|  | //===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //  This file implements the operating system Host concept. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Support/Host.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/StringMap.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/ADT/StringSwitch.h" | 
|  | #include "llvm/ADT/Triple.h" | 
|  | #include "llvm/Config/llvm-config.h" | 
|  | #include "llvm/Support/BCD.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/FileSystem.h" | 
|  | #include "llvm/Support/MemoryBuffer.h" | 
|  | #include "llvm/Support/X86TargetParser.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <assert.h> | 
|  | #include <string.h> | 
|  |  | 
|  | // Include the platform-specific parts of this class. | 
|  | #ifdef LLVM_ON_UNIX | 
|  | #include "Unix/Host.inc" | 
|  | #include <sched.h> | 
|  | #endif | 
|  | #ifdef _WIN32 | 
|  | #include "Windows/Host.inc" | 
|  | #endif | 
|  | #ifdef _MSC_VER | 
|  | #include <intrin.h> | 
|  | #endif | 
|  | #if defined(__APPLE__) && (!defined(__x86_64__)) | 
|  | #include <mach/host_info.h> | 
|  | #include <mach/mach.h> | 
|  | #include <mach/mach_host.h> | 
|  | #include <mach/machine.h> | 
|  | #endif | 
|  | #ifdef _AIX | 
|  | #include <sys/systemcfg.h> | 
|  | #endif | 
|  |  | 
|  | #define DEBUG_TYPE "host-detection" | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //  Implementations of the CPU detection routines | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | static std::unique_ptr<llvm::MemoryBuffer> | 
|  | LLVM_ATTRIBUTE_UNUSED getProcCpuinfoContent() { | 
|  | llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text = | 
|  | llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo"); | 
|  | if (std::error_code EC = Text.getError()) { | 
|  | llvm::errs() << "Can't read " | 
|  | << "/proc/cpuinfo: " << EC.message() << "\n"; | 
|  | return nullptr; | 
|  | } | 
|  | return std::move(*Text); | 
|  | } | 
|  |  | 
|  | StringRef sys::detail::getHostCPUNameForPowerPC(StringRef ProcCpuinfoContent) { | 
|  | // Access to the Processor Version Register (PVR) on PowerPC is privileged, | 
|  | // and so we must use an operating-system interface to determine the current | 
|  | // processor type. On Linux, this is exposed through the /proc/cpuinfo file. | 
|  | const char *generic = "generic"; | 
|  |  | 
|  | // The cpu line is second (after the 'processor: 0' line), so if this | 
|  | // buffer is too small then something has changed (or is wrong). | 
|  | StringRef::const_iterator CPUInfoStart = ProcCpuinfoContent.begin(); | 
|  | StringRef::const_iterator CPUInfoEnd = ProcCpuinfoContent.end(); | 
|  |  | 
|  | StringRef::const_iterator CIP = CPUInfoStart; | 
|  |  | 
|  | StringRef::const_iterator CPUStart = 0; | 
|  | size_t CPULen = 0; | 
|  |  | 
|  | // We need to find the first line which starts with cpu, spaces, and a colon. | 
|  | // After the colon, there may be some additional spaces and then the cpu type. | 
|  | while (CIP < CPUInfoEnd && CPUStart == 0) { | 
|  | if (CIP < CPUInfoEnd && *CIP == '\n') | 
|  | ++CIP; | 
|  |  | 
|  | if (CIP < CPUInfoEnd && *CIP == 'c') { | 
|  | ++CIP; | 
|  | if (CIP < CPUInfoEnd && *CIP == 'p') { | 
|  | ++CIP; | 
|  | if (CIP < CPUInfoEnd && *CIP == 'u') { | 
|  | ++CIP; | 
|  | while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t')) | 
|  | ++CIP; | 
|  |  | 
|  | if (CIP < CPUInfoEnd && *CIP == ':') { | 
|  | ++CIP; | 
|  | while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t')) | 
|  | ++CIP; | 
|  |  | 
|  | if (CIP < CPUInfoEnd) { | 
|  | CPUStart = CIP; | 
|  | while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' && | 
|  | *CIP != ',' && *CIP != '\n')) | 
|  | ++CIP; | 
|  | CPULen = CIP - CPUStart; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CPUStart == 0) | 
|  | while (CIP < CPUInfoEnd && *CIP != '\n') | 
|  | ++CIP; | 
|  | } | 
|  |  | 
|  | if (CPUStart == 0) | 
|  | return generic; | 
|  |  | 
|  | return StringSwitch<const char *>(StringRef(CPUStart, CPULen)) | 
|  | .Case("604e", "604e") | 
|  | .Case("604", "604") | 
|  | .Case("7400", "7400") | 
|  | .Case("7410", "7400") | 
|  | .Case("7447", "7400") | 
|  | .Case("7455", "7450") | 
|  | .Case("G4", "g4") | 
|  | .Case("POWER4", "970") | 
|  | .Case("PPC970FX", "970") | 
|  | .Case("PPC970MP", "970") | 
|  | .Case("G5", "g5") | 
|  | .Case("POWER5", "g5") | 
|  | .Case("A2", "a2") | 
|  | .Case("POWER6", "pwr6") | 
|  | .Case("POWER7", "pwr7") | 
|  | .Case("POWER8", "pwr8") | 
|  | .Case("POWER8E", "pwr8") | 
|  | .Case("POWER8NVL", "pwr8") | 
|  | .Case("POWER9", "pwr9") | 
|  | .Case("POWER10", "pwr10") | 
|  | // FIXME: If we get a simulator or machine with the capabilities of | 
|  | // mcpu=future, we should revisit this and add the name reported by the | 
|  | // simulator/machine. | 
|  | .Default(generic); | 
|  | } | 
|  |  | 
|  | StringRef sys::detail::getHostCPUNameForARM(StringRef ProcCpuinfoContent) { | 
|  | // The cpuid register on arm is not accessible from user space. On Linux, | 
|  | // it is exposed through the /proc/cpuinfo file. | 
|  |  | 
|  | // Read 32 lines from /proc/cpuinfo, which should contain the CPU part line | 
|  | // in all cases. | 
|  | SmallVector<StringRef, 32> Lines; | 
|  | ProcCpuinfoContent.split(Lines, "\n"); | 
|  |  | 
|  | // Look for the CPU implementer line. | 
|  | StringRef Implementer; | 
|  | StringRef Hardware; | 
|  | StringRef Part; | 
|  | for (unsigned I = 0, E = Lines.size(); I != E; ++I) { | 
|  | if (Lines[I].startswith("CPU implementer")) | 
|  | Implementer = Lines[I].substr(15).ltrim("\t :"); | 
|  | if (Lines[I].startswith("Hardware")) | 
|  | Hardware = Lines[I].substr(8).ltrim("\t :"); | 
|  | if (Lines[I].startswith("CPU part")) | 
|  | Part = Lines[I].substr(8).ltrim("\t :"); | 
|  | } | 
|  |  | 
|  | if (Implementer == "0x41") { // ARM Ltd. | 
|  | // MSM8992/8994 may give cpu part for the core that the kernel is running on, | 
|  | // which is undeterministic and wrong. Always return cortex-a53 for these SoC. | 
|  | if (Hardware.endswith("MSM8994") || Hardware.endswith("MSM8996")) | 
|  | return "cortex-a53"; | 
|  |  | 
|  |  | 
|  | // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The | 
|  | // values correspond to the "Part number" in the CP15/c0 register. The | 
|  | // contents are specified in the various processor manuals. | 
|  | // This corresponds to the Main ID Register in Technical Reference Manuals. | 
|  | // and is used in programs like sys-utils | 
|  | return StringSwitch<const char *>(Part) | 
|  | .Case("0x926", "arm926ej-s") | 
|  | .Case("0xb02", "mpcore") | 
|  | .Case("0xb36", "arm1136j-s") | 
|  | .Case("0xb56", "arm1156t2-s") | 
|  | .Case("0xb76", "arm1176jz-s") | 
|  | .Case("0xc08", "cortex-a8") | 
|  | .Case("0xc09", "cortex-a9") | 
|  | .Case("0xc0f", "cortex-a15") | 
|  | .Case("0xc20", "cortex-m0") | 
|  | .Case("0xc23", "cortex-m3") | 
|  | .Case("0xc24", "cortex-m4") | 
|  | .Case("0xd22", "cortex-m55") | 
|  | .Case("0xd02", "cortex-a34") | 
|  | .Case("0xd04", "cortex-a35") | 
|  | .Case("0xd03", "cortex-a53") | 
|  | .Case("0xd07", "cortex-a57") | 
|  | .Case("0xd08", "cortex-a72") | 
|  | .Case("0xd09", "cortex-a73") | 
|  | .Case("0xd0a", "cortex-a75") | 
|  | .Case("0xd0b", "cortex-a76") | 
|  | .Case("0xd0d", "cortex-a77") | 
|  | .Case("0xd41", "cortex-a78") | 
|  | .Case("0xd44", "cortex-x1") | 
|  | .Case("0xd0c", "neoverse-n1") | 
|  | .Case("0xd49", "neoverse-n2") | 
|  | .Default("generic"); | 
|  | } | 
|  |  | 
|  | if (Implementer == "0x42" || Implementer == "0x43") { // Broadcom | Cavium. | 
|  | return StringSwitch<const char *>(Part) | 
|  | .Case("0x516", "thunderx2t99") | 
|  | .Case("0x0516", "thunderx2t99") | 
|  | .Case("0xaf", "thunderx2t99") | 
|  | .Case("0x0af", "thunderx2t99") | 
|  | .Case("0xa1", "thunderxt88") | 
|  | .Case("0x0a1", "thunderxt88") | 
|  | .Default("generic"); | 
|  | } | 
|  |  | 
|  | if (Implementer == "0x46") { // Fujitsu Ltd. | 
|  | return StringSwitch<const char *>(Part) | 
|  | .Case("0x001", "a64fx") | 
|  | .Default("generic"); | 
