| //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // Implementation of the MC-JIT runtime dynamic linker. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/ExecutionEngine/RuntimeDyld.h" | 
 | #include "RuntimeDyldCOFF.h" | 
 | #include "RuntimeDyldELF.h" | 
 | #include "RuntimeDyldImpl.h" | 
 | #include "RuntimeDyldMachO.h" | 
 | #include "llvm/Object/COFF.h" | 
 | #include "llvm/Object/ELFObjectFile.h" | 
 | #include "llvm/Support/Alignment.h" | 
 | #include "llvm/Support/MSVCErrorWorkarounds.h" | 
 | #include "llvm/Support/ManagedStatic.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 | #include <mutex> | 
 |  | 
 | #include <future> | 
 |  | 
 | using namespace llvm; | 
 | using namespace llvm::object; | 
 |  | 
 | #define DEBUG_TYPE "dyld" | 
 |  | 
 | namespace { | 
 |  | 
 | enum RuntimeDyldErrorCode { | 
 |   GenericRTDyldError = 1 | 
 | }; | 
 |  | 
 | // FIXME: This class is only here to support the transition to llvm::Error. It | 
 | // will be removed once this transition is complete. Clients should prefer to | 
 | // deal with the Error value directly, rather than converting to error_code. | 
 | class RuntimeDyldErrorCategory : public std::error_category { | 
 | public: | 
 |   const char *name() const noexcept override { return "runtimedyld"; } | 
 |  | 
 |   std::string message(int Condition) const override { | 
 |     switch (static_cast<RuntimeDyldErrorCode>(Condition)) { | 
 |       case GenericRTDyldError: return "Generic RuntimeDyld error"; | 
 |     } | 
 |     llvm_unreachable("Unrecognized RuntimeDyldErrorCode"); | 
 |   } | 
 | }; | 
 |  | 
 | static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory; | 
 |  | 
 | } | 
 |  | 
 | char RuntimeDyldError::ID = 0; | 
 |  | 
 | void RuntimeDyldError::log(raw_ostream &OS) const { | 
 |   OS << ErrMsg << "\n"; | 
 | } | 
 |  | 
 | std::error_code RuntimeDyldError::convertToErrorCode() const { | 
 |   return std::error_code(GenericRTDyldError, *RTDyldErrorCategory); | 
 | } | 
 |  | 
 | // Empty out-of-line virtual destructor as the key function. | 
 | RuntimeDyldImpl::~RuntimeDyldImpl() {} | 
 |  | 
 | // Pin LoadedObjectInfo's vtables to this file. | 
 | void RuntimeDyld::LoadedObjectInfo::anchor() {} | 
 |  | 
 | namespace llvm { | 
 |  | 
 | void RuntimeDyldImpl::registerEHFrames() {} | 
 |  | 
 | void RuntimeDyldImpl::deregisterEHFrames() { | 
 |   MemMgr.deregisterEHFrames(); | 
 | } | 
 |  | 
 | #ifndef NDEBUG | 
 | static void dumpSectionMemory(const SectionEntry &S, StringRef State) { | 
 |   dbgs() << "----- Contents of section " << S.getName() << " " << State | 
 |          << " -----"; | 
 |  | 
 |   if (S.getAddress() == nullptr) { | 
 |     dbgs() << "\n          <section not emitted>\n"; | 
 |     return; | 
 |   } | 
 |  | 
 |   const unsigned ColsPerRow = 16; | 
 |  | 
 |   uint8_t *DataAddr = S.getAddress(); | 
 |   uint64_t LoadAddr = S.getLoadAddress(); | 
 |  | 
 |   unsigned StartPadding = LoadAddr & (ColsPerRow - 1); | 
 |   unsigned BytesRemaining = S.getSize(); | 
 |  | 
 |   if (StartPadding) { | 
 |     dbgs() << "\n" << format("0x%016" PRIx64, | 
 |                              LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":"; | 
 |     while (StartPadding--) | 
 |       dbgs() << "   "; | 
 |   } | 
 |  | 
 |   while (BytesRemaining > 0) { | 
 |     if ((LoadAddr & (ColsPerRow - 1)) == 0) | 
 |       dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":"; | 
 |  | 
 |     dbgs() << " " << format("%02x", *DataAddr); | 
 |  | 
 |     ++DataAddr; | 
 |     ++LoadAddr; | 
 |     --BytesRemaining; | 
 |   } | 
 |  | 
 |   dbgs() << "\n"; | 
 | } | 
 | #endif | 
 |  | 
 | // Resolve the relocations for all symbols we currently know about. | 
 | void RuntimeDyldImpl::resolveRelocations() { | 
 |   std::lock_guard<sys::Mutex> locked(lock); | 
 |  | 
 |   // Print out the sections prior to relocation. | 
 |   LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i) | 
 |                  dumpSectionMemory(Sections[i], "before relocations");); | 
 |  | 
 |   // First, resolve relocations associated with external symbols. | 
 |   if (auto Err = resolveExternalSymbols()) { | 
 |     HasError = true; | 
 |     ErrorStr = toString(std::move(Err)); | 
 |   } | 
 |  | 
 |   resolveLocalRelocations(); | 
 |  | 
 |   // Print out sections after relocation. | 
 |   LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i) | 
 |                  dumpSectionMemory(Sections[i], "after relocations");); | 
 | } | 
 |  | 
 | void RuntimeDyldImpl::resolveLocalRelocations() { | 
 |   // Iterate over all outstanding relocations | 
 |   for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) { | 
 |     // The Section here (Sections[i]) refers to the section in which the | 
 |     // symbol for the relocation is located.  The SectionID in the relocation | 
 |     // entry provides the section to which the relocation will be applied. | 
 |     unsigned Idx = it->first; | 
 |     uint64_t Addr = getSectionLoadAddress(Idx); | 
 |     LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t" | 
 |                       << format("%p", (uintptr_t)Addr) << "\n"); | 
 |     resolveRelocationList(it->second, Addr); | 
 |   } | 
 |   Relocations.clear(); | 
 | } | 
 |  | 
 | void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress, | 
 |                                         uint64_t TargetAddress) { | 
 |   std::lock_guard<sys::Mutex> locked(lock); | 
 |   for (unsigned i = 0, e = Sections.size(); i != e; ++i) { | 
 |     if (Sections[i].getAddress() == LocalAddress) { | 
 |       reassignSectionAddress(i, TargetAddress); | 
 |       return; | 
 |     } | 
 |   } | 
 |   llvm_unreachable("Attempting to remap address of unknown section!"); | 
 | } | 
 |  | 
 | static Error getOffset(const SymbolRef &Sym, SectionRef Sec, | 
 |                        uint64_t &Result) { | 
 |   Expected<uint64_t> AddressOrErr = Sym.getAddress(); | 
 |   if (!AddressOrErr) | 
 |     return AddressOrErr.takeError(); | 
 |   Result = *AddressOrErr - Sec.getAddress(); | 
 |   return Error::success(); | 
 | } | 
 |  | 
 | Expected<RuntimeDyldImpl::ObjSectionToIDMap> | 
 | RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) { | 
 |   std::lock_guard<sys::Mutex> locked(lock); | 
 |  | 
 |   // Save information about our target | 
 |   Arch = (Triple::ArchType)Obj.getArch(); | 
 |   IsTargetLittleEndian = Obj.isLittleEndian(); | 
 |   setMipsABI(Obj); | 
 |  | 
 |   // Compute the memory size required to load all sections to be loaded | 
 |   // and pass this information to the memory manager | 
 |   if (MemMgr.needsToReserveAllocationSpace()) { | 
 |     uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0; | 
 |     uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1; | 
 |     if (auto Err = computeTotalAllocSize(Obj, | 
 |                                          CodeSize, CodeAlign, | 
 |                                          RODataSize, RODataAlign, | 
 |                                          RWDataSize, RWDataAlign)) | 
 |       return std::move(Err); | 
 |     MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign, | 
 |                                   RWDataSize, RWDataAlign); | 
 |   } | 
 |  | 
 |   // Used sections from the object file | 
 |   ObjSectionToIDMap LocalSections; | 
 |  | 
 |   // Common symbols requiring allocation, with their sizes and alignments | 
 |   CommonSymbolList CommonSymbolsToAllocate; | 
 |  | 
 |   uint64_t CommonSize = 0; | 
 |   uint32_t CommonAlign = 0; | 
 |  | 
