| //===-- Constants.cpp - Implement Constant nodes --------------------------===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements the Constant* classes. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/IR/Constants.h" | 
 | #include "LLVMContextImpl.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/ADT/StringMap.h" | 
 | #include "llvm/IR/BasicBlock.h" | 
 | #include "llvm/IR/ConstantFold.h" | 
 | #include "llvm/IR/DerivedTypes.h" | 
 | #include "llvm/IR/Function.h" | 
 | #include "llvm/IR/GetElementPtrTypeIterator.h" | 
 | #include "llvm/IR/GlobalAlias.h" | 
 | #include "llvm/IR/GlobalIFunc.h" | 
 | #include "llvm/IR/GlobalValue.h" | 
 | #include "llvm/IR/GlobalVariable.h" | 
 | #include "llvm/IR/Instructions.h" | 
 | #include "llvm/IR/Operator.h" | 
 | #include "llvm/IR/PatternMatch.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include <algorithm> | 
 |  | 
 | using namespace llvm; | 
 | using namespace PatternMatch; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                              Constant Class | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | bool Constant::isNegativeZeroValue() const { | 
 |   // Floating point values have an explicit -0.0 value. | 
 |   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) | 
 |     return CFP->isZero() && CFP->isNegative(); | 
 |  | 
 |   // Equivalent for a vector of -0.0's. | 
 |   if (getType()->isVectorTy()) | 
 |     if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue())) | 
 |       return SplatCFP->isNegativeZeroValue(); | 
 |  | 
 |   // We've already handled true FP case; any other FP vectors can't represent -0.0. | 
 |   if (getType()->isFPOrFPVectorTy()) | 
 |     return false; | 
 |  | 
 |   // Otherwise, just use +0.0. | 
 |   return isNullValue(); | 
 | } | 
 |  | 
 | // Return true iff this constant is positive zero (floating point), negative | 
 | // zero (floating point), or a null value. | 
 | bool Constant::isZeroValue() const { | 
 |   // Floating point values have an explicit -0.0 value. | 
 |   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) | 
 |     return CFP->isZero(); | 
 |  | 
 |   // Check for constant splat vectors of 1 values. | 
 |   if (getType()->isVectorTy()) | 
 |     if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue())) | 
 |       return SplatCFP->isZero(); | 
 |  | 
 |   // Otherwise, just use +0.0. | 
 |   return isNullValue(); | 
 | } | 
 |  | 
 | bool Constant::isNullValue() const { | 
 |   // 0 is null. | 
 |   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) | 
 |     return CI->isZero(); | 
 |  | 
 |   // +0.0 is null. | 
 |   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) | 
 |     // ppc_fp128 determine isZero using high order double only | 
 |     // Should check the bitwise value to make sure all bits are zero. | 
 |     return CFP->isExactlyValue(+0.0); | 
 |  | 
 |   // constant zero is zero for aggregates, cpnull is null for pointers, none for | 
 |   // tokens. | 
 |   return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) || | 
 |          isa<ConstantTokenNone>(this) || isa<ConstantTargetNone>(this); | 
 | } | 
 |  | 
 | bool Constant::isAllOnesValue() const { | 
 |   // Check for -1 integers | 
 |   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) | 
 |     return CI->isMinusOne(); | 
 |  | 
 |   // Check for FP which are bitcasted from -1 integers | 
 |   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) | 
 |     return CFP->getValueAPF().bitcastToAPInt().isAllOnes(); | 
 |  | 
 |   // Check for constant splat vectors of 1 values. | 
 |   if (getType()->isVectorTy()) | 
 |     if (const auto *SplatVal = getSplatValue()) | 
 |       return SplatVal->isAllOnesValue(); | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | bool Constant::isOneValue() const { | 
 |   // Check for 1 integers | 
 |   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) | 
 |     return CI->isOne(); | 
 |  | 
 |   // Check for FP which are bitcasted from 1 integers | 
 |   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) | 
 |     return CFP->getValueAPF().bitcastToAPInt().isOne(); | 
 |  | 
 |   // Check for constant splat vectors of 1 values. | 
 |   if (getType()->isVectorTy()) | 
 |     if (const auto *SplatVal = getSplatValue()) | 
 |       return SplatVal->isOneValue(); | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | bool Constant::isNotOneValue() const { | 
 |   // Check for 1 integers | 
 |   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) | 
 |     return !CI->isOneValue(); | 
 |  | 
 |   // Check for FP which are bitcasted from 1 integers | 
 |   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) | 
 |     return !CFP->getValueAPF().bitcastToAPInt().isOne(); | 
 |  | 
 |   // Check that vectors don't contain 1 | 
 |   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { | 
 |     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { | 
 |       Constant *Elt = getAggregateElement(I); | 
 |       if (!Elt || !Elt->isNotOneValue()) | 
 |         return false; | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Check for splats that don't contain 1 | 
 |   if (getType()->isVectorTy()) | 
 |     if (const auto *SplatVal = getSplatValue()) | 
 |       return SplatVal->isNotOneValue(); | 
 |  | 
 |   // It *may* contain 1, we can't tell. | 
 |   return false; | 
 | } | 
 |  | 
 | bool Constant::isMinSignedValue() const { | 
 |   // Check for INT_MIN integers | 
 |   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) | 
 |     return CI->isMinValue(/*isSigned=*/true); | 
 |  | 
 |   // Check for FP which are bitcasted from INT_MIN integers | 
 |   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) | 
 |     return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue(); | 
 |  | 
 |   // Check for splats of INT_MIN values. | 
 |   if (getType()->isVectorTy()) | 
 |     if (const auto *SplatVal = getSplatValue()) | 
 |       return SplatVal->isMinSignedValue(); | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | bool Constant::isNotMinSignedValue() const { | 
 |   // Check for INT_MIN integers | 
 |   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) | 
 |     return !CI->isMinValue(/*isSigned=*/true); | 
 |  | 
 |   // Check for FP which are bitcasted from INT_MIN integers | 
 |   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) | 
 |     return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue(); | 
 |  | 
 |   // Check that vectors don't contain INT_MIN | 
 |   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { | 
 |     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { | 
 |       Constant *Elt = getAggregateElement(I); | 
 |       if (!Elt || !Elt->isNotMinSignedValue()) | 
 |         return false; | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Check for splats that aren't INT_MIN | 
 |   if (getType()->isVectorTy()) | 
 |     if (const auto *SplatVal = getSplatValue()) | 
 |       return SplatVal->isNotMinSignedValue(); | 
 |  | 
 |   // It *may* contain INT_MIN, we can't tell. | 
 |   return false; | 
 | } | 
 |  | 
 | bool Constant::isFiniteNonZeroFP() const { | 
 |   if (auto *CFP = dyn_cast<ConstantFP>(this)) | 
 |     return CFP->getValueAPF().isFiniteNonZero(); | 
 |  | 
 |   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { | 
 |     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { | 
 |       auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I)); | 
 |       if (!CFP || !CFP->getValueAPF().isFiniteNonZero()) | 
 |         return false; | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (getType()->isVectorTy()) | 
 |     if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue())) | 
 |       return SplatCFP->isFiniteNonZeroFP(); | 
 |  | 
 |   // It *may* contain finite non-zero, we can't tell. | 
 |   return false; | 
 | } | 
 |  | 
 | bool Constant::isNormalFP() const { | 
 |   if (auto *CFP = dyn_cast<ConstantFP>(this)) | 
 |     return CFP->getValueAPF().isNormal(); | 
 |  | 
 |   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { | 
 |     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { | 
 |       auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I)); | 
 |       if (!CFP || !CFP->getValueAPF().isNormal()) | 
 |         return false; | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (getType()->isVectorTy()) | 
 |     if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue())) | 
 |       return SplatCFP->isNormalFP(); | 
 |  | 
 |   // It *may* contain a normal fp value, we can't tell. | 
 |   return false; | 
 | } | 
 |  | 
 | bool Constant::hasExactInverseFP() const { | 
 |   if (auto *CFP = dyn_cast<ConstantFP>(this)) | 
 |     return CFP->getValueAPF().getExactInverse(nullptr); | 
 |  | 
 |   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { | 
 |     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { | 
 |       auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I)); | 
 |       if (!CFP || !CFP->getValueAPF().getExactInverse(nullptr)) | 
 |         return false; | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (getType()->isVectorTy()) | 
 |     if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue())) | 
 |       return SplatCFP->hasExactInverseFP(); | 
 |  | 
 |   // It *may* have an exact inverse fp value, we can't tell. | 
 |   return false; | 
 | } | 
 |  | 
 | bool Constant::isNaN() const { | 
 |   if (auto *CFP = dyn_cast<ConstantFP>(this)) | 
 |     return CFP->isNaN(); | 
 |  | 
 |   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { | 
 |     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { | 
 |       auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I)); | 
 |       if (!CFP || !CFP->isNaN()) | 
 |         return false; | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (getType()->isVectorTy()) | 
 |     if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue())) | 
 |       return SplatCFP->isNaN(); | 
 |  | 
 |   // It *may* be NaN, we can't tell. | 
 |   return false; | 
 | } | 
 |  | 
 | bool Constant::isElementWiseEqual(Value *Y) const { | 
 |   // Are they fully identical? | 
 |   if (this == Y) | 
 |     return true; | 
 |  | 
 |   // The input value must be a vector constant with the same type. | 
 |   auto *VTy = dyn_cast<VectorType>(getType()); | 
 |   if (!isa<Constant>(Y) || !VTy || VTy != Y->getType()) | 
 |     return false; | 
 |  | 
 |   // TODO: Compare pointer constants? | 
 |   if (!(VTy->getElementType()->isIntegerTy() || | 
 |         VTy->getElementType()->isFloatingPointTy())) | 
 |     return false; | 
 |  | 
 |   // They may still be identical element-wise (if they have `undef`s). | 
 |   // Bitcast to integer to allow exact bitwise comparison for all types. | 
 |   Type *IntTy = VectorType::getInteger(VTy); | 
 |   Constant *C0 = ConstantExpr::getBitCast(const_cast<Constant *>(this), IntTy); | 
 |   Constant *C1 = ConstantExpr::getBitCast(cast<Constant>(Y), IntTy); | 
 |   Constant *CmpEq = ConstantExpr::getICmp(ICmpInst::ICMP_EQ, C0, C1); | 
 |   return isa<UndefValue>(CmpEq) || match(CmpEq, m_One()); | 
 | } | 
 |  | 
 | static bool | 
 | containsUndefinedElement(const Constant *C, | 
 |                          function_ref<bool(const Constant *)> HasFn) { | 
 |   if (auto *VTy = dyn_cast<VectorType>(C->getType())) { | 
 |     if (HasFn(C)) | 
 |       return true; | 
 |     if (isa<ConstantAggregateZero>(C)) | 
 |       return false; | 
 |     if (isa<ScalableVectorType>(C->getType())) | 
 |       return false; | 
 |  | 
 |     for (unsigned i = 0, e = cast<FixedVectorType>(VTy)->getNumElements(); | 
 |          i != e; ++i) { | 
 |       if (Constant *Elem = C->getAggregateElement(i)) | 
 |         if (HasFn(Elem)) | 
 |           return true; | 
 |     } | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | bool Constant::containsUndefOrPoisonElement() const { | 
 |   return containsUndefinedElement( | 
 |       this, [&](const auto *C) { return isa<UndefValue>(C); }); | 
 | } | 
 |  | 
 | bool Constant::containsPoisonElement() const { | 
 |   return containsUndefinedElement( | 
 |       this, [&](const auto *C) { return isa<PoisonValue>(C); }); | 
 | } | 
 |  | 
 | bool Constant::containsUndefElement() const { | 
 |   return containsUndefinedElement(this, [&](const auto *C) { | 
 |     return isa<UndefValue>(C) && !isa<PoisonValue>(C); | 
 |   }); | 
 | } | 
 |  | 
 | bool Constant::containsConstantExpression() const { | 
 |   if (auto *VTy = dyn_cast<FixedVectorType>(getType())) { | 
 |     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) | 
 |       if (isa<ConstantExpr>(getAggregateElement(i))) | 
 |         return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | /// Constructor to create a '0' constant of arbitrary type. | 
 | Constant *Constant::getNullValue(Type *Ty) { | 
 |   switch (Ty->getTypeID()) { | 
 |   case Type::IntegerTyID: | 
 |     return ConstantInt::get(Ty, 0); | 
 |   case Type::HalfTyID: | 
 |   case Type::BFloatTyID: | 
 |   case Type::FloatTyID: | 
 |   case Type::DoubleTyID: | 
 |   case Type::X86_FP80TyID: | 
 |   case Type::FP128TyID: | 
 |   case Type::PPC_FP128TyID: | 
 |     return ConstantFP::get(Ty->getContext(), | 
 |                            APFloat::getZero(Ty->getFltSemantics())); | 
 |   case Type::PointerTyID: | 
 |     return ConstantPointerNull::get(cast<PointerType>(Ty)); | 
 |   case Type::StructTyID: | 
 |   case Type::ArrayTyID: | 
 |   case Type::FixedVectorTyID: | 
 |   case Type::ScalableVectorTyID: | 
 |     return ConstantAggregateZero::get(Ty); | 
 |   case Type::TokenTyID: | 
 |     return ConstantTokenNone::get(Ty->getContext()); | 
 |   case Type::TargetExtTyID: | 
 |     return ConstantTargetNone::get(cast<TargetExtType>(Ty)); | 
 |   default: | 
 |     // Function, Label, or Opaque type? | 
 |     llvm_unreachable("Cannot create a null constant of that type!"); | 
 |   } | 
 | } | 
 |  | 
 | Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) { | 
 |   Type *ScalarTy = Ty->getScalarType(); | 
 |  | 
 |   // Create the base integer constant. | 
 |   Constant *C = ConstantInt::get(Ty->getContext(), V); | 
 |  | 
 |   // Convert an integer to a pointer, if necessary. | 
 |   if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy)) | 
 |     C = ConstantExpr::getIntToPtr(C, PTy); | 
 |  | 
 |   // Broadcast a scalar to a vector, if necessary. | 
 |   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) | 
 |     C = ConstantVector::getSplat(VTy->getElementCount(), C); | 
 |  | 
 |   return C; | 
 | } | 
 |  | 
 | Constant *Constant::getAllOnesValue(Type *Ty) { | 
 |   if (IntegerType *ITy = dyn_cast<IntegerType>(Ty)) | 
 |     return ConstantInt::get(Ty->getContext(), | 
 |                             APInt::getAllOnes(ITy->getBitWidth())); | 
 |  | 
 |   if (Ty->isFloatingPointTy()) { | 
 |     APFloat FL = APFloat::getAllOnesValue(Ty->getFltSemantics()); | 
 |     return ConstantFP::get(Ty->getContext(), FL); | 
 |   } | 
 |  | 
 |   VectorType *VTy = cast<VectorType>(Ty); | 
 |   return ConstantVector::getSplat(VTy->getElementCount(), | 
 |                                   getAllOnesValue(VTy->getElementType())); | 
 | } | 
 |  | 
 | Constant *Constant::getAggregateElement(unsigned Elt) const { | 
 |   assert((getType()->isAggregateType() || getType()->isVectorTy()) && | 
 |          "Must be an aggregate/vector constant"); | 
 |  | 
 |   if (const auto *CC = dyn_cast<ConstantAggregate>(this)) | 
 |     return Elt < CC->getNumOperands() ? CC->getOperand(Elt) : nullptr; | 
 |  | 
 |   if (const auto *CAZ = dyn_cast<ConstantAggregateZero>(this)) | 
 |     return Elt < CAZ->getElementCount().getKnownMinValue() | 
 |                ? CAZ->getElementValue(Elt) | 
 |                : nullptr; | 
 |  | 
 |   // FIXME: getNumElements() will fail for non-fixed vector types. | 
 |   if (isa<ScalableVectorType>(getType())) | 
 |     return nullptr; | 
 |  | 
 |   if (const auto *PV = dyn_cast<PoisonValue>(this)) | 
 |     return Elt < PV->getNumElements() ? PV->getElementValue(Elt) : nullptr; | 
 |  | 
 |   if (const auto *UV = dyn_cast<UndefValue>(this)) | 
 |     return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr; | 
 |  | 
 |   if (const auto *CDS = dyn_cast<ConstantDataSequential>(this)) | 
 |     return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) | 
 |                                        : nullptr; | 
 |  | 
 |   return nullptr; | 
 | } | 
 |  | 
 | Constant *Constant::getAggregateElement(Constant *Elt) const { | 
 |   assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer"); | 
 |   if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) { | 
 |     // Check if the constant fits into an uint64_t. | 
 |     if (CI->getValue().getActiveBits() > 64) | 
 |       return nullptr; | 
 |     return getAggregateElement(CI->getZExtValue()); | 
 |   } | 
