| //==- lib/Support/ScaledNumber.cpp - Support for scaled numbers -*- C++ -*-===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // Implementation of some scaled number algorithms. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/Support/ScaledNumber.h" | 
 | #include "llvm/ADT/APFloat.h" | 
 | #include "llvm/ADT/ArrayRef.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 |  | 
 | using namespace llvm; | 
 | using namespace llvm::ScaledNumbers; | 
 |  | 
 | std::pair<uint64_t, int16_t> ScaledNumbers::multiply64(uint64_t LHS, | 
 |                                                        uint64_t RHS) { | 
 |   // Separate into two 32-bit digits (U.L). | 
 |   auto getU = [](uint64_t N) { return N >> 32; }; | 
 |   auto getL = [](uint64_t N) { return N & UINT32_MAX; }; | 
 |   uint64_t UL = getU(LHS), LL = getL(LHS), UR = getU(RHS), LR = getL(RHS); | 
 |  | 
 |   // Compute cross products. | 
 |   uint64_t P1 = UL * UR, P2 = UL * LR, P3 = LL * UR, P4 = LL * LR; | 
 |  | 
 |   // Sum into two 64-bit digits. | 
 |   uint64_t Upper = P1, Lower = P4; | 
 |   auto addWithCarry = [&](uint64_t N) { | 
 |     uint64_t NewLower = Lower + (getL(N) << 32); | 
 |     Upper += getU(N) + (NewLower < Lower); | 
 |     Lower = NewLower; | 
 |   }; | 
 |   addWithCarry(P2); | 
 |   addWithCarry(P3); | 
 |  | 
 |   // Check whether the upper digit is empty. | 
 |   if (!Upper) | 
 |     return std::make_pair(Lower, 0); | 
 |  | 
 |   // Shift as little as possible to maximize precision. | 
 |   unsigned LeadingZeros = countLeadingZeros(Upper); | 
 |   int Shift = 64 - LeadingZeros; | 
 |   if (LeadingZeros) | 
 |     Upper = Upper << LeadingZeros | Lower >> Shift; | 
 |   return getRounded(Upper, Shift, | 
 |                     Shift && (Lower & UINT64_C(1) << (Shift - 1))); | 
 | } | 
 |  | 
 | static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); } | 
 |  | 
 | std::pair<uint32_t, int16_t> ScaledNumbers::divide32(uint32_t Dividend, | 
 |                                                      uint32_t Divisor) { | 
 |   assert(Dividend && "expected non-zero dividend"); | 
 |   assert(Divisor && "expected non-zero divisor"); | 
 |  | 
 |   // Use 64-bit math and canonicalize the dividend to gain precision. | 
 |   uint64_t Dividend64 = Dividend; | 
 |   int Shift = 0; | 
 |   if (int Zeros = countLeadingZeros(Dividend64)) { | 
 |     Shift -= Zeros; | 
 |     Dividend64 <<= Zeros; | 
 |   } | 
 |   uint64_t Quotient = Dividend64 / Divisor; | 
 |   uint64_t Remainder = Dividend64 % Divisor; | 
 |  | 
 |   // If Quotient needs to be shifted, leave the rounding to getAdjusted(). | 
 |   if (Quotient > UINT32_MAX) | 
 |     return getAdjusted<uint32_t>(Quotient, Shift); | 
 |  | 
 |   // Round based on the value of the next bit. | 
 |   return getRounded<uint32_t>(Quotient, Shift, Remainder >= getHalf(Divisor)); | 
 | } | 
 |  | 
 | std::pair<uint64_t, int16_t> ScaledNumbers::divide64(uint64_t Dividend, | 
 |                                                      uint64_t Divisor) { | 
 |   assert(Dividend && "expected non-zero dividend"); | 
 |   assert(Divisor && "expected non-zero divisor"); | 
 |  | 
 |   // Minimize size of divisor. | 
 |   int Shift = 0; | 
 |   if (int Zeros = countTrailingZeros(Divisor)) { | 
 |     Shift -= Zeros; | 
 |     Divisor >>= Zeros; | 
 |   } | 
 |  | 
 |   // Check for powers of two. | 
 |   if (Divisor == 1) | 
 |     return std::make_pair(Dividend, Shift); | 
 |  | 
 |   // Maximize size of dividend. | 
 |   if (int Zeros = countLeadingZeros(Dividend)) { | 
 |     Shift -= Zeros; | 
 |     Dividend <<= Zeros; | 
 |   } | 