|  | } | 
|  |  | 
|  | if (Implementer == "0x4e") { // NVIDIA Corporation | 
|  | return StringSwitch<const char *>(Part) | 
|  | .Case("0x004", "carmel") | 
|  | .Default("generic"); | 
|  | } | 
|  |  | 
|  | if (Implementer == "0x48") // HiSilicon Technologies, Inc. | 
|  | // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The | 
|  | // values correspond to the "Part number" in the CP15/c0 register. The | 
|  | // contents are specified in the various processor manuals. | 
|  | return StringSwitch<const char *>(Part) | 
|  | .Case("0xd01", "tsv110") | 
|  | .Default("generic"); | 
|  |  | 
|  | if (Implementer == "0x51") // Qualcomm Technologies, Inc. | 
|  | // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The | 
|  | // values correspond to the "Part number" in the CP15/c0 register. The | 
|  | // contents are specified in the various processor manuals. | 
|  | return StringSwitch<const char *>(Part) | 
|  | .Case("0x06f", "krait") // APQ8064 | 
|  | .Case("0x201", "kryo") | 
|  | .Case("0x205", "kryo") | 
|  | .Case("0x211", "kryo") | 
|  | .Case("0x800", "cortex-a73") // Kryo 2xx Gold | 
|  | .Case("0x801", "cortex-a73") // Kryo 2xx Silver | 
|  | .Case("0x802", "cortex-a75") // Kryo 3xx Gold | 
|  | .Case("0x803", "cortex-a75") // Kryo 3xx Silver | 
|  | .Case("0x804", "cortex-a76") // Kryo 4xx Gold | 
|  | .Case("0x805", "cortex-a76") // Kryo 4xx/5xx Silver | 
|  | .Case("0xc00", "falkor") | 
|  | .Case("0xc01", "saphira") | 
|  | .Default("generic"); | 
|  | if (Implementer == "0x53") { // Samsung Electronics Co., Ltd. | 
|  | // The Exynos chips have a convoluted ID scheme that doesn't seem to follow | 
|  | // any predictive pattern across variants and parts. | 
|  | unsigned Variant = 0, Part = 0; | 
|  |  | 
|  | // Look for the CPU variant line, whose value is a 1 digit hexadecimal | 
|  | // number, corresponding to the Variant bits in the CP15/C0 register. | 
|  | for (auto I : Lines) | 
|  | if (I.consume_front("CPU variant")) | 
|  | I.ltrim("\t :").getAsInteger(0, Variant); | 
|  |  | 
|  | // Look for the CPU part line, whose value is a 3 digit hexadecimal | 
|  | // number, corresponding to the PartNum bits in the CP15/C0 register. | 
|  | for (auto I : Lines) | 
|  | if (I.consume_front("CPU part")) | 
|  | I.ltrim("\t :").getAsInteger(0, Part); | 
|  |  | 
|  | unsigned Exynos = (Variant << 12) | Part; | 
|  | switch (Exynos) { | 
|  | default: | 
|  | // Default by falling through to Exynos M3. | 
|  | LLVM_FALLTHROUGH; | 
|  | case 0x1002: | 
|  | return "exynos-m3"; | 
|  | case 0x1003: | 
|  | return "exynos-m4"; | 
|  | } | 
|  | } | 
|  |  | 
|  | return "generic"; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | StringRef getCPUNameFromS390Model(unsigned int Id, bool HaveVectorSupport) { | 
|  | switch (Id) { | 
|  | case 2064:  // z900 not supported by LLVM | 
|  | case 2066: | 
|  | case 2084:  // z990 not supported by LLVM | 
|  | case 2086: | 
|  | case 2094:  // z9-109 not supported by LLVM | 
|  | case 2096: | 
|  | return "generic"; | 
|  | case 2097: | 
|  | case 2098: | 
|  | return "z10"; | 
|  | case 2817: | 
|  | case 2818: | 
|  | return "z196"; | 
|  | case 2827: | 
|  | case 2828: | 
|  | return "zEC12"; | 
|  | case 2964: | 
|  | case 2965: | 
|  | return HaveVectorSupport? "z13" : "zEC12"; | 
|  | case 3906: | 
|  | case 3907: | 
|  | return HaveVectorSupport? "z14" : "zEC12"; | 
|  | case 8561: | 
|  | case 8562: | 
|  | return HaveVectorSupport? "z15" : "zEC12"; | 
|  | case 3931: | 
|  | case 3932: | 
|  | default: | 
|  | return HaveVectorSupport? "arch14" : "zEC12"; | 
|  | } | 
|  | } | 
|  | } // end anonymous namespace | 
|  |  | 
|  | StringRef sys::detail::getHostCPUNameForS390x(StringRef ProcCpuinfoContent) { | 
|  | // STIDP is a privileged operation, so use /proc/cpuinfo instead. | 
|  |  | 
|  | // The "processor 0:" line comes after a fair amount of other information, | 
|  | // including a cache breakdown, but this should be plenty. | 
|  | SmallVector<StringRef, 32> Lines; | 
|  | ProcCpuinfoContent.split(Lines, "\n"); | 
|  |  | 
|  | // Look for the CPU features. | 
|  | SmallVector<StringRef, 32> CPUFeatures; | 
|  | for (unsigned I = 0, E = Lines.size(); I != E; ++I) | 
|  | if (Lines[I].startswith("features")) { | 
|  | size_t Pos = Lines[I].find(':'); | 
|  | if (Pos != StringRef::npos) { | 
|  | Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' '); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We need to check for the presence of vector support independently of | 
|  | // the machine type, since we may only use the vector register set when | 
|  | // supported by the kernel (and hypervisor). | 
|  | bool HaveVectorSupport = false; | 
|  | for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) { | 
|  | if (CPUFeatures[I] == "vx") | 
|  | HaveVectorSupport = true; | 
|  | } | 
|  |  | 
|  | // Now check the processor machine type. | 
|  | for (unsigned I = 0, E = Lines.size(); I != E; ++I) { | 
|  | if (Lines[I].startswith("processor ")) { | 
|  | size_t Pos = Lines[I].find("machine = "); | 
|  | if (Pos != StringRef::npos) { | 
|  | Pos += sizeof("machine = ") - 1; | 
|  | unsigned int Id; | 
|  | if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) | 
|  | return getCPUNameFromS390Model(Id, HaveVectorSupport); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return "generic"; | 
|  | } | 
|  |  | 
|  | StringRef sys::detail::getHostCPUNameForBPF() { | 
|  | #if !defined(__linux__) || !defined(__x86_64__) | 
|  | return "generic"; | 
|  | #else | 
|  | uint8_t v3_insns[40] __attribute__ ((aligned (8))) = | 
|  | /* BPF_MOV64_IMM(BPF_REG_0, 0) */ | 
|  | { 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, | 
|  | /* BPF_MOV64_IMM(BPF_REG_2, 1) */ | 
|  | 0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, | 
|  | /* BPF_JMP32_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */ | 
|  | 0xae, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, | 
|  | /* BPF_MOV64_IMM(BPF_REG_0, 1) */ | 
|  | 0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, | 
|  | /* BPF_EXIT_INSN() */ | 
|  | 0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }; | 
|  |  | 
|  | uint8_t v2_insns[40] __attribute__ ((aligned (8))) = | 
|  | /* BPF_MOV64_IMM(BPF_REG_0, 0) */ | 
|  | { 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, | 
|  | /* BPF_MOV64_IMM(BPF_REG_2, 1) */ | 
|  | 0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, | 
|  | /* BPF_JMP_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */ | 
|  | 0xad, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, | 
|  | /* BPF_MOV64_IMM(BPF_REG_0, 1) */ | 
|  | 0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, | 
|  | /* BPF_EXIT_INSN() */ | 
|  | 0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }; | 
|  |  | 
|  | struct bpf_prog_load_attr { | 
|  | uint32_t prog_type; | 
|  | uint32_t insn_cnt; | 
|  | uint64_t insns; | 
|  | uint64_t license; | 
|  | uint32_t log_level; | 
|  | uint32_t log_size; | 
|  | uint64_t log_buf; | 
|  | uint32_t kern_version; | 
|  | uint32_t prog_flags; | 
|  | } attr = {}; | 
|  | attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */ | 
|  | attr.insn_cnt = 5; | 
|  | attr.insns = (uint64_t)v3_insns; | 
|  | attr.license = (uint64_t)"DUMMY"; | 
|  |  | 
|  | int fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr, | 
|  | sizeof(attr)); | 
|  | if (fd >= 0) { | 
|  | close(fd); | 
|  | return "v3"; | 
|  | } | 
|  |  | 
|  | /* Clear the whole attr in case its content changed by syscall. */ | 
|  | memset(&attr, 0, sizeof(attr)); | 
|  | attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */ | 
|  | attr.insn_cnt = 5; | 
|  | attr.insns = (uint64_t)v2_insns; | 
|  | attr.license = (uint64_t)"DUMMY"; | 
|  | fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr, sizeof(attr)); | 
|  | if (fd >= 0) { | 
|  | close(fd); | 
|  | return "v2"; | 
|  | } | 
|  | return "v1"; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #if defined(__i386__) || defined(_M_IX86) || \ | 
|  | defined(__x86_64__) || defined(_M_X64) | 
|  |  | 