 |   return nullptr; | 
 | } | 
 |  | 
 | void Constant::destroyConstant() { | 
 |   /// First call destroyConstantImpl on the subclass.  This gives the subclass | 
 |   /// a chance to remove the constant from any maps/pools it's contained in. | 
 |   switch (getValueID()) { | 
 |   default: | 
 |     llvm_unreachable("Not a constant!"); | 
 | #define HANDLE_CONSTANT(Name)                                                  \ | 
 |   case Value::Name##Val:                                                       \ | 
 |     cast<Name>(this)->destroyConstantImpl();                                   \ | 
 |     break; | 
 | #include "llvm/IR/Value.def" | 
 |   } | 
 |  | 
 |   // When a Constant is destroyed, there may be lingering | 
 |   // references to the constant by other constants in the constant pool.  These | 
 |   // constants are implicitly dependent on the module that is being deleted, | 
 |   // but they don't know that.  Because we only find out when the CPV is | 
 |   // deleted, we must now notify all of our users (that should only be | 
 |   // Constants) that they are, in fact, invalid now and should be deleted. | 
 |   // | 
 |   while (!use_empty()) { | 
 |     Value *V = user_back(); | 
 | #ifndef NDEBUG // Only in -g mode... | 
 |     if (!isa<Constant>(V)) { | 
 |       dbgs() << "While deleting: " << *this | 
 |              << "\n\nUse still stuck around after Def is destroyed: " << *V | 
 |              << "\n\n"; | 
 |     } | 
 | #endif | 
 |     assert(isa<Constant>(V) && "References remain to Constant being destroyed"); | 
 |     cast<Constant>(V)->destroyConstant(); | 
 |  | 
 |     // The constant should remove itself from our use list... | 
 |     assert((use_empty() || user_back() != V) && "Constant not removed!"); | 
 |   } | 
 |  | 
 |   // Value has no outstanding references it is safe to delete it now... | 
 |   deleteConstant(this); | 
 | } | 
 |  | 
 | void llvm::deleteConstant(Constant *C) { | 
 |   switch (C->getValueID()) { | 
 |   case Constant::ConstantIntVal: | 
 |     delete static_cast<ConstantInt *>(C); | 
 |     break; | 
 |   case Constant::ConstantFPVal: | 
 |     delete static_cast<ConstantFP *>(C); | 
 |     break; | 
 |   case Constant::ConstantAggregateZeroVal: | 
 |     delete static_cast<ConstantAggregateZero *>(C); | 
 |     break; | 
 |   case Constant::ConstantArrayVal: | 
 |     delete static_cast<ConstantArray *>(C); | 
 |     break; | 
 |   case Constant::ConstantStructVal: | 
 |     delete static_cast<ConstantStruct *>(C); | 
 |     break; | 
 |   case Constant::ConstantVectorVal: | 
 |     delete static_cast<ConstantVector *>(C); | 
 |     break; | 
 |   case Constant::ConstantPointerNullVal: | 
 |     delete static_cast<ConstantPointerNull *>(C); | 
 |     break; | 
 |   case Constant::ConstantDataArrayVal: | 
 |     delete static_cast<ConstantDataArray *>(C); | 
 |     break; | 
 |   case Constant::ConstantDataVectorVal: | 
 |     delete static_cast<ConstantDataVector *>(C); | 
 |     break; | 
 |   case Constant::ConstantTokenNoneVal: | 
 |     delete static_cast<ConstantTokenNone *>(C); | 
 |     break; | 
 |   case Constant::BlockAddressVal: | 
 |     delete static_cast<BlockAddress *>(C); | 
 |     break; | 
 |   case Constant::DSOLocalEquivalentVal: | 
 |     delete static_cast<DSOLocalEquivalent *>(C); | 
 |     break; | 
 |   case Constant::NoCFIValueVal: | 
 |     delete static_cast<NoCFIValue *>(C); | 
 |     break; | 
 |   case Constant::UndefValueVal: | 
 |     delete static_cast<UndefValue *>(C); | 
 |     break; | 
 |   case Constant::PoisonValueVal: | 
 |     delete static_cast<PoisonValue *>(C); | 
 |     break; | 
 |   case Constant::ConstantExprVal: | 
 |     if (isa<CastConstantExpr>(C)) | 
 |       delete static_cast<CastConstantExpr *>(C); | 
 |     else if (isa<BinaryConstantExpr>(C)) | 
 |       delete static_cast<BinaryConstantExpr *>(C); | 
 |     else if (isa<ExtractElementConstantExpr>(C)) | 
 |       delete static_cast<ExtractElementConstantExpr *>(C); | 
 |     else if (isa<InsertElementConstantExpr>(C)) | 
 |       delete static_cast<InsertElementConstantExpr *>(C); | 
 |     else if (isa<ShuffleVectorConstantExpr>(C)) | 
 |       delete static_cast<ShuffleVectorConstantExpr *>(C); | 
 |     else if (isa<GetElementPtrConstantExpr>(C)) | 
 |       delete static_cast<GetElementPtrConstantExpr *>(C); | 
 |     else if (isa<CompareConstantExpr>(C)) | 
 |       delete static_cast<CompareConstantExpr *>(C); | 
 |     else | 
 |       llvm_unreachable("Unexpected constant expr"); | 
 |     break; | 
 |   default: | 
 |     llvm_unreachable("Unexpected constant"); | 
 |   } | 
 | } | 
 |  | 
 | /// Check if C contains a GlobalValue for which Predicate is true. | 
 | static bool | 
 | ConstHasGlobalValuePredicate(const Constant *C, | 
 |                              bool (*Predicate)(const GlobalValue *)) { | 
 |   SmallPtrSet<const Constant *, 8> Visited; | 
 |   SmallVector<const Constant *, 8> WorkList; | 
 |   WorkList.push_back(C); | 
 |   Visited.insert(C); | 
 |  | 
 |   while (!WorkList.empty()) { | 
 |     const Constant *WorkItem = WorkList.pop_back_val(); | 
 |     if (const auto *GV = dyn_cast<GlobalValue>(WorkItem)) | 
 |       if (Predicate(GV)) | 
 |         return true; | 
 |     for (const Value *Op : WorkItem->operands()) { | 
 |       const Constant *ConstOp = dyn_cast<Constant>(Op); | 
 |       if (!ConstOp) | 
 |         continue; | 
 |       if (Visited.insert(ConstOp).second) | 
 |         WorkList.push_back(ConstOp); | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | bool Constant::isThreadDependent() const { | 
 |   auto DLLImportPredicate = [](const GlobalValue *GV) { | 
 |     return GV->isThreadLocal(); | 
 |   }; | 
 |   return ConstHasGlobalValuePredicate(this, DLLImportPredicate); | 
 | } | 
 |  | 
 | bool Constant::isDLLImportDependent() const { | 
 |   auto DLLImportPredicate = [](const GlobalValue *GV) { | 
 |     return GV->hasDLLImportStorageClass(); | 
 |   }; | 
 |   return ConstHasGlobalValuePredicate(this, DLLImportPredicate); | 
 | } | 
 |  | 
 | bool Constant::isConstantUsed() const { | 
 |   for (const User *U : users()) { | 
 |     const Constant *UC = dyn_cast<Constant>(U); | 
 |     if (!UC || isa<GlobalValue>(UC)) | 
 |       return true; | 
 |  | 
 |     if (UC->isConstantUsed()) | 
 |       return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | bool Constant::needsDynamicRelocation() const { | 
 |   return getRelocationInfo() == GlobalRelocation; | 
 | } | 
 |  | 
 | bool Constant::needsRelocation() const { | 
 |   return getRelocationInfo() != NoRelocation; | 
 | } | 
 |  | 
 | Constant::PossibleRelocationsTy Constant::getRelocationInfo() const { | 
 |   if (isa<GlobalValue>(this)) | 
 |     return GlobalRelocation; // Global reference. | 
 |  | 
 |   if (const BlockAddress *BA = dyn_cast<BlockAddress>(this)) | 
 |     return BA->getFunction()->getRelocationInfo(); | 
 |  | 
 |   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) { | 
 |     if (CE->getOpcode() == Instruction::Sub) { | 
 |       ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0)); | 
 |       ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1)); | 
 |       if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt && | 
 |           RHS->getOpcode() == Instruction::PtrToInt) { | 
 |         Constant *LHSOp0 = LHS->getOperand(0); | 
 |         Constant *RHSOp0 = RHS->getOperand(0); | 
 |  | 
 |         // While raw uses of blockaddress need to be relocated, differences | 
 |         // between two of them don't when they are for labels in the same | 
 |         // function.  This is a common idiom when creating a table for the | 
 |         // indirect goto extension, so we handle it efficiently here. | 
 |         if (isa<BlockAddress>(LHSOp0) && isa<BlockAddress>(RHSOp0) && | 
 |             cast<BlockAddress>(LHSOp0)->getFunction() == | 
 |                 cast<BlockAddress>(RHSOp0)->getFunction()) | 
 |           return NoRelocation; | 
 |  | 
 |         // Relative pointers do not need to be dynamically relocated. | 
 |         if (auto *RHSGV = | 
 |                 dyn_cast<GlobalValue>(RHSOp0->stripInBoundsConstantOffsets())) { | 
 |           auto *LHS = LHSOp0->stripInBoundsConstantOffsets(); | 
 |           if (auto *LHSGV = dyn_cast<GlobalValue>(LHS)) { | 
 |             if (LHSGV->isDSOLocal() && RHSGV->isDSOLocal()) | 
 |               return LocalRelocation; | 
 |           } else if (isa<DSOLocalEquivalent>(LHS)) { | 
 |             if (RHSGV->isDSOLocal()) | 
 |               return LocalRelocation; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   PossibleRelocationsTy Result = NoRelocation; | 
 |   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) | 
 |     Result = | 
 |         std::max(cast<Constant>(getOperand(i))->getRelocationInfo(), Result); | 
 |  | 
 |   return Result; | 
 | } | 
 |  | 
 | /// Return true if the specified constantexpr is dead. This involves | 
 | /// recursively traversing users of the constantexpr. | 
 | /// If RemoveDeadUsers is true, also remove dead users at the same time. | 
 | static bool constantIsDead(const Constant *C, bool RemoveDeadUsers) { | 
 |   if (isa<GlobalValue>(C)) return false; // Cannot remove this | 
 |  | 
 |   Value::const_user_iterator I = C->user_begin(), E = C->user_end(); | 
 |   while (I != E) { | 
 |     const Constant *User = dyn_cast<Constant>(*I); | 
 |     if (!User) return false; // Non-constant usage; | 
 |     if (!constantIsDead(User, RemoveDeadUsers)) | 
 |       return false; // Constant wasn't dead | 
 |  | 
 |     // Just removed User, so the iterator was invalidated. | 
 |     // Since we return immediately upon finding a live user, we can always | 
 |     // restart from user_begin(). | 
 |     if (RemoveDeadUsers) | 
 |       I = C->user_begin(); | 
 |     else | 
 |       ++I; | 
 |   } | 
 |  | 
 |   if (RemoveDeadUsers) { | 
 |     // If C is only used by metadata, it should not be preserved but should | 
 |     // have its uses replaced. | 
 |     ReplaceableMetadataImpl::SalvageDebugInfo(*C); | 
 |     const_cast<Constant *>(C)->destroyConstant(); | 
 |   } | 
 |    | 
 |   return true; | 
 | } | 
 |  | 
 | void Constant::removeDeadConstantUsers() const { | 
 |   Value::const_user_iterator I = user_begin(), E = user_end(); | 
 |   Value::const_user_iterator LastNonDeadUser = E; | 
 |   while (I != E) { | 
 |     const Constant *User = dyn_cast<Constant>(*I); | 
 |     if (!User) { | 
 |       LastNonDeadUser = I; | 
 |       ++I; | 
 |       continue; | 
 |     } | 
 |  | 
 |     if (!constantIsDead(User, /* RemoveDeadUsers= */ true)) { | 
 |       // If the constant wasn't dead, remember that this was the last live use | 
 |       // and move on to the next constant. | 
 |       LastNonDeadUser = I; | 
 |       ++I; | 
 |       continue; | 
 |     } | 
 |  | 
 |     // If the constant was dead, then the iterator is invalidated. | 
 |     if (LastNonDeadUser == E) | 
 |       I = user_begin(); | 
 |     else | 
 |       I = std::next(LastNonDeadUser); | 
 |   } | 
 | } | 
 |  | 
 | bool Constant::hasOneLiveUse() const { return hasNLiveUses(1); } | 
 |  | 
 | bool Constant::hasZeroLiveUses() const { return hasNLiveUses(0); } | 
 |  | 
 | bool Constant::hasNLiveUses(unsigned N) const { | 
 |   unsigned NumUses = 0; | 
 |   for (const Use &U : uses()) { | 
 |     const Constant *User = dyn_cast<Constant>(U.getUser()); | 
 |     if (!User || !constantIsDead(User, /* RemoveDeadUsers= */ false)) { | 
 |       ++NumUses; | 
 |  | 
 |       if (NumUses > N) | 
 |         return false; | 
 |     } | 
 |   } | 
 |   return NumUses == N; | 
 | } | 
 |  | 
 | Constant *Constant::replaceUndefsWith(Constant *C, Constant *Replacement) { | 
 |   assert(C && Replacement && "Expected non-nullptr constant arguments"); | 
 |   Type *Ty = C->getType(); | 
 |   if (match(C, m_Undef())) { | 
 |     assert(Ty == Replacement->getType() && "Expected matching types"); | 
 |     return Replacement; | 
 |   } | 
 |  | 
 |   // Don't know how to deal with this constant. | 
 |   auto *VTy = dyn_cast<FixedVectorType>(Ty); | 
 |   if (!VTy) | 
 |     return C; | 
 |  | 
 |   unsigned NumElts = VTy->getNumElements(); | 
 |   SmallVector<Constant *, 32> NewC(NumElts); | 
 |   for (unsigned i = 0; i != NumElts; ++i) { | 
 |     Constant *EltC = C->getAggregateElement(i); | 
 |     assert((!EltC || EltC->getType() == Replacement->getType()) && | 
 |            "Expected matching types"); | 
 |     NewC[i] = EltC && match(EltC, m_Undef()) ? Replacement : EltC; | 
 |   } | 
 |   return ConstantVector::get(NewC); | 
 | } | 
 |  | 
 | Constant *Constant::mergeUndefsWith(Constant *C, Constant *Other) { | 
 |   assert(C && Other && "Expected non-nullptr constant arguments"); | 
 |   if (match(C, m_Undef())) | 
 |     return C; | 
 |  | 
 |   Type *Ty = C->getType(); | 
 |   if (match(Other, m_Undef())) | 
 |     return UndefValue::get(Ty); | 
 |  | 
 |   auto *VTy = dyn_cast<FixedVectorType>(Ty); | 
 |   if (!VTy) | 
 |     return C; | 
 |  | 
 |   Type *EltTy = VTy->getElementType(); | 
 |   unsigned NumElts = VTy->getNumElements(); | 
 |   assert(isa<FixedVectorType>(Other->getType()) && | 
 |          cast<FixedVectorType>(Other->getType())->getNumElements() == NumElts && | 
 |          "Type mismatch"); | 
 |  | 
 |   bool FoundExtraUndef = false; | 
 |   SmallVector<Constant *, 32> NewC(NumElts); | 
 |   for (unsigned I = 0; I != NumElts; ++I) { | 
 |     NewC[I] = C->getAggregateElement(I); | 
 |     Constant *OtherEltC = Other->getAggregateElement(I); | 
 |     assert(NewC[I] && OtherEltC && "Unknown vector element"); | 
 |     if (!match(NewC[I], m_Undef()) && match(OtherEltC, m_Undef())) { | 
 |       NewC[I] = UndefValue::get(EltTy); | 
 |       FoundExtraUndef = true; | 
 |     } | 
 |   } | 
 |   if (FoundExtraUndef) | 
 |     return ConstantVector::get(NewC); | 
 |   return C; | 
 | } | 
 |  | 
 | bool Constant::isManifestConstant() const { | 
 |   if (isa<ConstantData>(this)) | 
 |     return true; | 
 |   if (isa<ConstantAggregate>(this) || isa<ConstantExpr>(this)) { | 
 |     for (const Value *Op : operand_values()) | 
 |       if (!cast<Constant>(Op)->isManifestConstant()) | 
 |         return false; | 
 |     return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                                ConstantInt | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | ConstantInt::ConstantInt(IntegerType *Ty, const APInt &V) | 
 |     : ConstantData(Ty, ConstantIntVal), Val(V) { | 
 |   assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type"); | 
 | } | 
 |  | 
 | ConstantInt *ConstantInt::getTrue(LLVMContext &Context) { | 
 |   LLVMContextImpl *pImpl = Context.pImpl; | 
 |   if (!pImpl->TheTrueVal) | 
 |     pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1); | 
 |   return pImpl->TheTrueVal; | 
 | } | 
 |  | 
 | ConstantInt *ConstantInt::getFalse(LLVMContext &Context) { | 
 |   LLVMContextImpl *pImpl = Context.pImpl; | 
 |   if (!pImpl->TheFalseVal) | 
 |     pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0); | 
 |   return pImpl->TheFalseVal; | 
 | } | 
 |  | 
 | ConstantInt *ConstantInt::getBool(LLVMContext &Context, bool V) { | 
 |   return V ? getTrue(Context) : getFalse(Context); | 
 | } | 
 |  | 
 | Constant *ConstantInt::getTrue(Type *Ty) { | 
 |   assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1."); | 
 |   ConstantInt *TrueC = ConstantInt::getTrue(Ty->getContext()); | 
 |   if (auto *VTy = dyn_cast<VectorType>(Ty)) | 
 |     return ConstantVector::getSplat(VTy->getElementCount(), TrueC); | 
 |   return TrueC; | 
 | } | 
 |  | 
 | Constant *ConstantInt::getFalse(Type *Ty) { | 
 |   assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1."); | 
 |   ConstantInt *FalseC = ConstantInt::getFalse(Ty->getContext()); | 
 |   if (auto *VTy = dyn_cast<VectorType>(Ty)) | 
 |     return ConstantVector::getSplat(VTy->getElementCount(), FalseC); | 
 |   return FalseC; | 
 | } | 
 |  | 
 | Constant *ConstantInt::getBool(Type *Ty, bool V) { | 
 |   return V ? getTrue(Ty) : getFalse(Ty); | 
 | } | 
 |  | 
 | // Get a ConstantInt from an APInt. | 
 | ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) { | 
 |   // get an existing value or the insertion position | 
 |   LLVMContextImpl *pImpl = Context.pImpl; | 
 |   std::unique_ptr<ConstantInt> &Slot = | 
 |       V.isZero()  ? pImpl->IntZeroConstants[V.getBitWidth()] | 
 |       : V.isOne() ? pImpl->IntOneConstants[V.getBitWidth()] | 
 |                   : pImpl->IntConstants[V]; | 
 |   if (!Slot) { | 
 |     // Get the corresponding integer type for the bit width of the value. | 
 |     IntegerType *ITy = IntegerType::get(Context, V.getBitWidth()); | 
 |     Slot.reset(new ConstantInt(ITy, V)); | 
 |   } | 
 |   assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth())); | 
 |   return Slot.get(); | 
 | } | 
 |  | 
 | Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) { | 
 |   Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned); | 
 |  | 
 |   // For vectors, broadcast the value. | 
 |   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) | 
 |     return ConstantVector::getSplat(VTy->getElementCount(), C); | 
 |  | 
 |   return C; | 
 | } | 
 |  | 
 | ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) { | 
 |   return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned)); | 
 | } | 
 |  | 
 | Constant *ConstantInt::get(Type *Ty, const APInt& V) { | 
 |   ConstantInt *C = get(Ty->getContext(), V); | 
 |   assert(C->getType() == Ty->getScalarType() && | 
 |          "ConstantInt type doesn't match the type implied by its value!"); | 
 |  | 
 |   // For vectors, broadcast the value. | 
 |   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) | 
 |     return ConstantVector::getSplat(VTy->getElementCount(), C); | 
 |  | 
 |   return C; | 
 | } | 
 |  | 
 | ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) { | 
 |   return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix)); | 
 | } | 
 |  | 
 | /// Remove the constant from the constant table. | 
 | void ConstantInt::destroyConstantImpl() { | 
 |   llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!"); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                                ConstantFP | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | Constant *ConstantFP::get(Type *Ty, double V) { | 
 |   LLVMContext &Context = Ty->getContext(); | 
 |  | 
 |   APFloat FV(V); | 
 |   bool ignored; | 
 |   FV.convert(Ty->getScalarType()->getFltSemantics(), | 
 |              APFloat::rmNearestTiesToEven, &ignored); | 
 |   Constant *C = get(Context, FV); | 
 |  | 
 |   // For vectors, broadcast the value. | 
 |   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) | 
 |     return ConstantVector::getSplat(VTy->getElementCount(), C); | 
 |  | 
 |   return C; | 
 | } | 
 |  | 
 | Constant *ConstantFP::get(Type *Ty, const APFloat &V) { | 
 |   ConstantFP *C = get(Ty->getContext(), V); | 
 |   assert(C->getType() == Ty->getScalarType() && | 
 |          "ConstantFP type doesn't match the type implied by its value!"); | 
 |  | 
 |   // For vectors, broadcast the value. | 
 |   if (auto *VTy = dyn_cast<VectorType>(Ty)) | 
 |     return ConstantVector::getSplat(VTy->getElementCount(), C); | 
 |  | 
 |   return C; | 
 | } | 
 |  | 
 | Constant *ConstantFP::get(Type *Ty, StringRef Str) { | 
 |   LLVMContext &Context = Ty->getContext(); | 
 |  | 
 |   APFloat FV(Ty->getScalarType()->getFltSemantics(), Str); | 
 |   Constant *C = get(Context, FV); | 
 |  | 
 |   // For vectors, broadcast the value. | 
 |   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) | 
 |     return ConstantVector::getSplat(VTy->getElementCount(), C); | 
 |  | 
 |   return C; | 
 | } | 
 |  | 
 | Constant *ConstantFP::getNaN(Type *Ty, bool Negative, uint64_t Payload) { | 
 |   const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); | 
 |   APFloat NaN = APFloat::getNaN(Semantics, Negative, Payload); | 
 |   Constant *C = get(Ty->getContext(), NaN); | 
 |  | 
 |   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) | 
 |     return ConstantVector::getSplat(VTy->getElementCount(), C); | 
 |  | 
 |   return C; | 
 | } | 
 |  | 
 | Constant *ConstantFP::getQNaN(Type *Ty, bool Negative, APInt *Payload) { | 
 |   const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); | 
 |   APFloat NaN = APFloat::getQNaN(Semantics, Negative, Payload); | 
 |   Constant *C = get(Ty->getContext(), NaN); | 
 |  | 
 |   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) | 
 |     return ConstantVector::getSplat(VTy->getElementCount(), C); | 
 |  | 
 |   return C; | 
 | } | 
 |  | 
 | Constant *ConstantFP::getSNaN(Type *Ty, bool Negative, APInt *Payload) { | 
 |   const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); | 
 |   APFloat NaN = APFloat::getSNaN(Semantics, Negative, Payload); | 
 |   Constant *C = get(Ty->getContext(), NaN); | 
 |  | 
 |   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) | 
 |     return ConstantVector::getSplat(VTy->getElementCount(), C); | 
 |  | 
 |   return C; | 
 | } | 
 |  | 
 | Constant *ConstantFP::getZero(Type *Ty, bool Negative) { | 
 |   const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); | 
 |   APFloat NegZero = APFloat::getZero(Semantics, Negative); | 
 |   Constant *C = get(Ty->getContext(), NegZero); | 
 |  | 
 |   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) | 
 |     return ConstantVector::getSplat(VTy->getElementCount(), C); | 
 |  | 
 |   return C; | 
 | } | 
 |  | 
 |  | 
 | // ConstantFP accessors. | 
 | ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) { | 
 |   LLVMContextImpl* pImpl = Context.pImpl; | 
 |  | 
 |   std::unique_ptr<ConstantFP> &Slot = pImpl->FPConstants[V]; | 
 |  | 
 |   if (!Slot) { | 
 |     Type *Ty = Type::getFloatingPointTy(Context, V.getSemantics()); | 
 |     Slot.reset(new ConstantFP(Ty, V)); | 
 |   } | 
 |  | 
 |   return Slot.get(); | 
 | } | 
 |  | 
 | Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) { | 
 |   const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics(); | 
 |   Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative)); | 
 |  | 
 |   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) | 
 |     return ConstantVector::getSplat(VTy->getElementCount(), C); | 
 |  | 
 |   return C; | 
 | } | 
 |  | 
 | ConstantFP::ConstantFP(Type *Ty, const APFloat &V) | 
 |     : ConstantData(Ty, ConstantFPVal), Val(V) { | 
 |   assert(&V.getSemantics() == &Ty->getFltSemantics() && | 
 |          "FP type Mismatch"); | 
 | } | 
 |  | 
 | bool ConstantFP::isExactlyValue(const APFloat &V) const { | 
 |   return Val.bitwiseIsEqual(V); | 
 | } | 
 |  | 
 | /// Remove the constant from the constant table. | 
 | void ConstantFP::destroyConstantImpl() { | 
 |   llvm_unreachable("You can't ConstantFP->destroyConstantImpl()!"); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                   ConstantAggregateZero Implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | Constant *ConstantAggregateZero::getSequentialElement() const { | 
 |   if (auto *AT = dyn_cast<ArrayType>(getType())) | 
 |     return Constant::getNullValue(AT->getElementType()); | 
 |   return Constant::getNullValue(cast<VectorType>(getType())->getElementType()); | 
 | } | 
 |  | 
 | Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const { | 
 |   return Constant::getNullValue(getType()->getStructElementType(Elt)); | 
 | } | 
 |  | 
 | Constant *ConstantAggregateZero::getElementValue(Constant *C) const { | 
 |   if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) | 
 |     return getSequentialElement(); | 
 |   return getStructElement(cast<ConstantInt>(C)->getZExtValue()); | 
 | } | 
 |  | 
 | Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const { | 
 |   if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) | 
 |     return getSequentialElement(); | 
 |   return getStructElement(Idx); | 
 | } | 
 |  | 
 | ElementCount ConstantAggregateZero::getElementCount() const { | 
 |   Type *Ty = getType(); | 
 |   if (auto *AT = dyn_cast<ArrayType>(Ty)) | 
 |     return ElementCount::getFixed(AT->getNumElements()); | 
 |   if (auto *VT = dyn_cast<VectorType>(Ty)) | 
 |     return VT->getElementCount(); | 
 |   return ElementCount::getFixed(Ty->getStructNumElements()); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                         UndefValue Implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | UndefValue *UndefValue::getSequentialElement() const { | 
 |   if (ArrayType *ATy = dyn_cast<ArrayType>(getType())) | 
 |     return UndefValue::get(ATy->getElementType()); | 
 |   return UndefValue::get(cast<VectorType>(getType())->getElementType()); | 
 | } | 
 |  | 
 | UndefValue *UndefValue::getStructElement(unsigned Elt) const { | 
 |   return UndefValue::get(getType()->getStructElementType(Elt)); | 
 | } | 
 |  | 
 | UndefValue *UndefValue::getElementValue(Constant *C) const { | 
 |   if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) | 
 |     return getSequentialElement(); | 
 |   return getStructElement(cast<ConstantInt>(C)->getZExtValue()); | 
 | } | 
 |  | 
 | UndefValue *UndefValue::getElementValue(unsigned Idx) const { | 
 |   if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) | 
 |     return getSequentialElement(); | 
 |   return getStructElement(Idx); | 
 | } | 
 |  | 
 | unsigned UndefValue::getNumElements() const { | 
 |   Type *Ty = getType(); | 
 |   if (auto *AT = dyn_cast<ArrayType>(Ty)) | 
 |     return AT->getNumElements(); | 
 |   if (auto *VT = dyn_cast<VectorType>(Ty)) | 
 |     return cast<FixedVectorType>(VT)->getNumElements(); | 
 |   return Ty->getStructNumElements(); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                         PoisonValue Implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | PoisonValue *PoisonValue::getSequentialElement() const { | 
 |   if (ArrayType *ATy = dyn_cast<ArrayType>(getType())) | 
 |     return PoisonValue::get(ATy->getElementType()); | 
 |   return PoisonValue::get(cast<VectorType>(getType())->getElementType()); | 
 | } | 
 |  | 
 | PoisonValue *PoisonValue::getStructElement(unsigned Elt) const { | 
 |   return PoisonValue::get(getType()->getStructElementType(Elt)); | 
 | } | 
 |  | 
 | PoisonValue *PoisonValue::getElementValue(Constant *C) const { | 
 |   if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) | 
 |     return getSequentialElement(); | 
 |   return getStructElement(cast<ConstantInt>(C)->getZExtValue()); | 
 | } | 
 |  | 
 | PoisonValue *PoisonValue::getElementValue(unsigned Idx) const { | 
 |   if (isa<ArrayType>(getType()) || isa<VectorType>(getType())) | 
 |     return getSequentialElement(); | 
 |   return getStructElement(Idx); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                            ConstantXXX Classes | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | template <typename ItTy, typename EltTy> | 
 | static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) { | 
 |   for (; Start != End; ++Start) | 
 |     if (*Start != Elt) | 
 |       return false; | 
 |   return true; | 
 | } | 
 |  | 
 | template <typename SequentialTy, typename ElementTy> | 
 | static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) { | 
 |   assert(!V.empty() && "Cannot get empty int sequence."); | 
 |  | 
 |   SmallVector<ElementTy, 16> Elts; | 
 |   for (Constant *C : V) | 
 |     if (auto *CI = dyn_cast<ConstantInt>(C)) | 
 |       Elts.push_back(CI->getZExtValue()); | 
 |     else | 
 |       return nullptr; | 
 |   return SequentialTy::get(V[0]->getContext(), Elts); | 
 | } | 
 |  | 
 | template <typename SequentialTy, typename ElementTy> | 
 | static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) { | 
 |   assert(!V.empty() && "Cannot get empty FP sequence."); | 
 |  | 
 |   SmallVector<ElementTy, 16> Elts; | 
 |   for (Constant *C : V) | 
 |     if (auto *CFP = dyn_cast<ConstantFP>(C)) | 
 |       Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); | 
 |     else | 
 |       return nullptr; | 
 |   return SequentialTy::getFP(V[0]->getType(), Elts); | 
 | } | 
 |  | 
 | template <typename SequenceTy> | 
 | static Constant *getSequenceIfElementsMatch(Constant *C, | 
 |                                             ArrayRef<Constant *> V) { | 
 |   // We speculatively build the elements here even if it turns out that there is | 
 |   // a constantexpr or something else weird, since it is so uncommon for that to | 
 |   // happen. | 
 |   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { | 
 |     if (CI->getType()->isIntegerTy(8)) | 
 |       return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V); | 
 |     else if (CI->getType()->isIntegerTy(16)) | 
 |       return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V); | 
 |     else if (CI->getType()->isIntegerTy(32)) | 
 |       return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V); | 
 |     else if (CI->getType()->isIntegerTy(64)) | 
 |       return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V); | 
 |   } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { | 
 |     if (CFP->getType()->isHalfTy() || CFP->getType()->isBFloatTy()) | 
 |       return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V); | 
 |     else if (CFP->getType()->isFloatTy()) | 
 |       return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V); | 
 |     else if (CFP->getType()->isDoubleTy()) | 
 |       return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V); | 
 |   } | 
 |  | 
 |   return nullptr; | 
 | } | 
 |  | 
 | ConstantAggregate::ConstantAggregate(Type *T, ValueTy VT, | 
 |                                      ArrayRef<Constant *> V) | 
 |     : Constant(T, VT, OperandTraits<ConstantAggregate>::op_end(this) - V.size(), | 
 |                V.size()) { | 
 |   llvm::copy(V, op_begin()); | 
 |  | 
 |   // Check that types match, unless this is an opaque struct. | 
 |   if (auto *ST = dyn_cast<StructType>(T)) { | 
 |     if (ST->isOpaque()) | 
 |       return; | 
 |     for (unsigned I = 0, E = V.size(); I != E; ++I) | 
 |       assert(V[I]->getType() == ST->getTypeAtIndex(I) && | 
 |              "Initializer for struct element doesn't match!"); | 
 |   } | 
 | } | 
 |  | 
 | ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V) | 
 |     : ConstantAggregate(T, ConstantArrayVal, V) { | 
 |   assert(V.size() == T->getNumElements() && | 
 |          "Invalid initializer for constant array"); | 
 | } | 
 |  | 
 | Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) { | 
 |   if (Constant *C = getImpl(Ty, V)) | 
 |     return C; | 
 |   return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V); | 
 | } | 
 |  | 
 | Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) { | 
 |   // Empty arrays are canonicalized to ConstantAggregateZero. | 
 |   if (V.empty()) | 
 |     return ConstantAggregateZero::get(Ty); | 
 |  | 
 |   for (Constant *C : V) { | 
 |     assert(C->getType() == Ty->getElementType() && | 
 |            "Wrong type in array element initializer"); | 
 |     (void)C; | 
 |   } | 
 |  | 
 |   // If this is an all-zero array, return a ConstantAggregateZero object.  If | 
 |   // all undef, return an UndefValue, if "all simple", then return a | 
 |   // ConstantDataArray. | 
 |   Constant *C = V[0]; | 
 |   if (isa<PoisonValue>(C) && rangeOnlyContains(V.begin(), V.end(), C)) | 
 |     return PoisonValue::get(Ty); | 
 |  | 
 |   if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C)) | 
 |     return UndefValue::get(Ty); | 
 |  | 
 |   if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C)) | 
 |     return ConstantAggregateZero::get(Ty); | 
 |  | 
 |   // Check to see if all of the elements are ConstantFP or ConstantInt and if | 
 |   // the element type is compatible with ConstantDataVector.  If so, use it. | 
 |   if (ConstantDataSequential::isElementTypeCompatible(C->getType())) | 
 |     return getSequenceIfElementsMatch<ConstantDataArray>(C, V); | 
 |  | 
 |   // Otherwise, we really do want to create a ConstantArray. | 
 |   return nullptr; | 
 | } | 
 |  | 
 | StructType *ConstantStruct::getTypeForElements(LLVMContext &Context, | 
 |                                                ArrayRef<Constant*> V, | 
 |                                                bool Packed) { | 
 |   unsigned VecSize = V.size(); | 
 |   SmallVector<Type*, 16> EltTypes(VecSize); | 
 |   for (unsigned i = 0; i != VecSize; ++i) | 
 |     EltTypes[i] = V[i]->getType(); | 
 |  | 
 |   return StructType::get(Context, EltTypes, Packed); | 
 | } | 
 |  | 
 |  | 
 | StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V, | 
 |                                                bool Packed) { | 
 |   assert(!V.empty() && | 
 |          "ConstantStruct::getTypeForElements cannot be called on empty list"); | 
 |   return getTypeForElements(V[0]->getContext(), V, Packed); | 
 | } | 
 |  | 
 | ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V) | 
 |     : ConstantAggregate(T, ConstantStructVal, V) { | 
 |   assert((T->isOpaque() || V.size() == T->getNumElements()) && | 
 |          "Invalid initializer for constant struct"); | 
 | } | 
 |  | 
 | // ConstantStruct accessors. | 
 | Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) { | 
 |   assert((ST->isOpaque() || ST->getNumElements() == V.size()) && | 
 |          "Incorrect # elements specified to ConstantStruct::get"); | 
 |  | 
 |   // Create a ConstantAggregateZero value if all elements are zeros. | 
 |   bool isZero = true; | 
 |   bool isUndef = false; | 
 |   bool isPoison = false; | 
 |  | 
 |   if (!V.empty()) { | 
 |     isUndef = isa<UndefValue>(V[0]); | 
 |     isPoison = isa<PoisonValue>(V[0]); | 
 |     isZero = V[0]->isNullValue(); | 
 |     // PoisonValue inherits UndefValue, so its check is not necessary. | 
 |     if (isUndef || isZero) { | 
 |       for (Constant *C : V) { | 
 |         if (!C->isNullValue()) | 
 |           isZero = false; | 
 |         if (!isa<PoisonValue>(C)) | 
 |           isPoison = false; | 
 |         if (isa<PoisonValue>(C) || !isa<UndefValue>(C)) | 
 |           isUndef = false; | 
 |       } | 
 |     } | 
 |   } | 
 |   if (isZero) | 
 |     return ConstantAggregateZero::get(ST); | 
 |   if (isPoison) | 
 |     return PoisonValue::get(ST); | 
 |   if (isUndef) | 
 |     return UndefValue::get(ST); | 
 |  | 
 |   return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V); | 
 | } | 
 |  | 
 | ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V) | 
 |     : ConstantAggregate(T, ConstantVectorVal, V) { | 
 |   assert(V.size() == cast<FixedVectorType>(T)->getNumElements() && | 
 |          "Invalid initializer for constant vector"); | 
 | } | 
 |  | 
 | // ConstantVector accessors. | 
 | Constant *ConstantVector::get(ArrayRef<Constant*> V) { | 
 |   if (Constant *C = getImpl(V)) | 
 |     return C; | 
 |   auto *Ty = FixedVectorType::get(V.front()->getType(), V.size()); | 
 |   return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V); | 
 | } | 
 |  | 
 | Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) { | 
 |   assert(!V.empty() && "Vectors can't be empty"); | 
 |   auto *T = FixedVectorType::get(V.front()->getType(), V.size()); | 
 |  | 
 |   // If this is an all-undef or all-zero vector, return a | 
 |   // ConstantAggregateZero or UndefValue. | 
 |   Constant *C = V[0]; | 
 |   bool isZero = C->isNullValue(); | 
 |   bool isUndef = isa<UndefValue>(C); | 
 |   bool isPoison = isa<PoisonValue>(C); | 
 |  | 
 |   if (isZero || isUndef) { | 
 |     for (unsigned i = 1, e = V.size(); i != e; ++i) | 
 |       if (V[i] != C) { | 
 |         isZero = isUndef = isPoison = false; | 
 |         break; | 
 |       } | 
 |   } | 
 |  | 
 |   if (isZero) | 
 |     return ConstantAggregateZero::get(T); | 
 |   if (isPoison) | 
 |     return PoisonValue::get(T); | 
 |   if (isUndef) | 
 |     return UndefValue::get(T); | 
 |  | 
 |   // Check to see if all of the elements are ConstantFP or ConstantInt and if | 
 |   // the element type is compatible with ConstantDataVector.  If so, use it. | 
 |   if (ConstantDataSequential::isElementTypeCompatible(C->getType())) | 
 |     return getSequenceIfElementsMatch<ConstantDataVector>(C, V); | 
 |  | 
 |   // Otherwise, the element type isn't compatible with ConstantDataVector, or | 
 |   // the operand list contains a ConstantExpr or something else strange. | 
 |   return nullptr; | 
 | } | 
 |  | 
 | Constant *ConstantVector::getSplat(ElementCount EC, Constant *V) { | 
 |   if (!EC.isScalable()) { | 
 |     // If this splat is compatible with ConstantDataVector, use it instead of | 
 |     // ConstantVector. | 
 |     if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) && | 
 |         ConstantDataSequential::isElementTypeCompatible(V->getType())) | 
 |       return ConstantDataVector::getSplat(EC.getKnownMinValue(), V); | 
 |  | 
 |     SmallVector<Constant *, 32> Elts(EC.getKnownMinValue(), V); | 
 |     return get(Elts); | 
 |   } | 
 |  | 
 |   Type *VTy = VectorType::get(V->getType(), EC); | 
 |  | 
 |   if (V->isNullValue()) | 
 |     return ConstantAggregateZero::get(VTy); | 
 |   else if (isa<UndefValue>(V)) | 
 |     return UndefValue::get(VTy); | 
 |  | 
 |   Type *IdxTy = Type::getInt64Ty(VTy->getContext()); | 
 |  | 
 |   // Move scalar into vector. | 
 |   Constant *PoisonV = PoisonValue::get(VTy); | 
 |   V = ConstantExpr::getInsertElement(PoisonV, V, ConstantInt::get(IdxTy, 0)); | 
 |   // Build shuffle mask to perform the splat. | 
 |   SmallVector<int, 8> Zeros(EC.getKnownMinValue(), 0); | 
 |   // Splat. | 
 |   return ConstantExpr::getShuffleVector(V, PoisonV, Zeros); | 
 | } | 
 |  | 
 | ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) { | 
 |   LLVMContextImpl *pImpl = Context.pImpl; | 
 |   if (!pImpl->TheNoneToken) | 
 |     pImpl->TheNoneToken.reset(new ConstantTokenNone(Context)); | 
 |   return pImpl->TheNoneToken.get(); | 
 | } | 
 |  | 
 | /// Remove the constant from the constant table. | 
 | void ConstantTokenNone::destroyConstantImpl() { | 
 |   llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!"); | 
 | } | 
 |  | 
 | // Utility function for determining if a ConstantExpr is a CastOp or not. This | 
 | // can't be inline because we don't want to #include Instruction.h into | 
 | // Constant.h | 
 | bool ConstantExpr::isCast() const { | 
 |   return Instruction::isCast(getOpcode()); | 
 | } | 
 |  | 
 | bool ConstantExpr::isCompare() const { | 
 |   return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp; | 
 | } | 
 |  | 
 | unsigned ConstantExpr::getPredicate() const { | 
 |   return cast<CompareConstantExpr>(this)->predicate; | 
 | } | 
 |  | 
 | ArrayRef<int> ConstantExpr::getShuffleMask() const { | 
 |   return cast<ShuffleVectorConstantExpr>(this)->ShuffleMask; | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getShuffleMaskForBitcode() const { | 
 |   return cast<ShuffleVectorConstantExpr>(this)->ShuffleMaskForBitcode; | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty, | 
 |                                         bool OnlyIfReduced, Type *SrcTy) const { | 
 |   assert(Ops.size() == getNumOperands() && "Operand count mismatch!"); | 
 |  | 
 |   // If no operands changed return self. | 
 |   if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin())) | 
 |     return const_cast<ConstantExpr*>(this); | 
 |  | 
 |   Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr; | 
 |   switch (getOpcode()) { | 
 |   case Instruction::Trunc: | 
 |   case Instruction::ZExt: | 
 |   case Instruction::SExt: | 
 |   case Instruction::FPTrunc: | 
 |   case Instruction::FPExt: | 
 |   case Instruction::UIToFP: | 
 |   case Instruction::SIToFP: | 
 |   case Instruction::FPToUI: | 
 |   case Instruction::FPToSI: | 
 |   case Instruction::PtrToInt: | 
 |   case Instruction::IntToPtr: | 
 |   case Instruction::BitCast: | 
 |   case Instruction::AddrSpaceCast: | 
 |     return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced); | 
 |   case Instruction::InsertElement: | 
 |     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2], | 
 |                                           OnlyIfReducedTy); | 
 |   case Instruction::ExtractElement: | 
 |     return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy); | 
 |   case Instruction::ShuffleVector: | 
 |     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], getShuffleMask(), | 
 |                                           OnlyIfReducedTy); | 
 |   case Instruction::GetElementPtr: { | 
 |     auto *GEPO = cast<GEPOperator>(this); | 
 |     assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType())); | 
 |     return ConstantExpr::getGetElementPtr( | 
 |         SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1), | 
 |         GEPO->isInBounds(), GEPO->getInRangeIndex(), OnlyIfReducedTy); | 
 |   } | 
 |   case Instruction::ICmp: | 
 |   case Instruction::FCmp: | 
 |     return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1], | 
 |                                     OnlyIfReducedTy); | 
 |   default: | 
 |     assert(getNumOperands() == 2 && "Must be binary operator?"); | 
 |     return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData, | 
 |                              OnlyIfReducedTy); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                      isValueValidForType implementations | 
 |  | 
 | bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) { | 
 |   unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay | 
 |   if (Ty->isIntegerTy(1)) | 
 |     return Val == 0 || Val == 1; | 
 |   return isUIntN(NumBits, Val); | 
 | } | 
 |  | 
 | bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) { | 
 |   unsigned NumBits = Ty->getIntegerBitWidth(); | 
 |   if (Ty->isIntegerTy(1)) | 
 |     return Val == 0 || Val == 1 || Val == -1; | 
 |   return isIntN(NumBits, Val); | 
 | } | 
 |  | 
 | bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) { | 
 |   // convert modifies in place, so make a copy. | 
 |   APFloat Val2 = APFloat(Val); | 
 |   bool losesInfo; | 
 |   switch (Ty->getTypeID()) { | 
 |   default: | 
 |     return false;         // These can't be represented as floating point! | 
 |  | 
 |   // FIXME rounding mode needs to be more flexible | 
 |   case Type::HalfTyID: { | 
 |     if (&Val2.getSemantics() == &APFloat::IEEEhalf()) | 
 |       return true; | 
 |     Val2.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &losesInfo); | 
 |     return !losesInfo; | 
 |   } | 
 |   case Type::BFloatTyID: { | 
 |     if (&Val2.getSemantics() == &APFloat::BFloat()) | 
 |       return true; | 
 |     Val2.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, &losesInfo); | 
 |     return !losesInfo; | 
 |   } | 
 |   case Type::FloatTyID: { | 
 |     if (&Val2.getSemantics() == &APFloat::IEEEsingle()) | 
 |       return true; | 
 |     Val2.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &losesInfo); | 
 |     return !losesInfo; | 
 |   } | 
 |   case Type::DoubleTyID: { | 
 |     if (&Val2.getSemantics() == &APFloat::IEEEhalf() || | 
 |         &Val2.getSemantics() == &APFloat::BFloat() || | 
 |         &Val2.getSemantics() == &APFloat::IEEEsingle() || | 
 |         &Val2.getSemantics() == &APFloat::IEEEdouble()) | 
 |       return true; | 
 |     Val2.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo); | 
 |     return !losesInfo; | 
 |   } | 
 |   case Type::X86_FP80TyID: | 
 |     return &Val2.getSemantics() == &APFloat::IEEEhalf() || | 
 |            &Val2.getSemantics() == &APFloat::BFloat() || | 
 |            &Val2.getSemantics() == &APFloat::IEEEsingle() || | 
 |            &Val2.getSemantics() == &APFloat::IEEEdouble() || | 
 |            &Val2.getSemantics() == &APFloat::x87DoubleExtended(); | 
 |   case Type::FP128TyID: | 
 |     return &Val2.getSemantics() == &APFloat::IEEEhalf() || | 
 |            &Val2.getSemantics() == &APFloat::BFloat() || | 
 |            &Val2.getSemantics() == &APFloat::IEEEsingle() || | 
 |            &Val2.getSemantics() == &APFloat::IEEEdouble() || | 
 |            &Val2.getSemantics() == &APFloat::IEEEquad(); | 
 |   case Type::PPC_FP128TyID: | 
 |     return &Val2.getSemantics() == &APFloat::IEEEhalf() || | 
 |            &Val2.getSemantics() == &APFloat::BFloat() || | 
 |            &Val2.getSemantics() == &APFloat::IEEEsingle() || | 
 |            &Val2.getSemantics() == &APFloat::IEEEdouble() || | 
 |            &Val2.getSemantics() == &APFloat::PPCDoubleDouble(); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                      Factory Function Implementation | 
 |  | 
 | ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) { | 
 |   assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) && | 
 |          "Cannot create an aggregate zero of non-aggregate type!"); | 
 |  | 
 |   std::unique_ptr<ConstantAggregateZero> &Entry = | 
 |       Ty->getContext().pImpl->CAZConstants[Ty]; | 
 |   if (!Entry) | 
 |     Entry.reset(new ConstantAggregateZero(Ty)); | 
 |  | 
 |   return Entry.get(); | 
 | } | 
 |  | 
 | /// Remove the constant from the constant table. | 
 | void ConstantAggregateZero::destroyConstantImpl() { | 
 |   getContext().pImpl->CAZConstants.erase(getType()); | 
 | } | 
 |  | 
 | /// Remove the constant from the constant table. | 
 | void ConstantArray::destroyConstantImpl() { | 
 |   getType()->getContext().pImpl->ArrayConstants.remove(this); | 
 | } | 
 |  | 
 |  | 
 | //---- ConstantStruct::get() implementation... | 
 | // | 
 |  | 
 | /// Remove the constant from the constant table. | 
 | void ConstantStruct::destroyConstantImpl() { | 
 |   getType()->getContext().pImpl->StructConstants.remove(this); | 
 | } | 
 |  | 
 | /// Remove the constant from the constant table. | 
 | void ConstantVector::destroyConstantImpl() { | 
 |   getType()->getContext().pImpl->VectorConstants.remove(this); | 
 | } | 
 |  | 
 | Constant *Constant::getSplatValue(bool AllowUndefs) const { | 
 |   assert(this->getType()->isVectorTy() && "Only valid for vectors!"); | 
 |   if (isa<ConstantAggregateZero>(this)) | 
 |     return getNullValue(cast<VectorType>(getType())->getElementType()); | 
 |   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) | 
 |     return CV->getSplatValue(); | 
 |   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) | 
 |     return CV->getSplatValue(AllowUndefs); | 
 |  | 
 |   // Check if this is a constant expression splat of the form returned by | 
 |   // ConstantVector::getSplat() | 
 |   const auto *Shuf = dyn_cast<ConstantExpr>(this); | 
 |   if (Shuf && Shuf->getOpcode() == Instruction::ShuffleVector && | 
 |       isa<UndefValue>(Shuf->getOperand(1))) { | 
 |  | 
 |     const auto *IElt = dyn_cast<ConstantExpr>(Shuf->getOperand(0)); | 
 |     if (IElt && IElt->getOpcode() == Instruction::InsertElement && | 
 |         isa<UndefValue>(IElt->getOperand(0))) { | 
 |  | 
 |       ArrayRef<int> Mask = Shuf->getShuffleMask(); | 
 |       Constant *SplatVal = IElt->getOperand(1); | 
 |       ConstantInt *Index = dyn_cast<ConstantInt>(IElt->getOperand(2)); | 
 |  | 
 |       if (Index && Index->getValue() == 0 && | 
 |           llvm::all_of(Mask, [](int I) { return I == 0; })) | 
 |         return SplatVal; | 
 |     } | 
 |   } | 
 |  | 
 |   return nullptr; | 
 | } | 
 |  | 
 | Constant *ConstantVector::getSplatValue(bool AllowUndefs) const { | 
 |   // Check out first element. | 
 |   Constant *Elt = getOperand(0); | 
 |   // Then make sure all remaining elements point to the same value. | 
 |   for (unsigned I = 1, E = getNumOperands(); I < E; ++I) { | 
 |     Constant *OpC = getOperand(I); | 
 |     if (OpC == Elt) | 
 |       continue; | 
 |  | 
 |     // Strict mode: any mismatch is not a splat. | 
 |     if (!AllowUndefs) | 
 |       return nullptr; | 
 |  | 
 |     // Allow undefs mode: ignore undefined elements. | 
 |     if (isa<UndefValue>(OpC)) | 
 |       continue; | 
 |  | 
 |     // If we do not have a defined element yet, use the current operand. | 
 |     if (isa<UndefValue>(Elt)) | 
 |       Elt = OpC; | 
 |  | 
 |     if (OpC != Elt) | 
 |       return nullptr; | 
 |   } | 
 |   return Elt; | 
 | } | 
 |  | 
 | const APInt &Constant::getUniqueInteger() const { | 
 |   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) | 
 |     return CI->getValue(); | 
 |   // Scalable vectors can use a ConstantExpr to build a splat. | 
 |   if (isa<ConstantExpr>(this)) | 
 |     return cast<ConstantInt>(this->getSplatValue())->getValue(); | 
 |   // For non-ConstantExpr we use getAggregateElement as a fast path to avoid | 
 |   // calling getSplatValue in release builds. | 
 |   assert(this->getSplatValue() && "Doesn't contain a unique integer!"); | 
 |   const Constant *C = this->getAggregateElement(0U); | 
 |   assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!"); | 
 |   return cast<ConstantInt>(C)->getValue(); | 
 | } | 
 |  | 
 | //---- ConstantPointerNull::get() implementation. | 
 | // | 
 |  | 
 | ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) { | 
 |   std::unique_ptr<ConstantPointerNull> &Entry = | 
 |       Ty->getContext().pImpl->CPNConstants[Ty]; | 
 |   if (!Entry) | 
 |     Entry.reset(new ConstantPointerNull(Ty)); | 
 |  | 
 |   return Entry.get(); | 
 | } | 
 |  | 
 | /// Remove the constant from the constant table. | 
 | void ConstantPointerNull::destroyConstantImpl() { | 
 |   getContext().pImpl->CPNConstants.erase(getType()); | 
 | } | 
 |  | 
 | //---- ConstantTargetNone::get() implementation. | 
 | // | 
 |  | 
 | ConstantTargetNone *ConstantTargetNone::get(TargetExtType *Ty) { | 
 |   assert(Ty->hasProperty(TargetExtType::HasZeroInit) && | 
 |          "Target extension type not allowed to have a zeroinitializer"); | 
 |   std::unique_ptr<ConstantTargetNone> &Entry = | 
 |       Ty->getContext().pImpl->CTNConstants[Ty]; | 
 |   if (!Entry) | 
 |     Entry.reset(new ConstantTargetNone(Ty)); | 
 |  | 
 |   return Entry.get(); | 
 | } | 
 |  | 
 | /// Remove the constant from the constant table. | 
 | void ConstantTargetNone::destroyConstantImpl() { | 
 |   getContext().pImpl->CTNConstants.erase(getType()); | 
 | } | 
 |  | 
 | UndefValue *UndefValue::get(Type *Ty) { | 
 |   std::unique_ptr<UndefValue> &Entry = Ty->getContext().pImpl->UVConstants[Ty]; | 
 |   if (!Entry) | 
 |     Entry.reset(new UndefValue(Ty)); | 
 |  | 
 |   return Entry.get(); | 
 | } | 
 |  | 
 | /// Remove the constant from the constant table. | 
 | void UndefValue::destroyConstantImpl() { | 
 |   // Free the constant and any dangling references to it. | 
 |   if (getValueID() == UndefValueVal) { | 
 |     getContext().pImpl->UVConstants.erase(getType()); | 
 |   } else if (getValueID() == PoisonValueVal) { | 
 |     getContext().pImpl->PVConstants.erase(getType()); | 
 |   } | 
 |   llvm_unreachable("Not a undef or a poison!"); | 
 | } | 
 |  | 
 | PoisonValue *PoisonValue::get(Type *Ty) { | 
 |   std::unique_ptr<PoisonValue> &Entry = Ty->getContext().pImpl->PVConstants[Ty]; | 
 |   if (!Entry) | 
 |     Entry.reset(new PoisonValue(Ty)); | 
 |  | 
 |   return Entry.get(); | 
 | } | 
 |  | 
 | /// Remove the constant from the constant table. | 
 | void PoisonValue::destroyConstantImpl() { | 
 |   // Free the constant and any dangling references to it. | 
 |   getContext().pImpl->PVConstants.erase(getType()); | 
 | } | 
 |  | 
 | BlockAddress *BlockAddress::get(BasicBlock *BB) { | 
 |   assert(BB->getParent() && "Block must have a parent"); | 
 |   return get(BB->getParent(), BB); | 
 | } | 
 |  | 
 | BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) { | 
 |   BlockAddress *&BA = | 
 |     F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)]; | 
 |   if (!BA) | 
 |     BA = new BlockAddress(F, BB); | 
 |  | 
 |   assert(BA->getFunction() == F && "Basic block moved between functions"); | 
 |   return BA; | 
 | } | 
 |  | 
 | BlockAddress::BlockAddress(Function *F, BasicBlock *BB) | 
 |     : Constant(Type::getInt8PtrTy(F->getContext(), F->getAddressSpace()), | 
 |                Value::BlockAddressVal, &Op<0>(), 2) { | 
 |   setOperand(0, F); | 
 |   setOperand(1, BB); | 
 |   BB->AdjustBlockAddressRefCount(1); | 
 | } | 
 |  | 
 | BlockAddress *BlockAddress::lookup(const BasicBlock *BB) { | 
 |   if (!BB->hasAddressTaken()) | 
 |     return nullptr; | 
 |  | 
 |   const Function *F = BB->getParent(); | 
 |   assert(F && "Block must have a parent"); | 
 |   BlockAddress *BA = | 
 |       F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB)); | 
 |   assert(BA && "Refcount and block address map disagree!"); | 
 |   return BA; | 
 | } | 
 |  | 
 | /// Remove the constant from the constant table. | 
 | void BlockAddress::destroyConstantImpl() { | 
 |   getFunction()->getType()->getContext().pImpl | 
 |     ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock())); | 
 |   getBasicBlock()->AdjustBlockAddressRefCount(-1); | 
 | } | 
 |  | 
 | Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To) { | 
 |   // This could be replacing either the Basic Block or the Function.  In either | 
 |   // case, we have to remove the map entry. | 
 |   Function *NewF = getFunction(); | 
 |   BasicBlock *NewBB = getBasicBlock(); | 
 |  | 
 |   if (From == NewF) | 
 |     NewF = cast<Function>(To->stripPointerCasts()); | 
 |   else { | 
 |     assert(From == NewBB && "From does not match any operand"); | 
 |     NewBB = cast<BasicBlock>(To); | 
 |   } | 
 |  | 
 |   // See if the 'new' entry already exists, if not, just update this in place | 
 |   // and return early. | 
 |   BlockAddress *&NewBA = | 
 |     getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)]; | 
 |   if (NewBA) | 
 |     return NewBA; | 
 |  | 
 |   getBasicBlock()->AdjustBlockAddressRefCount(-1); | 
 |  | 
 |   // Remove the old entry, this can't cause the map to rehash (just a | 
 |   // tombstone will get added). | 
 |   getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(), | 
 |                                                           getBasicBlock())); | 
 |   NewBA = this; | 
 |   setOperand(0, NewF); | 
 |   setOperand(1, NewBB); | 
 |   getBasicBlock()->AdjustBlockAddressRefCount(1); | 
 |  | 
 |   // If we just want to keep the existing value, then return null. | 
 |   // Callers know that this means we shouldn't delete this value. | 
 |   return nullptr; | 
 | } | 
 |  | 
 | DSOLocalEquivalent *DSOLocalEquivalent::get(GlobalValue *GV) { | 
 |   DSOLocalEquivalent *&Equiv = GV->getContext().pImpl->DSOLocalEquivalents[GV]; | 
 |   if (!Equiv) | 
 |     Equiv = new DSOLocalEquivalent(GV); | 
 |  | 
 |   assert(Equiv->getGlobalValue() == GV && | 
 |          "DSOLocalFunction does not match the expected global value"); | 
 |   return Equiv; | 
 | } | 
 |  | 
 | DSOLocalEquivalent::DSOLocalEquivalent(GlobalValue *GV) | 
 |     : Constant(GV->getType(), Value::DSOLocalEquivalentVal, &Op<0>(), 1) { | 
 |   setOperand(0, GV); | 
 | } | 
 |  | 
 | /// Remove the constant from the constant table. | 
 | void DSOLocalEquivalent::destroyConstantImpl() { | 
 |   const GlobalValue *GV = getGlobalValue(); | 
 |   GV->getContext().pImpl->DSOLocalEquivalents.erase(GV); | 
 | } | 
 |  | 
 | Value *DSOLocalEquivalent::handleOperandChangeImpl(Value *From, Value *To) { | 
 |   assert(From == getGlobalValue() && "Changing value does not match operand."); | 
 |   assert(isa<Constant>(To) && "Can only replace the operands with a constant"); | 
 |  | 
 |   // The replacement is with another global value. | 
 |   if (const auto *ToObj = dyn_cast<GlobalValue>(To)) { | 
 |     DSOLocalEquivalent *&NewEquiv = | 
 |         getContext().pImpl->DSOLocalEquivalents[ToObj]; | 
 |     if (NewEquiv) | 
 |       return llvm::ConstantExpr::getBitCast(NewEquiv, getType()); | 
 |   } | 
 |  | 
 |   // If the argument is replaced with a null value, just replace this constant | 
 |   // with a null value. | 
 |   if (cast<Constant>(To)->isNullValue()) | 
 |     return To; | 
 |  | 
 |   // The replacement could be a bitcast or an alias to another function. We can | 
 |   // replace it with a bitcast to the dso_local_equivalent of that function. | 
 |   auto *Func = cast<Function>(To->stripPointerCastsAndAliases()); | 
 |   DSOLocalEquivalent *&NewEquiv = getContext().pImpl->DSOLocalEquivalents[Func]; | 
 |   if (NewEquiv) | 
 |     return llvm::ConstantExpr::getBitCast(NewEquiv, getType()); | 
 |  | 
 |   // Replace this with the new one. | 
 |   getContext().pImpl->DSOLocalEquivalents.erase(getGlobalValue()); | 
 |   NewEquiv = this; | 
 |   setOperand(0, Func); | 
 |  | 
 |   if (Func->getType() != getType()) { | 
 |     // It is ok to mutate the type here because this constant should always | 
 |     // reflect the type of the function it's holding. | 
 |     mutateType(Func->getType()); | 
 |   } | 
 |   return nullptr; | 
 | } | 
 |  | 
 | NoCFIValue *NoCFIValue::get(GlobalValue *GV) { | 
 |   NoCFIValue *&NC = GV->getContext().pImpl->NoCFIValues[GV]; | 
 |   if (!NC) | 
 |     NC = new NoCFIValue(GV); | 
 |  | 
 |   assert(NC->getGlobalValue() == GV && | 
 |          "NoCFIValue does not match the expected global value"); | 
 |   return NC; | 
 | } | 
 |  | 
 | NoCFIValue::NoCFIValue(GlobalValue *GV) | 
 |     : Constant(GV->getType(), Value::NoCFIValueVal, &Op<0>(), 1) { | 
 |   setOperand(0, GV); | 
 | } | 
 |  | 
 | /// Remove the constant from the constant table. | 
 | void NoCFIValue::destroyConstantImpl() { | 
 |   const GlobalValue *GV = getGlobalValue(); | 
 |   GV->getContext().pImpl->NoCFIValues.erase(GV); | 
 | } | 
 |  | 
 | Value *NoCFIValue::handleOperandChangeImpl(Value *From, Value *To) { | 
 |   assert(From == getGlobalValue() && "Changing value does not match operand."); | 
 |  | 
 |   GlobalValue *GV = dyn_cast<GlobalValue>(To->stripPointerCasts()); | 
 |   assert(GV && "Can only replace the operands with a global value"); | 
 |  | 
 |   NoCFIValue *&NewNC = getContext().pImpl->NoCFIValues[GV]; | 
 |   if (NewNC) | 
 |     return llvm::ConstantExpr::getBitCast(NewNC, getType()); | 
 |  | 
 |   getContext().pImpl->NoCFIValues.erase(getGlobalValue()); | 
 |   NewNC = this; | 
 |   setOperand(0, GV); | 
 |  | 
 |   if (GV->getType() != getType()) | 
 |     mutateType(GV->getType()); | 
 |  | 
 |   return nullptr; | 
 | } | 
 |  | 
 | //---- ConstantExpr::get() implementations. | 
 | // | 
 |  | 
 | /// This is a utility function to handle folding of casts and lookup of the | 
 | /// cast in the ExprConstants map. It is used by the various get* methods below. | 
 | static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty, | 
 |                                bool OnlyIfReduced = false) { | 
 |   assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!"); | 
 |   // Fold a few common cases | 
 |   if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty)) | 
 |     return FC; | 
 |  | 
 |   if (OnlyIfReduced) | 
 |     return nullptr; | 
 |  | 
 |   LLVMContextImpl *pImpl = Ty->getContext().pImpl; | 
 |  | 
 |   // Look up the constant in the table first to ensure uniqueness. | 
 |   ConstantExprKeyType Key(opc, C); | 
 |  | 
 |   return pImpl->ExprConstants.getOrCreate(Ty, Key); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty, | 
 |                                 bool OnlyIfReduced) { | 
 |   Instruction::CastOps opc = Instruction::CastOps(oc); | 
 |   assert(Instruction::isCast(opc) && "opcode out of range"); | 
 |   assert(C && Ty && "Null arguments to getCast"); | 
 |   assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!"); | 
 |  | 
 |   switch (opc) { | 
 |   default: | 
 |     llvm_unreachable("Invalid cast opcode"); | 
 |   case Instruction::Trunc: | 
 |     return getTrunc(C, Ty, OnlyIfReduced); | 
 |   case Instruction::ZExt: | 
 |     return getZExt(C, Ty, OnlyIfReduced); | 
 |   case Instruction::SExt: | 
 |     return getSExt(C, Ty, OnlyIfReduced); | 
 |   case Instruction::FPTrunc: | 
 |     return getFPTrunc(C, Ty, OnlyIfReduced); | 
 |   case Instruction::FPExt: | 
 |     return getFPExtend(C, Ty, OnlyIfReduced); | 
 |   case Instruction::UIToFP: | 
 |     return getUIToFP(C, Ty, OnlyIfReduced); | 
 |   case Instruction::SIToFP: | 
 |     return getSIToFP(C, Ty, OnlyIfReduced); | 
 |   case Instruction::FPToUI: | 
 |     return getFPToUI(C, Ty, OnlyIfReduced); | 
 |   case Instruction::FPToSI: | 
 |     return getFPToSI(C, Ty, OnlyIfReduced); | 
 |   case Instruction::PtrToInt: | 
 |     return getPtrToInt(C, Ty, OnlyIfReduced); | 
 |   case Instruction::IntToPtr: | 
 |     return getIntToPtr(C, Ty, OnlyIfReduced); | 
 |   case Instruction::BitCast: | 
 |     return getBitCast(C, Ty, OnlyIfReduced); | 
 |   case Instruction::AddrSpaceCast: | 
 |     return getAddrSpaceCast(C, Ty, OnlyIfReduced); | 
 |   } | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) { | 
 |   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) | 
 |     return getBitCast(C, Ty); | 
 |   return getZExt(C, Ty); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) { | 
 |   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) | 
 |     return getBitCast(C, Ty); | 
 |   return getSExt(C, Ty); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) { | 
 |   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) | 
 |     return getBitCast(C, Ty); | 
 |   return getTrunc(C, Ty); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getSExtOrTrunc(Constant *C, Type *Ty) { | 
 |   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && | 
 |          "Can only sign extend/truncate integers!"); | 
 |   Type *CTy = C->getType(); | 
 |   if (CTy->getScalarSizeInBits() < Ty->getScalarSizeInBits()) | 
 |     return getSExt(C, Ty); | 
 |   if (CTy->getScalarSizeInBits() > Ty->getScalarSizeInBits()) | 
 |     return getTrunc(C, Ty); | 
 |   return C; | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) { | 
 |   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); | 
 |   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && | 
 |           "Invalid cast"); | 
 |  | 
 |   if (Ty->isIntOrIntVectorTy()) | 
 |     return getPtrToInt(S, Ty); | 
 |  | 
 |   unsigned SrcAS = S->getType()->getPointerAddressSpace(); | 
 |   if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace()) | 
 |     return getAddrSpaceCast(S, Ty); | 
 |  | 
 |   return getBitCast(S, Ty); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S, | 
 |                                                          Type *Ty) { | 
 |   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); | 
 |   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); | 
 |  | 
 |   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) | 
 |     return getAddrSpaceCast(S, Ty); | 
 |  | 
 |   return getBitCast(S, Ty); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, bool isSigned) { | 
 |   assert(C->getType()->isIntOrIntVectorTy() && | 
 |          Ty->isIntOrIntVectorTy() && "Invalid cast"); | 
 |   unsigned SrcBits = C->getType()->getScalarSizeInBits(); | 
 |   unsigned DstBits = Ty->getScalarSizeInBits(); | 
 |   Instruction::CastOps opcode = | 
 |     (SrcBits == DstBits ? Instruction::BitCast : | 
 |      (SrcBits > DstBits ? Instruction::Trunc : | 
 |       (isSigned ? Instruction::SExt : Instruction::ZExt))); | 
 |   return getCast(opcode, C, Ty); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) { | 
 |   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && | 
 |          "Invalid cast"); | 
 |   unsigned SrcBits = C->getType()->getScalarSizeInBits(); | 
 |   unsigned DstBits = Ty->getScalarSizeInBits(); | 
 |   if (SrcBits == DstBits) | 
 |     return C; // Avoid a useless cast | 
 |   Instruction::CastOps opcode = | 
 |     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt); | 
 |   return getCast(opcode, C, Ty); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) { | 
 | #ifndef NDEBUG | 
 |   bool fromVec = isa<VectorType>(C->getType()); | 
 |   bool toVec = isa<VectorType>(Ty); | 
 | #endif | 
 |   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); | 
 |   assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer"); | 
 |   assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral"); | 
 |   assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& | 
 |          "SrcTy must be larger than DestTy for Trunc!"); | 
 |  | 
 |   return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) { | 
 | #ifndef NDEBUG | 
 |   bool fromVec = isa<VectorType>(C->getType()); | 
 |   bool toVec = isa<VectorType>(Ty); | 
 | #endif | 
 |   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); | 
 |   assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral"); | 
 |   assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer"); | 
 |   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& | 
 |          "SrcTy must be smaller than DestTy for SExt!"); | 
 |  | 
 |   return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) { | 
 | #ifndef NDEBUG | 
 |   bool fromVec = isa<VectorType>(C->getType()); | 
 |   bool toVec = isa<VectorType>(Ty); | 
 | #endif | 
 |   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); | 
 |   assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral"); | 
 |   assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer"); | 
 |   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& | 
 |          "SrcTy must be smaller than DestTy for ZExt!"); | 
 |  | 
 |   return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) { | 
 | #ifndef NDEBUG | 
 |   bool fromVec = isa<VectorType>(C->getType()); | 
 |   bool toVec = isa<VectorType>(Ty); | 
 | #endif | 
 |   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); | 
 |   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && | 
 |          C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& | 
 |          "This is an illegal floating point truncation!"); | 
 |   return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) { | 
 | #ifndef NDEBUG | 
 |   bool fromVec = isa<VectorType>(C->getType()); | 
 |   bool toVec = isa<VectorType>(Ty); | 
 | #endif | 
 |   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); | 
 |   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && | 
 |          C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& | 
 |          "This is an illegal floating point extension!"); | 
 |   return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) { | 
 | #ifndef NDEBUG | 
 |   bool fromVec = isa<VectorType>(C->getType()); | 
 |   bool toVec = isa<VectorType>(Ty); | 
 | #endif | 
 |   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); | 
 |   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && | 
 |          "This is an illegal uint to floating point cast!"); | 
 |   return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) { | 
 | #ifndef NDEBUG | 
 |   bool fromVec = isa<VectorType>(C->getType()); | 
 |   bool toVec = isa<VectorType>(Ty); | 
 | #endif | 
 |   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); | 
 |   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && | 
 |          "This is an illegal sint to floating point cast!"); | 
 |   return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) { | 
 | #ifndef NDEBUG | 
 |   bool fromVec = isa<VectorType>(C->getType()); | 
 |   bool toVec = isa<VectorType>(Ty); | 
 | #endif | 
 |   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); | 
 |   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && | 
 |          "This is an illegal floating point to uint cast!"); | 
 |   return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) { | 
 | #ifndef NDEBUG | 
 |   bool fromVec = isa<VectorType>(C->getType()); | 
 |   bool toVec = isa<VectorType>(Ty); | 
 | #endif | 
 |   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); | 
 |   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && | 
 |          "This is an illegal floating point to sint cast!"); | 
 |   return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy, | 
 |                                     bool OnlyIfReduced) { | 
 |   assert(C->getType()->isPtrOrPtrVectorTy() && | 
 |          "PtrToInt source must be pointer or pointer vector"); | 
 |   assert(DstTy->isIntOrIntVectorTy() && | 
 |          "PtrToInt destination must be integer or integer vector"); | 
 |   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); | 
 |   if (isa<VectorType>(C->getType())) | 
 |     assert(cast<VectorType>(C->getType())->getElementCount() == | 
 |                cast<VectorType>(DstTy)->getElementCount() && | 
 |            "Invalid cast between a different number of vector elements"); | 
 |   return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy, | 
 |                                     bool OnlyIfReduced) { | 
 |   assert(C->getType()->isIntOrIntVectorTy() && | 
 |          "IntToPtr source must be integer or integer vector"); | 
 |   assert(DstTy->isPtrOrPtrVectorTy() && | 
 |          "IntToPtr destination must be a pointer or pointer vector"); | 
 |   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); | 
 |   if (isa<VectorType>(C->getType())) | 
 |     assert(cast<VectorType>(C->getType())->getElementCount() == | 
 |                cast<VectorType>(DstTy)->getElementCount() && | 
 |            "Invalid cast between a different number of vector elements"); | 
 |   return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy, | 
 |                                    bool OnlyIfReduced) { | 
 |   assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) && | 
 |          "Invalid constantexpr bitcast!"); | 
 |  | 
 |   // It is common to ask for a bitcast of a value to its own type, handle this | 
 |   // speedily. | 
 |   if (C->getType() == DstTy) return C; | 
 |  | 
 |   return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy, | 
 |                                          bool OnlyIfReduced) { | 
 |   assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) && | 
 |          "Invalid constantexpr addrspacecast!"); | 
 |   return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2, | 
 |                             unsigned Flags, Type *OnlyIfReducedTy) { | 
 |   // Check the operands for consistency first. | 
 |   assert(Instruction::isBinaryOp(Opcode) && | 
 |          "Invalid opcode in binary constant expression"); | 
 |   assert(isSupportedBinOp(Opcode) && | 
 |          "Binop not supported as constant expression"); | 
 |   assert(C1->getType() == C2->getType() && | 
 |          "Operand types in binary constant expression should match"); | 
 |  | 
 | #ifndef NDEBUG | 
 |   switch (Opcode) { | 
 |   case Instruction::Add: | 
 |   case Instruction::Sub: | 
 |   case Instruction::Mul: | 
 |     assert(C1->getType()->isIntOrIntVectorTy() && | 
 |            "Tried to create an integer operation on a non-integer type!"); | 
 |     break; | 
 |   case Instruction::And: | 
 |   case Instruction::Or: | 
 |   case Instruction::Xor: | 
 |     assert(C1->getType()->isIntOrIntVectorTy() && | 
 |            "Tried to create a logical operation on a non-integral type!"); | 
 |     break; | 
 |   case Instruction::Shl: | 
 |   case Instruction::LShr: | 
 |   case Instruction::AShr: | 
 |     assert(C1->getType()->isIntOrIntVectorTy() && | 
 |            "Tried to create a shift operation on a non-integer type!"); | 
 |     break; | 
 |   default: | 
 |     break; | 
 |   } | 
 | #endif | 
 |  | 
 |   if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) | 
 |     return FC; | 
 |  | 
 |   if (OnlyIfReducedTy == C1->getType()) | 
 |     return nullptr; | 
 |  | 
 |   Constant *ArgVec[] = { C1, C2 }; | 
 |   ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags); | 
 |  | 
 |   LLVMContextImpl *pImpl = C1->getContext().pImpl; | 
 |   return pImpl->ExprConstants.getOrCreate(C1->getType(), Key); | 
 | } | 
 |  | 
 | bool ConstantExpr::isDesirableBinOp(unsigned Opcode) { | 
 |   switch (Opcode) { | 
 |   case Instruction::UDiv: | 
 |   case Instruction::SDiv: | 
 |   case Instruction::URem: | 
 |   case Instruction::SRem: | 
 |   case Instruction::FAdd: | 
 |   case Instruction::FSub: | 
 |   case Instruction::FMul: | 
 |   case Instruction::FDiv: | 
 |   case Instruction::FRem: | 
 |     return false; | 
 |   case Instruction::Add: | 
 |   case Instruction::Sub: | 
 |   case Instruction::Mul: | 
 |   case Instruction::Shl: | 
 |   case Instruction::LShr: | 
 |   case Instruction::AShr: | 
 |   case Instruction::And: | 
 |   case Instruction::Or: | 
 |   case Instruction::Xor: | 
 |     return true; | 
 |   default: | 
 |     llvm_unreachable("Argument must be binop opcode"); | 
 |   } | 
 | } | 
 |  | 
 | bool ConstantExpr::isSupportedBinOp(unsigned Opcode) { | 
 |   switch (Opcode) { | 
 |   case Instruction::UDiv: | 
 |   case Instruction::SDiv: | 
 |   case Instruction::URem: | 
 |   case Instruction::SRem: | 
 |   case Instruction::FAdd: | 
 |   case Instruction::FSub: | 
 |   case Instruction::FMul: | 
 |   case Instruction::FDiv: | 
 |   case Instruction::FRem: | 
 |     return false; | 
 |   case Instruction::Add: | 
 |   case Instruction::Sub: | 
 |   case Instruction::Mul: | 
 |   case Instruction::Shl: | 
 |   case Instruction::LShr: | 
 |   case Instruction::AShr: | 
 |   case Instruction::And: | 
 |   case Instruction::Or: | 
 |   case Instruction::Xor: | 
 |     return true; | 
 |   default: | 
 |     llvm_unreachable("Argument must be binop opcode"); | 
 |   } | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getSizeOf(Type* Ty) { | 
 |   // sizeof is implemented as: (i64) gep (Ty*)null, 1 | 
 |   // Note that a non-inbounds gep is used, as null isn't within any object. | 
 |   Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); | 
 |   Constant *GEP = getGetElementPtr( | 
 |       Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); | 
 |   return getPtrToInt(GEP, | 
 |                      Type::getInt64Ty(Ty->getContext())); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getAlignOf(Type* Ty) { | 
 |   // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1 | 
 |   // Note that a non-inbounds gep is used, as null isn't within any object. | 
 |   Type *AligningTy = StructType::get(Type::getInt1Ty(Ty->getContext()), Ty); | 
 |   Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0)); | 
 |   Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0); | 
 |   Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); | 
 |   Constant *Indices[2] = { Zero, One }; | 
 |   Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices); | 
 |   return getPtrToInt(GEP, | 
 |                      Type::getInt64Ty(Ty->getContext())); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1, | 
 |                                    Constant *C2, bool OnlyIfReduced) { | 
 |   assert(C1->getType() == C2->getType() && "Op types should be identical!"); | 
 |  | 
 |   switch (Predicate) { | 
 |   default: llvm_unreachable("Invalid CmpInst predicate"); | 
 |   case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT: | 
 |   case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE: | 
 |   case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO: | 
 |   case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE: | 
 |   case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE: | 
 |   case CmpInst::FCMP_TRUE: | 
 |     return getFCmp(Predicate, C1, C2, OnlyIfReduced); | 
 |  | 
 |   case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT: | 
 |   case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE: | 
 |   case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT: | 
 |   case CmpInst::ICMP_SLE: | 
 |     return getICmp(Predicate, C1, C2, OnlyIfReduced); | 
 |   } | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C, | 
 |                                          ArrayRef<Value *> Idxs, bool InBounds, | 
 |                                          std::optional<unsigned> InRangeIndex, | 
 |                                          Type *OnlyIfReducedTy) { | 
 |   assert(Ty && "Must specify element type"); | 
 |   assert(isSupportedGetElementPtr(Ty) && "Element type is unsupported!"); | 
 |  | 
 |   if (Constant *FC = | 
 |           ConstantFoldGetElementPtr(Ty, C, InBounds, InRangeIndex, Idxs)) | 
 |     return FC;          // Fold a few common cases. | 
 |  | 
 |   assert(GetElementPtrInst::getIndexedType(Ty, Idxs) && | 
 |          "GEP indices invalid!");; | 
 |  | 
 |   // Get the result type of the getelementptr! | 
 |   Type *ReqTy = GetElementPtrInst::getGEPReturnType(C, Idxs); | 
 |   if (OnlyIfReducedTy == ReqTy) | 
 |     return nullptr; | 
 |  | 
 |   auto EltCount = ElementCount::getFixed(0); | 
 |   if (VectorType *VecTy = dyn_cast<VectorType>(ReqTy)) | 
 |     EltCount = VecTy->getElementCount(); | 
 |  | 
 |   // Look up the constant in the table first to ensure uniqueness | 
 |   std::vector<Constant*> ArgVec; | 
 |   ArgVec.reserve(1 + Idxs.size()); | 
 |   ArgVec.push_back(C); | 
 |   auto GTI = gep_type_begin(Ty, Idxs), GTE = gep_type_end(Ty, Idxs); | 
 |   for (; GTI != GTE; ++GTI) { | 
 |     auto *Idx = cast<Constant>(GTI.getOperand()); | 
 |     assert( | 
 |         (!isa<VectorType>(Idx->getType()) || | 
 |          cast<VectorType>(Idx->getType())->getElementCount() == EltCount) && | 
 |         "getelementptr index type missmatch"); | 
 |  | 
 |     if (GTI.isStruct() && Idx->getType()->isVectorTy()) { | 
 |       Idx = Idx->getSplatValue(); | 
 |     } else if (GTI.isSequential() && EltCount.isNonZero() && | 
 |                !Idx->getType()->isVectorTy()) { | 
 |       Idx = ConstantVector::getSplat(EltCount, Idx); | 
 |     } | 
 |     ArgVec.push_back(Idx); | 
 |   } | 
 |  | 
 |   unsigned SubClassOptionalData = InBounds ? GEPOperator::IsInBounds : 0; | 
 |   if (InRangeIndex && *InRangeIndex < 63) | 
 |     SubClassOptionalData |= (*InRangeIndex + 1) << 1; | 
 |   const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0, | 
 |                                 SubClassOptionalData, std::nullopt, Ty); | 
 |  | 
 |   LLVMContextImpl *pImpl = C->getContext().pImpl; | 
 |   return pImpl->ExprConstants.getOrCreate(ReqTy, Key); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS, | 
 |                                 Constant *RHS, bool OnlyIfReduced) { | 
 |   auto Predicate = static_cast<CmpInst::Predicate>(pred); | 
 |   assert(LHS->getType() == RHS->getType()); | 
 |   assert(CmpInst::isIntPredicate(Predicate) && "Invalid ICmp Predicate"); | 
 |  | 
 |   if (Constant *FC = ConstantFoldCompareInstruction(Predicate, LHS, RHS)) | 
 |     return FC;          // Fold a few common cases... | 
 |  | 
 |   if (OnlyIfReduced) | 
 |     return nullptr; | 
 |  | 
 |   // Look up the constant in the table first to ensure uniqueness | 
 |   Constant *ArgVec[] = { LHS, RHS }; | 
 |   // Get the key type with both the opcode and predicate | 
 |   const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, Predicate); | 
 |  | 
 |   Type *ResultTy = Type::getInt1Ty(LHS->getContext()); | 
 |   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) | 
 |     ResultTy = VectorType::get(ResultTy, VT->getElementCount()); | 
 |  | 
 |   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; | 
 |   return pImpl->ExprConstants.getOrCreate(ResultTy, Key); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, | 
 |                                 Constant *RHS, bool OnlyIfReduced) { | 
 |   auto Predicate = static_cast<CmpInst::Predicate>(pred); | 
 |   assert(LHS->getType() == RHS->getType()); | 
 |   assert(CmpInst::isFPPredicate(Predicate) && "Invalid FCmp Predicate"); | 
 |  | 
 |   if (Constant *FC = ConstantFoldCompareInstruction(Predicate, LHS, RHS)) | 
 |     return FC;          // Fold a few common cases... | 
 |  | 
 |   if (OnlyIfReduced) | 
 |     return nullptr; | 
 |  | 
 |   // Look up the constant in the table first to ensure uniqueness | 
 |   Constant *ArgVec[] = { LHS, RHS }; | 
 |   // Get the key type with both the opcode and predicate | 
 |   const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, Predicate); | 
 |  | 
 |   Type *ResultTy = Type::getInt1Ty(LHS->getContext()); | 
 |   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) | 
 |     ResultTy = VectorType::get(ResultTy, VT->getElementCount()); | 
 |  | 
 |   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; | 
 |   return pImpl->ExprConstants.getOrCreate(ResultTy, Key); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx, | 
 |                                           Type *OnlyIfReducedTy) { | 
 |   assert(Val->getType()->isVectorTy() && | 
 |          "Tried to create extractelement operation on non-vector type!"); | 
 |   assert(Idx->getType()->isIntegerTy() && | 
 |          "Extractelement index must be an integer type!"); | 
 |  | 
 |   if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx)) | 
 |     return FC;          // Fold a few common cases. | 
 |  | 
 |   Type *ReqTy = cast<VectorType>(Val->getType())->getElementType(); | 
 |   if (OnlyIfReducedTy == ReqTy) | 
 |     return nullptr; | 
 |  | 
 |   // Look up the constant in the table first to ensure uniqueness | 
 |   Constant *ArgVec[] = { Val, Idx }; | 
 |   const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec); | 
 |  | 
 |   LLVMContextImpl *pImpl = Val->getContext().pImpl; | 
 |   return pImpl->ExprConstants.getOrCreate(ReqTy, Key); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, | 
 |                                          Constant *Idx, Type *OnlyIfReducedTy) { | 
 |   assert(Val->getType()->isVectorTy() && | 
 |          "Tried to create insertelement operation on non-vector type!"); | 
 |   assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType() && | 
 |          "Insertelement types must match!"); | 
 |   assert(Idx->getType()->isIntegerTy() && | 
 |          "Insertelement index must be i32 type!"); | 
 |  | 
 |   if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx)) | 
 |     return FC;          // Fold a few common cases. | 
 |  | 
 |   if (OnlyIfReducedTy == Val->getType()) | 
 |     return nullptr; | 
 |  | 
 |   // Look up the constant in the table first to ensure uniqueness | 
 |   Constant *ArgVec[] = { Val, Elt, Idx }; | 
 |   const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec); | 
 |  | 
 |   LLVMContextImpl *pImpl = Val->getContext().pImpl; | 
 |   return pImpl->ExprConstants.getOrCreate(Val->getType(), Key); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, | 
 |                                          ArrayRef<int> Mask, | 
 |                                          Type *OnlyIfReducedTy) { | 
 |   assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) && | 
 |          "Invalid shuffle vector constant expr operands!"); | 
 |  | 
 |   if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask)) | 
 |     return FC;          // Fold a few common cases. | 
 |  | 
 |   unsigned NElts = Mask.size(); | 
 |   auto V1VTy = cast<VectorType>(V1->getType()); | 
 |   Type *EltTy = V1VTy->getElementType(); | 
 |   bool TypeIsScalable = isa<ScalableVectorType>(V1VTy); | 
 |   Type *ShufTy = VectorType::get(EltTy, NElts, TypeIsScalable); | 
 |  | 
 |   if (OnlyIfReducedTy == ShufTy) | 
 |     return nullptr; | 
 |  | 
 |   // Look up the constant in the table first to ensure uniqueness | 
 |   Constant *ArgVec[] = {V1, V2}; | 
 |   ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec, 0, 0, Mask); | 
 |  | 
 |   LLVMContextImpl *pImpl = ShufTy->getContext().pImpl; | 
 |   return pImpl->ExprConstants.getOrCreate(ShufTy, Key); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) { | 
 |   assert(C->getType()->isIntOrIntVectorTy() && | 
 |          "Cannot NEG a nonintegral value!"); | 
 |   return getSub(ConstantInt::get(C->getType(), 0), C, HasNUW, HasNSW); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getNot(Constant *C) { | 
 |   assert(C->getType()->isIntOrIntVectorTy() && | 
 |          "Cannot NOT a nonintegral value!"); | 
 |   return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType())); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2, | 
 |                                bool HasNUW, bool HasNSW) { | 
 |   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | | 
 |                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0); | 
 |   return get(Instruction::Add, C1, C2, Flags); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getSub(Constant *C1, Constant *C2, | 
 |                                bool HasNUW, bool HasNSW) { | 
 |   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | | 
 |                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0); | 
 |   return get(Instruction::Sub, C1, C2, Flags); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getMul(Constant *C1, Constant *C2, | 
 |                                bool HasNUW, bool HasNSW) { | 
 |   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | | 
 |                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0); | 
 |   return get(Instruction::Mul, C1, C2, Flags); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) { | 
 |   return get(Instruction::And, C1, C2); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) { | 
 |   return get(Instruction::Or, C1, C2); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) { | 
 |   return get(Instruction::Xor, C1, C2); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getShl(Constant *C1, Constant *C2, | 
 |                                bool HasNUW, bool HasNSW) { | 
 |   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | | 
 |                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0); | 
 |   return get(Instruction::Shl, C1, C2, Flags); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) { | 
 |   return get(Instruction::LShr, C1, C2, | 
 |              isExact ? PossiblyExactOperator::IsExact : 0); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) { | 
 |   return get(Instruction::AShr, C1, C2, | 
 |              isExact ? PossiblyExactOperator::IsExact : 0); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getExactLogBase2(Constant *C) { | 
 |   Type *Ty = C->getType(); | 
 |   const APInt *IVal; | 
 |   if (match(C, m_APInt(IVal)) && IVal->isPowerOf2()) | 
 |     return ConstantInt::get(Ty, IVal->logBase2()); | 
 |  | 
 |   // FIXME: We can extract pow of 2 of splat constant for scalable vectors. | 
 |   auto *VecTy = dyn_cast<FixedVectorType>(Ty); | 
 |   if (!VecTy) | 
 |     return nullptr; | 
 |  | 
 |   SmallVector<Constant *, 4> Elts; | 
 |   for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { | 
 |     Constant *Elt = C->getAggregateElement(I); | 
 |     if (!Elt) | 
 |       return nullptr; | 
 |     // Note that log2(iN undef) is *NOT* iN undef, because log2(iN undef) u< N. | 
 |     if (isa<UndefValue>(Elt)) { | 
 |       Elts.push_back(Constant::getNullValue(Ty->getScalarType())); | 
 |       continue; | 
 |     } | 
 |     if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2()) | 
 |       return nullptr; | 
 |     Elts.push_back(ConstantInt::get(Ty->getScalarType(), IVal->logBase2())); | 
 |   } | 
 |  | 
 |   return ConstantVector::get(Elts); | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty, | 
 |                                          bool AllowRHSConstant, bool NSZ) { | 
 |   assert(Instruction::isBinaryOp(Opcode) && "Only binops allowed"); | 
 |  | 
 |   // Commutative opcodes: it does not matter if AllowRHSConstant is set. | 
 |   if (Instruction::isCommutative(Opcode)) { | 
 |     switch (Opcode) { | 
 |       case Instruction::Add: // X + 0 = X | 
 |       case Instruction::Or:  // X | 0 = X | 
 |       case Instruction::Xor: // X ^ 0 = X | 
 |         return Constant::getNullValue(Ty); | 
 |       case Instruction::Mul: // X * 1 = X | 
 |         return ConstantInt::get(Ty, 1); | 
 |       case Instruction::And: // X & -1 = X | 
 |         return Constant::getAllOnesValue(Ty); | 
 |       case Instruction::FAdd: // X + -0.0 = X | 
 |         return ConstantFP::getZero(Ty, !NSZ); | 
 |       case Instruction::FMul: // X * 1.0 = X | 
 |         return ConstantFP::get(Ty, 1.0); | 
 |       default: | 
 |         llvm_unreachable("Every commutative binop has an identity constant"); | 
 |     } | 
 |   } | 
 |  | 
 |   // Non-commutative opcodes: AllowRHSConstant must be set. | 
 |   if (!AllowRHSConstant) | 
 |     return nullptr; | 
 |  | 
 |   switch (Opcode) { | 
 |     case Instruction::Sub:  // X - 0 = X | 
 |     case Instruction::Shl:  // X << 0 = X | 
 |     case Instruction::LShr: // X >>u 0 = X | 
 |     case Instruction::AShr: // X >> 0 = X | 
 |     case Instruction::FSub: // X - 0.0 = X | 
 |       return Constant::getNullValue(Ty); | 
 |     case Instruction::SDiv: // X / 1 = X | 
 |     case Instruction::UDiv: // X /u 1 = X | 
 |       return ConstantInt::get(Ty, 1); | 
 |     case Instruction::FDiv: // X / 1.0 = X | 
 |       return ConstantFP::get(Ty, 1.0); | 
 |     default: | 
 |       return nullptr; | 
 |   } | 
 | } | 
 |  | 
 | Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) { | 
 |   switch (Opcode) { | 
 |   default: | 
 |     // Doesn't have an absorber. | 
 |     return nullptr; | 
 |  | 
 |   case Instruction::Or: | 
 |     return Constant::getAllOnesValue(Ty); | 
 |  | 
 |   case Instruction::And: | 
 |   case Instruction::Mul: | 
 |     return Constant::getNullValue(Ty); | 
 |   } | 
 | } | 
 |  | 
 | /// Remove the constant from the constant table. | 
 | void ConstantExpr::destroyConstantImpl() { | 
 |   getType()->getContext().pImpl->ExprConstants.remove(this); | 
 | } | 
 |  | 
 | const char *ConstantExpr::getOpcodeName() const { | 
 |   return Instruction::getOpcodeName(getOpcode()); | 
 | } | 
 |  | 
 | GetElementPtrConstantExpr::GetElementPtrConstantExpr( | 
 |     Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy) | 
 |     : ConstantExpr(DestTy, Instruction::GetElementPtr, | 
 |                    OperandTraits<GetElementPtrConstantExpr>::op_end(this) - | 
 |                        (IdxList.size() + 1), | 
 |                    IdxList.size() + 1), | 
 |       SrcElementTy(SrcElementTy), | 
 |       ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy, IdxList)) { | 
 |   Op<0>() = C; | 
 |   Use *OperandList = getOperandList(); | 
 |   for (unsigned i = 0, E = IdxList.size(); i != E; ++i) | 
 |     OperandList[i+1] = IdxList[i]; | 
 | } | 
 |  | 
 | Type *GetElementPtrConstantExpr::getSourceElementType() const { | 
 |   return SrcElementTy; | 
 | } | 
 |  | 
 | Type *GetElementPtrConstantExpr::getResultElementType() const { | 
 |   return ResElementTy; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                       ConstantData* implementations | 
 |  | 
 | Type *ConstantDataSequential::getElementType() const { | 
 |   if (ArrayType *ATy = dyn_cast<ArrayType>(getType())) | 
 |     return ATy->getElementType(); | 
 |   return cast<VectorType>(getType())->getElementType(); | 
 | } | 
 |  | 
 | StringRef ConstantDataSequential::getRawDataValues() const { | 
 |   return StringRef(DataElements, getNumElements()*getElementByteSize()); | 
 | } | 
 |  | 
 | bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) { | 
 |   if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || Ty->isDoubleTy()) | 
 |     return true; | 
 |   if (auto *IT = dyn_cast<IntegerType>(Ty)) { | 
 |     switch (IT->getBitWidth()) { | 
 |     case 8: | 
 |     case 16: | 
 |     case 32: | 
 |     case 64: | 
 |       return true; | 
 |     default: break; | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | unsigned ConstantDataSequential::getNumElements() const { | 
 |   if (ArrayType *AT = dyn_cast<ArrayType>(getType())) | 
 |     return AT->getNumElements(); | 
 |   return cast<FixedVectorType>(getType())->getNumElements(); | 
 | } | 
 |  | 
 |  | 
 | uint64_t ConstantDataSequential::getElementByteSize() const { | 
 |   return getElementType()->getPrimitiveSizeInBits()/8; | 
 | } | 
 |  | 
 | /// Return the start of the specified element. | 
 | const char *ConstantDataSequential::getElementPointer(unsigned Elt) const { | 
 |   assert(Elt < getNumElements() && "Invalid Elt"); | 
 |   return DataElements+Elt*getElementByteSize(); | 
 | } | 
 |  | 
 |  | 
 | /// Return true if the array is empty or all zeros. | 
 | static bool isAllZeros(StringRef Arr) { | 
 |   for (char I : Arr) | 
 |     if (I != 0) | 
 |       return false; | 
 |   return true; | 
 | } | 
 |  | 
 | /// This is the underlying implementation of all of the | 
 | /// ConstantDataSequential::get methods.  They all thunk down to here, providing | 
 | /// the correct element type.  We take the bytes in as a StringRef because | 
 | /// we *want* an underlying "char*" to avoid TBAA type punning violations. | 
 | Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) { | 
 | #ifndef NDEBUG | 
 |   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) | 
 |     assert(isElementTypeCompatible(ATy->getElementType())); | 
 |   else | 
 |     assert(isElementTypeCompatible(cast<VectorType>(Ty)->getElementType())); | 
 | #endif | 
 |   // If the elements are all zero or there are no elements, return a CAZ, which | 
 |   // is more dense and canonical. | 
 |   if (isAllZeros(Elements)) | 
 |     return ConstantAggregateZero::get(Ty); | 
 |  | 
 |   // Do a lookup to see if we have already formed one of these. | 
 |   auto &Slot = | 
 |       *Ty->getContext() | 
 |            .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr)) | 
 |            .first; | 
 |  | 
 |   // The bucket can point to a linked list of different CDS's that have the same | 
 |   // body but different types.  For example, 0,0,0,1 could be a 4 element array | 
 |   // of i8, or a 1-element array of i32.  They'll both end up in the same | 
 |   /// StringMap bucket, linked up by their Next pointers.  Walk the list. | 
 |   std::unique_ptr<ConstantDataSequential> *Entry = &Slot.second; | 
 |   for (; *Entry; Entry = &(*Entry)->Next) | 
 |     if ((*Entry)->getType() == Ty) | 
 |       return Entry->get(); | 
 |  | 
 |   // Okay, we didn't get a hit.  Create a node of the right class, link it in, | 
 |   // and return it. | 
 |   if (isa<ArrayType>(Ty)) { | 
 |     // Use reset because std::make_unique can't access the constructor. | 
 |     Entry->reset(new ConstantDataArray(Ty, Slot.first().data())); | 
 |     return Entry->get(); | 
 |   } | 
 |  | 
 |   assert(isa<VectorType>(Ty)); | 
 |   // Use reset because std::make_unique can't access the constructor. | 
 |   Entry->reset(new ConstantDataVector(Ty, Slot.first().data())); | 
 |   return Entry->get(); | 
 | } | 
 |  | 
 | void ConstantDataSequential::destroyConstantImpl() { | 
 |   // Remove the constant from the StringMap. | 
 |   StringMap<std::unique_ptr<ConstantDataSequential>> &CDSConstants = | 
 |       getType()->getContext().pImpl->CDSConstants; | 
 |  | 
 |   auto Slot = CDSConstants.find(getRawDataValues()); | 
 |  | 
 |   assert(Slot != CDSConstants.end() && "CDS not found in uniquing table"); | 
 |  | 
 |   std::unique_ptr<ConstantDataSequential> *Entry = &Slot->getValue(); | 
 |  | 
 |   // Remove the entry from the hash table. | 
 |   if (!(*Entry)->Next) { | 
 |     // If there is only one value in the bucket (common case) it must be this | 
 |     // entry, and removing the entry should remove the bucket completely. | 
 |     assert(Entry->get() == this && "Hash mismatch in ConstantDataSequential"); | 
 |     getContext().pImpl->CDSConstants.erase(Slot); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Otherwise, there are multiple entries linked off the bucket, unlink the | 
 |   // node we care about but keep the bucket around. | 
 |   while (true) { | 
 |     std::unique_ptr<ConstantDataSequential> &Node = *Entry; | 
 |     assert(Node && "Didn't find entry in its uniquing hash table!"); | 
 |     // If we found our entry, unlink it from the list and we're done. | 
 |     if (Node.get() == this) { | 
 |       Node = std::move(Node->Next); | 
 |       return; | 
 |     } | 
 |  | 
 |     Entry = &Node->Next; | 
 |   } | 
 | } | 
 |  | 
 | /// getFP() constructors - Return a constant of array type with a float | 
 | /// element type taken from argument `ElementType', and count taken from | 
 | /// argument `Elts'.  The amount of bits of the contained type must match the | 
 | /// number of bits of the type contained in the passed in ArrayRef. | 
 | /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note | 
 | /// that this can return a ConstantAggregateZero object. | 
 | Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint16_t> Elts) { | 
 |   assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) && | 
 |          "Element type is not a 16-bit float type"); | 
 |   Type *Ty = ArrayType::get(ElementType, Elts.size()); | 
 |   const char *Data = reinterpret_cast<const char *>(Elts.data()); | 
 |   return getImpl(StringRef(Data, Elts.size() * 2), Ty); | 
 | } | 
 | Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint32_t> Elts) { | 
 |   assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type"); | 
 |   Type *Ty = ArrayType::get(ElementType, Elts.size()); | 
 |   const char *Data = reinterpret_cast<const char *>(Elts.data()); | 
 |   return getImpl(StringRef(Data, Elts.size() * 4), Ty); | 
 | } | 
 | Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint64_t> Elts) { | 
 |   assert(ElementType->isDoubleTy() && | 
 |          "Element type is not a 64-bit float type"); | 
 |   Type *Ty = ArrayType::get(ElementType, Elts.size()); | 
 |   const char *Data = reinterpret_cast<const char *>(Elts.data()); | 
 |   return getImpl(StringRef(Data, Elts.size() * 8), Ty); | 
 | } | 
 |  | 
 | Constant *ConstantDataArray::getString(LLVMContext &Context, | 
 |                                        StringRef Str, bool AddNull) { | 
 |   if (!AddNull) { | 
 |     const uint8_t *Data = Str.bytes_begin(); | 
 |     return get(Context, ArrayRef(Data, Str.size())); | 
 |   } | 
 |  | 
 |   SmallVector<uint8_t, 64> ElementVals; | 
 |   ElementVals.append(Str.begin(), Str.end()); | 
 |   ElementVals.push_back(0); | 
 |   return get(Context, ElementVals); | 
 | } | 
 |  | 
 | /// get() constructors - Return a constant with vector type with an element | 
 | /// count and element type matching the ArrayRef passed in.  Note that this | 
 | /// can return a ConstantAggregateZero object. | 
 | Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){ | 
 |   auto *Ty = FixedVectorType::get(Type::getInt8Ty(Context), Elts.size()); | 
 |   const char *Data = reinterpret_cast<const char *>(Elts.data()); | 
 |   return getImpl(StringRef(Data, Elts.size() * 1), Ty); | 
 | } | 
 | Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){ | 
 |   auto *Ty = FixedVectorType::get(Type::getInt16Ty(Context), Elts.size()); | 
 |   const char *Data = reinterpret_cast<const char *>(Elts.data()); | 
 |   return getImpl(StringRef(Data, Elts.size() * 2), Ty); | 
 | } | 
 | Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){ | 
 |   auto *Ty = FixedVectorType::get(Type::getInt32Ty(Context), Elts.size()); | 
 |   const char *Data = reinterpret_cast<const char *>(Elts.data()); | 
 |   return getImpl(StringRef(Data, Elts.size() * 4), Ty); | 
 | } | 
 | Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){ | 
 |   auto *Ty = FixedVectorType::get(Type::getInt64Ty(Context), Elts.size()); | 
 |   const char *Data = reinterpret_cast<const char *>(Elts.data()); | 
 |   return getImpl(StringRef(Data, Elts.size() * 8), Ty); | 
 | } | 
 | Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) { | 
 |   auto *Ty = FixedVectorType::get(Type::getFloatTy(Context), Elts.size()); | 
 |   const char *Data = reinterpret_cast<const char *>(Elts.data()); | 
 |   return getImpl(StringRef(Data, Elts.size() * 4), Ty); | 
 | } | 
 | Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) { | 
 |   auto *Ty = FixedVectorType::get(Type::getDoubleTy(Context), Elts.size()); | 
 |   const char *Data = reinterpret_cast<const char *>(Elts.data()); | 
 |   return getImpl(StringRef(Data, Elts.size() * 8), Ty); | 
 | } | 
 |  | 
 | /// getFP() constructors - Return a constant of vector type with a float | 
 | /// element type taken from argument `ElementType', and count taken from | 
 | /// argument `Elts'.  The amount of bits of the contained type must match the | 
 | /// number of bits of the type contained in the passed in ArrayRef. | 
 | /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note | 
 | /// that this can return a ConstantAggregateZero object. | 
 | Constant *ConstantDataVector::getFP(Type *ElementType, | 
 |                                     ArrayRef<uint16_t> Elts) { | 
 |   assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) && | 
 |          "Element type is not a 16-bit float type"); | 
 |   auto *Ty = FixedVectorType::get(ElementType, Elts.size()); | 
 |   const char *Data = reinterpret_cast<const char *>(Elts.data()); | 
 |   return getImpl(StringRef(Data, Elts.size() * 2), Ty); | 
 | } | 
 | Constant *ConstantDataVector::getFP(Type *ElementType, | 
 |                                     ArrayRef<uint32_t> Elts) { | 
 |   assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type"); | 
 |   auto *Ty = FixedVectorType::get(ElementType, Elts.size()); | 
 |   const char *Data = reinterpret_cast<const char *>(Elts.data()); | 
 |   return getImpl(StringRef(Data, Elts.size() * 4), Ty); | 
 | } | 
 | Constant *ConstantDataVector::getFP(Type *ElementType, | 
 |                                     ArrayRef<uint64_t> Elts) { | 
 |   assert(ElementType->isDoubleTy() && | 
 |          "Element type is not a 64-bit float type"); | 
 |   auto *Ty = FixedVectorType::get(ElementType, Elts.size()); | 
 |   const char *Data = reinterpret_cast<const char *>(Elts.data()); | 
 |   return getImpl(StringRef(Data, Elts.size() * 8), Ty); | 
 | } | 
 |  | 
 | Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) { | 
 |   assert(isElementTypeCompatible(V->getType()) && | 
 |          "Element type not compatible with ConstantData"); | 
 |   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { | 
 |     if (CI->getType()->isIntegerTy(8)) { | 
 |       SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue()); | 
 |       return get(V->getContext(), Elts); | 
 |     } | 
 |     if (CI->getType()->isIntegerTy(16)) { | 
 |       SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue()); | 
 |       return get(V->getContext(), Elts); | 
 |     } | 
 |     if (CI->getType()->isIntegerTy(32)) { | 
 |       SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue()); | 
 |       return get(V->getContext(), Elts); | 
 |     } | 
 |     assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type"); | 
 |     SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue()); | 
 |     return get(V->getContext(), Elts); | 
 |   } | 
 |  | 
 |   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { | 
 |     if (CFP->getType()->isHalfTy()) { | 
 |       SmallVector<uint16_t, 16> Elts( | 
 |           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); | 
 |       return getFP(V->getType(), Elts); | 
 |     } | 
 |     if (CFP->getType()->isBFloatTy()) { | 
 |       SmallVector<uint16_t, 16> Elts( | 
 |           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); | 
 |       return getFP(V->getType(), Elts); | 
 |     } | 
 |     if (CFP->getType()->isFloatTy()) { | 
 |       SmallVector<uint32_t, 16> Elts( | 
 |           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); | 
 |       return getFP(V->getType(), Elts); | 
 |     } | 
 |     if (CFP->getType()->isDoubleTy()) { | 
 |       SmallVector<uint64_t, 16> Elts( | 
 |           NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue()); | 
 |       return getFP(V->getType(), Elts); | 
 |     } | 
 |   } | 
 |   return ConstantVector::getSplat(ElementCount::getFixed(NumElts), V); | 
 | } | 
 |  | 
 |  | 
 | uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const { | 
 |   assert(isa<IntegerType>(getElementType()) && | 
 |          "Accessor can only be used when element is an integer"); | 
 |   const char *EltPtr = getElementPointer(Elt); | 
 |  | 
 |   // The data is stored in host byte order, make sure to cast back to the right | 
 |   // type to load with the right endianness. | 
 |   switch (getElementType()->getIntegerBitWidth()) { | 
 |   default: llvm_unreachable("Invalid bitwidth for CDS"); | 
 |   case 8: | 
 |     return *reinterpret_cast<const uint8_t *>(EltPtr); | 
 |   case 16: | 
 |     return *reinterpret_cast<const uint16_t *>(EltPtr); | 
 |   case 32: | 
 |     return *reinterpret_cast<const uint32_t *>(EltPtr); | 
 |   case 64: | 
 |     return *reinterpret_cast<const uint64_t *>(EltPtr); | 
 |   } | 
 | } | 
 |  | 
 | APInt ConstantDataSequential::getElementAsAPInt(unsigned Elt) const { | 
 |   assert(isa<IntegerType>(getElementType()) && | 
 |          "Accessor can only be used when element is an integer"); | 
 |   const char *EltPtr = getElementPointer(Elt); | 
 |  | 
 |   // The data is stored in host byte order, make sure to cast back to the right | 
 |   // type to load with the right endianness. | 
 |   switch (getElementType()->getIntegerBitWidth()) { | 
 |   default: llvm_unreachable("Invalid bitwidth for CDS"); | 
 |   case 8: { | 
 |     auto EltVal = *reinterpret_cast<const uint8_t *>(EltPtr); | 
 |     return APInt(8, EltVal); | 
 |   } | 
 |   case 16: { | 
 |     auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr); | 
 |     return APInt(16, EltVal); | 
 |   } | 
 |   case 32: { | 
 |     auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr); | 
 |     return APInt(32, EltVal); | 
 |   } | 
 |   case 64: { | 
 |     auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr); | 
 |     return APInt(64, EltVal); | 
 |   } | 
 |   } | 
 | } | 
 |  | 
 | APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const { | 
 |   const char *EltPtr = getElementPointer(Elt); | 
 |  | 
 |   switch (getElementType()->getTypeID()) { | 
 |   default: | 
 |     llvm_unreachable("Accessor can only be used when element is float/double!"); | 
 |   case Type::HalfTyID: { | 
 |     auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr); | 
 |     return APFloat(APFloat::IEEEhalf(), APInt(16, EltVal)); | 
 |   } | 
 |   case Type::BFloatTyID: { | 
 |     auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr); | 
 |     return APFloat(APFloat::BFloat(), APInt(16, EltVal)); | 
 |   } | 
 |   case Type::FloatTyID: { | 
 |     auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr); | 
 |     return APFloat(APFloat::IEEEsingle(), APInt(32, EltVal)); | 
 |   } | 
 |   case Type::DoubleTyID: { | 
 |     auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr); | 
 |     return APFloat(APFloat::IEEEdouble(), APInt(64, EltVal)); | 
 |   } | 
 |   } | 
 | } | 
 |  | 
 | float ConstantDataSequential::getElementAsFloat(unsigned Elt) const { | 
 |   assert(getElementType()->isFloatTy() && | 
 |          "Accessor can only be used when element is a 'float'"); | 
 |   return *reinterpret_cast<const float *>(getElementPointer(Elt)); | 
 | } | 
 |  | 
 | double ConstantDataSequential::getElementAsDouble(unsigned Elt) const { | 
 |   assert(getElementType()->isDoubleTy() && | 
 |          "Accessor can only be used when element is a 'float'"); | 
 |   return *reinterpret_cast<const double *>(getElementPointer(Elt)); | 
 | } | 
 |  | 
 | Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const { | 
 |   if (getElementType()->isHalfTy() || getElementType()->isBFloatTy() || | 
 |       getElementType()->isFloatTy() || getElementType()->isDoubleTy()) | 
 |     return ConstantFP::get(getContext(), getElementAsAPFloat(Elt)); | 
 |  | 
 |   return ConstantInt::get(getElementType(), getElementAsInteger(Elt)); | 
 | } | 
 |  | 
 | bool ConstantDataSequential::isString(unsigned CharSize) const { | 
 |   return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(CharSize); | 
 | } | 
 |  | 
 | bool ConstantDataSequential::isCString() const { | 
 |   if (!isString()) | 
 |     return false; | 
 |  | 
 |   StringRef Str = getAsString(); | 
 |  | 
 |   // The last value must be nul. | 
 |   if (Str.back() != 0) return false; | 
 |  | 
 |   // Other elements must be non-nul. | 
 |   return !Str.drop_back().contains(0); | 
 | } | 
 |  | 
 | bool ConstantDataVector::isSplatData() const { | 
 |   const char *Base = getRawDataValues().data(); | 
 |  | 
 |   // Compare elements 1+ to the 0'th element. | 
 |   unsigned EltSize = getElementByteSize(); | 
 |   for (unsigned i = 1, e = getNumElements(); i != e; ++i) | 
 |     if (memcmp(Base, Base+i*EltSize, EltSize)) | 
 |       return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool ConstantDataVector::isSplat() const { | 
 |   if (!IsSplatSet) { | 
 |     IsSplatSet = true; | 
 |     IsSplat = isSplatData(); | 
 |   } | 
 |   return IsSplat; | 
 | } | 
 |  | 
 | Constant *ConstantDataVector::getSplatValue() const { | 
 |   // If they're all the same, return the 0th one as a representative. | 
 |   return isSplat() ? getElementAsConstant(0) : nullptr; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                handleOperandChange implementations | 
 |  | 
 | /// Update this constant array to change uses of | 
 | /// 'From' to be uses of 'To'.  This must update the uniquing data structures | 
 | /// etc. | 
 | /// | 
 | /// Note that we intentionally replace all uses of From with To here.  Consider | 
 | /// a large array that uses 'From' 1000 times.  By handling this case all here, | 
 | /// ConstantArray::handleOperandChange is only invoked once, and that | 
 | /// single invocation handles all 1000 uses.  Handling them one at a time would | 
 | /// work, but would be really slow because it would have to unique each updated | 
 | /// array instance. | 
 | /// | 
 | void Constant::handleOperandChange(Value *From, Value *To) { | 
 |   Value *Replacement = nullptr; | 
 |   switch (getValueID()) { | 
 |   default: | 
 |     llvm_unreachable("Not a constant!"); | 
 | #define HANDLE_CONSTANT(Name)                                                  \ | 
 |   case Value::Name##Val:                                                       \ | 
 |     Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To);         \ | 
 |     break; | 
 | #include "llvm/IR/Value.def" | 
 |   } | 
 |  | 
 |   // If handleOperandChangeImpl returned nullptr, then it handled | 
 |   // replacing itself and we don't want to delete or replace anything else here. | 
 |   if (!Replacement) | 
 |     return; | 
 |  | 
 |   // I do need to replace this with an existing value. | 
 |   assert(Replacement != this && "I didn't contain From!"); | 
 |  | 
 |   // Everyone using this now uses the replacement. | 
 |   replaceAllUsesWith(Replacement); | 
 |  | 
 |   // Delete the old constant! | 
 |   destroyConstant(); | 
 | } | 
 |  | 
 | Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To) { | 
 |   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); | 
 |   Constant *ToC = cast<Constant>(To); | 
 |  | 
 |   SmallVector<Constant*, 8> Values; | 
 |   Values.reserve(getNumOperands());  // Build replacement array. | 
 |  | 
 |   // Fill values with the modified operands of the constant array.  Also, | 
 |   // compute whether this turns into an all-zeros array. | 
 |   unsigned NumUpdated = 0; | 
 |  | 
 |   // Keep track of whether all the values in the array are "ToC". | 
 |   bool AllSame = true; | 
 |   Use *OperandList = getOperandList(); | 
 |   unsigned OperandNo = 0; | 
 |   for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { | 
 |     Constant *Val = cast<Constant>(O->get()); | 
 |     if (Val == From) { | 
 |       OperandNo = (O - OperandList); | 
 |       Val = ToC; | 
 |       ++NumUpdated; | 
 |     } | 
 |     Values.push_back(Val); | 
 |     AllSame &= Val == ToC; | 
 |   } | 
 |  | 
 |   if (AllSame && ToC->isNullValue()) | 
 |     return ConstantAggregateZero::get(getType()); | 
 |  | 
 |   if (AllSame && isa<UndefValue>(ToC)) | 
 |     return UndefValue::get(getType()); | 
 |  | 
 |   // Check for any other type of constant-folding. | 
 |   if (Constant *C = getImpl(getType(), Values)) | 
 |     return C; | 
 |  | 
 |   // Update to the new value. | 
 |   return getContext().pImpl->ArrayConstants.replaceOperandsInPlace( | 
 |       Values, this, From, ToC, NumUpdated, OperandNo); | 
 | } | 
 |  | 
 | Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To) { | 
 |   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); | 
 |   Constant *ToC = cast<Constant>(To); | 
 |  | 
 |   Use *OperandList = getOperandList(); | 
 |  | 
 |   SmallVector<Constant*, 8> Values; | 
 |   Values.reserve(getNumOperands());  // Build replacement struct. | 
 |  | 
 |   // Fill values with the modified operands of the constant struct.  Also, | 
 |   // compute whether this turns into an all-zeros struct. | 
 |   unsigned NumUpdated = 0; | 
 |   bool AllSame = true; | 
 |   unsigned OperandNo = 0; | 
 |   for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) { | 
 |     Constant *Val = cast<Constant>(O->get()); | 
 |     if (Val == From) { | 
 |       OperandNo = (O - OperandList); | 
 |       Val = ToC; | 
 |       ++NumUpdated; | 
 |     } | 
 |     Values.push_back(Val); | 
 |     AllSame &= Val == ToC; | 
 |   } | 
 |  | 
 |   if (AllSame && ToC->isNullValue()) | 
 |     return ConstantAggregateZero::get(getType()); | 
 |  | 
 |   if (AllSame && isa<UndefValue>(ToC)) | 
 |     return UndefValue::get(getType()); | 
 |  | 
 |   // Update to the new value. | 
 |   return getContext().pImpl->StructConstants.replaceOperandsInPlace( | 
 |       Values, this, From, ToC, NumUpdated, OperandNo); | 
 | } | 
 |  | 
 | Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To) { | 
 |   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); | 
 |   Constant *ToC = cast<Constant>(To); | 
 |  | 
 |   SmallVector<Constant*, 8> Values; | 
 |   Values.reserve(getNumOperands());  // Build replacement array... | 
 |   unsigned NumUpdated = 0; | 
 |   unsigned OperandNo = 0; | 
 |   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { | 
 |     Constant *Val = getOperand(i); | 
 |     if (Val == From) { | 
 |       OperandNo = i; | 
 |       ++NumUpdated; | 
 |       Val = ToC; | 
 |     } | 
 |     Values.push_back(Val); | 
 |   } | 
 |  | 
 |   if (Constant *C = getImpl(Values)) | 
 |     return C; | 
 |  | 
 |   // Update to the new value. | 
 |   return getContext().pImpl->VectorConstants.replaceOperandsInPlace( | 
 |       Values, this, From, ToC, NumUpdated, OperandNo); | 
 | } | 
 |  | 
 | Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV) { | 
 |   assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!"); | 
 |   Constant *To = cast<Constant>(ToV); | 
 |  | 
 |   SmallVector<Constant*, 8> NewOps; | 
 |   unsigned NumUpdated = 0; | 
 |   unsigned OperandNo = 0; | 
 |   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { | 
 |     Constant *Op = getOperand(i); | 
 |     if (Op == From) { | 
 |       OperandNo = i; | 
 |       ++NumUpdated; | 
 |       Op = To; | 
 |     } | 
 |     NewOps.push_back(Op); | 
 |   } | 
 |   assert(NumUpdated && "I didn't contain From!"); | 
 |  | 
 |   if (Constant *C = getWithOperands(NewOps, getType(), true)) | 
 |     return C; | 
 |  | 
 |   // Update to the new value. | 
 |   return getContext().pImpl->ExprConstants.replaceOperandsInPlace( | 
 |       NewOps, this, From, To, NumUpdated, OperandNo); | 
 | } | 
 |  | 
 | Instruction *ConstantExpr::getAsInstruction(Instruction *InsertBefore) const { | 
 |   SmallVector<Value *, 4> ValueOperands(operands()); | 
 |   ArrayRef<Value*> Ops(ValueOperands); | 
 |  | 
 |   switch (getOpcode()) { | 
 |   case Instruction::Trunc: | 
 |   case Instruction::ZExt: | 
 |   case Instruction::SExt: | 
 |   case Instruction::FPTrunc: | 
 |   case Instruction::FPExt: | 
 |   case Instruction::UIToFP: | 
 |   case Instruction::SIToFP: | 
 |   case Instruction::FPToUI: | 
 |   case Instruction::FPToSI: | 
 |   case Instruction::PtrToInt: | 
 |   case Instruction::IntToPtr: | 
 |   case Instruction::BitCast: | 
 |   case Instruction::AddrSpaceCast: | 
 |     return CastInst::Create((Instruction::CastOps)getOpcode(), Ops[0], | 
 |                             getType(), "", InsertBefore); | 
 |   case Instruction::InsertElement: | 
 |     return InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "", InsertBefore); | 
 |   case Instruction::ExtractElement: | 
 |     return ExtractElementInst::Create(Ops[0], Ops[1], "", InsertBefore); | 
 |   case Instruction::ShuffleVector: | 
 |     return new ShuffleVectorInst(Ops[0], Ops[1], getShuffleMask(), "", | 
 |                                  InsertBefore); | 
 |  | 
 |   case Instruction::GetElementPtr: { | 
 |     const auto *GO = cast<GEPOperator>(this); | 
 |     if (GO->isInBounds()) | 
 |       return GetElementPtrInst::CreateInBounds( | 
 |           GO->getSourceElementType(), Ops[0], Ops.slice(1), "", InsertBefore); | 
 |     return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0], | 
 |                                      Ops.slice(1), "", InsertBefore); | 
 |   } | 
 |   case Instruction::ICmp: | 
 |   case Instruction::FCmp: | 
 |     return CmpInst::Create((Instruction::OtherOps)getOpcode(), | 
 |                            (CmpInst::Predicate)getPredicate(), Ops[0], Ops[1], | 
 |                            "", InsertBefore); | 
 |   default: | 
 |     assert(getNumOperands() == 2 && "Must be binary operator?"); | 
 |     BinaryOperator *BO = BinaryOperator::Create( | 
 |         (Instruction::BinaryOps)getOpcode(), Ops[0], Ops[1], "", InsertBefore); | 
 |     if (isa<OverflowingBinaryOperator>(BO)) { | 
 |       BO->setHasNoUnsignedWrap(SubclassOptionalData & | 
 |                                OverflowingBinaryOperator::NoUnsignedWrap); | 
 |       BO->setHasNoSignedWrap(SubclassOptionalData & | 
 |                              OverflowingBinaryOperator::NoSignedWrap); | 
 |     } | 
 |     if (isa<PossiblyExactOperator>(BO)) | 
 |       BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact); | 
 |     return BO; | 
 |   } | 
 | } |