 |  | 
 |   // Start with the result of a divide. | 
 |   uint64_t Quotient = Dividend / Divisor; | 
 |   Dividend %= Divisor; | 
 |  | 
 |   // Continue building the quotient with long division. | 
 |   while (!(Quotient >> 63) && Dividend) { | 
 |     // Shift Dividend and check for overflow. | 
 |     bool IsOverflow = Dividend >> 63; | 
 |     Dividend <<= 1; | 
 |     --Shift; | 
 |  | 
 |     // Get the next bit of Quotient. | 
 |     Quotient <<= 1; | 
 |     if (IsOverflow || Divisor <= Dividend) { | 
 |       Quotient |= 1; | 
 |       Dividend -= Divisor; | 
 |     } | 
 |   } | 
 |  | 
 |   return getRounded(Quotient, Shift, Dividend >= getHalf(Divisor)); | 
 | } | 
 |  | 
 | int ScaledNumbers::compareImpl(uint64_t L, uint64_t R, int ScaleDiff) { | 
 |   assert(ScaleDiff >= 0 && "wrong argument order"); | 
 |   assert(ScaleDiff < 64 && "numbers too far apart"); | 
 |  | 
 |   uint64_t L_adjusted = L >> ScaleDiff; | 
 |   if (L_adjusted < R) | 
 |     return -1; | 
 |   if (L_adjusted > R) | 
 |     return 1; | 
 |  | 
 |   return L > L_adjusted << ScaleDiff ? 1 : 0; | 
 | } | 
 |  | 
 | static void appendDigit(std::string &Str, unsigned D) { | 
 |   assert(D < 10); | 
 |   Str += '0' + D % 10; | 
 | } | 
 |  | 
 | static void appendNumber(std::string &Str, uint64_t N) { | 
 |   while (N) { | 
 |     appendDigit(Str, N % 10); | 
 |     N /= 10; | 
 |   } | 
 | } | 
 |  | 
 | static bool doesRoundUp(char Digit) { | 
 |   switch (Digit) { | 
 |   case '5': | 
 |   case '6': | 
 |   case '7': | 
 |   case '8': | 
 |   case '9': | 
 |     return true; | 
 |   default: | 
 |     return false; | 
 |   } | 
 | } | 
 |  | 
 | static std::string toStringAPFloat(uint64_t D, int E, unsigned Precision) { | 
 |   assert(E >= ScaledNumbers::MinScale); | 
 |   assert(E <= ScaledNumbers::MaxScale); | 
 |  | 
 |   // Find a new E, but don't let it increase past MaxScale. | 
 |   int LeadingZeros = ScaledNumberBase::countLeadingZeros64(D); | 
 |   int NewE = std::min(ScaledNumbers::MaxScale, E + 63 - LeadingZeros); | 
 |   int Shift = 63 - (NewE - E); | 
 |   assert(Shift <= LeadingZeros); | 
 |   assert(Shift == LeadingZeros || NewE == ScaledNumbers::MaxScale); | 
 |   assert(Shift >= 0 && Shift < 64 && "undefined behavior"); | 
 |   D <<= Shift; | 
 |   E = NewE; | 
 |  | 
 |   // Check for a denormal. | 
 |   unsigned AdjustedE = E + 16383; | 
 |   if (!(D >> 63)) { | 
 |     assert(E == ScaledNumbers::MaxScale); | 
 |     AdjustedE = 0; | 
 |   } | 
 |  | 
 |   // Build the float and print it. | 
 |   uint64_t RawBits[2] = {D, AdjustedE}; | 
 |   APFloat Float(APFloat::x87DoubleExtended(), APInt(80, RawBits)); | 
 |   SmallVector<char, 24> Chars; | 
 |   Float.toString(Chars, Precision, 0); | 
 |   return std::string(Chars.begin(), Chars.end()); | 
 | } | 
 |  | 
 | static std::string stripTrailingZeros(const std::string &Float) { | 
 |   size_t NonZero = Float.find_last_not_of('0'); | 
 |   assert(NonZero != std::string::npos && "no . in floating point string"); | 
 |  | 
 |   if (Float[NonZero] == '.') | 
 |     ++NonZero; | 
 |  | 
 |   return Float.substr(0, NonZero + 1); | 
 | } | 
 |  | 
 | std::string ScaledNumberBase::toString(uint64_t D, int16_t E, int Width, | 
 |                                        unsigned Precision) { | 
 |   if (!D) | 
 |     return "0.0"; | 
 |  | 
 |   // Canonicalize exponent and digits. | 
 |   uint64_t Above0 = 0; | 
 |   uint64_t Below0 = 0; | 
 |   uint64_t Extra = 0; | 
 |   int ExtraShift = 0; | 
 |   if (E == 0) { | 
 |     Above0 = D; | 
 |   } else if (E > 0) { | 
 |     if (int Shift = std::min(int16_t(countLeadingZeros64(D)), E)) { | 