|  | // The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max). | 
|  | // Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID | 
|  | // support. Consequently, for i386, the presence of CPUID is checked first | 
|  | // via the corresponding eflags bit. | 
|  | // Removal of cpuid.h header motivated by PR30384 | 
|  | // Header cpuid.h and method __get_cpuid_max are not used in llvm, clang, openmp | 
|  | // or test-suite, but are used in external projects e.g. libstdcxx | 
|  | static bool isCpuIdSupported() { | 
|  | #if defined(__GNUC__) || defined(__clang__) | 
|  | #if defined(__i386__) | 
|  | int __cpuid_supported; | 
|  | __asm__("  pushfl\n" | 
|  | "  popl   %%eax\n" | 
|  | "  movl   %%eax,%%ecx\n" | 
|  | "  xorl   $0x00200000,%%eax\n" | 
|  | "  pushl  %%eax\n" | 
|  | "  popfl\n" | 
|  | "  pushfl\n" | 
|  | "  popl   %%eax\n" | 
|  | "  movl   $0,%0\n" | 
|  | "  cmpl   %%eax,%%ecx\n" | 
|  | "  je     1f\n" | 
|  | "  movl   $1,%0\n" | 
|  | "1:" | 
|  | : "=r"(__cpuid_supported) | 
|  | : | 
|  | : "eax", "ecx"); | 
|  | if (!__cpuid_supported) | 
|  | return false; | 
|  | #endif | 
|  | return true; | 
|  | #endif | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in | 
|  | /// the specified arguments.  If we can't run cpuid on the host, return true. | 
|  | static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX, | 
|  | unsigned *rECX, unsigned *rEDX) { | 
|  | #if defined(__GNUC__) || defined(__clang__) | 
|  | #if defined(__x86_64__) | 
|  | // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually. | 
|  | // FIXME: should we save this for Clang? | 
|  | __asm__("movq\t%%rbx, %%rsi\n\t" | 
|  | "cpuid\n\t" | 
|  | "xchgq\t%%rbx, %%rsi\n\t" | 
|  | : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) | 
|  | : "a"(value)); | 
|  | return false; | 
|  | #elif defined(__i386__) | 
|  | __asm__("movl\t%%ebx, %%esi\n\t" | 
|  | "cpuid\n\t" | 
|  | "xchgl\t%%ebx, %%esi\n\t" | 
|  | : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) | 
|  | : "a"(value)); | 
|  | return false; | 
|  | #else | 
|  | return true; | 
|  | #endif | 
|  | #elif defined(_MSC_VER) | 
|  | // The MSVC intrinsic is portable across x86 and x64. | 
|  | int registers[4]; | 
|  | __cpuid(registers, value); | 
|  | *rEAX = registers[0]; | 
|  | *rEBX = registers[1]; | 
|  | *rECX = registers[2]; | 
|  | *rEDX = registers[3]; | 
|  | return false; | 
|  | #else | 
|  | return true; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | namespace llvm { | 
|  | namespace sys { | 
|  | namespace detail { | 
|  | namespace x86 { | 
|  |  | 
|  | VendorSignatures getVendorSignature(unsigned *MaxLeaf) { | 
|  | unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; | 
|  | if (MaxLeaf == nullptr) | 
|  | MaxLeaf = &EAX; | 
|  | else | 
|  | *MaxLeaf = 0; | 
|  |  | 
|  | if (!isCpuIdSupported()) | 
|  | return VendorSignatures::UNKNOWN; | 
|  |  | 
|  | if (getX86CpuIDAndInfo(0, MaxLeaf, &EBX, &ECX, &EDX) || *MaxLeaf < 1) | 
|  | return VendorSignatures::UNKNOWN; | 
|  |  | 
|  | // "Genu ineI ntel" | 
|  | if (EBX == 0x756e6547 && EDX == 0x49656e69 && ECX == 0x6c65746e) | 
|  | return VendorSignatures::GENUINE_INTEL; | 
|  |  | 
|  | // "Auth enti cAMD" | 
|  | if (EBX == 0x68747541 && EDX == 0x69746e65 && ECX == 0x444d4163) | 
|  | return VendorSignatures::AUTHENTIC_AMD; | 
|  |  | 
|  | return VendorSignatures::UNKNOWN; | 
|  | } | 
|  |  | 
|  | } // namespace x86 | 
|  | } // namespace detail | 
|  | } // namespace sys | 
|  | } // namespace llvm | 
|  |  | 
|  | using namespace llvm::sys::detail::x86; | 
|  |  | 
|  | /// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return | 
|  | /// the 4 values in the specified arguments.  If we can't run cpuid on the host, | 
|  | /// return true. | 
|  | static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf, | 
|  | unsigned *rEAX, unsigned *rEBX, unsigned *rECX, | 
|  | unsigned *rEDX) { | 
|  | #if defined(__GNUC__) || defined(__clang__) | 
|  | #if defined(__x86_64__) | 
|  | // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually. | 
|  | // FIXME: should we save this for Clang? | 
|  | __asm__("movq\t%%rbx, %%rsi\n\t" | 
|  | "cpuid\n\t" | 
|  | "xchgq\t%%rbx, %%rsi\n\t" | 
|  | : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) | 
|  | : "a"(value), "c"(subleaf)); | 
|  | return false; | 
|  | #elif defined(__i386__) | 
|  | __asm__("movl\t%%ebx, %%esi\n\t" | 
|  | "cpuid\n\t" | 
|  | "xchgl\t%%ebx, %%esi\n\t" | 
|  | : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) | 
|  | : "a"(value), "c"(subleaf)); | 
|  | return false; | 
|  | #else | 
|  | return true; | 
|  | #endif | 
|  | #elif defined(_MSC_VER) | 
|  | int registers[4]; | 
|  | __cpuidex(registers, value, subleaf); | 
|  | *rEAX = registers[0]; | 
|  | *rEBX = registers[1]; | 
|  | *rECX = registers[2]; | 
|  | *rEDX = registers[3]; | 
|  | return false; | 
|  | #else | 
|  | return true; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // Read control register 0 (XCR0). Used to detect features such as AVX. | 
|  | static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) { | 
|  | #if defined(__GNUC__) || defined(__clang__) | 
|  | // Check xgetbv; this uses a .byte sequence instead of the instruction | 
|  | // directly because older assemblers do not include support for xgetbv and | 
|  | // there is no easy way to conditionally compile based on the assembler used. | 
|  | __asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0)); | 
|  | return false; | 
|  | #elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK) | 
|  | unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK); | 
|  | *rEAX = Result; | 
|  | *rEDX = Result >> 32; | 
|  | return false; | 
|  | #else | 
|  | return true; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void detectX86FamilyModel(unsigned EAX, unsigned *Family, | 
|  | unsigned *Model) { | 
|  | *Family = (EAX >> 8) & 0xf; // Bits 8 - 11 | 
|  | *Model = (EAX >> 4) & 0xf;  // Bits 4 - 7 | 
|  | if (*Family == 6 || *Family == 0xf) { | 
|  | if (*Family == 0xf) | 
|  | // Examine extended family ID if family ID is F. | 
|  | *Family += (EAX >> 20) & 0xff; // Bits 20 - 27 | 
|  | // Examine extended model ID if family ID is 6 or F. | 
|  | *Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19 | 
|  | } | 
|  | } | 
|  |  | 
|  | static StringRef | 
|  | getIntelProcessorTypeAndSubtype(unsigned Family, unsigned Model, | 
|  | const unsigned *Features, | 
|  | unsigned *Type, unsigned *Subtype) { | 
|  | auto testFeature = [&](unsigned F) { | 
|  | return (Features[F / 32] & (1U << (F % 32))) != 0; | 
|  | }; | 
|  |  | 
|  | StringRef CPU; | 
|  |  | 
|  | switch (Family) { | 
|  | case 3: | 
|  | CPU = "i386"; | 
|  | break; | 
|  | case 4: | 
|  | CPU = "i486"; | 
|  | break; | 
|  | case 5: | 
|  | if (testFeature(X86::FEATURE_MMX)) { | 
|  | CPU = "pentium-mmx"; | 
|  | break; | 
|  | } | 
|  | CPU = "pentium"; | 
|  | break; | 
|  | case 6: | 
|  | switch (Model) { | 
|  | case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile | 
|  | // processor, Intel Core 2 Quad processor, Intel Core 2 Quad | 
|  | // mobile processor, Intel Core 2 Extreme processor, Intel | 
|  | // Pentium Dual-Core processor, Intel Xeon processor, model | 
|  | // 0Fh. All processors are manufactured using the 65 nm process. | 
|  | case 0x16: // Intel Celeron processor model 16h. All processors are | 
|  | // manufactured using the 65 nm process | 
|  | CPU = "core2"; | 
|  | *Type = X86::INTEL_CORE2; | 
|  | break; | 
|  | case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model | 
|  | // 17h. All processors are manufactured using the 45 nm process. | 
|  | // | 
|  | // 45nm: Penryn , Wolfdale, Yorkfield (XE) | 
|  | case 0x1d: // Intel Xeon processor MP. All processors are manufactured using | 
|  | // the 45 nm process. | 
|  | CPU = "penryn"; | 
|  | *Type = X86::INTEL_CORE2; | 
|  | break; | 
|  | case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All | 
|  | // processors are manufactured using the 45 nm process. | 
|  | case 0x1e: // Intel(R) Core(TM) i7 CPU         870  @ 2.93GHz. | 