 |   // First, collect all weak and common symbols. We need to know if stronger | 
 |   // definitions occur elsewhere. | 
 |   JITSymbolResolver::LookupSet ResponsibilitySet; | 
 |   { | 
 |     JITSymbolResolver::LookupSet Symbols; | 
 |     for (auto &Sym : Obj.symbols()) { | 
 |       Expected<uint32_t> FlagsOrErr = Sym.getFlags(); | 
 |       if (!FlagsOrErr) | 
 |         // TODO: Test this error. | 
 |         return FlagsOrErr.takeError(); | 
 |       if ((*FlagsOrErr & SymbolRef::SF_Common) || | 
 |           (*FlagsOrErr & SymbolRef::SF_Weak)) { | 
 |         // Get symbol name. | 
 |         if (auto NameOrErr = Sym.getName()) | 
 |           Symbols.insert(*NameOrErr); | 
 |         else | 
 |           return NameOrErr.takeError(); | 
 |       } | 
 |     } | 
 |  | 
 |     if (auto ResultOrErr = Resolver.getResponsibilitySet(Symbols)) | 
 |       ResponsibilitySet = std::move(*ResultOrErr); | 
 |     else | 
 |       return ResultOrErr.takeError(); | 
 |   } | 
 |  | 
 |   // Parse symbols | 
 |   LLVM_DEBUG(dbgs() << "Parse symbols:\n"); | 
 |   for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; | 
 |        ++I) { | 
 |     Expected<uint32_t> FlagsOrErr = I->getFlags(); | 
 |     if (!FlagsOrErr) | 
 |       // TODO: Test this error. | 
 |       return FlagsOrErr.takeError(); | 
 |  | 
 |     // Skip undefined symbols. | 
 |     if (*FlagsOrErr & SymbolRef::SF_Undefined) | 
 |       continue; | 
 |  | 
 |     // Get the symbol type. | 
 |     object::SymbolRef::Type SymType; | 
 |     if (auto SymTypeOrErr = I->getType()) | 
 |       SymType = *SymTypeOrErr; | 
 |     else | 
 |       return SymTypeOrErr.takeError(); | 
 |  | 
 |     // Get symbol name. | 
 |     StringRef Name; | 
 |     if (auto NameOrErr = I->getName()) | 
 |       Name = *NameOrErr; | 
 |     else | 
 |       return NameOrErr.takeError(); | 
 |  | 
 |     // Compute JIT symbol flags. | 
 |     auto JITSymFlags = getJITSymbolFlags(*I); | 
 |     if (!JITSymFlags) | 
 |       return JITSymFlags.takeError(); | 
 |  | 
 |     // If this is a weak definition, check to see if there's a strong one. | 
 |     // If there is, skip this symbol (we won't be providing it: the strong | 
 |     // definition will). If there's no strong definition, make this definition | 
 |     // strong. | 
 |     if (JITSymFlags->isWeak() || JITSymFlags->isCommon()) { | 
 |       // First check whether there's already a definition in this instance. | 
 |       if (GlobalSymbolTable.count(Name)) | 
 |         continue; | 
 |  | 
 |       // If we're not responsible for this symbol, skip it. | 
 |       if (!ResponsibilitySet.count(Name)) | 
 |         continue; | 
 |  | 
 |       // Otherwise update the flags on the symbol to make this definition | 
 |       // strong. | 
 |       if (JITSymFlags->isWeak()) | 
 |         *JITSymFlags &= ~JITSymbolFlags::Weak; | 
 |       if (JITSymFlags->isCommon()) { | 
 |         *JITSymFlags &= ~JITSymbolFlags::Common; | 
 |         uint32_t Align = I->getAlignment(); | 
 |         uint64_t Size = I->getCommonSize(); | 
 |         if (!CommonAlign) | 
 |           CommonAlign = Align; | 
 |         CommonSize = alignTo(CommonSize, Align) + Size; | 
 |         CommonSymbolsToAllocate.push_back(*I); | 
 |       } | 
 |     } | 
 |  | 
 |     if (*FlagsOrErr & SymbolRef::SF_Absolute && | 
 |         SymType != object::SymbolRef::ST_File) { | 
 |       uint64_t Addr = 0; | 
 |       if (auto AddrOrErr = I->getAddress()) | 
 |         Addr = *AddrOrErr; | 
 |       else | 
 |         return AddrOrErr.takeError(); | 
 |  | 
 |       unsigned SectionID = AbsoluteSymbolSection; | 
 |  | 
 |       LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name | 
 |                         << " SID: " << SectionID | 
 |                         << " Offset: " << format("%p", (uintptr_t)Addr) | 
 |                         << " flags: " << *FlagsOrErr << "\n"); | 
 |       if (!Name.empty()) // Skip absolute symbol relocations. | 
 |         GlobalSymbolTable[Name] = | 
 |             SymbolTableEntry(SectionID, Addr, *JITSymFlags); | 
 |     } else if (SymType == object::SymbolRef::ST_Function || | 
 |                SymType == object::SymbolRef::ST_Data || | 
 |                SymType == object::SymbolRef::ST_Unknown || | 
 |                SymType == object::SymbolRef::ST_Other) { | 
 |  | 
 |       section_iterator SI = Obj.section_end(); | 
 |       if (auto SIOrErr = I->getSection()) | 
 |         SI = *SIOrErr; | 
 |       else | 
 |         return SIOrErr.takeError(); | 
 |  | 
 |       if (SI == Obj.section_end()) | 
 |         continue; | 
 |  | 
 |       // Get symbol offset. | 
 |       uint64_t SectOffset; | 
 |       if (auto Err = getOffset(*I, *SI, SectOffset)) | 
 |         return std::move(Err); | 
 |  | 
 |       bool IsCode = SI->isText(); | 
 |       unsigned SectionID; | 
 |       if (auto SectionIDOrErr = | 
 |               findOrEmitSection(Obj, *SI, IsCode, LocalSections)) | 
 |         SectionID = *SectionIDOrErr; | 
 |       else | 
 |         return SectionIDOrErr.takeError(); | 
 |  | 
 |       LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name | 
 |                         << " SID: " << SectionID | 
 |                         << " Offset: " << format("%p", (uintptr_t)SectOffset) | 
 |                         << " flags: " << *FlagsOrErr << "\n"); | 
 |       if (!Name.empty()) // Skip absolute symbol relocations | 
 |         GlobalSymbolTable[Name] = | 
 |             SymbolTableEntry(SectionID, SectOffset, *JITSymFlags); | 
 |     } | 
 |   } | 
 |  | 
 |   // Allocate common symbols | 
 |   if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize, | 
 |                                    CommonAlign)) | 
 |     return std::move(Err); | 
 |  | 
 |   // Parse and process relocations | 
 |   LLVM_DEBUG(dbgs() << "Parse relocations:\n"); | 
 |   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); | 
 |        SI != SE; ++SI) { | 
 |     StubMap Stubs; | 
 |  | 
 |     Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection(); | 
 |     if (!RelSecOrErr) | 
 |       return RelSecOrErr.takeError(); | 
 |  | 
 |     section_iterator RelocatedSection = *RelSecOrErr; | 
 |     if (RelocatedSection == SE) | 
 |       continue; | 
 |  | 
 |     relocation_iterator I = SI->relocation_begin(); | 
 |     relocation_iterator E = SI->relocation_end(); | 
 |  | 
 |     if (I == E && !ProcessAllSections) | 
 |       continue; | 
 |  | 
 |     bool IsCode = RelocatedSection->isText(); | 
 |     unsigned SectionID = 0; | 
 |     if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode, | 
 |                                                 LocalSections)) | 
 |       SectionID = *SectionIDOrErr; | 
 |     else | 
 |       return SectionIDOrErr.takeError(); | 
 |  | 
 |     LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n"); | 
 |  | 
 |     for (; I != E;) | 
 |       if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs)) | 
 |         I = *IOrErr; | 
 |       else | 
 |         return IOrErr.takeError(); | 
 |  | 
 |     // If there is a NotifyStubEmitted callback set, call it to register any | 
 |     // stubs created for this section. | 
 |     if (NotifyStubEmitted) { | 
 |       StringRef FileName = Obj.getFileName(); | 
 |       StringRef SectionName = Sections[SectionID].getName(); | 
 |       for (auto &KV : Stubs) { | 
 |  | 
 |         auto &VR = KV.first; | 
 |         uint64_t StubAddr = KV.second; | 
 |  | 
 |         // If this is a named stub, just call NotifyStubEmitted. | 
