| //===- FunctionSpecialization.cpp - Function Specialization ---------------===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This specialises functions with constant parameters. Constant parameters | 
 | // like function pointers and constant globals are propagated to the callee by | 
 | // specializing the function. The main benefit of this pass at the moment is | 
 | // that indirect calls are transformed into direct calls, which provides inline | 
 | // opportunities that the inliner would not have been able to achieve. That's | 
 | // why function specialisation is run before the inliner in the optimisation | 
 | // pipeline; that is by design. Otherwise, we would only benefit from constant | 
 | // passing, which is a valid use-case too, but hasn't been explored much in | 
 | // terms of performance uplifts, cost-model and compile-time impact. | 
 | // | 
 | // Current limitations: | 
 | // - It does not yet handle integer ranges. We do support "literal constants", | 
 | //   but that's off by default under an option. | 
 | // - The cost-model could be further looked into (it mainly focuses on inlining | 
 | //   benefits), | 
 | // | 
 | // Ideas: | 
 | // - With a function specialization attribute for arguments, we could have | 
 | //   a direct way to steer function specialization, avoiding the cost-model, | 
 | //   and thus control compile-times / code-size. | 
 | // | 
 | // Todos: | 
 | // - Specializing recursive functions relies on running the transformation a | 
 | //   number of times, which is controlled by option | 
 | //   `func-specialization-max-iters`. Thus, increasing this value and the | 
 | //   number of iterations, will linearly increase the number of times recursive | 
 | //   functions get specialized, see also the discussion in | 
 | //   https://reviews.llvm.org/D106426 for details. Perhaps there is a | 
 | //   compile-time friendlier way to control/limit the number of specialisations | 
 | //   for recursive functions. | 
 | // - Don't transform the function if function specialization does not trigger; | 
 | //   the SCCPSolver may make IR changes. | 
 | // | 
 | // References: | 
 | // - 2021 LLVM Dev Mtg “Introducing function specialisation, and can we enable | 
 | //   it by default?”, https://www.youtube.com/watch?v=zJiCjeXgV5Q | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/Transforms/IPO/FunctionSpecialization.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include "llvm/Analysis/CodeMetrics.h" | 
 | #include "llvm/Analysis/ConstantFolding.h" | 
 | #include "llvm/Analysis/InlineCost.h" | 
 | #include "llvm/Analysis/InstructionSimplify.h" | 
 | #include "llvm/Analysis/TargetTransformInfo.h" | 
 | #include "llvm/Analysis/ValueLattice.h" | 
 | #include "llvm/Analysis/ValueLatticeUtils.h" | 
 | #include "llvm/Analysis/ValueTracking.h" | 
 | #include "llvm/IR/IntrinsicInst.h" | 
 | #include "llvm/Transforms/Scalar/SCCP.h" | 
 | #include "llvm/Transforms/Utils/Cloning.h" | 
 | #include "llvm/Transforms/Utils/SCCPSolver.h" | 
 | #include "llvm/Transforms/Utils/SizeOpts.h" | 
 | #include <cmath> | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | #define DEBUG_TYPE "function-specialization" | 
 |  | 
 | STATISTIC(NumSpecsCreated, "Number of specializations created"); | 
 |  | 
 | static cl::opt<bool> ForceSpecialization( | 
 |     "force-specialization", cl::init(false), cl::Hidden, cl::desc( | 
 |     "Force function specialization for every call site with a constant " | 
 |     "argument")); | 
 |  | 
 | static cl::opt<unsigned> MaxClones( | 
 |     "funcspec-max-clones", cl::init(3), cl::Hidden, cl::desc( | 
 |     "The maximum number of clones allowed for a single function " | 
 |     "specialization")); | 
 |  | 
 | static cl::opt<unsigned> MinFunctionSize( | 
 |     "funcspec-min-function-size", cl::init(100), cl::Hidden, cl::desc( | 
 |     "Don't specialize functions that have less than this number of " | 
 |     "instructions")); | 
 |  | 
 | static cl::opt<bool> SpecializeOnAddress( | 
 |     "funcspec-on-address", cl::init(false), cl::Hidden, cl::desc( | 
 |     "Enable function specialization on the address of global values")); | 
 |  | 
 | // Disabled by default as it can significantly increase compilation times. | 
 | // | 
 | // https://llvm-compile-time-tracker.com | 
 | // https://github.com/nikic/llvm-compile-time-tracker | 
 | static cl::opt<bool> SpecializeLiteralConstant( | 
 |     "funcspec-for-literal-constant", cl::init(false), cl::Hidden, cl::desc( | 
 |     "Enable specialization of functions that take a literal constant as an " | 
 |     "argument")); | 
 |  | 
 | // Estimates the instruction cost of all the basic blocks in \p WorkList. | 
 | // The successors of such blocks are added to the list as long as they are | 
 | // executable and they have a unique predecessor. \p WorkList represents | 
 | // the basic blocks of a specialization which become dead once we replace | 
 | // instructions that are known to be constants. The aim here is to estimate | 
 | // the combination of size and latency savings in comparison to the non | 