|  | // As found in a Summer 2010 model iMac. | 
|  | case 0x1f: | 
|  | case 0x2e:              // Nehalem EX | 
|  | CPU = "nehalem"; | 
|  | *Type = X86::INTEL_COREI7; | 
|  | *Subtype = X86::INTEL_COREI7_NEHALEM; | 
|  | break; | 
|  | case 0x25: // Intel Core i7, laptop version. | 
|  | case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All | 
|  | // processors are manufactured using the 32 nm process. | 
|  | case 0x2f: // Westmere EX | 
|  | CPU = "westmere"; | 
|  | *Type = X86::INTEL_COREI7; | 
|  | *Subtype = X86::INTEL_COREI7_WESTMERE; | 
|  | break; | 
|  | case 0x2a: // Intel Core i7 processor. All processors are manufactured | 
|  | // using the 32 nm process. | 
|  | case 0x2d: | 
|  | CPU = "sandybridge"; | 
|  | *Type = X86::INTEL_COREI7; | 
|  | *Subtype = X86::INTEL_COREI7_SANDYBRIDGE; | 
|  | break; | 
|  | case 0x3a: | 
|  | case 0x3e:              // Ivy Bridge EP | 
|  | CPU = "ivybridge"; | 
|  | *Type = X86::INTEL_COREI7; | 
|  | *Subtype = X86::INTEL_COREI7_IVYBRIDGE; | 
|  | break; | 
|  |  | 
|  | // Haswell: | 
|  | case 0x3c: | 
|  | case 0x3f: | 
|  | case 0x45: | 
|  | case 0x46: | 
|  | CPU = "haswell"; | 
|  | *Type = X86::INTEL_COREI7; | 
|  | *Subtype = X86::INTEL_COREI7_HASWELL; | 
|  | break; | 
|  |  | 
|  | // Broadwell: | 
|  | case 0x3d: | 
|  | case 0x47: | 
|  | case 0x4f: | 
|  | case 0x56: | 
|  | CPU = "broadwell"; | 
|  | *Type = X86::INTEL_COREI7; | 
|  | *Subtype = X86::INTEL_COREI7_BROADWELL; | 
|  | break; | 
|  |  | 
|  | // Skylake: | 
|  | case 0x4e:              // Skylake mobile | 
|  | case 0x5e:              // Skylake desktop | 
|  | case 0x8e:              // Kaby Lake mobile | 
|  | case 0x9e:              // Kaby Lake desktop | 
|  | case 0xa5:              // Comet Lake-H/S | 
|  | case 0xa6:              // Comet Lake-U | 
|  | CPU = "skylake"; | 
|  | *Type = X86::INTEL_COREI7; | 
|  | *Subtype = X86::INTEL_COREI7_SKYLAKE; | 
|  | break; | 
|  |  | 
|  | // Rocketlake: | 
|  | case 0xa7: | 
|  | CPU = "rocketlake"; | 
|  | *Type = X86::INTEL_COREI7; | 
|  | *Subtype = X86::INTEL_COREI7_ROCKETLAKE; | 
|  | break; | 
|  |  | 
|  | // Skylake Xeon: | 
|  | case 0x55: | 
|  | *Type = X86::INTEL_COREI7; | 
|  | if (testFeature(X86::FEATURE_AVX512BF16)) { | 
|  | CPU = "cooperlake"; | 
|  | *Subtype = X86::INTEL_COREI7_COOPERLAKE; | 
|  | } else if (testFeature(X86::FEATURE_AVX512VNNI)) { | 
|  | CPU = "cascadelake"; | 
|  | *Subtype = X86::INTEL_COREI7_CASCADELAKE; | 
|  | } else { | 
|  | CPU = "skylake-avx512"; | 
|  | *Subtype = X86::INTEL_COREI7_SKYLAKE_AVX512; | 
|  | } | 
|  | break; | 
|  |  | 
|  | // Cannonlake: | 
|  | case 0x66: | 
|  | CPU = "cannonlake"; | 
|  | *Type = X86::INTEL_COREI7; | 
|  | *Subtype = X86::INTEL_COREI7_CANNONLAKE; | 
|  | break; | 
|  |  | 
|  | // Icelake: | 
|  | case 0x7d: | 
|  | case 0x7e: | 
|  | CPU = "icelake-client"; | 
|  | *Type = X86::INTEL_COREI7; | 
|  | *Subtype = X86::INTEL_COREI7_ICELAKE_CLIENT; | 
|  | break; | 
|  |  | 
|  | // Icelake Xeon: | 
|  | case 0x6a: | 
|  | case 0x6c: | 
|  | CPU = "icelake-server"; | 
|  | *Type = X86::INTEL_COREI7; | 
|  | *Subtype = X86::INTEL_COREI7_ICELAKE_SERVER; | 
|  | break; | 
|  |  | 
|  | // Sapphire Rapids: | 
|  | case 0x8f: | 
|  | CPU = "sapphirerapids"; | 
|  | *Type = X86::INTEL_COREI7; | 
|  | *Subtype = X86::INTEL_COREI7_SAPPHIRERAPIDS; | 
|  | break; | 
|  |  | 
|  | case 0x1c: // Most 45 nm Intel Atom processors | 
|  | case 0x26: // 45 nm Atom Lincroft | 
|  | case 0x27: // 32 nm Atom Medfield | 
|  | case 0x35: // 32 nm Atom Midview | 
|  | case 0x36: // 32 nm Atom Midview | 
|  | CPU = "bonnell"; | 
|  | *Type = X86::INTEL_BONNELL; | 
|  | break; | 
|  |  | 
|  | // Atom Silvermont codes from the Intel software optimization guide. | 
|  | case 0x37: | 
|  | case 0x4a: | 
|  | case 0x4d: | 
|  | case 0x5a: | 
|  | case 0x5d: | 
|  | case 0x4c: // really airmont | 
|  | CPU = "silvermont"; | 
|  | *Type = X86::INTEL_SILVERMONT; | 
|  | break; | 
|  | // Goldmont: | 
|  | case 0x5c: // Apollo Lake | 
|  | case 0x5f: // Denverton | 
|  | CPU = "goldmont"; | 
|  | *Type = X86::INTEL_GOLDMONT; | 
|  | break; | 
|  | case 0x7a: | 
|  | CPU = "goldmont-plus"; | 
|  | *Type = X86::INTEL_GOLDMONT_PLUS; | 
|  | break; | 
|  | case 0x86: | 
|  | CPU = "tremont"; | 
|  | *Type = X86::INTEL_TREMONT; | 
|  | break; | 
|  |  | 
|  | // Xeon Phi (Knights Landing + Knights Mill): | 
|  | case 0x57: | 
|  | CPU = "knl"; | 
|  | *Type = X86::INTEL_KNL; | 
|  | break; | 
|  | case 0x85: | 
|  | CPU = "knm"; | 
|  | *Type = X86::INTEL_KNM; | 
|  | break; | 
|  |  | 
|  | default: // Unknown family 6 CPU, try to guess. | 
|  | // Don't both with Type/Subtype here, they aren't used by the caller. | 
|  | // They're used above to keep the code in sync with compiler-rt. | 
|  | // TODO detect tigerlake host from model | 
|  | if (testFeature(X86::FEATURE_AVX512VP2INTERSECT)) { | 
|  | CPU = "tigerlake"; | 
|  | } else if (testFeature(X86::FEATURE_AVX512VBMI2)) { | 
|  | CPU = "icelake-client"; | 
|  | } else if (testFeature(X86::FEATURE_AVX512VBMI)) { | 
|  | CPU = "cannonlake"; | 
|  | } else if (testFeature(X86::FEATURE_AVX512BF16)) { | 
|  | CPU = "cooperlake"; | 
|  | } else if (testFeature(X86::FEATURE_AVX512VNNI)) { | 
|  | CPU = "cascadelake"; | 
|  | } else if (testFeature(X86::FEATURE_AVX512VL)) { | 
|  | CPU = "skylake-avx512"; | 
|  | } else if (testFeature(X86::FEATURE_AVX512ER)) { | 
|  | CPU = "knl"; | 
|  | } else if (testFeature(X86::FEATURE_CLFLUSHOPT)) { | 
|  | if (testFeature(X86::FEATURE_SHA)) | 
|  | CPU = "goldmont"; | 
|  | else | 
|  | CPU = "skylake"; | 
|  | } else if (testFeature(X86::FEATURE_ADX)) { | 
|  | CPU = "broadwell"; | 
|  | } else if (testFeature(X86::FEATURE_AVX2)) { | 
|  | CPU = "haswell"; | 
|  | } else if (testFeature(X86::FEATURE_AVX)) { | 
|  | CPU = "sandybridge"; | 
|  | } else if (testFeature(X86::FEATURE_SSE4_2)) { | 
|  | if (testFeature(X86::FEATURE_MOVBE)) | 
|  | CPU = "silvermont"; | 
|  | else | 
|  | CPU = "nehalem"; | 
|  | } else if (testFeature(X86::FEATURE_SSE4_1)) { | 
|  | CPU = "penryn"; | 
|  | } else if (testFeature(X86::FEATURE_SSSE3)) { | 
|  | if (testFeature(X86::FEATURE_MOVBE)) | 
|  | CPU = "bonnell"; | 
|  | else | 
|  | CPU = "core2"; | 
|  | } else if (testFeature(X86::FEATURE_64BIT)) { | 
|  | CPU = "core2"; | 
|  | } else if (testFeature(X86::FEATURE_SSE3)) { | 
|  | CPU = "yonah"; | 
|  | } else if (testFeature(X86::FEATURE_SSE2)) { | 
|  | CPU = "pentium-m"; | 
|  | } else if (testFeature(X86::FEATURE_SSE)) { | 
|  | CPU = "pentium3"; | 
|  | } else if (testFeature(X86::FEATURE_MMX)) { | 
|  | CPU = "pentium2"; | 
|  | } else { | 
|  | CPU = "pentiumpro"; | 
|  | } | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case 15: { | 
|  | if (testFeature(X86::FEATURE_64BIT)) { | 
|  | CPU = "nocona"; | 
|  | break; | 
|  | } | 
|  | if (testFeature(X86::FEATURE_SSE3)) { | 
|  | CPU = "prescott"; | 
|  | break; | 
|  | } | 
|  | CPU = "pentium4"; | 
|  | break; | 
|  | } | 
|  | default: | 
|  | break; // Unknown. | 
|  | } | 
|  |  | 
|  | return CPU; | 
|  | } | 
|  |  | 
|  | static StringRef | 
|  | getAMDProcessorTypeAndSubtype(unsigned Family, unsigned Model, | 
|  | const unsigned *Features, | 
|  | unsigned *Type, unsigned *Subtype) { | 
|  | auto testFeature = [&](unsigned F) { | 
|  | return (Features[F / 32] & (1U << (F % 32))) != 0; | 
|  | }; | 
|  |  | 
|  | StringRef CPU; | 
|  |  | 
|  | switch (Family) { | 
|  | case 4: | 
|  | CPU = "i486"; | 
|  | break; | 
|  | case 5: | 
|  | CPU = "pentium"; | 
|  | switch (Model) { | 
|  | case 6: | 
|  | case 7: | 
|  | CPU = "k6"; | 
|  | break; | 
|  | case 8: | 
|  | CPU = "k6-2"; | 
|  | break; | 
|  | case 9: | 
|  | case 13: | 
|  | CPU = "k6-3"; | 
|  | break; | 
|  | case 10: | 
|  | CPU = "geode"; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case 6: | 
|  | if (testFeature(X86::FEATURE_SSE)) { | 
|  | CPU = "athlon-xp"; | 
|  | break; | 
|  | } | 
|  | CPU = "athlon"; | 
|  | break; | 
|  | case 15: | 
|  | if (testFeature(X86::FEATURE_SSE3)) { | 
|  | CPU = "k8-sse3"; | 