 |         if (VR.SymbolName) { | 
 |           NotifyStubEmitted(FileName, SectionName, VR.SymbolName, SectionID, | 
 |                             StubAddr); | 
 |           continue; | 
 |         } | 
 |  | 
 |         // Otherwise we will have to try a reverse lookup on the globla symbol table. | 
 |         for (auto &GSTMapEntry : GlobalSymbolTable) { | 
 |           StringRef SymbolName = GSTMapEntry.first(); | 
 |           auto &GSTEntry = GSTMapEntry.second; | 
 |           if (GSTEntry.getSectionID() == VR.SectionID && | 
 |               GSTEntry.getOffset() == VR.Offset) { | 
 |             NotifyStubEmitted(FileName, SectionName, SymbolName, SectionID, | 
 |                               StubAddr); | 
 |             break; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Process remaining sections | 
 |   if (ProcessAllSections) { | 
 |     LLVM_DEBUG(dbgs() << "Process remaining sections:\n"); | 
 |     for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); | 
 |          SI != SE; ++SI) { | 
 |  | 
 |       /* Ignore already loaded sections */ | 
 |       if (LocalSections.find(*SI) != LocalSections.end()) | 
 |         continue; | 
 |  | 
 |       bool IsCode = SI->isText(); | 
 |       if (auto SectionIDOrErr = | 
 |               findOrEmitSection(Obj, *SI, IsCode, LocalSections)) | 
 |         LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr) << "\n"); | 
 |       else | 
 |         return SectionIDOrErr.takeError(); | 
 |     } | 
 |   } | 
 |  | 
 |   // Give the subclasses a chance to tie-up any loose ends. | 
 |   if (auto Err = finalizeLoad(Obj, LocalSections)) | 
 |     return std::move(Err); | 
 |  | 
 | //   for (auto E : LocalSections) | 
 | //     llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n"; | 
 |  | 
 |   return LocalSections; | 
 | } | 
 |  | 
 | // A helper method for computeTotalAllocSize. | 
 | // Computes the memory size required to allocate sections with the given sizes, | 
 | // assuming that all sections are allocated with the given alignment | 
 | static uint64_t | 
 | computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes, | 
 |                                  uint64_t Alignment) { | 
 |   uint64_t TotalSize = 0; | 
 |   for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) { | 
 |     uint64_t AlignedSize = | 
 |         (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment; | 
 |     TotalSize += AlignedSize; | 
 |   } | 
 |   return TotalSize; | 
 | } | 
 |  | 
 | static bool isRequiredForExecution(const SectionRef Section) { | 
 |   const ObjectFile *Obj = Section.getObject(); | 
 |   if (isa<object::ELFObjectFileBase>(Obj)) | 
 |     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; | 
 |   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) { | 
 |     const coff_section *CoffSection = COFFObj->getCOFFSection(Section); | 
 |     // Avoid loading zero-sized COFF sections. | 
 |     // In PE files, VirtualSize gives the section size, and SizeOfRawData | 
 |     // may be zero for sections with content. In Obj files, SizeOfRawData | 
 |     // gives the section size, and VirtualSize is always zero. Hence | 
 |     // the need to check for both cases below. | 
 |     bool HasContent = | 
 |         (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0); | 
 |     bool IsDiscardable = | 
 |         CoffSection->Characteristics & | 
 |         (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO); | 
 |     return HasContent && !IsDiscardable; | 
 |   } | 
 |  | 
 |   assert(isa<MachOObjectFile>(Obj)); | 
 |   return true; | 
 | } | 
 |  | 
 | static bool isReadOnlyData(const SectionRef Section) { | 
 |   const ObjectFile *Obj = Section.getObject(); | 
 |   if (isa<object::ELFObjectFileBase>(Obj)) | 
 |     return !(ELFSectionRef(Section).getFlags() & | 
 |              (ELF::SHF_WRITE | ELF::SHF_EXECINSTR)); | 
 |   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) | 
 |     return ((COFFObj->getCOFFSection(Section)->Characteristics & | 
 |              (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | 
 |              | COFF::IMAGE_SCN_MEM_READ | 
 |              | COFF::IMAGE_SCN_MEM_WRITE)) | 
 |              == | 
 |              (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | 
 |              | COFF::IMAGE_SCN_MEM_READ)); | 
 |  | 
 |   assert(isa<MachOObjectFile>(Obj)); | 
 |   return false; | 
 | } | 
 |  | 
 | static bool isZeroInit(const SectionRef Section) { | 
 |   const ObjectFile *Obj = Section.getObject(); | 
 |   if (isa<object::ELFObjectFileBase>(Obj)) | 
 |     return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS; | 
 |   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) | 
 |     return COFFObj->getCOFFSection(Section)->Characteristics & | 
 |             COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA; | 
 |  | 
 |   auto *MachO = cast<MachOObjectFile>(Obj); | 
 |   unsigned SectionType = MachO->getSectionType(Section); | 
 |   return SectionType == MachO::S_ZEROFILL || | 
 |          SectionType == MachO::S_GB_ZEROFILL; | 
 | } | 
 |  | 
 | // Compute an upper bound of the memory size that is required to load all | 
 | // sections | 
 | Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj, | 
 |                                              uint64_t &CodeSize, | 
 |                                              uint32_t &CodeAlign, | 
 |                                              uint64_t &RODataSize, | 
 |                                              uint32_t &RODataAlign, | 
 |                                              uint64_t &RWDataSize, | 
 |                                              uint32_t &RWDataAlign) { | 
 |   // Compute the size of all sections required for execution | 
 |   std::vector<uint64_t> CodeSectionSizes; | 
 |   std::vector<uint64_t> ROSectionSizes; | 
 |   std::vector<uint64_t> RWSectionSizes; | 
 |  | 
 |   // Collect sizes of all sections to be loaded; | 
 |   // also determine the max alignment of all sections | 
 |   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); | 
 |        SI != SE; ++SI) { | 
 |     const SectionRef &Section = *SI; | 
 |  | 
 |     bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections; | 
 |  | 
 |     // Consider only the sections that are required to be loaded for execution | 
 |     if (IsRequired) { | 
 |       uint64_t DataSize = Section.getSize(); | 
 |       uint64_t Alignment64 = Section.getAlignment(); | 
 |       unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; | 
 |       bool IsCode = Section.isText(); | 
 |       bool IsReadOnly = isReadOnlyData(Section); | 
 |  | 
 |       Expected<StringRef> NameOrErr = Section.getName(); | 
 |       if (!NameOrErr) | 
 |         return NameOrErr.takeError(); | 
 |       StringRef Name = *NameOrErr; | 
 |  | 
 |       uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section); | 
 |  | 
 |       uint64_t PaddingSize = 0; | 
 |       if (Name == ".eh_frame") | 
 |         PaddingSize += 4; | 
 |       if (StubBufSize != 0) | 
 |         PaddingSize += getStubAlignment() - 1; | 
 |  | 
 |       uint64_t SectionSize = DataSize + PaddingSize + StubBufSize; | 
 |  | 
 |       // The .eh_frame section (at least on Linux) needs an extra four bytes | 
 |       // padded | 
 |       // with zeroes added at the end.  For MachO objects, this section has a | 
 |       // slightly different name, so this won't have any effect for MachO | 
 |       // objects. | 
 |       if (Name == ".eh_frame") | 
 |         SectionSize += 4; | 
 |  | 