 |       D <<= Shift; | 
 |       E -= Shift; | 
 |  | 
 |       if (!E) | 
 |         Above0 = D; | 
 |     } | 
 |   } else if (E > -64) { | 
 |     Above0 = D >> -E; | 
 |     Below0 = D << (64 + E); | 
 |   } else if (E == -64) { | 
 |     // Special case: shift by 64 bits is undefined behavior. | 
 |     Below0 = D; | 
 |   } else if (E > -120) { | 
 |     Below0 = D >> (-E - 64); | 
 |     Extra = D << (128 + E); | 
 |     ExtraShift = -64 - E; | 
 |   } | 
 |  | 
 |   // Fall back on APFloat for very small and very large numbers. | 
 |   if (!Above0 && !Below0) | 
 |     return toStringAPFloat(D, E, Precision); | 
 |  | 
 |   // Append the digits before the decimal. | 
 |   std::string Str; | 
 |   size_t DigitsOut = 0; | 
 |   if (Above0) { | 
 |     appendNumber(Str, Above0); | 
 |     DigitsOut = Str.size(); | 
 |   } else | 
 |     appendDigit(Str, 0); | 
 |   std::reverse(Str.begin(), Str.end()); | 
 |  | 
 |   // Return early if there's nothing after the decimal. | 
 |   if (!Below0) | 
 |     return Str + ".0"; | 
 |  | 
 |   // Append the decimal and beyond. | 
 |   Str += '.'; | 
 |   uint64_t Error = UINT64_C(1) << (64 - Width); | 
 |  | 
 |   // We need to shift Below0 to the right to make space for calculating | 
 |   // digits.  Save the precision we're losing in Extra. | 
 |   Extra = (Below0 & 0xf) << 56 | (Extra >> 8); | 
 |   Below0 >>= 4; | 
 |   size_t SinceDot = 0; | 
 |   size_t AfterDot = Str.size(); | 
 |   do { | 
 |     if (ExtraShift) { | 
 |       --ExtraShift; | 
 |       Error *= 5; | 
 |     } else | 
 |       Error *= 10; | 
 |  | 
 |     Below0 *= 10; | 
 |     Extra *= 10; | 
 |     Below0 += (Extra >> 60); | 
 |     Extra = Extra & (UINT64_MAX >> 4); | 
 |     appendDigit(Str, Below0 >> 60); | 
 |     Below0 = Below0 & (UINT64_MAX >> 4); | 
 |     if (DigitsOut || Str.back() != '0') | 
 |       ++DigitsOut; | 
 |     ++SinceDot; | 
 |   } while (Error && (Below0 << 4 | Extra >> 60) >= Error / 2 && | 
 |            (!Precision || DigitsOut <= Precision || SinceDot < 2)); | 
 |  | 
 |   // Return early for maximum precision. | 
 |   if (!Precision || DigitsOut <= Precision) | 
 |     return stripTrailingZeros(Str); | 
 |  | 
 |   // Find where to truncate. | 
 |   size_t Truncate = | 
 |       std::max(Str.size() - (DigitsOut - Precision), AfterDot + 1); | 
 |  | 
 |   // Check if there's anything to truncate. | 
 |   if (Truncate >= Str.size()) | 
 |     return stripTrailingZeros(Str); | 
 |  | 
 |   bool Carry = doesRoundUp(Str[Truncate]); | 
 |   if (!Carry) | 
 |     return stripTrailingZeros(Str.substr(0, Truncate)); | 
 |  | 
 |   // Round with the first truncated digit. | 
 |   for (std::string::reverse_iterator I(Str.begin() + Truncate), E = Str.rend(); | 
 |        I != E; ++I) { | 
 |     if (*I == '.') | 
 |       continue; | 
 |     if (*I == '9') { | 
 |       *I = '0'; | 
 |       continue; | 
 |     } | 
 |  | 
 |     ++*I; | 
 |     Carry = false; | 
 |     break; | 
 |   } | 
 |  | 
 |   // Add "1" in front if we still need to carry. | 
 |   return stripTrailingZeros(std::string(Carry, '1') + Str.substr(0, Truncate)); | 
 | } | 
 |  | 
 | raw_ostream &ScaledNumberBase::print(raw_ostream &OS, uint64_t D, int16_t E, | 
 |                                      int Width, unsigned Precision) { | 
 |   return OS << toString(D, E, Width, Precision); | 
 | } | 
 |  | 
 | void ScaledNumberBase::dump(uint64_t D, int16_t E, int Width) { | 
 |   print(dbgs(), D, E, Width, 0) << "[" << Width << ":" << D << "*2^" << E | 
 |                                 << "]"; | 
 | } |