|  | break; | 
|  | } | 
|  | CPU = "k8"; | 
|  | break; | 
|  | case 16: | 
|  | CPU = "amdfam10"; | 
|  | *Type = X86::AMDFAM10H; // "amdfam10" | 
|  | switch (Model) { | 
|  | case 2: | 
|  | *Subtype = X86::AMDFAM10H_BARCELONA; | 
|  | break; | 
|  | case 4: | 
|  | *Subtype = X86::AMDFAM10H_SHANGHAI; | 
|  | break; | 
|  | case 8: | 
|  | *Subtype = X86::AMDFAM10H_ISTANBUL; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case 20: | 
|  | CPU = "btver1"; | 
|  | *Type = X86::AMD_BTVER1; | 
|  | break; | 
|  | case 21: | 
|  | CPU = "bdver1"; | 
|  | *Type = X86::AMDFAM15H; | 
|  | if (Model >= 0x60 && Model <= 0x7f) { | 
|  | CPU = "bdver4"; | 
|  | *Subtype = X86::AMDFAM15H_BDVER4; | 
|  | break; // 60h-7Fh: Excavator | 
|  | } | 
|  | if (Model >= 0x30 && Model <= 0x3f) { | 
|  | CPU = "bdver3"; | 
|  | *Subtype = X86::AMDFAM15H_BDVER3; | 
|  | break; // 30h-3Fh: Steamroller | 
|  | } | 
|  | if ((Model >= 0x10 && Model <= 0x1f) || Model == 0x02) { | 
|  | CPU = "bdver2"; | 
|  | *Subtype = X86::AMDFAM15H_BDVER2; | 
|  | break; // 02h, 10h-1Fh: Piledriver | 
|  | } | 
|  | if (Model <= 0x0f) { | 
|  | *Subtype = X86::AMDFAM15H_BDVER1; | 
|  | break; // 00h-0Fh: Bulldozer | 
|  | } | 
|  | break; | 
|  | case 22: | 
|  | CPU = "btver2"; | 
|  | *Type = X86::AMD_BTVER2; | 
|  | break; | 
|  | case 23: | 
|  | CPU = "znver1"; | 
|  | *Type = X86::AMDFAM17H; | 
|  | if ((Model >= 0x30 && Model <= 0x3f) || Model == 0x71) { | 
|  | CPU = "znver2"; | 
|  | *Subtype = X86::AMDFAM17H_ZNVER2; | 
|  | break; // 30h-3fh, 71h: Zen2 | 
|  | } | 
|  | if (Model <= 0x0f) { | 
|  | *Subtype = X86::AMDFAM17H_ZNVER1; | 
|  | break; // 00h-0Fh: Zen1 | 
|  | } | 
|  | break; | 
|  | case 25: | 
|  | CPU = "znver3"; | 
|  | *Type = X86::AMDFAM19H; | 
|  | if (Model <= 0x0f) { | 
|  | *Subtype = X86::AMDFAM19H_ZNVER3; | 
|  | break; // 00h-0Fh: Zen3 | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; // Unknown AMD CPU. | 
|  | } | 
|  |  | 
|  | return CPU; | 
|  | } | 
|  |  | 
|  | static void getAvailableFeatures(unsigned ECX, unsigned EDX, unsigned MaxLeaf, | 
|  | unsigned *Features) { | 
|  | unsigned EAX, EBX; | 
|  |  | 
|  | auto setFeature = [&](unsigned F) { | 
|  | Features[F / 32] |= 1U << (F % 32); | 
|  | }; | 
|  |  | 
|  | if ((EDX >> 15) & 1) | 
|  | setFeature(X86::FEATURE_CMOV); | 
|  | if ((EDX >> 23) & 1) | 
|  | setFeature(X86::FEATURE_MMX); | 
|  | if ((EDX >> 25) & 1) | 
|  | setFeature(X86::FEATURE_SSE); | 
|  | if ((EDX >> 26) & 1) | 
|  | setFeature(X86::FEATURE_SSE2); | 
|  |  | 
|  | if ((ECX >> 0) & 1) | 
|  | setFeature(X86::FEATURE_SSE3); | 
|  | if ((ECX >> 1) & 1) | 
|  | setFeature(X86::FEATURE_PCLMUL); | 
|  | if ((ECX >> 9) & 1) | 
|  | setFeature(X86::FEATURE_SSSE3); | 
|  | if ((ECX >> 12) & 1) | 
|  | setFeature(X86::FEATURE_FMA); | 
|  | if ((ECX >> 19) & 1) | 
|  | setFeature(X86::FEATURE_SSE4_1); | 
|  | if ((ECX >> 20) & 1) | 
|  | setFeature(X86::FEATURE_SSE4_2); | 
|  | if ((ECX >> 23) & 1) | 
|  | setFeature(X86::FEATURE_POPCNT); | 
|  | if ((ECX >> 25) & 1) | 
|  | setFeature(X86::FEATURE_AES); | 
|  |  | 
|  | if ((ECX >> 22) & 1) | 
|  | setFeature(X86::FEATURE_MOVBE); | 
|  |  | 
|  | // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV | 
|  | // indicates that the AVX registers will be saved and restored on context | 
|  | // switch, then we have full AVX support. | 
|  | const unsigned AVXBits = (1 << 27) | (1 << 28); | 
|  | bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) && | 
|  | ((EAX & 0x6) == 0x6); | 
|  | #if defined(__APPLE__) | 
|  | // Darwin lazily saves the AVX512 context on first use: trust that the OS will | 
|  | // save the AVX512 context if we use AVX512 instructions, even the bit is not | 
|  | // set right now. | 
|  | bool HasAVX512Save = true; | 
|  | #else | 
|  | // AVX512 requires additional context to be saved by the OS. | 
|  | bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0); | 
|  | #endif | 
|  |  | 
|  | if (HasAVX) | 
|  | setFeature(X86::FEATURE_AVX); | 
|  |  | 
|  | bool HasLeaf7 = | 
|  | MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX); | 
|  |  | 
|  | if (HasLeaf7 && ((EBX >> 3) & 1)) | 
|  | setFeature(X86::FEATURE_BMI); | 
|  | if (HasLeaf7 && ((EBX >> 5) & 1) && HasAVX) | 
|  | setFeature(X86::FEATURE_AVX2); | 
|  | if (HasLeaf7 && ((EBX >> 8) & 1)) | 
|  | setFeature(X86::FEATURE_BMI2); | 
|  | if (HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save) | 
|  | setFeature(X86::FEATURE_AVX512F); | 
|  | if (HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save) | 
|  | setFeature(X86::FEATURE_AVX512DQ); | 
|  | if (HasLeaf7 && ((EBX >> 19) & 1)) | 
|  | setFeature(X86::FEATURE_ADX); | 
|  | if (HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save) | 
|  | setFeature(X86::FEATURE_AVX512IFMA); | 
|  | if (HasLeaf7 && ((EBX >> 23) & 1)) | 
|  | setFeature(X86::FEATURE_CLFLUSHOPT); | 
|  | if (HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save) | 
|  | setFeature(X86::FEATURE_AVX512PF); | 
|  | if (HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save) | 
|  | setFeature(X86::FEATURE_AVX512ER); | 
|  | if (HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save) | 
|  | setFeature(X86::FEATURE_AVX512CD); | 
|  | if (HasLeaf7 && ((EBX >> 29) & 1)) | 
|  | setFeature(X86::FEATURE_SHA); | 
|  | if (HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save) | 
|  | setFeature(X86::FEATURE_AVX512BW); | 
|  | if (HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save) | 
|  | setFeature(X86::FEATURE_AVX512VL); | 
|  |  | 
|  | if (HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save) | 
|  | setFeature(X86::FEATURE_AVX512VBMI); | 
|  | if (HasLeaf7 && ((ECX >> 6) & 1) && HasAVX512Save) | 
|  | setFeature(X86::FEATURE_AVX512VBMI2); | 
|  | if (HasLeaf7 && ((ECX >> 8) & 1)) | 
|  | setFeature(X86::FEATURE_GFNI); | 
|  | if (HasLeaf7 && ((ECX >> 10) & 1) && HasAVX) | 
|  | setFeature(X86::FEATURE_VPCLMULQDQ); | 
|  | if (HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save) | 
|  | setFeature(X86::FEATURE_AVX512VNNI); | 
|  | if (HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save) | 
|  | setFeature(X86::FEATURE_AVX512BITALG); | 
|  | if (HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save) | 
|  | setFeature(X86::FEATURE_AVX512VPOPCNTDQ); | 
|  |  | 
|  | if (HasLeaf7 && ((EDX >> 2) & 1) && HasAVX512Save) | 
|  | setFeature(X86::FEATURE_AVX5124VNNIW); | 
|  | if (HasLeaf7 && ((EDX >> 3) & 1) && HasAVX512Save) | 
|  | setFeature(X86::FEATURE_AVX5124FMAPS); | 
|  | if (HasLeaf7 && ((EDX >> 8) & 1) && HasAVX512Save) | 
|  | setFeature(X86::FEATURE_AVX512VP2INTERSECT); | 
|  |  | 
|  | bool HasLeaf7Subleaf1 = | 
|  | MaxLeaf >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x1, &EAX, &EBX, &ECX, &EDX); | 
|  | if (HasLeaf7Subleaf1 && ((EAX >> 5) & 1) && HasAVX512Save) | 
|  | setFeature(X86::FEATURE_AVX512BF16); | 
|  |  | 
|  | unsigned MaxExtLevel; | 
|  | getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX); | 
|  |  | 
|  | bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 && | 
|  | !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); | 
|  | if (HasExtLeaf1 && ((ECX >> 6) & 1)) | 
|  | setFeature(X86::FEATURE_SSE4_A); | 
|  | if (HasExtLeaf1 && ((ECX >> 11) & 1)) | 
|  | setFeature(X86::FEATURE_XOP); | 
|  | if (HasExtLeaf1 && ((ECX >> 16) & 1)) | 
|  | setFeature(X86::FEATURE_FMA4); | 
|  |  | 
|  | if (HasExtLeaf1 && ((EDX >> 29) & 1)) | 
|  | setFeature(X86::FEATURE_64BIT); | 
|  | } | 
|  |  | 
|  | StringRef sys::getHostCPUName() { | 
|  | unsigned MaxLeaf = 0; | 
|  | const VendorSignatures Vendor = getVendorSignature(&MaxLeaf); | 
|  | if (Vendor == VendorSignatures::UNKNOWN) | 
|  | return "generic"; | 
|  |  | 
|  | unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; | 
|  | getX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX); | 
|  |  | 
|  | unsigned Family = 0, Model = 0; | 
|  | unsigned Features[(X86::CPU_FEATURE_MAX + 31) / 32] = {0}; | 
|  | detectX86FamilyModel(EAX, &Family, &Model); | 
|  | getAvailableFeatures(ECX, EDX, MaxLeaf, Features); | 
|  |  | 