 |       if (!SectionSize) | 
 |         SectionSize = 1; | 
 |  | 
 |       if (IsCode) { | 
 |         CodeAlign = std::max(CodeAlign, Alignment); | 
 |         CodeSectionSizes.push_back(SectionSize); | 
 |       } else if (IsReadOnly) { | 
 |         RODataAlign = std::max(RODataAlign, Alignment); | 
 |         ROSectionSizes.push_back(SectionSize); | 
 |       } else { | 
 |         RWDataAlign = std::max(RWDataAlign, Alignment); | 
 |         RWSectionSizes.push_back(SectionSize); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Compute Global Offset Table size. If it is not zero we | 
 |   // also update alignment, which is equal to a size of a | 
 |   // single GOT entry. | 
 |   if (unsigned GotSize = computeGOTSize(Obj)) { | 
 |     RWSectionSizes.push_back(GotSize); | 
 |     RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize()); | 
 |   } | 
 |  | 
 |   // Compute the size of all common symbols | 
 |   uint64_t CommonSize = 0; | 
 |   uint32_t CommonAlign = 1; | 
 |   for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; | 
 |        ++I) { | 
 |     Expected<uint32_t> FlagsOrErr = I->getFlags(); | 
 |     if (!FlagsOrErr) | 
 |       // TODO: Test this error. | 
 |       return FlagsOrErr.takeError(); | 
 |     if (*FlagsOrErr & SymbolRef::SF_Common) { | 
 |       // Add the common symbols to a list.  We'll allocate them all below. | 
 |       uint64_t Size = I->getCommonSize(); | 
 |       uint32_t Align = I->getAlignment(); | 
 |       // If this is the first common symbol, use its alignment as the alignment | 
 |       // for the common symbols section. | 
 |       if (CommonSize == 0) | 
 |         CommonAlign = Align; | 
 |       CommonSize = alignTo(CommonSize, Align) + Size; | 
 |     } | 
 |   } | 
 |   if (CommonSize != 0) { | 
 |     RWSectionSizes.push_back(CommonSize); | 
 |     RWDataAlign = std::max(RWDataAlign, CommonAlign); | 
 |   } | 
 |  | 
 |   // Compute the required allocation space for each different type of sections | 
 |   // (code, read-only data, read-write data) assuming that all sections are | 
 |   // allocated with the max alignment. Note that we cannot compute with the | 
 |   // individual alignments of the sections, because then the required size | 
 |   // depends on the order, in which the sections are allocated. | 
 |   CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign); | 
 |   RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign); | 
 |   RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign); | 
 |  | 
 |   return Error::success(); | 
 | } | 
 |  | 
 | // compute GOT size | 
 | unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) { | 
 |   size_t GotEntrySize = getGOTEntrySize(); | 
 |   if (!GotEntrySize) | 
 |     return 0; | 
 |  | 
 |   size_t GotSize = 0; | 
 |   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); | 
 |        SI != SE; ++SI) { | 
 |  | 
 |     for (const RelocationRef &Reloc : SI->relocations()) | 
 |       if (relocationNeedsGot(Reloc)) | 
 |         GotSize += GotEntrySize; | 
 |   } | 
 |  | 
 |   return GotSize; | 
 | } | 
 |  | 
 | // compute stub buffer size for the given section | 
 | unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj, | 
 |                                                     const SectionRef &Section) { | 
 |   if (!MemMgr.allowStubAllocation()) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   unsigned StubSize = getMaxStubSize(); | 
 |   if (StubSize == 0) { | 
 |     return 0; | 
 |   } | 
 |   // FIXME: this is an inefficient way to handle this. We should computed the | 
 |   // necessary section allocation size in loadObject by walking all the sections | 
 |   // once. | 
 |   unsigned StubBufSize = 0; | 
 |   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); | 
 |        SI != SE; ++SI) { | 
 |  | 
 |     Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection(); | 
 |     if (!RelSecOrErr) | 
 |       report_fatal_error(toString(RelSecOrErr.takeError())); | 
 |  | 
 |     section_iterator RelSecI = *RelSecOrErr; | 
 |     if (!(RelSecI == Section)) | 
 |       continue; | 
 |  | 
 |     for (const RelocationRef &Reloc : SI->relocations()) | 
 |       if (relocationNeedsStub(Reloc)) | 
 |         StubBufSize += StubSize; | 
 |   } | 
 |  | 
 |   // Get section data size and alignment | 
 |   uint64_t DataSize = Section.getSize(); | 
 |   uint64_t Alignment64 = Section.getAlignment(); | 
 |  | 
 |   // Add stubbuf size alignment | 
 |   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; | 
 |   unsigned StubAlignment = getStubAlignment(); | 
 |   unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment); | 
 |   if (StubAlignment > EndAlignment) | 
 |     StubBufSize += StubAlignment - EndAlignment; | 
 |   return StubBufSize; | 
 | } | 
 |  | 
 | uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src, | 
 |                                              unsigned Size) const { | 
 |   uint64_t Result = 0; | 
 |   if (IsTargetLittleEndian) { | 
 |     Src += Size - 1; | 
 |     while (Size--) | 
 |       Result = (Result << 8) | *Src--; | 
 |   } else | 
 |     while (Size--) | 
 |       Result = (Result << 8) | *Src++; | 
 |  | 
 |   return Result; | 
 | } | 
 |  | 
 | void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst, | 
 |                                           unsigned Size) const { | 
 |   if (IsTargetLittleEndian) { | 
 |     while (Size--) { | 
 |       *Dst++ = Value & 0xFF; | 
 |       Value >>= 8; | 
 |     } | 
 |   } else { | 
 |     Dst += Size - 1; | 
 |     while (Size--) { | 
 |       *Dst-- = Value & 0xFF; | 
 |       Value >>= 8; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | Expected<JITSymbolFlags> | 
 | RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef &SR) { | 
 |   return JITSymbolFlags::fromObjectSymbol(SR); | 
 | } | 
 |  | 
 | Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj, | 
 |                                          CommonSymbolList &SymbolsToAllocate, | 
 |                                          uint64_t CommonSize, | 
 |                                          uint32_t CommonAlign) { | 
 |   if (SymbolsToAllocate.empty()) | 
 |     return Error::success(); | 
 |  | 
 |   // Allocate memory for the section | 
 |   unsigned SectionID = Sections.size(); | 
 |   uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID, | 
 |                                              "<common symbols>", false); | 
 |   if (!Addr) | 
 |     report_fatal_error("Unable to allocate memory for common symbols!"); | 
 |   uint64_t Offset = 0; | 
 |   Sections.push_back( | 
 |       SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0)); | 
 |   memset(Addr, 0, CommonSize); | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID | 
 |                     << " new addr: " << format("%p", Addr) | 
 |                     << " DataSize: " << CommonSize << "\n"); | 
 |  | 
 |   // Assign the address of each symbol | 
 |   for (auto &Sym : SymbolsToAllocate) { | 
 |     uint32_t Alignment = Sym.getAlignment(); | 
 |     uint64_t Size = Sym.getCommonSize(); | 
 |     StringRef Name; | 
 |     if (auto NameOrErr = Sym.getName()) | 
 |       Name = *NameOrErr; | 
 |     else | 
 |       return NameOrErr.takeError(); | 
 |     if (Alignment) { | 
 |       // This symbol has an alignment requirement. | 
 |       uint64_t AlignOffset = | 
 |           offsetToAlignment((uint64_t)Addr, Align(Alignment)); | 
 |       Addr += AlignOffset; | 
 |       Offset += AlignOffset; | 
 |     } | 
