|  | //===- llvm/Support/Unix/Program.cpp -----------------------------*- C++ -*-===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the Unix specific portion of the Program class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //=== WARNING: Implementation here must contain only generic UNIX code that | 
|  | //===          is guaranteed to work on *all* UNIX variants. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Support/Program.h" | 
|  |  | 
|  | #include "Unix.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/Config/config.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Errc.h" | 
|  | #include "llvm/Support/FileSystem.h" | 
|  | #include "llvm/Support/Path.h" | 
|  | #include "llvm/Support/StringSaver.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #if HAVE_SYS_STAT_H | 
|  | #include <sys/stat.h> | 
|  | #endif | 
|  | #if HAVE_SYS_RESOURCE_H | 
|  | #include <sys/resource.h> | 
|  | #endif | 
|  | #if HAVE_SIGNAL_H | 
|  | #include <signal.h> | 
|  | #endif | 
|  | #if HAVE_FCNTL_H | 
|  | #include <fcntl.h> | 
|  | #endif | 
|  | #if HAVE_UNISTD_H | 
|  | #include <unistd.h> | 
|  | #endif | 
|  | #ifdef HAVE_POSIX_SPAWN | 
|  | #include <spawn.h> | 
|  |  | 
|  | #if defined(__APPLE__) | 
|  | #include <TargetConditionals.h> | 
|  | #endif | 
|  |  | 
|  | #if defined(__APPLE__) && !(defined(TARGET_OS_IPHONE) && TARGET_OS_IPHONE) | 
|  | #define USE_NSGETENVIRON 1 | 
|  | #else | 
|  | #define USE_NSGETENVIRON 0 | 
|  | #endif | 
|  |  | 
|  | #if !USE_NSGETENVIRON | 
|  | extern char **environ; | 
|  | #else | 
|  | #include <crt_externs.h> // _NSGetEnviron | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace sys; | 
|  |  | 
|  | ProcessInfo::ProcessInfo() : Pid(0), ReturnCode(0) {} | 
|  |  | 
|  | ErrorOr<std::string> sys::findProgramByName(StringRef Name, | 
|  | ArrayRef<StringRef> Paths) { | 
|  | assert(!Name.empty() && "Must have a name!"); | 
|  | // Use the given path verbatim if it contains any slashes; this matches | 
|  | // the behavior of sh(1) and friends. | 
|  | if (Name.find('/') != StringRef::npos) return std::string(Name); | 
|  |  | 
|  | SmallVector<StringRef, 16> EnvironmentPaths; | 
|  | if (Paths.empty()) | 
|  | if (const char *PathEnv = std::getenv("PATH")) { | 
|  | SplitString(PathEnv, EnvironmentPaths, ":"); | 
|  | Paths = EnvironmentPaths; | 
|  | } | 
|  |  | 
|  | for (auto Path : Paths) { | 
|  | if (Path.empty()) | 
|  | continue; | 
|  |  | 
|  | // Check to see if this first directory contains the executable... | 
|  | SmallString<128> FilePath(Path); | 
|  | sys::path::append(FilePath, Name); | 
|  | if (sys::fs::can_execute(FilePath.c_str())) | 
|  | return std::string(FilePath.str());  // Found the executable! | 
|  | } | 
|  | return errc::no_such_file_or_directory; | 
|  | } | 
|  |  | 
|  | static bool RedirectIO(Optional<StringRef> Path, int FD, std::string* ErrMsg) { | 
|  | if (!Path) // Noop | 
|  | return false; | 
|  | std::string File; | 
|  | if (Path->empty()) | 
|  | // Redirect empty paths to /dev/null | 
|  | File = "/dev/null"; | 
|  | else | 
|  | File = std::string(*Path); | 
|  |  | 
|  | // Open the file | 
|  | int InFD = open(File.c_str(), FD == 0 ? O_RDONLY : O_WRONLY|O_CREAT, 0666); | 
|  | if (InFD == -1) { | 