|  | // These aren't consumed in this file, but we try to keep some source code the | 
|  | // same or similar to compiler-rt. | 
|  | unsigned Type = 0; | 
|  | unsigned Subtype = 0; | 
|  |  | 
|  | StringRef CPU; | 
|  |  | 
|  | if (Vendor == VendorSignatures::GENUINE_INTEL) { | 
|  | CPU = getIntelProcessorTypeAndSubtype(Family, Model, Features, &Type, | 
|  | &Subtype); | 
|  | } else if (Vendor == VendorSignatures::AUTHENTIC_AMD) { | 
|  | CPU = getAMDProcessorTypeAndSubtype(Family, Model, Features, &Type, | 
|  | &Subtype); | 
|  | } | 
|  |  | 
|  | if (!CPU.empty()) | 
|  | return CPU; | 
|  |  | 
|  | return "generic"; | 
|  | } | 
|  |  | 
|  | #elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__)) | 
|  | StringRef sys::getHostCPUName() { | 
|  | host_basic_info_data_t hostInfo; | 
|  | mach_msg_type_number_t infoCount; | 
|  |  | 
|  | infoCount = HOST_BASIC_INFO_COUNT; | 
|  | mach_port_t hostPort = mach_host_self(); | 
|  | host_info(hostPort, HOST_BASIC_INFO, (host_info_t)&hostInfo, | 
|  | &infoCount); | 
|  | mach_port_deallocate(mach_task_self(), hostPort); | 
|  |  | 
|  | if (hostInfo.cpu_type != CPU_TYPE_POWERPC) | 
|  | return "generic"; | 
|  |  | 
|  | switch (hostInfo.cpu_subtype) { | 
|  | case CPU_SUBTYPE_POWERPC_601: | 
|  | return "601"; | 
|  | case CPU_SUBTYPE_POWERPC_602: | 
|  | return "602"; | 
|  | case CPU_SUBTYPE_POWERPC_603: | 
|  | return "603"; | 
|  | case CPU_SUBTYPE_POWERPC_603e: | 
|  | return "603e"; | 
|  | case CPU_SUBTYPE_POWERPC_603ev: | 
|  | return "603ev"; | 
|  | case CPU_SUBTYPE_POWERPC_604: | 
|  | return "604"; | 
|  | case CPU_SUBTYPE_POWERPC_604e: | 
|  | return "604e"; | 
|  | case CPU_SUBTYPE_POWERPC_620: | 
|  | return "620"; | 
|  | case CPU_SUBTYPE_POWERPC_750: | 
|  | return "750"; | 
|  | case CPU_SUBTYPE_POWERPC_7400: | 
|  | return "7400"; | 
|  | case CPU_SUBTYPE_POWERPC_7450: | 
|  | return "7450"; | 
|  | case CPU_SUBTYPE_POWERPC_970: | 
|  | return "970"; | 
|  | default:; | 
|  | } | 
|  |  | 
|  | return "generic"; | 
|  | } | 
|  | #elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__)) | 
|  | StringRef sys::getHostCPUName() { | 
|  | std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent(); | 
|  | StringRef Content = P ? P->getBuffer() : ""; | 
|  | return detail::getHostCPUNameForPowerPC(Content); | 
|  | } | 
|  | #elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__)) | 
|  | StringRef sys::getHostCPUName() { | 
|  | std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent(); | 
|  | StringRef Content = P ? P->getBuffer() : ""; | 
|  | return detail::getHostCPUNameForARM(Content); | 
|  | } | 
|  | #elif defined(__linux__) && defined(__s390x__) | 
|  | StringRef sys::getHostCPUName() { | 
|  | std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent(); | 
|  | StringRef Content = P ? P->getBuffer() : ""; | 
|  | return detail::getHostCPUNameForS390x(Content); | 
|  | } | 
|  | #elif defined(__MVS__) | 
|  | StringRef sys::getHostCPUName() { | 
|  | // Get pointer to Communications Vector Table (CVT). | 
|  | // The pointer is located at offset 16 of the Prefixed Save Area (PSA). | 
|  | // It is stored as 31 bit pointer and will be zero-extended to 64 bit. | 
|  | int *StartToCVTOffset = reinterpret_cast<int *>(0x10); | 
|  | // Since its stored as a 31-bit pointer, get the 4 bytes from the start | 
|  | // of address. | 
|  | int ReadValue = *StartToCVTOffset; | 
|  | // Explicitly clear the high order bit. | 
|  | ReadValue = (ReadValue & 0x7FFFFFFF); | 
|  | char *CVT = reinterpret_cast<char *>(ReadValue); | 
|  | // The model number is located in the CVT prefix at offset -6 and stored as | 
|  | // signless packed decimal. | 
|  | uint16_t Id = *(uint16_t *)&CVT[-6]; | 
|  | // Convert number to integer. | 
|  | Id = decodePackedBCD<uint16_t>(Id, false); | 
|  | // Check for vector support. It's stored in field CVTFLAG5 (offset 244), | 
|  | // bit CVTVEF (X'80'). The facilities list is part of the PSA but the vector | 
|  | // extension can only be used if bit CVTVEF is on. | 
|  | bool HaveVectorSupport = CVT[244] & 0x80; | 
|  | return getCPUNameFromS390Model(Id, HaveVectorSupport); | 
|  | } | 
|  | #elif defined(__APPLE__) && defined(__aarch64__) | 
|  | StringRef sys::getHostCPUName() { | 
|  | return "cyclone"; | 
|  | } | 
|  | #elif defined(__APPLE__) && defined(__arm__) | 
|  | StringRef sys::getHostCPUName() { | 
|  | host_basic_info_data_t hostInfo; | 
|  | mach_msg_type_number_t infoCount; | 
|  |  | 
|  | infoCount = HOST_BASIC_INFO_COUNT; | 
|  | mach_port_t hostPort = mach_host_self(); | 
|  | host_info(hostPort, HOST_BASIC_INFO, (host_info_t)&hostInfo, | 
|  | &infoCount); | 
|  | mach_port_deallocate(mach_task_self(), hostPort); | 
|  |  | 
|  | if (hostInfo.cpu_type != CPU_TYPE_ARM) { | 
|  | assert(false && "CPUType not equal to ARM should not be possible on ARM"); | 
|  | return "generic"; | 
|  | } | 
|  | switch (hostInfo.cpu_subtype) { | 
|  | case CPU_SUBTYPE_ARM_V7S: | 
|  | return "swift"; | 
|  | default:; | 
|  | } | 
|  |  | 
|  | return "generic"; | 
|  | } | 
|  | #elif defined(_AIX) | 
|  | StringRef sys::getHostCPUName() { | 
|  | switch (_system_configuration.implementation) { | 
|  | case POWER_4: | 
|  | if (_system_configuration.version == PV_4_3) | 
|  | return "970"; | 
|  | return "pwr4"; | 
|  | case POWER_5: | 
|  | if (_system_configuration.version == PV_5) | 
|  | return "pwr5"; | 
|  | return "pwr5x"; | 
|  | case POWER_6: | 
|  | if (_system_configuration.version == PV_6_Compat) | 
|  | return "pwr6"; | 
|  | return "pwr6x"; | 
|  | case POWER_7: | 
|  | return "pwr7"; | 
|  | case POWER_8: | 
|  | return "pwr8"; | 
|  | case POWER_9: | 
|  | return "pwr9"; | 
|  | // TODO: simplify this once the macro is available in all OS levels. | 
|  | #ifdef POWER_10 | 
|  | case POWER_10: | 
|  | #else | 
|  | case 0x40000: | 
|  | #endif | 
|  | return "pwr10"; | 
|  | default: | 
|  | return "generic"; | 
|  | } | 
|  | } | 
|  | #else | 
|  | StringRef sys::getHostCPUName() { return "generic"; } | 
|  | namespace llvm { | 
|  | namespace sys { | 
|  | namespace detail { | 
|  | namespace x86 { | 
|  |  | 
|  | VendorSignatures getVendorSignature(unsigned *MaxLeaf) { | 
|  | return VendorSignatures::UNKNOWN; | 
|  | } | 
|  |  | 
|  | } // namespace x86 | 
|  | } // namespace detail | 
|  | } // namespace sys | 
|  | } // namespace llvm | 
|  | #endif | 
|  |  | 
|  | #if defined(__linux__) && (defined(__i386__) || defined(__x86_64__)) | 
|  | // On Linux, the number of physical cores can be computed from /proc/cpuinfo, | 
|  | // using the number of unique physical/core id pairs. The following | 
|  | // implementation reads the /proc/cpuinfo format on an x86_64 system. | 
|  | int computeHostNumPhysicalCores() { | 
|  | // Enabled represents the number of physical id/core id pairs with at least | 
|  | // one processor id enabled by the CPU affinity mask. | 
|  | cpu_set_t Affinity, Enabled; | 
|  | if (sched_getaffinity(0, sizeof(Affinity), &Affinity) != 0) | 
|  | return -1; | 
|  | CPU_ZERO(&Enabled); | 
|  |  | 
|  | // Read /proc/cpuinfo as a stream (until EOF reached). It cannot be | 
|  | // mmapped because it appears to have 0 size. | 
|  | llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text = | 
|  | llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo"); | 
|  | if (std::error_code EC = Text.getError()) { | 
|  | llvm::errs() << "Can't read " | 
|  | << "/proc/cpuinfo: " << EC.message() << "\n"; | 
|  | return -1; | 
|  | } | 
|  | SmallVector<StringRef, 8> strs; | 
|  | (*Text)->getBuffer().split(strs, "\n", /*MaxSplit=*/-1, | 
|  | /*KeepEmpty=*/false); | 
|  | int CurProcessor = -1; | 
|  | int CurPhysicalId = -1; | 
|  | int CurSiblings = -1; | 
|  | int CurCoreId = -1; | 
|  | for (StringRef Line : strs) { | 
|  | std::pair<StringRef, StringRef> Data = Line.split(':'); | 
|  | auto Name = Data.first.trim(); | 
|  | auto Val = Data.second.trim(); | 
|  | // These fields are available if the kernel is configured with CONFIG_SMP. | 
|  | if (Name == "processor") | 
|  | Val.getAsInteger(10, CurProcessor); | 