 |     auto JITSymFlags = getJITSymbolFlags(Sym); | 
 |  | 
 |     if (!JITSymFlags) | 
 |       return JITSymFlags.takeError(); | 
 |  | 
 |     LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address " | 
 |                       << format("%p", Addr) << "\n"); | 
 |     if (!Name.empty()) // Skip absolute symbol relocations. | 
 |       GlobalSymbolTable[Name] = | 
 |           SymbolTableEntry(SectionID, Offset, std::move(*JITSymFlags)); | 
 |     Offset += Size; | 
 |     Addr += Size; | 
 |   } | 
 |  | 
 |   return Error::success(); | 
 | } | 
 |  | 
 | Expected<unsigned> | 
 | RuntimeDyldImpl::emitSection(const ObjectFile &Obj, | 
 |                              const SectionRef &Section, | 
 |                              bool IsCode) { | 
 |   StringRef data; | 
 |   uint64_t Alignment64 = Section.getAlignment(); | 
 |  | 
 |   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL; | 
 |   unsigned PaddingSize = 0; | 
 |   unsigned StubBufSize = 0; | 
 |   bool IsRequired = isRequiredForExecution(Section); | 
 |   bool IsVirtual = Section.isVirtual(); | 
 |   bool IsZeroInit = isZeroInit(Section); | 
 |   bool IsReadOnly = isReadOnlyData(Section); | 
 |   uint64_t DataSize = Section.getSize(); | 
 |  | 
 |   // An alignment of 0 (at least with ELF) is identical to an alignment of 1, | 
 |   // while being more "polite".  Other formats do not support 0-aligned sections | 
 |   // anyway, so we should guarantee that the alignment is always at least 1. | 
 |   Alignment = std::max(1u, Alignment); | 
 |  | 
 |   Expected<StringRef> NameOrErr = Section.getName(); | 
 |   if (!NameOrErr) | 
 |     return NameOrErr.takeError(); | 
 |   StringRef Name = *NameOrErr; | 
 |  | 
 |   StubBufSize = computeSectionStubBufSize(Obj, Section); | 
 |  | 
 |   // The .eh_frame section (at least on Linux) needs an extra four bytes padded | 
 |   // with zeroes added at the end.  For MachO objects, this section has a | 
 |   // slightly different name, so this won't have any effect for MachO objects. | 
 |   if (Name == ".eh_frame") | 
 |     PaddingSize = 4; | 
 |  | 
 |   uintptr_t Allocate; | 
 |   unsigned SectionID = Sections.size(); | 
 |   uint8_t *Addr; | 
 |   const char *pData = nullptr; | 
 |  | 
 |   // If this section contains any bits (i.e. isn't a virtual or bss section), | 
 |   // grab a reference to them. | 
 |   if (!IsVirtual && !IsZeroInit) { | 
 |     // In either case, set the location of the unrelocated section in memory, | 
 |     // since we still process relocations for it even if we're not applying them. | 
 |     if (Expected<StringRef> E = Section.getContents()) | 
 |       data = *E; | 
 |     else | 
 |       return E.takeError(); | 
 |     pData = data.data(); | 
 |   } | 
 |  | 
 |   // If there are any stubs then the section alignment needs to be at least as | 
 |   // high as stub alignment or padding calculations may by incorrect when the | 
 |   // section is remapped. | 
 |   if (StubBufSize != 0) { | 
 |     Alignment = std::max(Alignment, getStubAlignment()); | 
 |     PaddingSize += getStubAlignment() - 1; | 
 |   } | 
 |  | 
 |   // Some sections, such as debug info, don't need to be loaded for execution. | 
 |   // Process those only if explicitly requested. | 
 |   if (IsRequired || ProcessAllSections) { | 
 |     Allocate = DataSize + PaddingSize + StubBufSize; | 
 |     if (!Allocate) | 
 |       Allocate = 1; | 
 |     Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID, | 
 |                                                Name) | 
 |                   : MemMgr.allocateDataSection(Allocate, Alignment, SectionID, | 
 |                                                Name, IsReadOnly); | 
 |     if (!Addr) | 
 |       report_fatal_error("Unable to allocate section memory!"); | 
 |  | 
 |     // Zero-initialize or copy the data from the image | 
 |     if (IsZeroInit || IsVirtual) | 
 |       memset(Addr, 0, DataSize); | 
 |     else | 
 |       memcpy(Addr, pData, DataSize); | 
 |  | 
 |     // Fill in any extra bytes we allocated for padding | 
 |     if (PaddingSize != 0) { | 
 |       memset(Addr + DataSize, 0, PaddingSize); | 
 |       // Update the DataSize variable to include padding. | 
 |       DataSize += PaddingSize; | 
 |  | 
 |       // Align DataSize to stub alignment if we have any stubs (PaddingSize will | 
 |       // have been increased above to account for this). | 
 |       if (StubBufSize > 0) | 
 |         DataSize &= -(uint64_t)getStubAlignment(); | 
 |     } | 
 |  | 
 |     LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " | 
 |                       << Name << " obj addr: " << format("%p", pData) | 
 |                       << " new addr: " << format("%p", Addr) << " DataSize: " | 
 |                       << DataSize << " StubBufSize: " << StubBufSize | 
 |                       << " Allocate: " << Allocate << "\n"); | 
 |   } else { | 
 |     // Even if we didn't load the section, we need to record an entry for it | 
 |     // to handle later processing (and by 'handle' I mean don't do anything | 
 |     // with these sections). | 
 |     Allocate = 0; | 
 |     Addr = nullptr; | 
 |     LLVM_DEBUG( | 
 |         dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name | 
 |                << " obj addr: " << format("%p", data.data()) << " new addr: 0" | 
 |                << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize | 
 |                << " Allocate: " << Allocate << "\n"); | 
 |   } | 
 |  | 
 |   Sections.push_back( | 
 |       SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData)); | 
 |  | 
 |   // Debug info sections are linked as if their load address was zero | 
 |   if (!IsRequired) | 
 |     Sections.back().setLoadAddress(0); | 
 |  | 
 |   return SectionID; | 
 | } | 
 |  | 
 | Expected<unsigned> | 
 | RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj, | 
 |                                    const SectionRef &Section, | 
 |                                    bool IsCode, | 
 |                                    ObjSectionToIDMap &LocalSections) { | 
 |  | 
 |   unsigned SectionID = 0; | 
 |   ObjSectionToIDMap::iterator i = LocalSections.find(Section); | 
 |   if (i != LocalSections.end()) | 
 |     SectionID = i->second; | 
 |   else { | 
 |     if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode)) | 
 |       SectionID = *SectionIDOrErr; | 
 |     else | 
 |       return SectionIDOrErr.takeError(); | 
 |     LocalSections[Section] = SectionID; | 
 |   } | 
 |   return SectionID; | 
 | } | 
 |  | 
 | void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE, | 
 |                                               unsigned SectionID) { | 
 |   Relocations[SectionID].push_back(RE); | 
 | } | 
 |  | 
 | void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE, | 
 |                                              StringRef SymbolName) { | 
 |   // Relocation by symbol.  If the symbol is found in the global symbol table, | 
 |   // create an appropriate section relocation.  Otherwise, add it to | 
 |   // ExternalSymbolRelocations. | 
 |   RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName); | 
 |   if (Loc == GlobalSymbolTable.end()) { | 
 |     ExternalSymbolRelocations[SymbolName].push_back(RE); | 
 |   } else { | 
 |     assert(!SymbolName.empty() && | 
 |            "Empty symbol should not be in GlobalSymbolTable"); | 
 |     // Copy the RE since we want to modify its addend. | 
 |     RelocationEntry RECopy = RE; | 
 |     const auto &SymInfo = Loc->second; | 
 |     RECopy.Addend += SymInfo.getOffset(); | 