|  | MakeErrMsg(ErrMsg, "Cannot open file '" + File + "' for " | 
|  | + (FD == 0 ? "input" : "output")); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Install it as the requested FD | 
|  | if (dup2(InFD, FD) == -1) { | 
|  | MakeErrMsg(ErrMsg, "Cannot dup2"); | 
|  | close(InFD); | 
|  | return true; | 
|  | } | 
|  | close(InFD);      // Close the original FD | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #ifdef HAVE_POSIX_SPAWN | 
|  | static bool RedirectIO_PS(const std::string *Path, int FD, std::string *ErrMsg, | 
|  | posix_spawn_file_actions_t *FileActions) { | 
|  | if (!Path) // Noop | 
|  | return false; | 
|  | const char *File; | 
|  | if (Path->empty()) | 
|  | // Redirect empty paths to /dev/null | 
|  | File = "/dev/null"; | 
|  | else | 
|  | File = Path->c_str(); | 
|  |  | 
|  | if (int Err = posix_spawn_file_actions_addopen( | 
|  | FileActions, FD, File, | 
|  | FD == 0 ? O_RDONLY : O_WRONLY | O_CREAT, 0666)) | 
|  | return MakeErrMsg(ErrMsg, "Cannot posix_spawn_file_actions_addopen", Err); | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void TimeOutHandler(int Sig) { | 
|  | } | 
|  |  | 
|  | static void SetMemoryLimits(unsigned size) { | 
|  | #if HAVE_SYS_RESOURCE_H && HAVE_GETRLIMIT && HAVE_SETRLIMIT | 
|  | struct rlimit r; | 
|  | __typeof__ (r.rlim_cur) limit = (__typeof__ (r.rlim_cur)) (size) * 1048576; | 
|  |  | 
|  | // Heap size | 
|  | getrlimit (RLIMIT_DATA, &r); | 
|  | r.rlim_cur = limit; | 
|  | setrlimit (RLIMIT_DATA, &r); | 
|  | #ifdef RLIMIT_RSS | 
|  | // Resident set size. | 
|  | getrlimit (RLIMIT_RSS, &r); | 
|  | r.rlim_cur = limit; | 
|  | setrlimit (RLIMIT_RSS, &r); | 
|  | #endif | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static std::vector<const char *> | 
|  | toNullTerminatedCStringArray(ArrayRef<StringRef> Strings, StringSaver &Saver) { | 
|  | std::vector<const char *> Result; | 
|  | for (StringRef S : Strings) | 
|  | Result.push_back(Saver.save(S).data()); | 
|  | Result.push_back(nullptr); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | static bool Execute(ProcessInfo &PI, StringRef Program, | 
|  | ArrayRef<StringRef> Args, Optional<ArrayRef<StringRef>> Env, | 
|  | ArrayRef<Optional<StringRef>> Redirects, | 
|  | unsigned MemoryLimit, std::string *ErrMsg, | 
|  | BitVector *AffinityMask) { | 
|  | if (!llvm::sys::fs::exists(Program)) { | 
|  | if (ErrMsg) | 
|  | *ErrMsg = std::string("Executable \"") + Program.str() + | 
|  | std::string("\" doesn't exist!"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | assert(!AffinityMask && "Starting a process with an affinity mask is " | 
|  | "currently not supported on Unix!"); | 
|  |  | 
|  | BumpPtrAllocator Allocator; | 
|  | StringSaver Saver(Allocator); | 
|  | std::vector<const char *> ArgVector, EnvVector; | 
|  | const char **Argv = nullptr; | 
|  | const char **Envp = nullptr; | 
|  | ArgVector = toNullTerminatedCStringArray(Args, Saver); | 
|  | Argv = ArgVector.data(); | 
|  | if (Env) { | 
|  | EnvVector = toNullTerminatedCStringArray(*Env, Saver); | 
|  | Envp = EnvVector.data(); | 
|  | } | 
|  |  | 
|  | // If this OS has posix_spawn and there is no memory limit being implied, use | 
|  | // posix_spawn.  It is more efficient than fork/exec. | 
|  | #ifdef HAVE_POSIX_SPAWN | 