 | // specialized version of the function. | 
 | static Cost estimateBasicBlocks(SmallVectorImpl<BasicBlock *> &WorkList, | 
 |                                 ConstMap &KnownConstants, SCCPSolver &Solver, | 
 |                                 BlockFrequencyInfo &BFI, | 
 |                                 TargetTransformInfo &TTI) { | 
 |   Cost Bonus = 0; | 
 |  | 
 |   // Accumulate the instruction cost of each basic block weighted by frequency. | 
 |   while (!WorkList.empty()) { | 
 |     BasicBlock *BB = WorkList.pop_back_val(); | 
 |  | 
 |     uint64_t Weight = BFI.getBlockFreq(BB).getFrequency() / | 
 |                       BFI.getEntryFreq(); | 
 |     if (!Weight) | 
 |       continue; | 
 |  | 
 |     for (Instruction &I : *BB) { | 
 |       // Disregard SSA copies. | 
 |       if (auto *II = dyn_cast<IntrinsicInst>(&I)) | 
 |         if (II->getIntrinsicID() == Intrinsic::ssa_copy) | 
 |           continue; | 
 |       // If it's a known constant we have already accounted for it. | 
 |       if (KnownConstants.contains(&I)) | 
 |         continue; | 
 |  | 
 |       Bonus += Weight * | 
 |           TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency); | 
 |  | 
 |       LLVM_DEBUG(dbgs() << "FnSpecialization:     Bonus " << Bonus | 
 |                         << " after user " << I << "\n"); | 
 |     } | 
 |  | 
 |     // Keep adding dead successors to the list as long as they are | 
 |     // executable and they have a unique predecessor. | 
 |     for (BasicBlock *SuccBB : successors(BB)) | 
 |       if (Solver.isBlockExecutable(SuccBB) && | 
 |           SuccBB->getUniquePredecessor() == BB) | 
 |         WorkList.push_back(SuccBB); | 
 |   } | 
 |   return Bonus; | 
 | } | 
 |  | 
 | static Constant *findConstantFor(Value *V, ConstMap &KnownConstants) { | 
 |   if (auto *C = dyn_cast<Constant>(V)) | 
 |     return C; | 
 |   if (auto It = KnownConstants.find(V); It != KnownConstants.end()) | 
 |     return It->second; | 
 |   return nullptr; | 
 | } | 
 |  | 
 | Cost InstCostVisitor::getUserBonus(Instruction *User, Value *Use, Constant *C) { | 
 |   // Cache the iterator before visiting. | 
 |   LastVisited = KnownConstants.insert({Use, C}).first; | 
 |  | 
 |   if (auto *I = dyn_cast<SwitchInst>(User)) | 
 |     return estimateSwitchInst(*I); | 
 |  | 
 |   if (auto *I = dyn_cast<BranchInst>(User)) | 
 |     return estimateBranchInst(*I); | 
 |  | 
 |   C = visit(*User); | 
 |   if (!C) | 
 |     return 0; | 
 |  | 
 |   KnownConstants.insert({User, C}); | 
 |  | 
 |   uint64_t Weight = BFI.getBlockFreq(User->getParent()).getFrequency() / | 
 |                     BFI.getEntryFreq(); | 
 |   if (!Weight) | 
 |     return 0; | 
 |  | 
 |   Cost Bonus = Weight * | 
 |       TTI.getInstructionCost(User, TargetTransformInfo::TCK_SizeAndLatency); | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "FnSpecialization:     Bonus " << Bonus | 
 |                     << " for user " << *User << "\n"); | 
 |  | 
 |   for (auto *U : User->users()) | 
 |     if (auto *UI = dyn_cast<Instruction>(U)) | 
 |       if (Solver.isBlockExecutable(UI->getParent())) | 
 |         Bonus += getUserBonus(UI, User, C); | 
 |  | 
 |   return Bonus; | 
 | } | 
 |  | 
 | Cost InstCostVisitor::estimateSwitchInst(SwitchInst &I) { | 
 |   if (I.getCondition() != LastVisited->first) | 
 |     return 0; | 
 |  | 
 |   auto *C = dyn_cast<ConstantInt>(LastVisited->second); | 
 |   if (!C) | 
 |     return 0; | 
 |  | 
 |   BasicBlock *Succ = I.findCaseValue(C)->getCaseSuccessor(); | 
 |   // Initialize the worklist with the dead basic blocks. These are the | 
 |   // destination labels which are different from the one corresponding | 
 |   // to \p C. They should be executable and have a unique predecessor. | 
 |   SmallVector<BasicBlock *> WorkList; | 
 |   for (const auto &Case : I.cases()) { | 
 |     BasicBlock *BB = Case.getCaseSuccessor(); | 
 |     if (BB == Succ || !Solver.isBlockExecutable(BB) || | 
 |         BB->getUniquePredecessor() != I.getParent()) | 
 |       continue; | 
 |     WorkList.push_back(BB); | 
 |   } | 
 |  | 
 |   return estimateBasicBlocks(WorkList, KnownConstants, Solver, BFI, TTI); | 
 | } | 
 |  | 
 | Cost InstCostVisitor::estimateBranchInst(BranchInst &I) { | 
 |   if (I.getCondition() != LastVisited->first) | 
 |     return 0; | 
 |  | 
 |   BasicBlock *Succ = I.getSuccessor(LastVisited->second->isOneValue()); | 
 |   // Initialize the worklist with the dead successor as long as | 
 |   // it is executable and has a unique predecessor. | 
 |   SmallVector<BasicBlock *> WorkList; | 
 |   if (Solver.isBlockExecutable(Succ) && | 
 |       Succ->getUniquePredecessor() == I.getParent()) | 
 |     WorkList.push_back(Succ); | 
 |  | 
 |   return estimateBasicBlocks(WorkList, KnownConstants, Solver, BFI, TTI); | 
 | } | 
 |  | 
 | Constant *InstCostVisitor::visitFreezeInst(FreezeInst &I) { | 
 |   if (isGuaranteedNotToBeUndefOrPoison(LastVisited->second)) | 
 |     return LastVisited->second; | 
 |   return nullptr; | 
 | } | 