 |     Relocations[SymInfo.getSectionID()].push_back(RECopy); | 
 |   } | 
 | } | 
 |  | 
 | uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr, | 
 |                                              unsigned AbiVariant) { | 
 |   if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be || | 
 |       Arch == Triple::aarch64_32) { | 
 |     // This stub has to be able to access the full address space, | 
 |     // since symbol lookup won't necessarily find a handy, in-range, | 
 |     // PLT stub for functions which could be anywhere. | 
 |     // Stub can use ip0 (== x16) to calculate address | 
 |     writeBytesUnaligned(0xd2e00010, Addr,    4); // movz ip0, #:abs_g3:<addr> | 
 |     writeBytesUnaligned(0xf2c00010, Addr+4,  4); // movk ip0, #:abs_g2_nc:<addr> | 
 |     writeBytesUnaligned(0xf2a00010, Addr+8,  4); // movk ip0, #:abs_g1_nc:<addr> | 
 |     writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr> | 
 |     writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0 | 
 |  | 
 |     return Addr; | 
 |   } else if (Arch == Triple::arm || Arch == Triple::armeb) { | 
 |     // TODO: There is only ARM far stub now. We should add the Thumb stub, | 
 |     // and stubs for branches Thumb - ARM and ARM - Thumb. | 
 |     writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4] | 
 |     return Addr + 4; | 
 |   } else if (IsMipsO32ABI || IsMipsN32ABI) { | 
 |     // 0:   3c190000        lui     t9,%hi(addr). | 
 |     // 4:   27390000        addiu   t9,t9,%lo(addr). | 
 |     // 8:   03200008        jr      t9. | 
 |     // c:   00000000        nop. | 
 |     const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000; | 
 |     const unsigned NopInstr = 0x0; | 
 |     unsigned JrT9Instr = 0x03200008; | 
 |     if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 || | 
 |         (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6) | 
 |       JrT9Instr = 0x03200009; | 
 |  | 
 |     writeBytesUnaligned(LuiT9Instr, Addr, 4); | 
 |     writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4); | 
 |     writeBytesUnaligned(JrT9Instr, Addr + 8, 4); | 
 |     writeBytesUnaligned(NopInstr, Addr + 12, 4); | 
 |     return Addr; | 
 |   } else if (IsMipsN64ABI) { | 
 |     // 0:   3c190000        lui     t9,%highest(addr). | 
 |     // 4:   67390000        daddiu  t9,t9,%higher(addr). | 
 |     // 8:   0019CC38        dsll    t9,t9,16. | 
 |     // c:   67390000        daddiu  t9,t9,%hi(addr). | 
 |     // 10:  0019CC38        dsll    t9,t9,16. | 
 |     // 14:  67390000        daddiu  t9,t9,%lo(addr). | 
 |     // 18:  03200008        jr      t9. | 
 |     // 1c:  00000000        nop. | 
 |     const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000, | 
 |                    DsllT9Instr = 0x19CC38; | 
 |     const unsigned NopInstr = 0x0; | 
 |     unsigned JrT9Instr = 0x03200008; | 
 |     if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6) | 
 |       JrT9Instr = 0x03200009; | 
 |  | 
 |     writeBytesUnaligned(LuiT9Instr, Addr, 4); | 
 |     writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4); | 
 |     writeBytesUnaligned(DsllT9Instr, Addr + 8, 4); | 
 |     writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4); | 
 |     writeBytesUnaligned(DsllT9Instr, Addr + 16, 4); | 
 |     writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4); | 
 |     writeBytesUnaligned(JrT9Instr, Addr + 24, 4); | 
 |     writeBytesUnaligned(NopInstr, Addr + 28, 4); | 
 |     return Addr; | 
 |   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) { | 
 |     // Depending on which version of the ELF ABI is in use, we need to | 
 |     // generate one of two variants of the stub.  They both start with | 
 |     // the same sequence to load the target address into r12. | 
 |     writeInt32BE(Addr,    0x3D800000); // lis   r12, highest(addr) | 
 |     writeInt32BE(Addr+4,  0x618C0000); // ori   r12, higher(addr) | 
 |     writeInt32BE(Addr+8,  0x798C07C6); // sldi  r12, r12, 32 | 
 |     writeInt32BE(Addr+12, 0x658C0000); // oris  r12, r12, h(addr) | 
 |     writeInt32BE(Addr+16, 0x618C0000); // ori   r12, r12, l(addr) | 
 |     if (AbiVariant == 2) { | 
 |       // PowerPC64 stub ELFv2 ABI: The address points to the function itself. | 
 |       // The address is already in r12 as required by the ABI.  Branch to it. | 
 |       writeInt32BE(Addr+20, 0xF8410018); // std   r2,  24(r1) | 
 |       writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12 | 
 |       writeInt32BE(Addr+28, 0x4E800420); // bctr | 
 |     } else { | 
 |       // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor. | 
 |       // Load the function address on r11 and sets it to control register. Also | 
 |       // loads the function TOC in r2 and environment pointer to r11. | 
 |       writeInt32BE(Addr+20, 0xF8410028); // std   r2,  40(r1) | 
 |       writeInt32BE(Addr+24, 0xE96C0000); // ld    r11, 0(r12) | 
 |       writeInt32BE(Addr+28, 0xE84C0008); // ld    r2,  0(r12) | 
 |       writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11 | 
 |       writeInt32BE(Addr+36, 0xE96C0010); // ld    r11, 16(r2) | 
 |       writeInt32BE(Addr+40, 0x4E800420); // bctr | 
 |     } | 
 |     return Addr; | 
 |   } else if (Arch == Triple::systemz) { | 
 |     writeInt16BE(Addr,    0xC418);     // lgrl %r1,.+8 | 
 |     writeInt16BE(Addr+2,  0x0000); | 
 |     writeInt16BE(Addr+4,  0x0004); | 
 |     writeInt16BE(Addr+6,  0x07F1);     // brc 15,%r1 | 
 |     // 8-byte address stored at Addr + 8 | 
 |     return Addr; | 
 |   } else if (Arch == Triple::x86_64) { | 
 |     *Addr      = 0xFF; // jmp | 
 |     *(Addr+1)  = 0x25; // rip | 
 |     // 32-bit PC-relative address of the GOT entry will be stored at Addr+2 | 
 |   } else if (Arch == Triple::x86) { | 
 |     *Addr      = 0xE9; // 32-bit pc-relative jump. | 
 |   } | 
 |   return Addr; | 
 | } | 
 |  | 
 | // Assign an address to a symbol name and resolve all the relocations | 
 | // associated with it. | 
 | void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID, | 
 |                                              uint64_t Addr) { | 
 |   // The address to use for relocation resolution is not | 
 |   // the address of the local section buffer. We must be doing | 
 |   // a remote execution environment of some sort. Relocations can't | 
 |   // be applied until all the sections have been moved.  The client must | 
 |   // trigger this with a call to MCJIT::finalize() or | 
 |   // RuntimeDyld::resolveRelocations(). | 
 |   // | 
 |   // Addr is a uint64_t because we can't assume the pointer width | 
 |   // of the target is the same as that of the host. Just use a generic | 
 |   // "big enough" type. | 
 |   LLVM_DEBUG( | 
 |       dbgs() << "Reassigning address for section " << SectionID << " (" | 
 |              << Sections[SectionID].getName() << "): " | 
 |              << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress()) | 
 |              << " -> " << format("0x%016" PRIx64, Addr) << "\n"); | 
 |   Sections[SectionID].setLoadAddress(Addr); | 
 | } | 
 |  | 
 | void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs, | 
 |                                             uint64_t Value) { | 
 |   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) { | 
 |     const RelocationEntry &RE = Relocs[i]; | 
 |     // Ignore relocations for sections that were not loaded | 
 |     if (RE.SectionID != AbsoluteSymbolSection && | 
 |         Sections[RE.SectionID].getAddress() == nullptr) | 
 |       continue; | 