|  | if (MemoryLimit == 0) { | 
|  | posix_spawn_file_actions_t FileActionsStore; | 
|  | posix_spawn_file_actions_t *FileActions = nullptr; | 
|  |  | 
|  | // If we call posix_spawn_file_actions_addopen we have to make sure the | 
|  | // c strings we pass to it stay alive until the call to posix_spawn, | 
|  | // so we copy any StringRefs into this variable. | 
|  | std::string RedirectsStorage[3]; | 
|  |  | 
|  | if (!Redirects.empty()) { | 
|  | assert(Redirects.size() == 3); | 
|  | std::string *RedirectsStr[3] = {nullptr, nullptr, nullptr}; | 
|  | for (int I = 0; I < 3; ++I) { | 
|  | if (Redirects[I]) { | 
|  | RedirectsStorage[I] = std::string(*Redirects[I]); | 
|  | RedirectsStr[I] = &RedirectsStorage[I]; | 
|  | } | 
|  | } | 
|  |  | 
|  | FileActions = &FileActionsStore; | 
|  | posix_spawn_file_actions_init(FileActions); | 
|  |  | 
|  | // Redirect stdin/stdout. | 
|  | if (RedirectIO_PS(RedirectsStr[0], 0, ErrMsg, FileActions) || | 
|  | RedirectIO_PS(RedirectsStr[1], 1, ErrMsg, FileActions)) | 
|  | return false; | 
|  | if (!Redirects[1] || !Redirects[2] || *Redirects[1] != *Redirects[2]) { | 
|  | // Just redirect stderr | 
|  | if (RedirectIO_PS(RedirectsStr[2], 2, ErrMsg, FileActions)) | 
|  | return false; | 
|  | } else { | 
|  | // If stdout and stderr should go to the same place, redirect stderr | 
|  | // to the FD already open for stdout. | 
|  | if (int Err = posix_spawn_file_actions_adddup2(FileActions, 1, 2)) | 
|  | return !MakeErrMsg(ErrMsg, "Can't redirect stderr to stdout", Err); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Envp) | 
|  | #if !USE_NSGETENVIRON | 
|  | Envp = const_cast<const char **>(environ); | 
|  | #else | 
|  | // environ is missing in dylibs. | 
|  | Envp = const_cast<const char **>(*_NSGetEnviron()); | 
|  | #endif | 
|  |  | 
|  | constexpr int maxRetries = 8; | 
|  | int retries = 0; | 
|  | pid_t PID; | 
|  | int Err; | 
|  | do { | 
|  | PID = 0; // Make Valgrind happy. | 
|  | Err = posix_spawn(&PID, Program.str().c_str(), FileActions, | 
|  | /*attrp*/ nullptr, const_cast<char **>(Argv), | 
|  | const_cast<char **>(Envp)); | 
|  | } while (Err == EINTR && ++retries < maxRetries); | 
|  |  | 
|  | if (FileActions) | 
|  | posix_spawn_file_actions_destroy(FileActions); | 
|  |  | 
|  | if (Err) | 
|  | return !MakeErrMsg(ErrMsg, "posix_spawn failed", Err); | 
|  |  | 
|  | PI.Pid = PID; | 
|  | PI.Process = PID; | 
|  |  | 
|  | return true; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Create a child process. | 
|  | int child = fork(); | 
|  | switch (child) { | 
|  | // An error occurred:  Return to the caller. | 
|  | case -1: | 
|  | MakeErrMsg(ErrMsg, "Couldn't fork"); | 
|  | return false; | 
|  |  | 
|  | // Child process: Execute the program. | 
|  | case 0: { | 
|  | // Redirect file descriptors... | 
|  | if (!Redirects.empty()) { | 
|  | // Redirect stdin | 
|  | if (RedirectIO(Redirects[0], 0, ErrMsg)) { return false; } | 
|  | // Redirect stdout | 
|  | if (RedirectIO(Redirects[1], 1, ErrMsg)) { return false; } | 
|  | if (Redirects[1] && Redirects[2] && *Redirects[1] == *Redirects[2]) { | 
|  | // If stdout and stderr should go to the same place, redirect stderr | 
|  | // to the FD already open for stdout. | 
|  | if (-1 == dup2(1,2)) { | 