 |  | 
 | Constant *InstCostVisitor::visitCallBase(CallBase &I) { | 
 |   Function *F = I.getCalledFunction(); | 
 |   if (!F || !canConstantFoldCallTo(&I, F)) | 
 |     return nullptr; | 
 |  | 
 |   SmallVector<Constant *, 8> Operands; | 
 |   Operands.reserve(I.getNumOperands()); | 
 |  | 
 |   for (unsigned Idx = 0, E = I.getNumOperands() - 1; Idx != E; ++Idx) { | 
 |     Value *V = I.getOperand(Idx); | 
 |     Constant *C = findConstantFor(V, KnownConstants); | 
 |     if (!C) | 
 |       return nullptr; | 
 |     Operands.push_back(C); | 
 |   } | 
 |  | 
 |   auto Ops = ArrayRef(Operands.begin(), Operands.end()); | 
 |   return ConstantFoldCall(&I, F, Ops); | 
 | } | 
 |  | 
 | Constant *InstCostVisitor::visitLoadInst(LoadInst &I) { | 
 |   if (isa<ConstantPointerNull>(LastVisited->second)) | 
 |     return nullptr; | 
 |   return ConstantFoldLoadFromConstPtr(LastVisited->second, I.getType(), DL); | 
 | } | 
 |  | 
 | Constant *InstCostVisitor::visitGetElementPtrInst(GetElementPtrInst &I) { | 
 |   SmallVector<Constant *, 8> Operands; | 
 |   Operands.reserve(I.getNumOperands()); | 
 |  | 
 |   for (unsigned Idx = 0, E = I.getNumOperands(); Idx != E; ++Idx) { | 
 |     Value *V = I.getOperand(Idx); | 
 |     Constant *C = findConstantFor(V, KnownConstants); | 
 |     if (!C) | 
 |       return nullptr; | 
 |     Operands.push_back(C); | 
 |   } | 
 |  | 
 |   auto Ops = ArrayRef(Operands.begin(), Operands.end()); | 
 |   return ConstantFoldInstOperands(&I, Ops, DL); | 
 | } | 
 |  | 
 | Constant *InstCostVisitor::visitSelectInst(SelectInst &I) { | 
 |   if (I.getCondition() != LastVisited->first) | 
 |     return nullptr; | 
 |  | 
 |   Value *V = LastVisited->second->isZeroValue() ? I.getFalseValue() | 
 |                                                 : I.getTrueValue(); | 
 |   Constant *C = findConstantFor(V, KnownConstants); | 
 |   return C; | 
 | } | 
 |  | 
 | Constant *InstCostVisitor::visitCastInst(CastInst &I) { | 
 |   return ConstantFoldCastOperand(I.getOpcode(), LastVisited->second, | 
 |                                  I.getType(), DL); | 
 | } | 
 |  | 
 | Constant *InstCostVisitor::visitCmpInst(CmpInst &I) { | 
 |   bool Swap = I.getOperand(1) == LastVisited->first; | 
 |   Value *V = Swap ? I.getOperand(0) : I.getOperand(1); | 
 |   Constant *Other = findConstantFor(V, KnownConstants); | 
 |   if (!Other) | 
 |     return nullptr; | 
 |  | 
 |   Constant *Const = LastVisited->second; | 
 |   return Swap ? | 
 |         ConstantFoldCompareInstOperands(I.getPredicate(), Other, Const, DL) | 
 |       : ConstantFoldCompareInstOperands(I.getPredicate(), Const, Other, DL); | 
 | } | 
 |  | 
 | Constant *InstCostVisitor::visitUnaryOperator(UnaryOperator &I) { | 
 |   return ConstantFoldUnaryOpOperand(I.getOpcode(), LastVisited->second, DL); | 
 | } | 
 |  | 
 | Constant *InstCostVisitor::visitBinaryOperator(BinaryOperator &I) { | 
 |   bool Swap = I.getOperand(1) == LastVisited->first; | 
 |   Value *V = Swap ? I.getOperand(0) : I.getOperand(1); | 
 |   Constant *Other = findConstantFor(V, KnownConstants); | 
 |   if (!Other) | 
 |     return nullptr; | 
 |  | 
 |   Constant *Const = LastVisited->second; | 
 |   return dyn_cast_or_null<Constant>(Swap ? | 
 |         simplifyBinOp(I.getOpcode(), Other, Const, SimplifyQuery(DL)) | 
 |       : simplifyBinOp(I.getOpcode(), Const, Other, SimplifyQuery(DL))); | 
 | } | 
 |  | 
 | Constant *FunctionSpecializer::getPromotableAlloca(AllocaInst *Alloca, | 
 |                                                    CallInst *Call) { | 
 |   Value *StoreValue = nullptr; | 
 |   for (auto *User : Alloca->users()) { | 
 |     // We can't use llvm::isAllocaPromotable() as that would fail because of | 
 |     // the usage in the CallInst, which is what we check here. | 
 |     if (User == Call) | 
 |       continue; | 
 |     if (auto *Bitcast = dyn_cast<BitCastInst>(User)) { | 
 |       if (!Bitcast->hasOneUse() || *Bitcast->user_begin() != Call) | 
 |         return nullptr; | 
 |       continue; | 
 |     } | 
 |  | 
 |     if (auto *Store = dyn_cast<StoreInst>(User)) { | 
 |       // This is a duplicate store, bail out. | 
 |       if (StoreValue || Store->isVolatile()) | 
 |         return nullptr; | 
 |       StoreValue = Store->getValueOperand(); | 
 |       continue; | 
 |     } | 
 |     // Bail if there is any other unknown usage. | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   if (!StoreValue) | 
 |     return nullptr; | 
 |  | 
 |   return getCandidateConstant(StoreValue); | 
 | } | 
 |  | 
 | // A constant stack value is an AllocaInst that has a single constant | 
 | // value stored to it. Return this constant if such an alloca stack value | 
 | // is a function argument. | 
 | Constant *FunctionSpecializer::getConstantStackValue(CallInst *Call, | 
 |                                                      Value *Val) { | 
 |   if (!Val) | 
 |     return nullptr; | 
 |   Val = Val->stripPointerCasts(); | 
 |   if (auto *ConstVal = dyn_cast<ConstantInt>(Val)) | 
 |     return ConstVal; | 
 |   auto *Alloca = dyn_cast<AllocaInst>(Val); | 
 |   if (!Alloca || !Alloca->getAllocatedType()->isIntegerTy()) | 
 |     return nullptr; | 
 |   return getPromotableAlloca(Alloca, Call); | 
 | } | 
 |  | 
 | // To support specializing recursive functions, it is important to propagate | 
 | // constant arguments because after a first iteration of specialisation, a | 
 | // reduced example may look like this: | 
 | // | 
 | //     define internal void @RecursiveFn(i32* arg1) { | 
 | //       %temp = alloca i32, align 4 | 
 | //       store i32 2 i32* %temp, align 4 | 
 | //       call void @RecursiveFn.1(i32* nonnull %temp) | 
 | //       ret void | 
 | //     } | 
 | // | 
 | // Before a next iteration, we need to propagate the constant like so | 
 | // which allows further specialization in next iterations. | 
 | // | 
 | //     @funcspec.arg = internal constant i32 2 | 
 | // | 
 | //     define internal void @someFunc(i32* arg1) { | 
 | //       call void @otherFunc(i32* nonnull @funcspec.arg) | 
 | //       ret void | 
 | //     } | 
 | // | 
 | // See if there are any new constant values for the callers of \p F via | 
 | // stack variables and promote them to global variables. | 
 | void FunctionSpecializer::promoteConstantStackValues(Function *F) { | 
 |   for (User *U : F->users()) { | 
 |  | 
 |     auto *Call = dyn_cast<CallInst>(U); | 
 |     if (!Call) | 
 |       continue; | 
 |  | 
 |     if (!Solver.isBlockExecutable(Call->getParent())) | 
 |       continue; | 
 |  | 
 |     for (const Use &U : Call->args()) { | 
 |       unsigned Idx = Call->getArgOperandNo(&U); | 
 |       Value *ArgOp = Call->getArgOperand(Idx); | 
 |       Type *ArgOpType = ArgOp->getType(); | 
 |  | 
 |       if (!Call->onlyReadsMemory(Idx) || !ArgOpType->isPointerTy()) | 
 |         continue; | 
 |  | 
 |       auto *ConstVal = getConstantStackValue(Call, ArgOp); | 
 |       if (!ConstVal) | 
 |         continue; | 
 |  | 
 |       Value *GV = new GlobalVariable(M, ConstVal->getType(), true, | 
 |                                      GlobalValue::InternalLinkage, ConstVal, | 
 |                                      "funcspec.arg"); | 
 |       if (ArgOpType != ConstVal->getType()) | 
 |         GV = ConstantExpr::getBitCast(cast<Constant>(GV), ArgOpType); | 
 |  | 
 |       Call->setArgOperand(Idx, GV); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // ssa_copy intrinsics are introduced by the SCCP solver. These intrinsics | 
 | // interfere with the promoteConstantStackValues() optimization. | 
 | static void removeSSACopy(Function &F) { | 
 |   for (BasicBlock &BB : F) { | 
 |     for (Instruction &Inst : llvm::make_early_inc_range(BB)) { | 
 |       auto *II = dyn_cast<IntrinsicInst>(&Inst); | 
 |       if (!II) | 
 |         continue; | 
 |       if (II->getIntrinsicID() != Intrinsic::ssa_copy) | 
 |         continue; | 
 |       Inst.replaceAllUsesWith(II->getOperand(0)); | 
 |       Inst.eraseFromParent(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// Remove any ssa_copy intrinsics that may have been introduced. | 
 | void FunctionSpecializer::cleanUpSSA() { | 
 |   for (Function *F : Specializations) | 
 |     removeSSACopy(*F); | 
 | } | 
 |  | 
 |  | 
 | template <> struct llvm::DenseMapInfo<SpecSig> { | 
 |   static inline SpecSig getEmptyKey() { return {~0U, {}}; } | 
 |  | 
 |   static inline SpecSig getTombstoneKey() { return {~1U, {}}; } | 
 |  | 
 |   static unsigned getHashValue(const SpecSig &S) { | 
 |     return static_cast<unsigned>(hash_value(S)); | 
 |   } | 
 |  | 
 |   static bool isEqual(const SpecSig &LHS, const SpecSig &RHS) { | 
 |     return LHS == RHS; | 
 |   } | 
 | }; | 
 |  | 
 | FunctionSpecializer::~FunctionSpecializer() { | 
 |   LLVM_DEBUG( | 
 |     if (NumSpecsCreated > 0) | 
 |       dbgs() << "FnSpecialization: Created " << NumSpecsCreated | 
 |              << " specializations in module " << M.getName() << "\n"); | 
 |   // Eliminate dead code. | 
 |   removeDeadFunctions(); | 
 |   cleanUpSSA(); | 
 | } | 
 |  | 
 | /// Attempt to specialize functions in the module to enable constant | 
 | /// propagation across function boundaries. | 
 | /// | 
 | /// \returns true if at least one function is specialized. | 
 | bool FunctionSpecializer::run() { | 
 |   // Find possible specializations for each function. | 
 |   SpecMap SM; | 
 |   SmallVector<Spec, 32> AllSpecs; | 
 |   unsigned NumCandidates = 0; | 
 |   for (Function &F : M) { | 
 |     if (!isCandidateFunction(&F)) | 
 |       continue; | 
 |  | 
 |     auto [It, Inserted] = FunctionMetrics.try_emplace(&F); | 
 |     CodeMetrics &Metrics = It->second; | 
 |     //Analyze the function. | 
 |     if (Inserted) { | 
 |       SmallPtrSet<const Value *, 32> EphValues; | 
 |       CodeMetrics::collectEphemeralValues(&F, &GetAC(F), EphValues); | 
 |       for (BasicBlock &BB : F) | 
 |         Metrics.analyzeBasicBlock(&BB, GetTTI(F), EphValues); | 
 |     } | 
 |  | 
 |     // If the code metrics reveal that we shouldn't duplicate the function, | 
 |     // or if the code size implies that this function is easy to get inlined, | 
 |     // then we shouldn't specialize it. | 
 |     if (Metrics.notDuplicatable || !Metrics.NumInsts.isValid() || | 
 |         (!ForceSpecialization && !F.hasFnAttribute(Attribute::NoInline) && | 
 |          Metrics.NumInsts < MinFunctionSize)) | 
 |       continue; | 
 |  | 
 |     // TODO: For now only consider recursive functions when running multiple | 
 |     // times. This should change if specialization on literal constants gets | 
 |     // enabled. | 
 |     if (!Inserted && !Metrics.isRecursive && !SpecializeLiteralConstant) | 
 |       continue; | 
 |  | 
 |     LLVM_DEBUG(dbgs() << "FnSpecialization: Specialization cost for " | 
 |                       << F.getName() << " is " << Metrics.NumInsts << "\n"); | 
 |  | 
 |     if (Inserted && Metrics.isRecursive) | 
 |       promoteConstantStackValues(&F); | 
 |  | 
 |     if (!findSpecializations(&F, Metrics.NumInsts, AllSpecs, SM)) { | 
 |       LLVM_DEBUG( | 
 |           dbgs() << "FnSpecialization: No possible specializations found for " | 
 |                  << F.getName() << "\n"); | 
 |       continue; | 
 |     } | 
 |  | 
 |     ++NumCandidates; | 
 |   } | 
 |  | 
 |   if (!NumCandidates) { | 
 |     LLVM_DEBUG( | 
 |         dbgs() | 
 |         << "FnSpecialization: No possible specializations found in module\n"); | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Choose the most profitable specialisations, which fit in the module | 
 |   // specialization budget, which is derived from maximum number of | 
 |   // specializations per specialization candidate function. | 
 |   auto CompareScore = [&AllSpecs](unsigned I, unsigned J) { | 
 |     return AllSpecs[I].Score > AllSpecs[J].Score; | 
 |   }; | 
 |   const unsigned NSpecs = | 
 |       std::min(NumCandidates * MaxClones, unsigned(AllSpecs.size())); | 
 |   SmallVector<unsigned> BestSpecs(NSpecs + 1); | 
 |   std::iota(BestSpecs.begin(), BestSpecs.begin() + NSpecs, 0); | 
 |   if (AllSpecs.size() > NSpecs) { | 
 |     LLVM_DEBUG(dbgs() << "FnSpecialization: Number of candidates exceed " | 
 |                       << "the maximum number of clones threshold.\n" | 
 |                       << "FnSpecialization: Specializing the " | 
 |                       << NSpecs | 
 |                       << " most profitable candidates.\n"); | 
 |     std::make_heap(BestSpecs.begin(), BestSpecs.begin() + NSpecs, CompareScore); | 
 |     for (unsigned I = NSpecs, N = AllSpecs.size(); I < N; ++I) { | 
 |       BestSpecs[NSpecs] = I; | 
 |       std::push_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore); | 
 |       std::pop_heap(BestSpecs.begin(), BestSpecs.end(), CompareScore); | 
 |     } | 
 |   } | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "FnSpecialization: List of specializations \n"; | 
 |              for (unsigned I = 0; I < NSpecs; ++I) { | 
 |                const Spec &S = AllSpecs[BestSpecs[I]]; | 
 |                dbgs() << "FnSpecialization: Function " << S.F->getName() | 
 |                       << " , score " << S.Score << "\n"; | 
 |                for (const ArgInfo &Arg : S.Sig.Args) | 
 |                  dbgs() << "FnSpecialization:   FormalArg = " | 
 |                         << Arg.Formal->getNameOrAsOperand() | 
 |                         << ", ActualArg = " << Arg.Actual->getNameOrAsOperand() | 
 |                         << "\n"; | 
 |              }); | 
 |  | 
 |   // Create the chosen specializations. | 
 |   SmallPtrSet<Function *, 8> OriginalFuncs; | 
 |   SmallVector<Function *> Clones; | 
 |   for (unsigned I = 0; I < NSpecs; ++I) { | 
 |     Spec &S = AllSpecs[BestSpecs[I]]; | 
 |     S.Clone = createSpecialization(S.F, S.Sig); | 
 |  | 
 |     // Update the known call sites to call the clone. | 
 |     for (CallBase *Call : S.CallSites) { | 
 |       LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *Call | 
 |                         << " to call " << S.Clone->getName() << "\n"); | 
 |       Call->setCalledFunction(S.Clone); | 
 |     } | 
 |  | 
 |     Clones.push_back(S.Clone); | 
 |     OriginalFuncs.insert(S.F); | 
 |   } | 
 |  | 
 |   Solver.solveWhileResolvedUndefsIn(Clones); | 
 |  | 
 |   // Update the rest of the call sites - these are the recursive calls, calls | 
 |   // to discarded specialisations and calls that may match a specialisation | 
 |   // after the solver runs. | 
 |   for (Function *F : OriginalFuncs) { | 
 |     auto [Begin, End] = SM[F]; | 
 |     updateCallSites(F, AllSpecs.begin() + Begin, AllSpecs.begin() + End); | 
 |   } | 
 |  | 
 |   for (Function *F : Clones) { | 
 |     if (F->getReturnType()->isVoidTy()) | 
 |       continue; | 
 |     if (F->getReturnType()->isStructTy()) { | 
 |       auto *STy = cast<StructType>(F->getReturnType()); | 
 |       if (!Solver.isStructLatticeConstant(F, STy)) | 
 |         continue; | 
 |     } else { | 
 |       auto It = Solver.getTrackedRetVals().find(F); | 
 |       assert(It != Solver.getTrackedRetVals().end() && | 
 |              "Return value ought to be tracked"); | 
 |       if (SCCPSolver::isOverdefined(It->second)) | 
 |         continue; | 
 |     } | 
 |     for (User *U : F->users()) { | 
 |       if (auto *CS = dyn_cast<CallBase>(U)) { | 
 |         //The user instruction does not call our function. | 
 |         if (CS->getCalledFunction() != F) | 
 |           continue; | 
 |         Solver.resetLatticeValueFor(CS); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Rerun the solver to notify the users of the modified callsites. | 
 |   Solver.solveWhileResolvedUndefs(); | 
 |  | 
 |   for (Function *F : OriginalFuncs) | 
 |     if (FunctionMetrics[F].isRecursive) | 
 |       promoteConstantStackValues(F); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | void FunctionSpecializer::removeDeadFunctions() { | 
 |   for (Function *F : FullySpecialized) { | 
 |     LLVM_DEBUG(dbgs() << "FnSpecialization: Removing dead function " | 
 |                       << F->getName() << "\n"); | 
 |     if (FAM) | 
 |       FAM->clear(*F, F->getName()); | 
 |     F->eraseFromParent(); | 
 |   } | 
 |   FullySpecialized.clear(); | 
 | } | 
 |  | 
 | /// Clone the function \p F and remove the ssa_copy intrinsics added by | 
 | /// the SCCPSolver in the cloned version. | 
 | static Function *cloneCandidateFunction(Function *F) { | 
 |   ValueToValueMapTy Mappings; | 
 |   Function *Clone = CloneFunction(F, Mappings); | 
 |   removeSSACopy(*Clone); | 
 |   return Clone; | 
 | } | 
 |  | 
 | bool FunctionSpecializer::findSpecializations(Function *F, Cost SpecCost, | 
 |                                               SmallVectorImpl<Spec> &AllSpecs, | 
 |                                               SpecMap &SM) { | 
 |   // A mapping from a specialisation signature to the index of the respective | 
 |   // entry in the all specialisation array. Used to ensure uniqueness of | 
 |   // specialisations. | 
 |   DenseMap<SpecSig, unsigned> UniqueSpecs; | 
 |  | 
 |   // Get a list of interesting arguments. | 
 |   SmallVector<Argument *> Args; | 
 |   for (Argument &Arg : F->args()) | 
 |     if (isArgumentInteresting(&Arg)) | 
 |       Args.push_back(&Arg); | 
 |  | 
 |   if (Args.empty()) | 
 |     return false; | 
 |  | 
 |   for (User *U : F->users()) { | 
 |     if (!isa<CallInst>(U) && !isa<InvokeInst>(U)) | 
 |       continue; | 
 |     auto &CS = *cast<CallBase>(U); | 
 |  | 
 |     // The user instruction does not call our function. | 
 |     if (CS.getCalledFunction() != F) | 
 |       continue; | 
 |  | 
 |     // If the call site has attribute minsize set, that callsite won't be | 
 |     // specialized. | 
 |     if (CS.hasFnAttr(Attribute::MinSize)) | 
 |       continue; | 
 |  | 
 |     // If the parent of the call site will never be executed, we don't need | 
 |     // to worry about the passed value. | 
 |     if (!Solver.isBlockExecutable(CS.getParent())) | 
 |       continue; | 
 |  | 
 |     // Examine arguments and create a specialisation candidate from the | 
 |     // constant operands of this call site. | 
 |     SpecSig S; | 
 |     for (Argument *A : Args) { | 
 |       Constant *C = getCandidateConstant(CS.getArgOperand(A->getArgNo())); | 
 |       if (!C) | 
 |         continue; | 
 |       LLVM_DEBUG(dbgs() << "FnSpecialization: Found interesting argument " | 
 |                         << A->getName() << " : " << C->getNameOrAsOperand() | 
 |                         << "\n"); | 
 |       S.Args.push_back({A, C}); | 
 |     } | 
 |  | 
 |     if (S.Args.empty()) | 
 |       continue; | 
 |  | 
 |     // Check if we have encountered the same specialisation already. | 
 |     if (auto It = UniqueSpecs.find(S); It != UniqueSpecs.end()) { | 
 |       // Existing specialisation. Add the call to the list to rewrite, unless | 
 |       // it's a recursive call. A specialisation, generated because of a | 
 |       // recursive call may end up as not the best specialisation for all | 
 |       // the cloned instances of this call, which result from specialising | 
 |       // functions. Hence we don't rewrite the call directly, but match it with | 
 |       // the best specialisation once all specialisations are known. | 
 |       if (CS.getFunction() == F) | 
 |         continue; | 
 |       const unsigned Index = It->second; | 
 |       AllSpecs[Index].CallSites.push_back(&CS); | 
 |     } else { | 
 |       // Calculate the specialisation gain. | 
 |       Cost Score = 0 - SpecCost; | 
 |       InstCostVisitor Visitor = getInstCostVisitorFor(F); | 
 |       for (ArgInfo &A : S.Args) | 
 |         Score += getSpecializationBonus(A.Formal, A.Actual, Visitor); | 
 |  | 
 |       // Discard unprofitable specialisations. | 
 |       if (!ForceSpecialization && Score <= 0) | 
 |         continue; | 
 |  | 
 |       // Create a new specialisation entry. | 
 |       auto &Spec = AllSpecs.emplace_back(F, S, Score); | 
 |       if (CS.getFunction() != F) | 
 |         Spec.CallSites.push_back(&CS); | 
 |       const unsigned Index = AllSpecs.size() - 1; | 
 |       UniqueSpecs[S] = Index; | 
 |       if (auto [It, Inserted] = SM.try_emplace(F, Index, Index + 1); !Inserted) | 
 |         It->second.second = Index + 1; | 
 |     } | 
 |   } | 
 |  | 
 |   return !UniqueSpecs.empty(); | 
 | } | 
 |  | 
 | bool FunctionSpecializer::isCandidateFunction(Function *F) { | 
 |   if (F->isDeclaration() || F->arg_empty()) | 
 |     return false; | 
 |  | 
 |   if (F->hasFnAttribute(Attribute::NoDuplicate)) | 
 |     return false; | 
 |  | 
 |   // Do not specialize the cloned function again. | 
 |   if (Specializations.contains(F)) | 
 |     return false; | 
 |  | 
 |   // If we're optimizing the function for size, we shouldn't specialize it. | 
 |   if (F->hasOptSize() || | 
 |       shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass)) | 
 |     return false; | 
 |  | 
 |   // Exit if the function is not executable. There's no point in specializing | 
 |   // a dead function. | 
 |   if (!Solver.isBlockExecutable(&F->getEntryBlock())) | 
 |     return false; | 
 |  | 
 |   // It wastes time to specialize a function which would get inlined finally. | 
 |   if (F->hasFnAttribute(Attribute::AlwaysInline)) | 
 |     return false; | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName() | 
 |                     << "\n"); | 
 |   return true; | 
 | } | 
 |  | 
 | Function *FunctionSpecializer::createSpecialization(Function *F, | 
 |                                                     const SpecSig &S) { | 
 |   Function *Clone = cloneCandidateFunction(F); | 
 |  | 
 |   // The original function does not neccessarily have internal linkage, but the | 
 |   // clone must. | 
 |   Clone->setLinkage(GlobalValue::InternalLinkage); | 
 |  | 
 |   // Initialize the lattice state of the arguments of the function clone, | 
 |   // marking the argument on which we specialized the function constant | 
 |   // with the given value. | 
 |   Solver.setLatticeValueForSpecializationArguments(Clone, S.Args); | 
 |   Solver.markBlockExecutable(&Clone->front()); | 
 |   Solver.addArgumentTrackedFunction(Clone); | 
 |   Solver.addTrackedFunction(Clone); | 
 |  | 
 |   // Mark all the specialized functions | 
 |   Specializations.insert(Clone); | 
 |   ++NumSpecsCreated; | 
 |  | 
 |   return Clone; | 
 | } | 
 |  | 
 | /// Compute a bonus for replacing argument \p A with constant \p C. | 
 | Cost FunctionSpecializer::getSpecializationBonus(Argument *A, Constant *C, | 
 |                                                  InstCostVisitor &Visitor) { | 
 |   LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for constant: " | 
 |                     << C->getNameOrAsOperand() << "\n"); | 
 |  | 
 |   Cost TotalCost = 0; | 
 |   for (auto *U : A->users()) | 
 |     if (auto *UI = dyn_cast<Instruction>(U)) | 
 |       if (Solver.isBlockExecutable(UI->getParent())) | 
 |         TotalCost += Visitor.getUserBonus(UI, A, C); | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "FnSpecialization:   Accumulated user bonus " | 
 |                     << TotalCost << " for argument " << *A << "\n"); | 
 |  | 
 |   // The below heuristic is only concerned with exposing inlining | 
 |   // opportunities via indirect call promotion. If the argument is not a | 
 |   // (potentially casted) function pointer, give up. | 
 |   // | 
 |   // TODO: Perhaps we should consider checking such inlining opportunities | 
 |   // while traversing the users of the specialization arguments ? | 
 |   Function *CalledFunction = dyn_cast<Function>(C->stripPointerCasts()); | 
 |   if (!CalledFunction) | 
 |     return TotalCost; | 
 |  | 
 |   // Get TTI for the called function (used for the inline cost). | 
 |   auto &CalleeTTI = (GetTTI)(*CalledFunction); | 
 |  | 
 |   // Look at all the call sites whose called value is the argument. | 
 |   // Specializing the function on the argument would allow these indirect | 
 |   // calls to be promoted to direct calls. If the indirect call promotion | 
 |   // would likely enable the called function to be inlined, specializing is a | 
 |   // good idea. | 
 |   int Bonus = 0; | 
 |   for (User *U : A->users()) { | 
 |     if (!isa<CallInst>(U) && !isa<InvokeInst>(U)) | 
 |       continue; | 
 |     auto *CS = cast<CallBase>(U); | 
 |     if (CS->getCalledOperand() != A) | 
 |       continue; | 
 |     if (CS->getFunctionType() != CalledFunction->getFunctionType()) | 
 |       continue; | 
 |  | 
 |     // Get the cost of inlining the called function at this call site. Note | 
 |     // that this is only an estimate. The called function may eventually | 
 |     // change in a way that leads to it not being inlined here, even though | 
 |     // inlining looks profitable now. For example, one of its called | 
 |     // functions may be inlined into it, making the called function too large | 
 |     // to be inlined into this call site. | 
 |     // | 
 |     // We apply a boost for performing indirect call promotion by increasing | 
 |     // the default threshold by the threshold for indirect calls. | 
 |     auto Params = getInlineParams(); | 
 |     Params.DefaultThreshold += InlineConstants::IndirectCallThreshold; | 
 |     InlineCost IC = | 
 |         getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI); | 
 |  | 
 |     // We clamp the bonus for this call to be between zero and the default | 
 |     // threshold. | 
 |     if (IC.isAlways()) | 
 |       Bonus += Params.DefaultThreshold; | 
 |     else if (IC.isVariable() && IC.getCostDelta() > 0) | 
 |       Bonus += IC.getCostDelta(); | 
 |  | 
 |     LLVM_DEBUG(dbgs() << "FnSpecialization:   Inlining bonus " << Bonus | 
 |                       << " for user " << *U << "\n"); | 
 |   } | 
 |  | 
 |   return TotalCost + Bonus; | 
 | } | 
 |  | 
 | /// Determine if it is possible to specialise the function for constant values | 
 | /// of the formal parameter \p A. | 
 | bool FunctionSpecializer::isArgumentInteresting(Argument *A) { | 
 |   // No point in specialization if the argument is unused. | 
 |   if (A->user_empty()) | 
 |     return false; | 
 |  | 
 |   Type *Ty = A->getType(); | 
 |   if (!Ty->isPointerTy() && (!SpecializeLiteralConstant || | 
 |       (!Ty->isIntegerTy() && !Ty->isFloatingPointTy() && !Ty->isStructTy()))) | 
 |     return false; | 
 |  | 
 |   // SCCP solver does not record an argument that will be constructed on | 
 |   // stack. | 
 |   if (A->hasByValAttr() && !A->getParent()->onlyReadsMemory()) | 
 |     return false; | 
 |  | 
 |   // For non-argument-tracked functions every argument is overdefined. | 
 |   if (!Solver.isArgumentTrackedFunction(A->getParent())) | 
 |     return true; | 
 |  | 
 |   // Check the lattice value and decide if we should attemt to specialize, | 
 |   // based on this argument. No point in specialization, if the lattice value | 
 |   // is already a constant. | 
 |   bool IsOverdefined = Ty->isStructTy() | 
 |     ? any_of(Solver.getStructLatticeValueFor(A), SCCPSolver::isOverdefined) | 
 |     : SCCPSolver::isOverdefined(Solver.getLatticeValueFor(A)); | 
 |  | 
 |   LLVM_DEBUG( | 
 |     if (IsOverdefined) | 
 |       dbgs() << "FnSpecialization: Found interesting parameter " | 
 |              << A->getNameOrAsOperand() << "\n"; | 
 |     else | 
 |       dbgs() << "FnSpecialization: Nothing to do, parameter " | 
 |              << A->getNameOrAsOperand() << " is already constant\n"; | 
 |   ); | 
 |   return IsOverdefined; | 
 | } | 
 |  | 
 | /// Check if the value \p V  (an actual argument) is a constant or can only | 
 | /// have a constant value. Return that constant. | 
 | Constant *FunctionSpecializer::getCandidateConstant(Value *V) { | 
 |   if (isa<PoisonValue>(V)) | 
 |     return nullptr; | 
 |  | 
 |   // Select for possible specialisation values that are constants or | 
 |   // are deduced to be constants or constant ranges with a single element. | 
 |   Constant *C = dyn_cast<Constant>(V); | 
 |   if (!C) | 
 |     C = Solver.getConstantOrNull(V); | 
 |  | 
 |   // Don't specialize on (anything derived from) the address of a non-constant | 
 |   // global variable, unless explicitly enabled. | 
 |   if (C && C->getType()->isPointerTy() && !C->isNullValue()) | 
 |     if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C)); | 
 |         GV && !(GV->isConstant() || SpecializeOnAddress)) | 
 |       return nullptr; | 
 |  | 
 |   return C; | 
 | } | 
 |  | 
 | void FunctionSpecializer::updateCallSites(Function *F, const Spec *Begin, | 
 |                                           const Spec *End) { | 
 |   // Collect the call sites that need updating. | 
 |   SmallVector<CallBase *> ToUpdate; | 
 |   for (User *U : F->users()) | 
 |     if (auto *CS = dyn_cast<CallBase>(U); | 
 |         CS && CS->getCalledFunction() == F && | 
 |         Solver.isBlockExecutable(CS->getParent())) | 
 |       ToUpdate.push_back(CS); | 
 |  | 
 |   unsigned NCallsLeft = ToUpdate.size(); | 
 |   for (CallBase *CS : ToUpdate) { | 
 |     bool ShouldDecrementCount = CS->getFunction() == F; | 
 |  | 
 |     // Find the best matching specialisation. | 
 |     const Spec *BestSpec = nullptr; | 
 |     for (const Spec &S : make_range(Begin, End)) { | 
 |       if (!S.Clone || (BestSpec && S.Score <= BestSpec->Score)) | 
 |         continue; | 
 |  | 
 |       if (any_of(S.Sig.Args, [CS, this](const ArgInfo &Arg) { | 
 |             unsigned ArgNo = Arg.Formal->getArgNo(); | 
 |             return getCandidateConstant(CS->getArgOperand(ArgNo)) != Arg.Actual; | 
 |           })) | 
 |         continue; | 
 |  | 
 |       BestSpec = &S; | 
 |     } | 
 |  | 
 |     if (BestSpec) { | 
 |       LLVM_DEBUG(dbgs() << "FnSpecialization: Redirecting " << *CS | 
 |                         << " to call " << BestSpec->Clone->getName() << "\n"); | 
 |       CS->setCalledFunction(BestSpec->Clone); | 
 |       ShouldDecrementCount = true; | 
 |     } | 
 |  | 
 |     if (ShouldDecrementCount) | 
 |       --NCallsLeft; | 
 |   } | 
 |  | 
 |   // If the function has been completely specialized, the original function | 
 |   // is no longer needed. Mark it unreachable. | 
 |   if (NCallsLeft == 0 && Solver.isArgumentTrackedFunction(F)) { | 
 |     Solver.markFunctionUnreachable(F); | 
 |     FullySpecialized.insert(F); | 
 |   } | 
 | } |