 |     resolveRelocation(RE, Value); | 
 |   } | 
 | } | 
 |  | 
 | void RuntimeDyldImpl::applyExternalSymbolRelocations( | 
 |     const StringMap<JITEvaluatedSymbol> ExternalSymbolMap) { | 
 |   for (auto &RelocKV : ExternalSymbolRelocations) { | 
 |     StringRef Name = RelocKV.first(); | 
 |     RelocationList &Relocs = RelocKV.second; | 
 |     if (Name.size() == 0) { | 
 |       // This is an absolute symbol, use an address of zero. | 
 |       LLVM_DEBUG(dbgs() << "Resolving absolute relocations." | 
 |                         << "\n"); | 
 |       resolveRelocationList(Relocs, 0); | 
 |     } else { | 
 |       uint64_t Addr = 0; | 
 |       JITSymbolFlags Flags; | 
 |       RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name); | 
 |       if (Loc == GlobalSymbolTable.end()) { | 
 |         auto RRI = ExternalSymbolMap.find(Name); | 
 |         assert(RRI != ExternalSymbolMap.end() && "No result for symbol"); | 
 |         Addr = RRI->second.getAddress(); | 
 |         Flags = RRI->second.getFlags(); | 
 |       } else { | 
 |         // We found the symbol in our global table.  It was probably in a | 
 |         // Module that we loaded previously. | 
 |         const auto &SymInfo = Loc->second; | 
 |         Addr = getSectionLoadAddress(SymInfo.getSectionID()) + | 
 |                SymInfo.getOffset(); | 
 |         Flags = SymInfo.getFlags(); | 
 |       } | 
 |  | 
 |       // FIXME: Implement error handling that doesn't kill the host program! | 
 |       if (!Addr && !Resolver.allowsZeroSymbols()) | 
 |         report_fatal_error("Program used external function '" + Name + | 
 |                            "' which could not be resolved!"); | 
 |  | 
 |       // If Resolver returned UINT64_MAX, the client wants to handle this symbol | 
 |       // manually and we shouldn't resolve its relocations. | 
 |       if (Addr != UINT64_MAX) { | 
 |  | 
 |         // Tweak the address based on the symbol flags if necessary. | 
 |         // For example, this is used by RuntimeDyldMachOARM to toggle the low bit | 
 |         // if the target symbol is Thumb. | 
 |         Addr = modifyAddressBasedOnFlags(Addr, Flags); | 
 |  | 
 |         LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t" | 
 |                           << format("0x%lx", Addr) << "\n"); | 
 |         resolveRelocationList(Relocs, Addr); | 
 |       } | 
 |     } | 
 |   } | 
 |   ExternalSymbolRelocations.clear(); | 
 | } | 
 |  | 
 | Error RuntimeDyldImpl::resolveExternalSymbols() { | 
 |   StringMap<JITEvaluatedSymbol> ExternalSymbolMap; | 
 |  | 
 |   // Resolution can trigger emission of more symbols, so iterate until | 
 |   // we've resolved *everything*. | 
 |   { | 
 |     JITSymbolResolver::LookupSet ResolvedSymbols; | 
 |  | 
 |     while (true) { | 
 |       JITSymbolResolver::LookupSet NewSymbols; | 
 |  | 
 |       for (auto &RelocKV : ExternalSymbolRelocations) { | 
 |         StringRef Name = RelocKV.first(); | 
 |         if (!Name.empty() && !GlobalSymbolTable.count(Name) && | 
 |             !ResolvedSymbols.count(Name)) | 
 |           NewSymbols.insert(Name); | 
 |       } | 
 |  | 
 |       if (NewSymbols.empty()) | 
 |         break; | 
 |  | 
 | #ifdef _MSC_VER | 
 |       using ExpectedLookupResult = | 
 |           MSVCPExpected<JITSymbolResolver::LookupResult>; | 
 | #else | 
 |       using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>; | 
 | #endif | 
 |  | 
 |       auto NewSymbolsP = std::make_shared<std::promise<ExpectedLookupResult>>(); | 
 |       auto NewSymbolsF = NewSymbolsP->get_future(); | 
 |       Resolver.lookup(NewSymbols, | 
 |                       [=](Expected<JITSymbolResolver::LookupResult> Result) { | 
 |                         NewSymbolsP->set_value(std::move(Result)); | 
 |                       }); | 
 |  | 
 |       auto NewResolverResults = NewSymbolsF.get(); | 
 |  | 
 |       if (!NewResolverResults) | 
 |         return NewResolverResults.takeError(); | 
 |  | 
 |       assert(NewResolverResults->size() == NewSymbols.size() && | 
 |              "Should have errored on unresolved symbols"); | 
 |  | 
 |       for (auto &RRKV : *NewResolverResults) { | 
 |         assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?"); | 
 |         ExternalSymbolMap.insert(RRKV); | 
 |         ResolvedSymbols.insert(RRKV.first); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   applyExternalSymbolRelocations(ExternalSymbolMap); | 
 |  | 
 |   return Error::success(); | 
 | } | 
 |  | 
 | void RuntimeDyldImpl::finalizeAsync( | 
 |     std::unique_ptr<RuntimeDyldImpl> This, | 
 |     unique_function<void(object::OwningBinary<object::ObjectFile>, | 
 |                          std::unique_ptr<RuntimeDyld::LoadedObjectInfo>, Error)> | 
 |         OnEmitted, | 
 |     object::OwningBinary<object::ObjectFile> O, | 
 |     std::unique_ptr<RuntimeDyld::LoadedObjectInfo> Info) { | 
 |  | 
 |   auto SharedThis = std::shared_ptr<RuntimeDyldImpl>(std::move(This)); | 
 |   auto PostResolveContinuation = | 
 |       [SharedThis, OnEmitted = std::move(OnEmitted), O = std::move(O), | 
 |        Info = std::move(Info)]( | 
 |           Expected<JITSymbolResolver::LookupResult> Result) mutable { | 
 |         if (!Result) { | 
 |           OnEmitted(std::move(O), std::move(Info), Result.takeError()); | 
 |           return; | 
 |         } | 
 |  | 
 |         /// Copy the result into a StringMap, where the keys are held by value. | 
 |         StringMap<JITEvaluatedSymbol> Resolved; | 
 |         for (auto &KV : *Result) | 
 |           Resolved[KV.first] = KV.second; | 
 |  | 
 |         SharedThis->applyExternalSymbolRelocations(Resolved); | 
 |         SharedThis->resolveLocalRelocations(); | 
 |         SharedThis->registerEHFrames(); | 
 |         std::string ErrMsg; | 
 |         if (SharedThis->MemMgr.finalizeMemory(&ErrMsg)) | 
 |           OnEmitted(std::move(O), std::move(Info), | 
 |                     make_error<StringError>(std::move(ErrMsg), | 
 |                                             inconvertibleErrorCode())); | 
 |         else | 
 |           OnEmitted(std::move(O), std::move(Info), Error::success()); | 
 |       }; | 
 |  | 
 |   JITSymbolResolver::LookupSet Symbols; | 
 |  | 
 |   for (auto &RelocKV : SharedThis->ExternalSymbolRelocations) { | 
 |     StringRef Name = RelocKV.first(); | 
 |     if (Name.empty()) // Skip absolute symbol relocations. | 
 |       continue; | 
 |     assert(!SharedThis->GlobalSymbolTable.count(Name) && | 
 |            "Name already processed. RuntimeDyld instances can not be re-used " | 
 |            "when finalizing with finalizeAsync."); | 
 |     Symbols.insert(Name); | 
 |   } | 
 |  | 
 |   if (!Symbols.empty()) { | 
 |     SharedThis->Resolver.lookup(Symbols, std::move(PostResolveContinuation)); | 
 |   } else | 
 |     PostResolveContinuation(std::map<StringRef, JITEvaluatedSymbol>()); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // RuntimeDyld class implementation | 
 |  | 
 | uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress( | 
 |                                           const object::SectionRef &Sec) const { | 
 |  | 
 |   auto I = ObjSecToIDMap.find(Sec); | 
 |   if (I != ObjSecToIDMap.end()) | 
 |     return RTDyld.Sections[I->second].getLoadAddress(); | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | void RuntimeDyld::MemoryManager::anchor() {} | 
 | void JITSymbolResolver::anchor() {} | 
 | void LegacyJITSymbolResolver::anchor() {} | 
 |  | 
 | RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr, | 