|  | MakeErrMsg(ErrMsg, "Can't redirect stderr to stdout"); | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | // Just redirect stderr | 
|  | if (RedirectIO(Redirects[2], 2, ErrMsg)) { return false; } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Set memory limits | 
|  | if (MemoryLimit!=0) { | 
|  | SetMemoryLimits(MemoryLimit); | 
|  | } | 
|  |  | 
|  | // Execute! | 
|  | std::string PathStr = std::string(Program); | 
|  | if (Envp != nullptr) | 
|  | execve(PathStr.c_str(), const_cast<char **>(Argv), | 
|  | const_cast<char **>(Envp)); | 
|  | else | 
|  | execv(PathStr.c_str(), const_cast<char **>(Argv)); | 
|  | // If the execve() failed, we should exit. Follow Unix protocol and | 
|  | // return 127 if the executable was not found, and 126 otherwise. | 
|  | // Use _exit rather than exit so that atexit functions and static | 
|  | // object destructors cloned from the parent process aren't | 
|  | // redundantly run, and so that any data buffered in stdio buffers | 
|  | // cloned from the parent aren't redundantly written out. | 
|  | _exit(errno == ENOENT ? 127 : 126); | 
|  | } | 
|  |  | 
|  | // Parent process: Break out of the switch to do our processing. | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | PI.Pid = child; | 
|  | PI.Process = child; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | namespace llvm { | 
|  | namespace sys { | 
|  |  | 
|  | #ifndef _AIX | 
|  | using ::wait4; | 
|  | #else | 
|  | static pid_t (wait4)(pid_t pid, int *status, int options, struct rusage *usage); | 
|  | #endif | 
|  |  | 
|  | } // namespace sys | 
|  | } // namespace llvm | 
|  |  | 
|  | #ifdef _AIX | 
|  | #ifndef _ALL_SOURCE | 
|  | extern "C" pid_t (wait4)(pid_t pid, int *status, int options, | 
|  | struct rusage *usage); | 
|  | #endif | 
|  | pid_t (llvm::sys::wait4)(pid_t pid, int *status, int options, | 
|  | struct rusage *usage) { | 
|  | assert(pid > 0 && "Only expecting to handle actual PID values!"); | 
|  | assert((options & ~WNOHANG) == 0 && "Expecting WNOHANG at most!"); | 
|  | assert(usage && "Expecting usage collection!"); | 
|  |  | 
|  | // AIX wait4 does not work well with WNOHANG. | 
|  | if (!(options & WNOHANG)) | 
|  | return ::wait4(pid, status, options, usage); | 
|  |  | 
|  | // For WNOHANG, we use waitid (which supports WNOWAIT) until the child process | 
|  | // has terminated. | 
|  | siginfo_t WaitIdInfo; | 
|  | WaitIdInfo.si_pid = 0; | 
|  | int WaitIdRetVal = | 
|  | waitid(P_PID, pid, &WaitIdInfo, WNOWAIT | WEXITED | options); | 
|  |  | 
|  | if (WaitIdRetVal == -1 || WaitIdInfo.si_pid == 0) | 
|  | return WaitIdRetVal; | 
|  |  | 
|  | assert(WaitIdInfo.si_pid == pid); | 
|  |  | 
|  | // The child has already terminated, so a blocking wait on it is okay in the | 
|  | // absence of indiscriminate `wait` calls from the current process (which | 
|  | // would cause the call here to fail with ECHILD). | 
|  | return ::wait4(pid, status, options & ~WNOHANG, usage); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | ProcessInfo llvm::sys::Wait(const ProcessInfo &PI, unsigned SecondsToWait, | 
|  | bool WaitUntilTerminates, std::string *ErrMsg, | 
|  | Optional<ProcessStatistics> *ProcStat) { | 
|  | struct sigaction Act, Old; | 
|  | assert(PI.Pid && "invalid pid to wait on, process not started?"); | 