|  | else if (Name == "physical id") | 
|  | Val.getAsInteger(10, CurPhysicalId); | 
|  | else if (Name == "siblings") | 
|  | Val.getAsInteger(10, CurSiblings); | 
|  | else if (Name == "core id") { | 
|  | Val.getAsInteger(10, CurCoreId); | 
|  | // The processor id corresponds to an index into cpu_set_t. | 
|  | if (CPU_ISSET(CurProcessor, &Affinity)) | 
|  | CPU_SET(CurPhysicalId * CurSiblings + CurCoreId, &Enabled); | 
|  | } | 
|  | } | 
|  | return CPU_COUNT(&Enabled); | 
|  | } | 
|  | #elif defined(__linux__) && defined(__powerpc__) | 
|  | int computeHostNumPhysicalCores() { | 
|  | cpu_set_t Affinity; | 
|  | if (sched_getaffinity(0, sizeof(Affinity), &Affinity) == 0) | 
|  | return CPU_COUNT(&Affinity); | 
|  |  | 
|  | // The call to sched_getaffinity() may have failed because the Affinity | 
|  | // mask is too small for the number of CPU's on the system (i.e. the | 
|  | // system has more than 1024 CPUs). Allocate a mask large enough for | 
|  | // twice as many CPUs. | 
|  | cpu_set_t *DynAffinity; | 
|  | DynAffinity = CPU_ALLOC(2048); | 
|  | if (sched_getaffinity(0, CPU_ALLOC_SIZE(2048), DynAffinity) == 0) { | 
|  | int NumCPUs = CPU_COUNT(DynAffinity); | 
|  | CPU_FREE(DynAffinity); | 
|  | return NumCPUs; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  | #elif defined(__linux__) && defined(__s390x__) | 
|  | int computeHostNumPhysicalCores() { return sysconf(_SC_NPROCESSORS_ONLN); } | 
|  | #elif defined(__APPLE__) | 
|  | #include <sys/param.h> | 
|  | #include <sys/sysctl.h> | 
|  |  | 
|  | // Gets the number of *physical cores* on the machine. | 
|  | int computeHostNumPhysicalCores() { | 
|  | uint32_t count; | 
|  | size_t len = sizeof(count); | 
|  | sysctlbyname("hw.physicalcpu", &count, &len, NULL, 0); | 
|  | if (count < 1) { | 
|  | int nm[2]; | 
|  | nm[0] = CTL_HW; | 
|  | nm[1] = HW_AVAILCPU; | 
|  | sysctl(nm, 2, &count, &len, NULL, 0); | 
|  | if (count < 1) | 
|  | return -1; | 
|  | } | 
|  | return count; | 
|  | } | 
|  | #elif defined(__MVS__) | 
|  | int computeHostNumPhysicalCores() { | 
|  | enum { | 
|  | // Byte offset of the pointer to the Communications Vector Table (CVT) in | 
|  | // the Prefixed Save Area (PSA). The table entry is a 31-bit pointer and | 
|  | // will be zero-extended to uintptr_t. | 
|  | FLCCVT = 16, | 
|  | // Byte offset of the pointer to the Common System Data Area (CSD) in the | 
|  | // CVT. The table entry is a 31-bit pointer and will be zero-extended to | 
|  | // uintptr_t. | 
|  | CVTCSD = 660, | 
|  | // Byte offset to the number of live CPs in the LPAR, stored as a signed | 
|  | // 32-bit value in the table. | 
|  | CSD_NUMBER_ONLINE_STANDARD_CPS = 264, | 
|  | }; | 
|  | char *PSA = 0; | 
|  | char *CVT = reinterpret_cast<char *>( | 
|  | static_cast<uintptr_t>(reinterpret_cast<unsigned int &>(PSA[FLCCVT]))); | 
|  | char *CSD = reinterpret_cast<char *>( | 
|  | static_cast<uintptr_t>(reinterpret_cast<unsigned int &>(CVT[CVTCSD]))); | 
|  | return reinterpret_cast<int &>(CSD[CSD_NUMBER_ONLINE_STANDARD_CPS]); | 
|  | } | 
|  | #elif defined(_WIN32) && LLVM_ENABLE_THREADS != 0 | 
|  | // Defined in llvm/lib/Support/Windows/Threading.inc | 
|  | int computeHostNumPhysicalCores(); | 
|  | #else | 
|  | // On other systems, return -1 to indicate unknown. | 
|  | static int computeHostNumPhysicalCores() { return -1; } | 
|  | #endif | 
|  |  | 
|  | int sys::getHostNumPhysicalCores() { | 
|  | static int NumCores = computeHostNumPhysicalCores(); | 
|  | return NumCores; | 
|  | } | 
|  |  | 
|  | #if defined(__i386__) || defined(_M_IX86) || \ | 
|  | defined(__x86_64__) || defined(_M_X64) | 
|  | bool sys::getHostCPUFeatures(StringMap<bool> &Features) { | 
|  | unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; | 
|  | unsigned MaxLevel; | 
|  |  | 
|  | if (getX86CpuIDAndInfo(0, &MaxLevel, &EBX, &ECX, &EDX) || MaxLevel < 1) | 
|  | return false; | 
|  |  | 
|  | getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX); | 
|  |  | 
|  | Features["cx8"]    = (EDX >>  8) & 1; | 
|  | Features["cmov"]   = (EDX >> 15) & 1; | 
|  | Features["mmx"]    = (EDX >> 23) & 1; | 
|  | Features["fxsr"]   = (EDX >> 24) & 1; | 
|  | Features["sse"]    = (EDX >> 25) & 1; | 
|  | Features["sse2"]   = (EDX >> 26) & 1; | 
|  |  | 
|  | Features["sse3"]   = (ECX >>  0) & 1; | 
|  | Features["pclmul"] = (ECX >>  1) & 1; | 
|  | Features["ssse3"]  = (ECX >>  9) & 1; | 
|  | Features["cx16"]   = (ECX >> 13) & 1; | 
|  | Features["sse4.1"] = (ECX >> 19) & 1; | 
|  | Features["sse4.2"] = (ECX >> 20) & 1; | 
|  | Features["movbe"]  = (ECX >> 22) & 1; | 
|  | Features["popcnt"] = (ECX >> 23) & 1; | 
|  | Features["aes"]    = (ECX >> 25) & 1; | 
|  | Features["rdrnd"]  = (ECX >> 30) & 1; | 
|  |  | 
|  | // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV | 
|  | // indicates that the AVX registers will be saved and restored on context | 
|  | // switch, then we have full AVX support. | 
|  | bool HasXSave = ((ECX >> 27) & 1) && !getX86XCR0(&EAX, &EDX); | 
|  | bool HasAVXSave = HasXSave && ((ECX >> 28) & 1) && ((EAX & 0x6) == 0x6); | 
|  | #if defined(__APPLE__) | 
|  | // Darwin lazily saves the AVX512 context on first use: trust that the OS will | 
|  | // save the AVX512 context if we use AVX512 instructions, even the bit is not | 
|  | // set right now. | 
|  | bool HasAVX512Save = true; | 
|  | #else | 
|  | // AVX512 requires additional context to be saved by the OS. | 
|  | bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0); | 
|  | #endif | 
|  | // AMX requires additional context to be saved by the OS. | 
|  | const unsigned AMXBits = (1 << 17) | (1 << 18); | 
|  | bool HasAMXSave = HasXSave && ((EAX & AMXBits) == AMXBits); | 
|  |  | 
|  | Features["avx"]   = HasAVXSave; | 
|  | Features["fma"]   = ((ECX >> 12) & 1) && HasAVXSave; | 
|  | // Only enable XSAVE if OS has enabled support for saving YMM state. | 
|  | Features["xsave"] = ((ECX >> 26) & 1) && HasAVXSave; | 
|  | Features["f16c"]  = ((ECX >> 29) & 1) && HasAVXSave; | 
|  |  | 
|  | unsigned MaxExtLevel; | 
|  | getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX); | 
|  |  | 
|  | bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 && | 
|  | !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); | 
|  | Features["sahf"]   = HasExtLeaf1 && ((ECX >>  0) & 1); | 
|  | Features["lzcnt"]  = HasExtLeaf1 && ((ECX >>  5) & 1); | 
|  | Features["sse4a"]  = HasExtLeaf1 && ((ECX >>  6) & 1); | 
|  | Features["prfchw"] = HasExtLeaf1 && ((ECX >>  8) & 1); | 
|  | Features["xop"]    = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave; | 
|  | Features["lwp"]    = HasExtLeaf1 && ((ECX >> 15) & 1); | 
|  | Features["fma4"]   = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave; | 
|  | Features["tbm"]    = HasExtLeaf1 && ((ECX >> 21) & 1); | 
|  | Features["mwaitx"] = HasExtLeaf1 && ((ECX >> 29) & 1); | 
|  |  | 
|  | Features["64bit"]  = HasExtLeaf1 && ((EDX >> 29) & 1); | 
|  |  | 
|  | // Miscellaneous memory related features, detected by | 
|  | // using the 0x80000008 leaf of the CPUID instruction | 
|  | bool HasExtLeaf8 = MaxExtLevel >= 0x80000008 && | 
|  | !getX86CpuIDAndInfo(0x80000008, &EAX, &EBX, &ECX, &EDX); | 
|  | Features["clzero"]   = HasExtLeaf8 && ((EBX >> 0) & 1); | 
|  | Features["wbnoinvd"] = HasExtLeaf8 && ((EBX >> 9) & 1); | 
|  |  | 
|  | bool HasLeaf7 = | 
|  | MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX); | 
|  |  | 
|  | Features["fsgsbase"]   = HasLeaf7 && ((EBX >>  0) & 1); | 
|  | Features["sgx"]        = HasLeaf7 && ((EBX >>  2) & 1); | 
|  | Features["bmi"]        = HasLeaf7 && ((EBX >>  3) & 1); | 
|  | // AVX2 is only supported if we have the OS save support from AVX. | 
|  | Features["avx2"]       = HasLeaf7 && ((EBX >>  5) & 1) && HasAVXSave; | 
|  | Features["bmi2"]       = HasLeaf7 && ((EBX >>  8) & 1); | 
|  | Features["invpcid"]    = HasLeaf7 && ((EBX >> 10) & 1); | 
|  | Features["rtm"]        = HasLeaf7 && ((EBX >> 11) & 1); | 
|  | // AVX512 is only supported if the OS supports the context save for it. | 
|  | Features["avx512f"]    = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save; | 
|  | Features["avx512dq"]   = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save; | 
|  | Features["rdseed"]     = HasLeaf7 && ((EBX >> 18) & 1); | 
|  | Features["adx"]        = HasLeaf7 && ((EBX >> 19) & 1); | 
|  | Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save; | 
|  | Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1); | 
|  | Features["clwb"]       = HasLeaf7 && ((EBX >> 24) & 1); | 
|  | Features["avx512pf"]   = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save; | 
|  | Features["avx512er"]   = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save; | 
|  | Features["avx512cd"]   = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save; | 
|  | Features["sha"]        = HasLeaf7 && ((EBX >> 29) & 1); | 
|  | Features["avx512bw"]   = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save; | 
|  | Features["avx512vl"]   = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save; | 
|  |  | 
|  | Features["prefetchwt1"]     = HasLeaf7 && ((ECX >>  0) & 1); | 
|  | Features["avx512vbmi"]      = HasLeaf7 && ((ECX >>  1) & 1) && HasAVX512Save; | 
|  | Features["pku"]             = HasLeaf7 && ((ECX >>  4) & 1); | 
|  | Features["waitpkg"]         = HasLeaf7 && ((ECX >>  5) & 1); | 
|  | Features["avx512vbmi2"]     = HasLeaf7 && ((ECX >>  6) & 1) && HasAVX512Save; | 
|  | Features["shstk"]           = HasLeaf7 && ((ECX >>  7) & 1); | 
|  | Features["gfni"]            = HasLeaf7 && ((ECX >>  8) & 1); | 
|  | Features["vaes"]            = HasLeaf7 && ((ECX >>  9) & 1) && HasAVXSave; | 
|  | Features["vpclmulqdq"]      = HasLeaf7 && ((ECX >> 10) & 1) && HasAVXSave; | 
|  | Features["avx512vnni"]      = HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save; | 
|  | Features["avx512bitalg"]    = HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save; | 
|  | Features["avx512vpopcntdq"] = HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save; | 
|  | Features["rdpid"]           = HasLeaf7 && ((ECX >> 22) & 1); | 
|  | Features["kl"]              = HasLeaf7 && ((ECX >> 23) & 1); // key locker | 
|  | Features["cldemote"]        = HasLeaf7 && ((ECX >> 25) & 1); | 
|  | Features["movdiri"]         = HasLeaf7 && ((ECX >> 27) & 1); | 
|  | Features["movdir64b"]       = HasLeaf7 && ((ECX >> 28) & 1); | 
|  | Features["enqcmd"]          = HasLeaf7 && ((ECX >> 29) & 1); | 
|  |  | 
|  | Features["uintr"]           = HasLeaf7 && ((EDX >> 5) & 1); | 
|  | Features["avx512vp2intersect"] = | 
|  | HasLeaf7 && ((EDX >> 8) & 1) && HasAVX512Save; | 
|  | Features["serialize"]       = HasLeaf7 && ((EDX >> 14) & 1); | 
|  | Features["tsxldtrk"]        = HasLeaf7 && ((EDX >> 16) & 1); | 
|  | // There are two CPUID leafs which information associated with the pconfig | 
|  | // instruction: | 
|  | // EAX=0x7, ECX=0x0 indicates the availability of the instruction (via the 18th | 
|  | // bit of EDX), while the EAX=0x1b leaf returns information on the | 
|  | // availability of specific pconfig leafs. | 
|  | // The target feature here only refers to the the first of these two. | 
|  | // Users might need to check for the availability of specific pconfig | 
|  | // leaves using cpuid, since that information is ignored while | 
|  | // detecting features using the "-march=native" flag. | 
|  | // For more info, see X86 ISA docs. | 
|  | Features["pconfig"] = HasLeaf7 && ((EDX >> 18) & 1); | 
|  | Features["amx-bf16"]   = HasLeaf7 && ((EDX >> 22) & 1) && HasAMXSave; | 
|  | Features["amx-tile"]   = HasLeaf7 && ((EDX >> 24) & 1) && HasAMXSave; | 
|  | Features["amx-int8"]   = HasLeaf7 && ((EDX >> 25) & 1) && HasAMXSave; | 
|  | bool HasLeaf7Subleaf1 = | 
|  | MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x1, &EAX, &EBX, &ECX, &EDX); | 
|  | Features["avxvnni"]    = HasLeaf7Subleaf1 && ((EAX >> 4) & 1) && HasAVXSave; | 
|  | Features["avx512bf16"] = HasLeaf7Subleaf1 && ((EAX >> 5) & 1) && HasAVX512Save; | 
|  | Features["hreset"]     = HasLeaf7Subleaf1 && ((EAX >> 22) & 1); | 
|  |  | 
|  | bool HasLeafD = MaxLevel >= 0xd && | 
|  | !getX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX); | 
|  |  | 
|  | // Only enable XSAVE if OS has enabled support for saving YMM state. | 
|  | Features["xsaveopt"] = HasLeafD && ((EAX >> 0) & 1) && HasAVXSave; | 
|  | Features["xsavec"]   = HasLeafD && ((EAX >> 1) & 1) && HasAVXSave; | 
|  | Features["xsaves"]   = HasLeafD && ((EAX >> 3) & 1) && HasAVXSave; | 
|  |  | 
|  | bool HasLeaf14 = MaxLevel >= 0x14 && | 
|  | !getX86CpuIDAndInfoEx(0x14, 0x0, &EAX, &EBX, &ECX, &EDX); | 
|  |  | 
|  | Features["ptwrite"] = HasLeaf14 && ((EBX >> 4) & 1); | 
|  |  | 
|  | bool HasLeaf19 = | 
|  | MaxLevel >= 0x19 && !getX86CpuIDAndInfo(0x19, &EAX, &EBX, &ECX, &EDX); | 
|  | Features["widekl"] = HasLeaf7 && HasLeaf19 && ((EBX >> 2) & 1); | 
|  |  | 
|  | return true; | 
|  | } | 
|  | #elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__)) | 
|  | bool sys::getHostCPUFeatures(StringMap<bool> &Features) { | 
|  | std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent(); | 
|  | if (!P) | 
|  | return false; | 
|  |  | 
|  | SmallVector<StringRef, 32> Lines; | 
|  | P->getBuffer().split(Lines, "\n"); | 
|  |  | 
|  | SmallVector<StringRef, 32> CPUFeatures; | 
|  |  | 
|  | // Look for the CPU features. | 
|  | for (unsigned I = 0, E = Lines.size(); I != E; ++I) | 
|  | if (Lines[I].startswith("Features")) { | 
|  | Lines[I].split(CPUFeatures, ' '); | 
|  | break; | 
|  | } | 
|  |  | 
|  | #if defined(__aarch64__) | 
|  | // Keep track of which crypto features we have seen | 
|  | enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 }; | 
|  | uint32_t crypto = 0; | 
|  | #endif | 
|  |  | 
|  | for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) { | 
|  | StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I]) | 
|  | #if defined(__aarch64__) | 
|  | .Case("asimd", "neon") | 
|  | .Case("fp", "fp-armv8") | 
|  | .Case("crc32", "crc") | 
|  | #else | 
|  | .Case("half", "fp16") | 
|  | .Case("neon", "neon") | 
|  | .Case("vfpv3", "vfp3") | 
|  | .Case("vfpv3d16", "d16") | 
|  | .Case("vfpv4", "vfp4") | 
|  | .Case("idiva", "hwdiv-arm") | 
|  | .Case("idivt", "hwdiv") | 
|  | #endif | 
|  | .Default(""); | 
|  |  | 
|  | #if defined(__aarch64__) | 
|  | // We need to check crypto separately since we need all of the crypto | 
|  | // extensions to enable the subtarget feature | 
|  | if (CPUFeatures[I] == "aes") | 
|  | crypto |= CAP_AES; | 
|  | else if (CPUFeatures[I] == "pmull") | 
|  | crypto |= CAP_PMULL; | 
|  | else if (CPUFeatures[I] == "sha1") | 
|  | crypto |= CAP_SHA1; | 
|  | else if (CPUFeatures[I] == "sha2") | 
|  | crypto |= CAP_SHA2; | 
|  | #endif | 
|  |  | 
|  | if (LLVMFeatureStr != "") | 
|  | Features[LLVMFeatureStr] = true; | 
|  | } | 
|  |  | 
|  | #if defined(__aarch64__) | 
|  | // If we have all crypto bits we can add the feature | 
|  | if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2)) | 
|  | Features["crypto"] = true; | 
|  | #endif | 
|  |  | 
|  | return true; | 
|  | } | 
|  | #elif defined(_WIN32) && (defined(__aarch64__) || defined(_M_ARM64)) | 
|  | bool sys::getHostCPUFeatures(StringMap<bool> &Features) { | 
|  | if (IsProcessorFeaturePresent(PF_ARM_NEON_INSTRUCTIONS_AVAILABLE)) | 
|  | Features["neon"] = true; | 
|  | if (IsProcessorFeaturePresent(PF_ARM_V8_CRC32_INSTRUCTIONS_AVAILABLE)) | 
|  | Features["crc"] = true; | 
|  | if (IsProcessorFeaturePresent(PF_ARM_V8_CRYPTO_INSTRUCTIONS_AVAILABLE)) | 
|  | Features["crypto"] = true; | 
|  |  | 
|  | return true; | 
|  | } | 
|  | #else | 
|  | bool sys::getHostCPUFeatures(StringMap<bool> &Features) { return false; } | 
|  | #endif | 
|  |  | 
|  | std::string sys::getProcessTriple() { | 
|  | std::string TargetTripleString = updateTripleOSVersion(LLVM_HOST_TRIPLE); | 
|  | Triple PT(Triple::normalize(TargetTripleString)); | 
|  |  | 
|  | if (sizeof(void *) == 8 && PT.isArch32Bit()) | 
|  | PT = PT.get64BitArchVariant(); | 
|  | if (sizeof(void *) == 4 && PT.isArch64Bit()) | 
|  | PT = PT.get32BitArchVariant(); | 
|  |  | 
|  | return PT.str(); | 
|  | } |