rand(FromSize - CopySize + 1); | 
|  | assert(FromBeg + CopySize <= FromSize); | 
|  | memmove(To + ToBeg, From + FromBeg, CopySize); | 
|  | return ToSize; | 
|  | } | 
|  |  | 
|  | // Inserts part of From[0,ToSize) into To. | 
|  | // Returns new size of To on success or 0 on failure. | 
|  | size_t MutationDispatcher::InsertPartOf(const uint8_t *From, size_t FromSize, | 
|  | uint8_t *To, size_t ToSize, | 
|  | size_t MaxToSize) { | 
|  | if (ToSize >= MaxToSize) return 0; | 
|  | size_t AvailableSpace = MaxToSize - ToSize; | 
|  | size_t MaxCopySize = std::min(AvailableSpace, FromSize); | 
|  | size_t CopySize = Rand(MaxCopySize) + 1; | 
|  | size_t FromBeg = Rand(FromSize - CopySize + 1); | 
|  | assert(FromBeg + CopySize <= FromSize); | 
|  | size_t ToInsertPos = Rand(ToSize + 1); | 
|  | assert(ToInsertPos + CopySize <= MaxToSize); | 
|  | size_t TailSize = ToSize - ToInsertPos; | 
|  | if (To == From) { | 
|  | MutateInPlaceHere.resize(MaxToSize); | 
|  | memcpy(MutateInPlaceHere.data(), From + FromBeg, CopySize); | 
|  | memmove(To + ToInsertPos + CopySize, To + ToInsertPos, TailSize); | 
|  | memmove(To + ToInsertPos, MutateInPlaceHere.data(), CopySize); | 
|  | } else { | 
|  | memmove(To + ToInsertPos + CopySize, To + ToInsertPos, TailSize); | 
|  | memmove(To + ToInsertPos, From + FromBeg, CopySize); | 
|  | } | 
|  | return ToSize + CopySize; | 
|  | } | 
|  |  | 
|  | size_t MutationDispatcher::Mutate_CopyPart(uint8_t *Data, size_t Size, | 
|  | size_t MaxSize) { | 
|  | if (Size > MaxSize || Size == 0) return 0; | 
|  | // If Size == MaxSize, `InsertPartOf(...)` will | 
|  | // fail so there's no point using it in this case. | 
|  | if (Size == MaxSize || Rand.RandBool()) | 
|  | return CopyPartOf(Data, Size, Data, Size); | 
|  | else | 
|  | return InsertPartOf(Data, Size, Data, Size, MaxSize); | 
|  | } | 
|  |  | 
|  | size_t MutationDispatcher::Mutate_ChangeASCIIInteger(uint8_t *Data, size_t Size, | 
|  | size_t MaxSize) { | 
|  | if (Size > MaxSize) return 0; | 
|  | size_t B = Rand(Size); | 
|  | while (B < Size && !isdigit(Data[B])) B++; | 
|  | if (B == Size) return 0; | 
|  | size_t E = B; | 
|  | while (E < Size && isdigit(Data[E])) E++; | 
|  | assert(B < E); | 
|  | // now we have digits in [B, E). | 
|  | // strtol and friends don't accept non-zero-teminated data, parse it manually. | 
|  | uint64_t Val = Data[B] - '0'; | 
|  | for (size_t i = B + 1; i < E; i++) | 
|  | Val = Val * 10 + Data[i] - '0'; | 
|  |  | 
|  | // Mutate the integer value. | 
|  | switch(Rand(5)) { | 
|  | case 0: Val++; break; | 
|  | case 1: Val--; break; | 
|  | case 2: Val /= 2; break; | 
|  | case 3: Val *= 2; break; | 
|  | case 4: Val = Rand(Val * Val); break; | 
|  | default: assert(0); | 
|  | } | 
|  | // Just replace the bytes with the new ones, don't bother moving bytes. | 
|  | for (size_t i = B; i < E; i++) { | 
|  | size_t Idx = E + B - i - 1; | 
|  | assert(Idx >= B && Idx < E); | 
|  | Data[Idx] = (Val % 10) + '0'; | 
|  | Val /= 10; | 
|  | } | 
|  | return Size; | 
|  | } | 
|  |  | 
|  | template<class T> | 
|  | size_t ChangeBinaryInteger(uint8_t *Data, size_t Size, Random &Rand) { | 
|  | if (Size < sizeof(T)) return 0; | 
|  | size_t Off = Rand(Size - sizeof(T) + 1); | 
|  | assert(Off + sizeof(T) <= Size); | 
|  | T Val; | 
|  | if (Off < 64 && !Rand(4)) { | 
|  | Val = Size; | 
|  | if (Rand.RandBool()) | 
|  | Val = Bswap(Val); | 
|  | } else { | 
|  | memcpy(&Val, Data + Off, sizeof(Val)); | 
|  | T Add = Rand(21); | 
|  | Add -= 10; | 
|  | if (Rand.RandBool()) | 
|  | Val = Bswap(T(Bswap(Val) + Add)); // Add assuming different endiannes. | 
|  | else | 
|  | Val = Val + Add;               // Add assuming current endiannes. | 
|  | if (Add == 0 || Rand.RandBool()) // Maybe negate. | 
|  | Val = -Val; | 
|  | } | 
|  | memcpy(Data + Off, &Val, sizeof(Val)); | 
|  | return Size; | 
|  | } | 
|  |  | 
|  | size_t MutationDispatcher::Mutate_ChangeBinaryInteger(uint8_t *Data, | 
|  | size_t Size, | 
|  | size_t MaxSize) { | 
|  | if (Size > MaxSize) return 0; | 
|  | switch (Rand(4)) { | 
|  | case 3: return ChangeBinaryInteger<uint64_t>(Data, Size, Rand); | 
|  | case 2: return ChangeBinaryInteger<uint32_t>(Data, Size, Rand); | 
|  | case 1: return ChangeBinaryInteger<uint16_t>(Data, Size, Rand); | 
|  | case 0: return ChangeBinaryInteger<uint8_t>(Data, Size, Rand); | 
|  | default: assert(0); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | size_t MutationDispatcher::Mutate_CrossOver(uint8_t *Data, size_t Size, | 
|  | size_t MaxSize) { | 
|  | if (Size > MaxSize) return 0; | 
|  | if (Size == 0) return 0; | 
|  | if (!CrossOverWith) return 0; | 
|  | const Unit &O = *CrossOverWith; | 
|  | if (O.empty()) return 0; | 
|  | MutateInPlaceHere.resize(MaxSize); | 
|  | auto &U = MutateInPlaceHere; | 
|  | size_t NewSize = 0; | 
|  | switch(Rand(3)) { | 
|  | case 0: | 
|  | NewSize = CrossOver(Data, Size, O.data(), O.size(), U.data(), U.size()); | 
|  | break; | 
|  | case 1: | 
|  | NewSize = InsertPartOf(O.data(), O.size(), U.data(), U.size(), MaxSize); | 
|  | if (!NewSize) | 
|  | NewSize = CopyPartOf(O.data(), O.size(), U.data(), U.size()); | 
|  | break; | 
|  | case 2: | 
|  | NewSize = CopyPartOf(O.data(), O.size(), U.data(), U.size()); | 
|  | break; | 
|  | default: assert(0); | 
|  | } | 
|  | assert(NewSize > 0 && "CrossOver returned empty unit"); | 
|  | assert(NewSize <= MaxSize && "CrossOver returned overisized unit"); | 
|  | memcpy(Data, U.data(), NewSize); | 
|  | return NewSize; | 
|  | } | 
|  |  | 
|  | void MutationDispatcher::StartMutationSequence() { | 
|  | CurrentMutatorSequence.clear(); | 
|  | CurrentDictionaryEntrySequence.clear(); | 
|  | } | 
|  |  | 
|  | // Copy successful dictionary entries to PersistentAutoDictionary. | 
|  | void MutationDispatcher::RecordSuccessfulMutationSequence() { | 
|  | for (auto DE : CurrentDictionaryEntrySequence) { | 
|  | // PersistentAutoDictionary.AddWithSuccessCountOne(DE); | 
|  | DE->IncSuccessCount(); | 
|  | assert(DE->GetW().size()); | 
|  | // Linear search is fine here as this happens seldom. | 
|  | if (!PersistentAutoDictionary.ContainsWord(DE->GetW())) | 
|  | PersistentAutoDictionary.push_back({DE->GetW(), 1}); | 
|  | } | 
|  | } | 
|  |  | 
|  | void MutationDispatcher::PrintRecommendedDictionary() { | 
|  | Vector<DictionaryEntry> V; | 
|  | for (auto &DE : PersistentAutoDictionary) | 
|  | if (!ManualDictionary.ContainsWord(DE.GetW())) | 
|  | V.push_back(DE); | 
|  | if (V.empty()) return; | 
|  | Printf("###### Recommended dictionary. ######\n"); | 
|  | for (auto &DE: V) { | 
|  | assert(DE.GetW().size()); | 
|  | Printf("\""); | 
|  | PrintASCII(DE.GetW(), "\""); | 
|  | Printf(" # Uses: %zd\n", DE.GetUseCount()); | 
|  | } | 
|  | Printf("###### End of recommended dictionary. ######\n"); | 
|  | } | 
|  |  | 
|  | void MutationDispatcher::PrintMutationSequence() { | 
|  | Printf("MS: %zd ", CurrentMutatorSequence.size()); | 
|  | for (auto M : CurrentMutatorSequence) | 
|  | Printf("%s-", M.Name); | 
|  | if (!CurrentDictionaryEntrySequence.empty()) { | 
|  | Printf(" DE: "); | 
|  | for (auto DE : CurrentDictionaryEntrySequence) { | 
|  | Printf("\""); | 
|  | PrintASCII(DE->GetW(), "\"-"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t MutationDispatcher::Mutate(uint8_t *Data, size_t Size, size_t MaxSize) { | 
|  | return MutateImpl(Data, Size, MaxSize, Mutators); | 
|  | } | 
|  |  | 
|  | size_t MutationDispatcher::DefaultMutate(uint8_t *Data, size_t Size, | 
|  | size_t MaxSize) { | 
|  | return MutateImpl(Data, Size, MaxSize, DefaultMutators); | 
|  | } | 
|  |  | 
|  | // Mutates Data in place, returns new size. | 
|  | size_t MutationDispatcher::MutateImpl(uint8_t *Data, size_t Size, | 
|  | size_t MaxSize, | 
|  | Vector<Mutator> &Mutators) { | 
|  | assert(MaxSize > 0); | 
|  | // Some mutations may fail (e.g. can't insert more bytes if Size == MaxSize), | 
|  | // in which case they will return 0. | 
|  | // Try several times before returning un-mutated data. | 
|  | for (int Iter = 0; Iter < 100; Iter++) { | 
|  | auto M = Mutators[Rand(Mutators.size())]; | 
|  | size_t NewSize = (this->*(M.Fn))(Data, Size, MaxSize); | 
|  | if (NewSize && NewSize <= MaxSize) { | 
|  | if (Options.OnlyASCII) | 
|  | ToASCII(Data, NewSize); | 
|  | CurrentMutatorSequence.push_back(M); | 
|  | return NewSize; | 
|  | } | 
|  | } | 
|  | *Data = ' '; | 
|  | return 1;   // Fallback, should not happen frequently. | 
|  | } | 
|  |  | 
|  | // Mask represents the set of Data bytes that are worth mutating. | 
|  | size_t MutationDispatcher::MutateWithMask(uint8_t *Data, size_t Size, | 
|  | size_t MaxSize, | 
|  | const Vector<uint8_t> &Mask) { | 
|  | size_t MaskedSize = std::min(Size, Mask.size()); | 
|  | // * Copy the worthy bytes into a temporary array T | 
|  | // * Mutate T | 
|  | // * Copy T back. | 
|  | // This is totally unoptimized. | 
|  | auto &T = MutateWithMaskTemp; | 
|  | if (T.size() < Size) | 
|  | T.resize(Size); | 
|  | size_t OneBits = 0; | 
|  | for (size_t I = 0; I < MaskedSize; I++) | 
|  | if (Mask[I]) | 
|  | T[OneBits++] = Data[I]; | 
|  |  | 
|  | if (!OneBits) return 0; | 
|  | assert(!T.empty()); | 
|  | size_t NewSize = Mutate(T.data(), OneBits, OneBits); | 
|  | assert(NewSize <= OneBits); | 
|  | (void)NewSize; | 
|  | // Even if NewSize < OneBits we still use all OneBits bytes. | 
|  | for (size_t I = 0, J = 0; I < MaskedSize; I++) | 
|  | if (Mask[I]) | 
|  | Data[I] = T[J++]; | 
|  | return Size; | 
|  | } | 
|  |  | 
|  | void MutationDispatcher::AddWordToManualDictionary(const Word &W) { | 
|  | ManualDictionary.push_back( | 
|  | {W, std::numeric_limits<size_t>::max()}); | 
|  | } | 
|  |  | 
|  | }  // namespace fuzzer |