|  |  | 
|  | int WaitPidOptions = 0; | 
|  | pid_t ChildPid = PI.Pid; | 
|  | if (WaitUntilTerminates) { | 
|  | SecondsToWait = 0; | 
|  | } else if (SecondsToWait) { | 
|  | // Install a timeout handler.  The handler itself does nothing, but the | 
|  | // simple fact of having a handler at all causes the wait below to return | 
|  | // with EINTR, unlike if we used SIG_IGN. | 
|  | memset(&Act, 0, sizeof(Act)); | 
|  | Act.sa_handler = TimeOutHandler; | 
|  | sigemptyset(&Act.sa_mask); | 
|  | sigaction(SIGALRM, &Act, &Old); | 
|  | // FIXME The alarm signal may be delivered to another thread. | 
|  | alarm(SecondsToWait); | 
|  | } else if (SecondsToWait == 0) | 
|  | WaitPidOptions = WNOHANG; | 
|  |  | 
|  | // Parent process: Wait for the child process to terminate. | 
|  | int status; | 
|  | ProcessInfo WaitResult; | 
|  | rusage Info; | 
|  | if (ProcStat) | 
|  | ProcStat->reset(); | 
|  |  | 
|  | do { | 
|  | WaitResult.Pid = sys::wait4(ChildPid, &status, WaitPidOptions, &Info); | 
|  | } while (WaitUntilTerminates && WaitResult.Pid == -1 && errno == EINTR); | 
|  |  | 
|  | if (WaitResult.Pid != PI.Pid) { | 
|  | if (WaitResult.Pid == 0) { | 
|  | // Non-blocking wait. | 
|  | return WaitResult; | 
|  | } else { | 
|  | if (SecondsToWait && errno == EINTR) { | 
|  | // Kill the child. | 
|  | kill(PI.Pid, SIGKILL); | 
|  |  | 
|  | // Turn off the alarm and restore the signal handler | 
|  | alarm(0); | 
|  | sigaction(SIGALRM, &Old, nullptr); | 
|  |  | 
|  | // Wait for child to die | 
|  | // FIXME This could grab some other child process out from another | 
|  | // waiting thread and then leave a zombie anyway. | 
|  | if (wait(&status) != ChildPid) | 
|  | MakeErrMsg(ErrMsg, "Child timed out but wouldn't die"); | 
|  | else | 
|  | MakeErrMsg(ErrMsg, "Child timed out", 0); | 
|  |  | 
|  | WaitResult.ReturnCode = -2; // Timeout detected | 
|  | return WaitResult; | 
|  | } else if (errno != EINTR) { | 
|  | MakeErrMsg(ErrMsg, "Error waiting for child process"); | 
|  | WaitResult.ReturnCode = -1; | 
|  | return WaitResult; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // We exited normally without timeout, so turn off the timer. | 
|  | if (SecondsToWait && !WaitUntilTerminates) { | 
|  | alarm(0); | 
|  | sigaction(SIGALRM, &Old, nullptr); | 
|  | } | 
|  |  | 
|  | if (ProcStat) { | 
|  | std::chrono::microseconds UserT = toDuration(Info.ru_utime); | 
|  | std::chrono::microseconds KernelT = toDuration(Info.ru_stime); | 
|  | uint64_t PeakMemory = 0; | 
|  | #ifndef __HAIKU__ | 
|  | PeakMemory = static_cast<uint64_t>(Info.ru_maxrss); | 
|  | #endif | 
|  | *ProcStat = ProcessStatistics{UserT + KernelT, UserT, PeakMemory}; | 
|  | } | 
|  |  | 
|  | // Return the proper exit status. Detect error conditions | 
|  | // so we can return -1 for them and set ErrMsg informatively. | 
|  | int result = 0; | 
|  | if (WIFEXITED(status)) { | 
|  | result = WEXITSTATUS(status); | 
|  | WaitResult.ReturnCode = result; | 
|  |  | 
|  | if (result == 127) { | 
|  | if (ErrMsg) | 
|  | *ErrMsg = llvm::sys::StrError(ENOENT); | 
|  | WaitResult.ReturnCode = -1; | 
|  | return WaitResult; | 
|  | } | 
|  | if (result == 126) { | 
|  | if (ErrMsg) | 
|  | *ErrMsg = "Program could not be executed"; | 