 |                          JITSymbolResolver &Resolver) | 
 |     : MemMgr(MemMgr), Resolver(Resolver) { | 
 |   // FIXME: There's a potential issue lurking here if a single instance of | 
 |   // RuntimeDyld is used to load multiple objects.  The current implementation | 
 |   // associates a single memory manager with a RuntimeDyld instance.  Even | 
 |   // though the public class spawns a new 'impl' instance for each load, | 
 |   // they share a single memory manager.  This can become a problem when page | 
 |   // permissions are applied. | 
 |   Dyld = nullptr; | 
 |   ProcessAllSections = false; | 
 | } | 
 |  | 
 | RuntimeDyld::~RuntimeDyld() {} | 
 |  | 
 | static std::unique_ptr<RuntimeDyldCOFF> | 
 | createRuntimeDyldCOFF( | 
 |                      Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, | 
 |                      JITSymbolResolver &Resolver, bool ProcessAllSections, | 
 |                      RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { | 
 |   std::unique_ptr<RuntimeDyldCOFF> Dyld = | 
 |     RuntimeDyldCOFF::create(Arch, MM, Resolver); | 
 |   Dyld->setProcessAllSections(ProcessAllSections); | 
 |   Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); | 
 |   return Dyld; | 
 | } | 
 |  | 
 | static std::unique_ptr<RuntimeDyldELF> | 
 | createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, | 
 |                      JITSymbolResolver &Resolver, bool ProcessAllSections, | 
 |                      RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { | 
 |   std::unique_ptr<RuntimeDyldELF> Dyld = | 
 |       RuntimeDyldELF::create(Arch, MM, Resolver); | 
 |   Dyld->setProcessAllSections(ProcessAllSections); | 
 |   Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); | 
 |   return Dyld; | 
 | } | 
 |  | 
 | static std::unique_ptr<RuntimeDyldMachO> | 
 | createRuntimeDyldMachO( | 
 |                      Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, | 
 |                      JITSymbolResolver &Resolver, | 
 |                      bool ProcessAllSections, | 
 |                      RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { | 
 |   std::unique_ptr<RuntimeDyldMachO> Dyld = | 
 |     RuntimeDyldMachO::create(Arch, MM, Resolver); | 
 |   Dyld->setProcessAllSections(ProcessAllSections); | 
 |   Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); | 
 |   return Dyld; | 
 | } | 
 |  | 
 | std::unique_ptr<RuntimeDyld::LoadedObjectInfo> | 
 | RuntimeDyld::loadObject(const ObjectFile &Obj) { | 
 |   if (!Dyld) { | 
 |     if (Obj.isELF()) | 
 |       Dyld = | 
 |           createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()), | 
 |                                MemMgr, Resolver, ProcessAllSections, | 
 |                                std::move(NotifyStubEmitted)); | 
 |     else if (Obj.isMachO()) | 
 |       Dyld = createRuntimeDyldMachO( | 
 |                static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver, | 
 |                ProcessAllSections, std::move(NotifyStubEmitted)); | 
 |     else if (Obj.isCOFF()) | 
 |       Dyld = createRuntimeDyldCOFF( | 
 |                static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver, | 
 |                ProcessAllSections, std::move(NotifyStubEmitted)); | 
 |     else | 
 |       report_fatal_error("Incompatible object format!"); | 
 |   } | 
 |  | 
 |   if (!Dyld->isCompatibleFile(Obj)) | 
 |     report_fatal_error("Incompatible object format!"); | 
 |  | 
 |   auto LoadedObjInfo = Dyld->loadObject(Obj); | 
 |   MemMgr.notifyObjectLoaded(*this, Obj); | 
 |   return LoadedObjInfo; | 
 | } | 
 |  | 
 | void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const { | 
 |   if (!Dyld) | 
 |     return nullptr; | 
 |   return Dyld->getSymbolLocalAddress(Name); | 
 | } | 
 |  | 
 | unsigned RuntimeDyld::getSymbolSectionID(StringRef Name) const { | 
 |   assert(Dyld && "No RuntimeDyld instance attached"); | 
 |   return Dyld->getSymbolSectionID(Name); | 
 | } | 
 |  | 
 | JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const { | 
 |   if (!Dyld) | 
 |     return nullptr; | 
 |   return Dyld->getSymbol(Name); | 
 | } | 
 |  | 
 | std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const { | 
 |   if (!Dyld) | 
 |     return std::map<StringRef, JITEvaluatedSymbol>(); | 
 |   return Dyld->getSymbolTable(); | 
 | } | 
 |  | 
 | void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); } | 
 |  | 
 | void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) { | 
 |   Dyld->reassignSectionAddress(SectionID, Addr); | 
 | } | 
 |  | 
 | void RuntimeDyld::mapSectionAddress(const void *LocalAddress, | 
 |                                     uint64_t TargetAddress) { | 
 |   Dyld->mapSectionAddress(LocalAddress, TargetAddress); | 
 | } | 
 |  | 
 | bool RuntimeDyld::hasError() { return Dyld->hasError(); } | 
 |  | 
 | StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); } | 
 |  | 
 | void RuntimeDyld::finalizeWithMemoryManagerLocking() { | 
 |   bool MemoryFinalizationLocked = MemMgr.FinalizationLocked; | 
 |   MemMgr.FinalizationLocked = true; | 
 |   resolveRelocations(); | 
 |   registerEHFrames(); | 
 |   if (!MemoryFinalizationLocked) { | 
 |     MemMgr.finalizeMemory(); | 
 |     MemMgr.FinalizationLocked = false; | 
 |   } | 
 | } | 
 |  | 
 | StringRef RuntimeDyld::getSectionContent(unsigned SectionID) const { | 
 |   assert(Dyld && "No Dyld instance attached"); | 
 |   return Dyld->getSectionContent(SectionID); | 
 | } | 
 |  | 
 | uint64_t RuntimeDyld::getSectionLoadAddress(unsigned SectionID) const { | 
 |   assert(Dyld && "No Dyld instance attached"); | 
 |   return Dyld->getSectionLoadAddress(SectionID); | 
 | } | 
 |  | 
 | void RuntimeDyld::registerEHFrames() { | 
 |   if (Dyld) | 
 |     Dyld->registerEHFrames(); | 
 | } | 
 |  | 
 | void RuntimeDyld::deregisterEHFrames() { | 
 |   if (Dyld) | 
 |     Dyld->deregisterEHFrames(); | 
 | } | 
 | // FIXME: Kill this with fire once we have a new JIT linker: this is only here | 
 | // so that we can re-use RuntimeDyld's implementation without twisting the | 
 | // interface any further for ORC's purposes. | 
 | void jitLinkForORC( | 
 |     object::OwningBinary<object::ObjectFile> O, | 
 |     RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver, | 
 |     bool ProcessAllSections, | 
 |     unique_function<Error(const object::ObjectFile &Obj, | 
 |                           RuntimeDyld::LoadedObjectInfo &LoadedObj, | 
 |                           std::map<StringRef, JITEvaluatedSymbol>)> | 
 |         OnLoaded, | 
 |     unique_function<void(object::OwningBinary<object::ObjectFile>, | 
 |                          std::unique_ptr<RuntimeDyld::LoadedObjectInfo>, Error)> | 
 |         OnEmitted) { | 
 |  | 
 |   RuntimeDyld RTDyld(MemMgr, Resolver); | 
 |   RTDyld.setProcessAllSections(ProcessAllSections); | 
 |  | 
 |   auto Info = RTDyld.loadObject(*O.getBinary()); | 
 |  | 
 |   if (RTDyld.hasError()) { | 
 |     OnEmitted(std::move(O), std::move(Info), | 
 |               make_error<StringError>(RTDyld.getErrorString(), | 
 |                                       inconvertibleErrorCode())); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (auto Err = OnLoaded(*O.getBinary(), *Info, RTDyld.getSymbolTable())) | 
 |     OnEmitted(std::move(O), std::move(Info), std::move(Err)); | 
 |  | 
 |   RuntimeDyldImpl::finalizeAsync(std::move(RTDyld.Dyld), std::move(OnEmitted), | 
 |                                  std::move(O), std::move(Info)); | 
 | } | 
 |  | 
 | } // end namespace llvm |