|  | WaitResult.ReturnCode = -1; | 
|  | return WaitResult; | 
|  | } | 
|  | } else if (WIFSIGNALED(status)) { | 
|  | if (ErrMsg) { | 
|  | *ErrMsg = strsignal(WTERMSIG(status)); | 
|  | #ifdef WCOREDUMP | 
|  | if (WCOREDUMP(status)) | 
|  | *ErrMsg += " (core dumped)"; | 
|  | #endif | 
|  | } | 
|  | // Return a special value to indicate that the process received an unhandled | 
|  | // signal during execution as opposed to failing to execute. | 
|  | WaitResult.ReturnCode = -2; | 
|  | } | 
|  | return WaitResult; | 
|  | } | 
|  |  | 
|  | std::error_code llvm::sys::ChangeStdinMode(fs::OpenFlags Flags){ | 
|  | if (!(Flags & fs::OF_Text)) | 
|  | return ChangeStdinToBinary(); | 
|  | return std::error_code(); | 
|  | } | 
|  |  | 
|  | std::error_code llvm::sys::ChangeStdoutMode(fs::OpenFlags Flags){ | 
|  | if (!(Flags & fs::OF_Text)) | 
|  | return ChangeStdoutToBinary(); | 
|  | return std::error_code(); | 
|  | } | 
|  |  | 
|  | std::error_code llvm::sys::ChangeStdinToBinary() { | 
|  | // Do nothing, as Unix doesn't differentiate between text and binary. | 
|  | return std::error_code(); | 
|  | } | 
|  |  | 
|  | std::error_code llvm::sys::ChangeStdoutToBinary() { | 
|  | // Do nothing, as Unix doesn't differentiate between text and binary. | 
|  | return std::error_code(); | 
|  | } | 
|  |  | 
|  | std::error_code | 
|  | llvm::sys::writeFileWithEncoding(StringRef FileName, StringRef Contents, | 
|  | WindowsEncodingMethod Encoding /*unused*/) { | 
|  | std::error_code EC; | 
|  | llvm::raw_fd_ostream OS(FileName, EC, llvm::sys::fs::OpenFlags::OF_TextWithCRLF); | 
|  |  | 
|  | if (EC) | 
|  | return EC; | 
|  |  | 
|  | OS << Contents; | 
|  |  | 
|  | if (OS.has_error()) | 
|  | return make_error_code(errc::io_error); | 
|  |  | 
|  | return EC; | 
|  | } | 
|  |  | 
|  | bool llvm::sys::commandLineFitsWithinSystemLimits(StringRef Program, | 
|  | ArrayRef<StringRef> Args) { | 
|  | static long ArgMax = sysconf(_SC_ARG_MAX); | 
|  | // POSIX requires that _POSIX_ARG_MAX is 4096, which is the lowest possible | 
|  | // value for ARG_MAX on a POSIX compliant system. | 
|  | static long ArgMin = _POSIX_ARG_MAX; | 
|  |  | 
|  | // This the same baseline used by xargs. | 
|  | long EffectiveArgMax = 128 * 1024; | 
|  |  | 
|  | if (EffectiveArgMax > ArgMax) | 
|  | EffectiveArgMax = ArgMax; | 
|  | else if (EffectiveArgMax < ArgMin) | 
|  | EffectiveArgMax = ArgMin; | 
|  |  | 
|  | // System says no practical limit. | 
|  | if (ArgMax == -1) | 
|  | return true; | 
|  |  | 
|  | // Conservatively account for space required by environment variables. | 
|  | long HalfArgMax = EffectiveArgMax / 2; | 
|  |  | 
|  | size_t ArgLength = Program.size() + 1; | 
|  | for (StringRef Arg : Args) { | 
|  | // Ensure that we do not exceed the MAX_ARG_STRLEN constant on Linux, which | 
|  | // does not have a constant unlike what the man pages would have you | 
|  | // believe. Since this limit is pretty high, perform the check | 
|  | // unconditionally rather than trying to be aggressive and limiting it to | 
|  | // Linux only. | 
|  | if (Arg.size() >= (32 * 4096)) | 
|  | return false; | 
|  |  | 
|  | ArgLength += Arg.size() + 1; | 
|  | if (ArgLength > size_t(HalfArgMax)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } |