|  | ============================= | 
|  | User Guide for NVPTX Back-end | 
|  | ============================= | 
|  |  | 
|  | .. contents:: | 
|  | :local: | 
|  | :depth: 3 | 
|  |  | 
|  |  | 
|  | Introduction | 
|  | ============ | 
|  |  | 
|  | To support GPU programming, the NVPTX back-end supports a subset of LLVM IR | 
|  | along with a defined set of conventions used to represent GPU programming | 
|  | concepts. This document provides an overview of the general usage of the back- | 
|  | end, including a description of the conventions used and the set of accepted | 
|  | LLVM IR. | 
|  |  | 
|  | .. note:: | 
|  |  | 
|  | This document assumes a basic familiarity with CUDA and the PTX | 
|  | assembly language. Information about the CUDA Driver API and the PTX assembly | 
|  | language can be found in the `CUDA documentation | 
|  | <http://docs.nvidia.com/cuda/index.html>`_. | 
|  |  | 
|  |  | 
|  |  | 
|  | Conventions | 
|  | =========== | 
|  |  | 
|  | Marking Functions as Kernels | 
|  | ---------------------------- | 
|  |  | 
|  | In PTX, there are two types of functions: *device functions*, which are only | 
|  | callable by device code, and *kernel functions*, which are callable by host | 
|  | code. By default, the back-end will emit device functions. Metadata is used to | 
|  | declare a function as a kernel function. This metadata is attached to the | 
|  | ``nvvm.annotations`` named metadata object, and has the following format: | 
|  |  | 
|  | .. code-block:: text | 
|  |  | 
|  | !0 = !{<function-ref>, metadata !"kernel", i32 1} | 
|  |  | 
|  | The first parameter is a reference to the kernel function. The following | 
|  | example shows a kernel function calling a device function in LLVM IR. The | 
|  | function ``@my_kernel`` is callable from host code, but ``@my_fmad`` is not. | 
|  |  | 
|  | .. code-block:: llvm | 
|  |  | 
|  | define float @my_fmad(float %x, float %y, float %z) { | 
|  | %mul = fmul float %x, %y | 
|  | %add = fadd float %mul, %z | 
|  | ret float %add | 
|  | } | 
|  |  | 
|  | define void @my_kernel(float* %ptr) { | 
|  | %val = load float, float* %ptr | 
|  | %ret = call float @my_fmad(float %val, float %val, float %val) | 
|  | store float %ret, float* %ptr | 
|  | ret void | 
|  | } | 
|  |  | 
|  | !nvvm.annotations = !{!1} | 
|  | !1 = !{void (float*)* @my_kernel, !"kernel", i32 1} | 
|  |  | 
|  | When compiled, the PTX kernel functions are callable by host-side code. | 
|  |  | 
|  |  | 
|  | .. _address_spaces: | 
|  |  | 
|  | Address Spaces | 
|  | -------------- | 
|  |  | 
|  | The NVPTX back-end uses the following address space mapping: | 
|  |  | 
|  | ============= ====================== | 
|  | Address Space Memory Space | 
|  | ============= ====================== | 
|  | 0             Generic | 
|  | 1             Global | 
|  | 2             Internal Use | 
|  | 3             Shared | 
|  | 4             Constant | 
|  | 5             Local | 
|  | ============= ====================== | 
|  |  | 
|  | Every global variable and pointer type is assigned to one of these address | 
|  | spaces, with 0 being the default address space. Intrinsics are provided which | 
|  | can be used to convert pointers between the generic and non-generic address | 
|  | spaces. | 
|  |  | 
|  | As an example, the following IR will define an array ``@g`` that resides in | 
|  | global device memory. | 
|  |  | 
|  | .. code-block:: llvm | 
|  |  | 
|  | @g = internal addrspace(1) global [4 x i32] [ i32 0, i32 1, i32 2, i32 3 ] | 
|  |  | 
|  | LLVM IR functions can read and write to this array, and host-side code can | 
|  | copy data to it by name with the CUDA Driver API. | 
|  |  | 
|  | Note that since address space 0 is the generic space, it is illegal to have | 
|  | global variables in address space 0.  Address space 0 is the default address | 
|  | space in LLVM, so the ``addrspace(N)`` annotation is *required* for global | 
|  | variables. | 
|  |  | 
|  |  | 
|  | Triples | 
|  | ------- | 
|  |  | 
|  | The NVPTX target uses the module triple to select between 32/64-bit code | 
|  | generation and the driver-compiler interface to use. The triple architecture | 
|  | can be one of ``nvptx`` (32-bit PTX) or ``nvptx64`` (64-bit PTX). The | 
|  | operating system should be one of ``cuda`` or ``nvcl``, which determines the | 
|  | interface used by the generated code to communicate with the driver.  Most | 
|  | users will want to use ``cuda`` as the operating system, which makes the | 
|  | generated PTX compatible with the CUDA Driver API. | 
|  |  | 
|  | Example: 32-bit PTX for CUDA Driver API: ``nvptx-nvidia-cuda`` | 
|  |  | 
|  | Example: 64-bit PTX for CUDA Driver API: ``nvptx64-nvidia-cuda`` | 
|  |  | 
|  |  | 
|  |  | 
|  | .. _nvptx_intrinsics: | 
|  |  | 
|  | NVPTX Intrinsics | 
|  | ================ | 
|  |  | 
|  | Address Space Conversion | 
|  | ------------------------ | 
|  |  | 
|  | '``llvm.nvvm.ptr.*.to.gen``' Intrinsics | 
|  | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | 
|  |  | 
|  | Syntax: | 
|  | """"""" | 
|  |  | 
|  | These are overloaded intrinsics.  You can use these on any pointer types. | 
|  |  | 
|  | .. code-block:: llvm | 
|  |  | 
|  | declare i8* @llvm.nvvm.ptr.global.to.gen.p0i8.p1i8(i8 addrspace(1)*) | 
|  | declare i8* @llvm.nvvm.ptr.shared.to.gen.p0i8.p3i8(i8 addrspace(3)*) | 
|  | declare i8* @llvm.nvvm.ptr.constant.to.gen.p0i8.p4i8(i8 addrspace(4)*) | 
|  | declare i8* @llvm.nvvm.ptr.local.to.gen.p0i8.p5i8(i8 addrspace(5)*) | 
|  |  | 
|  | Overview: | 
|  | """"""""" | 
|  |  | 
|  | The '``llvm.nvvm.ptr.*.to.gen``' intrinsics convert a pointer in a non-generic | 
|  | address space to a generic address space pointer. | 
|  |  | 
|  | Semantics: | 
|  | """""""""" | 
|  |  | 
|  | These intrinsics modify the pointer value to be a valid generic address space | 
|  | pointer. | 
|  |  | 
|  |  | 
|  | '``llvm.nvvm.ptr.gen.to.*``' Intrinsics | 
|  | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | 
|  |  | 
|  | Syntax: | 
|  | """"""" | 
|  |  | 
|  | These are overloaded intrinsics.  You can use these on any pointer types. | 
|  |  | 
|  | .. code-block:: llvm | 
|  |  | 
|  | declare i8 addrspace(1)* @llvm.nvvm.ptr.gen.to.global.p1i8.p0i8(i8*) | 
|  | declare i8 addrspace(3)* @llvm.nvvm.ptr.gen.to.shared.p3i8.p0i8(i8*) | 
|  | declare i8 addrspace(4)* @llvm.nvvm.ptr.gen.to.constant.p4i8.p0i8(i8*) | 
|  | declare i8 addrspace(5)* @llvm.nvvm.ptr.gen.to.local.p5i8.p0i8(i8*) | 
|  |  | 
|  | Overview: | 
|  | """"""""" | 
|  |  | 
|  | The '``llvm.nvvm.ptr.gen.to.*``' intrinsics convert a pointer in the generic | 
|  | address space to a pointer in the target address space.  Note that these | 
|  | intrinsics are only useful if the address space of the target address space of | 
|  | the pointer is known.  It is not legal to use address space conversion | 
|  | intrinsics to convert a pointer from one non-generic address space to another | 
|  | non-generic address space. | 
|  |  | 
|  | Semantics: | 
|  | """""""""" | 
|  |  | 
|  | These intrinsics modify the pointer value to be a valid pointer in the target | 
|  | non-generic address space. | 
|  |  | 
|  |  | 
|  | Reading PTX Special Registers | 
|  | ----------------------------- | 
|  |  | 
|  | '``llvm.nvvm.read.ptx.sreg.*``' | 
|  | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | 
|  |  | 
|  | Syntax: | 
|  | """"""" | 
|  |  | 
|  | .. code-block:: llvm | 
|  |  | 
|  | declare i32 @llvm.nvvm.read.ptx.sreg.tid.x() | 
|  | declare i32 @llvm.nvvm.read.ptx.sreg.tid.y() | 
|  | declare i32 @llvm.nvvm.read.ptx.sreg.tid.z() | 
|  | declare i32 @llvm.nvvm.read.ptx.sreg.ntid.x() | 
|  | declare i32 @llvm.nvvm.read.ptx.sreg.ntid.y() | 
|  | declare i32 @llvm.nvvm.read.ptx.sreg.ntid.z() | 
|  | declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.x() | 
|  | declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.y() | 
|  | declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.z() | 
|  | declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.x() | 
|  | declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.y() | 
|  | declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.z() | 
|  | declare i32 @llvm.nvvm.read.ptx.sreg.warpsize() | 
|  |  | 
|  | Overview: | 
|  | """"""""" | 
|  |  | 
|  | The '``@llvm.nvvm.read.ptx.sreg.*``' intrinsics provide access to the PTX | 
|  | special registers, in particular the kernel launch bounds.  These registers | 
|  | map in the following way to CUDA builtins: | 
|  |  | 
|  | ============ ===================================== | 
|  | CUDA Builtin PTX Special Register Intrinsic | 
|  | ============ ===================================== | 
|  | ``threadId`` ``@llvm.nvvm.read.ptx.sreg.tid.*`` | 
|  | ``blockIdx`` ``@llvm.nvvm.read.ptx.sreg.ctaid.*`` | 
|  | ``blockDim`` ``@llvm.nvvm.read.ptx.sreg.ntid.*`` | 
|  | ``gridDim``  ``@llvm.nvvm.read.ptx.sreg.nctaid.*`` | 
|  | ============ ===================================== | 
|  |  | 
|  |  | 
|  | Barriers | 
|  | -------- | 
|  |  | 
|  | '``llvm.nvvm.barrier0``' | 
|  | ^^^^^^^^^^^^^^^^^^^^^^^^^^^ | 
|  |  | 
|  | Syntax: | 
|  | """"""" | 
|  |  | 
|  | .. code-block:: llvm | 
|  |  | 
|  | declare void @llvm.nvvm.barrier0() | 
|  |  | 
|  | Overview: | 
|  | """"""""" | 
|  |  | 
|  | The '``@llvm.nvvm.barrier0()``' intrinsic emits a PTX ``bar.sync 0`` | 
|  | instruction, equivalent to the ``__syncthreads()`` call in CUDA. | 
|  |  | 
|  |  | 
|  | Other Intrinsics | 
|  | ---------------- | 
|  |  | 
|  | For the full set of NVPTX intrinsics, please see the | 
|  | ``include/llvm/IR/IntrinsicsNVVM.td`` file in the LLVM source tree. | 
|  |  | 
|  |  | 
|  | .. _libdevice: | 
|  |  | 
|  | Linking with Libdevice | 
|  | ====================== | 
|  |  | 
|  | The CUDA Toolkit comes with an LLVM bitcode library called ``libdevice`` that | 
|  | implements many common mathematical functions. This library can be used as a | 
|  | high-performance math library for any compilers using the LLVM NVPTX target. | 
|  | The library can be found under ``nvvm/libdevice/`` in the CUDA Toolkit and | 
|  | there is a separate version for each compute architecture. | 
|  |  | 
|  | For a list of all math functions implemented in libdevice, see | 
|  | `libdevice Users Guide <http://docs.nvidia.com/cuda/libdevice-users-guide/index.html>`_. | 
|  |  | 
|  | To accommodate various math-related compiler flags that can affect code | 
|  | generation of libdevice code, the library code depends on a special LLVM IR | 
|  | pass (``NVVMReflect``) to handle conditional compilation within LLVM IR. This | 
|  | pass looks for calls to the ``@__nvvm_reflect`` function and replaces them | 
|  | with constants based on the defined reflection parameters. Such conditional | 
|  | code often follows a pattern: | 
|  |  | 
|  | .. code-block:: c++ | 
|  |  | 
|  | float my_function(float a) { | 
|  | if (__nvvm_reflect("FASTMATH")) | 
|  | return my_function_fast(a); | 
|  | else | 
|  | return my_function_precise(a); | 
|  | } | 
|  |  | 
|  | The default value for all unspecified reflection parameters is zero. | 
|  |  | 
|  | The ``NVVMReflect`` pass should be executed early in the optimization | 
|  | pipeline, immediately after the link stage. The ``internalize`` pass is also | 
|  | recommended to remove unused math functions from the resulting PTX. For an | 
|  | input IR module ``module.bc``, the following compilation flow is recommended: | 
|  |  | 
|  | 1. Save list of external functions in ``module.bc`` | 
|  | 2. Link ``module.bc`` with ``libdevice.compute_XX.YY.bc`` | 
|  | 3. Internalize all functions not in list from (1) | 
|  | 4. Eliminate all unused internal functions | 
|  | 5. Run ``NVVMReflect`` pass | 
|  | 6. Run standard optimization pipeline | 
|  |  | 
|  | .. note:: | 
|  |  | 
|  | ``linkonce`` and ``linkonce_odr`` linkage types are not suitable for the | 
|  | libdevice functions. It is possible to link two IR modules that have been | 
|  | linked against libdevice using different reflection variables. | 
|  |  | 
|  | Since the ``NVVMReflect`` pass replaces conditionals with constants, it will | 
|  | often leave behind dead code of the form: | 
|  |  | 
|  | .. code-block:: llvm | 
|  |  | 
|  | entry: | 
|  | .. | 
|  | br i1 true, label %foo, label %bar | 
|  | foo: | 
|  | .. | 
|  | bar: | 
|  | ; Dead code | 
|  | .. | 
|  |  | 
|  | Therefore, it is recommended that ``NVVMReflect`` is executed early in the | 
|  | optimization pipeline before dead-code elimination. | 
|  |  | 
|  | The NVPTX TargetMachine knows how to schedule ``NVVMReflect`` at the beginning | 
|  | of your pass manager; just use the following code when setting up your pass | 
|  | manager: | 
|  |  | 
|  | .. code-block:: c++ | 
|  |  | 
|  | std::unique_ptr<TargetMachine> TM = ...; | 
|  | PassManagerBuilder PMBuilder(...); | 
|  | if (TM) | 
|  | TM->adjustPassManager(PMBuilder); | 
|  |  | 
|  | Reflection Parameters | 
|  | --------------------- | 
|  |  | 
|  | The libdevice library currently uses the following reflection parameters to | 
|  | control code generation: | 
|  |  | 
|  | ==================== ====================================================== | 
|  | Flag                 Description | 
|  | ==================== ====================================================== | 
|  | ``__CUDA_FTZ=[0,1]`` Use optimized code paths that flush subnormals to zero | 
|  | ==================== ====================================================== | 
|  |  | 
|  | The value of this flag is determined by the "nvvm-reflect-ftz" module flag. | 
|  | The following sets the ftz flag to 1. | 
|  |  | 
|  | .. code-block:: llvm | 
|  |  | 
|  | !llvm.module.flag = !{!0} | 
|  | !0 = !{i32 4, !"nvvm-reflect-ftz", i32 1} | 
|  |  | 
|  | (``i32 4`` indicates that the value set here overrides the value in another | 
|  | module we link with.  See the `LangRef <LangRef.html#module-flags-metadata>` | 
|  | for details.) | 
|  |  | 
|  | Executing PTX | 
|  | ============= | 
|  |  | 
|  | The most common way to execute PTX assembly on a GPU device is to use the CUDA | 
|  | Driver API. This API is a low-level interface to the GPU driver and allows for | 
|  | JIT compilation of PTX code to native GPU machine code. | 
|  |  | 
|  | Initializing the Driver API: | 
|  |  | 
|  | .. code-block:: c++ | 
|  |  | 
|  | CUdevice device; | 
|  | CUcontext context; | 
|  |  | 
|  | // Initialize the driver API | 
|  | cuInit(0); | 
|  | // Get a handle to the first compute device | 
|  | cuDeviceGet(&device, 0); | 
|  | // Create a compute device context | 
|  | cuCtxCreate(&context, 0, device); | 
|  |  | 
|  | JIT compiling a PTX string to a device binary: | 
|  |  | 
|  | .. code-block:: c++ | 
|  |  | 
|  | CUmodule module; | 
|  | CUfunction function; | 
|  |  | 
|  | // JIT compile a null-terminated PTX string | 
|  | cuModuleLoadData(&module, (void*)PTXString); | 
|  |  | 
|  | // Get a handle to the "myfunction" kernel function | 
|  | cuModuleGetFunction(&function, module, "myfunction"); | 
|  |  | 
|  | For full examples of executing PTX assembly, please see the `CUDA Samples | 
|  | <https://developer.nvidia.com/cuda-downloads>`_ distribution. | 
|  |  | 
|  |  | 
|  | Common Issues | 
|  | ============= | 
|  |  | 
|  | ptxas complains of undefined function: __nvvm_reflect | 
|  | ----------------------------------------------------- | 
|  |  | 
|  | When linking with libdevice, the ``NVVMReflect`` pass must be used. See | 
|  | :ref:`libdevice` for more information. | 
|  |  | 
|  |  | 
|  | Tutorial: A Simple Compute Kernel | 
|  | ================================= | 
|  |  | 
|  | To start, let us take a look at a simple compute kernel written directly in | 
|  | LLVM IR. The kernel implements vector addition, where each thread computes one | 
|  | element of the output vector C from the input vectors A and B.  To make this | 
|  | easier, we also assume that only a single CTA (thread block) will be launched, | 
|  | and that it will be one dimensional. | 
|  |  | 
|  |  | 
|  | The Kernel | 
|  | ---------- | 
|  |  | 
|  | .. code-block:: llvm | 
|  |  | 
|  | target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64" | 
|  | target triple = "nvptx64-nvidia-cuda" | 
|  |  | 
|  | ; Intrinsic to read X component of thread ID | 
|  | declare i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind | 
|  |  | 
|  | define void @kernel(float addrspace(1)* %A, | 
|  | float addrspace(1)* %B, | 
|  | float addrspace(1)* %C) { | 
|  | entry: | 
|  | ; What is my ID? | 
|  | %id = tail call i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind | 
|  |  | 
|  | ; Compute pointers into A, B, and C | 
|  | %ptrA = getelementptr float, float addrspace(1)* %A, i32 %id | 
|  | %ptrB = getelementptr float, float addrspace(1)* %B, i32 %id | 
|  | %ptrC = getelementptr float, float addrspace(1)* %C, i32 %id | 
|  |  | 
|  | ; Read A, B | 
|  | %valA = load float, float addrspace(1)* %ptrA, align 4 | 
|  | %valB = load float, float addrspace(1)* %ptrB, align 4 | 
|  |  | 
|  | ; Compute C = A + B | 
|  | %valC = fadd float %valA, %valB | 
|  |  | 
|  | ; Store back to C | 
|  | store float %valC, float addrspace(1)* %ptrC, align 4 | 
|  |  | 
|  | ret void | 
|  | } | 
|  |  | 
|  | !nvvm.annotations = !{!0} | 
|  | !0 = !{void (float addrspace(1)*, | 
|  | float addrspace(1)*, | 
|  | float addrspace(1)*)* @kernel, !"kernel", i32 1} | 
|  |  | 
|  |  | 
|  | We can use the LLVM ``llc`` tool to directly run the NVPTX code generator: | 
|  |  | 
|  | .. code-block:: text | 
|  |  | 
|  | # llc -mcpu=sm_20 kernel.ll -o kernel.ptx | 
|  |  | 
|  |  | 
|  | .. note:: | 
|  |  | 
|  | If you want to generate 32-bit code, change ``p:64:64:64`` to ``p:32:32:32`` | 
|  | in the module data layout string and use ``nvptx-nvidia-cuda`` as the | 
|  | target triple. | 
|  |  | 
|  |  | 
|  | The output we get from ``llc`` (as of LLVM 3.4): | 
|  |  | 
|  | .. code-block:: text | 
|  |  | 
|  | // | 
|  | // Generated by LLVM NVPTX Back-End | 
|  | // | 
|  |  | 
|  | .version 3.1 | 
|  | .target sm_20 | 
|  | .address_size 64 | 
|  |  | 
|  | // .globl kernel | 
|  | // @kernel | 
|  | .visible .entry kernel( | 
|  | .param .u64 kernel_param_0, | 
|  | .param .u64 kernel_param_1, | 
|  | .param .u64 kernel_param_2 | 
|  | ) | 
|  | { | 
|  | .reg .f32   %f<4>; | 
|  | .reg .s32   %r<2>; | 
|  | .reg .s64   %rl<8>; | 
|  |  | 
|  | // %bb.0:                                // %entry | 
|  | ld.param.u64    %rl1, [kernel_param_0]; | 
|  | mov.u32         %r1, %tid.x; | 
|  | mul.wide.s32    %rl2, %r1, 4; | 
|  | add.s64         %rl3, %rl1, %rl2; | 
|  | ld.param.u64    %rl4, [kernel_param_1]; | 
|  | add.s64         %rl5, %rl4, %rl2; | 
|  | ld.param.u64    %rl6, [kernel_param_2]; | 
|  | add.s64         %rl7, %rl6, %rl2; | 
|  | ld.global.f32   %f1, [%rl3]; | 
|  | ld.global.f32   %f2, [%rl5]; | 
|  | add.f32         %f3, %f1, %f2; | 
|  | st.global.f32   [%rl7], %f3; | 
|  | ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | Dissecting the Kernel | 
|  | --------------------- | 
|  |  | 
|  | Now let us dissect the LLVM IR that makes up this kernel. | 
|  |  | 
|  | Data Layout | 
|  | ^^^^^^^^^^^ | 
|  |  | 
|  | The data layout string determines the size in bits of common data types, their | 
|  | ABI alignment, and their storage size.  For NVPTX, you should use one of the | 
|  | following: | 
|  |  | 
|  | 32-bit PTX: | 
|  |  | 
|  | .. code-block:: llvm | 
|  |  | 
|  | target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64" | 
|  |  | 
|  | 64-bit PTX: | 
|  |  | 
|  | .. code-block:: llvm | 
|  |  | 
|  | target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64" | 
|  |  | 
|  |  | 
|  | Target Intrinsics | 
|  | ^^^^^^^^^^^^^^^^^ | 
|  |  | 
|  | In this example, we use the ``@llvm.nvvm.read.ptx.sreg.tid.x`` intrinsic to | 
|  | read the X component of the current thread's ID, which corresponds to a read | 
|  | of register ``%tid.x`` in PTX. The NVPTX back-end supports a large set of | 
|  | intrinsics.  A short list is shown below; please see | 
|  | ``include/llvm/IR/IntrinsicsNVVM.td`` for the full list. | 
|  |  | 
|  |  | 
|  | ================================================ ==================== | 
|  | Intrinsic                                        CUDA Equivalent | 
|  | ================================================ ==================== | 
|  | ``i32 @llvm.nvvm.read.ptx.sreg.tid.{x,y,z}``     threadIdx.{x,y,z} | 
|  | ``i32 @llvm.nvvm.read.ptx.sreg.ctaid.{x,y,z}``   blockIdx.{x,y,z} | 
|  | ``i32 @llvm.nvvm.read.ptx.sreg.ntid.{x,y,z}``    blockDim.{x,y,z} | 
|  | ``i32 @llvm.nvvm.read.ptx.sreg.nctaid.{x,y,z}``  gridDim.{x,y,z} | 
|  | ``void @llvm.nvvm.barrier0()``                   __syncthreads() | 
|  | ================================================ ==================== | 
|  |  | 
|  |  | 
|  | Address Spaces | 
|  | ^^^^^^^^^^^^^^ | 
|  |  | 
|  | You may have noticed that all of the pointer types in the LLVM IR example had | 
|  | an explicit address space specifier. What is address space 1? NVIDIA GPU | 
|  | devices (generally) have four types of memory: | 
|  |  | 
|  | - Global: Large, off-chip memory | 
|  | - Shared: Small, on-chip memory shared among all threads in a CTA | 
|  | - Local: Per-thread, private memory | 
|  | - Constant: Read-only memory shared across all threads | 
|  |  | 
|  | These different types of memory are represented in LLVM IR as address spaces. | 
|  | There is also a fifth address space used by the NVPTX code generator that | 
|  | corresponds to the "generic" address space.  This address space can represent | 
|  | addresses in any other address space (with a few exceptions).  This allows | 
|  | users to write IR functions that can load/store memory using the same | 
|  | instructions. Intrinsics are provided to convert pointers between the generic | 
|  | and non-generic address spaces. | 
|  |  | 
|  | See :ref:`address_spaces` and :ref:`nvptx_intrinsics` for more information. | 
|  |  | 
|  |  | 
|  | Kernel Metadata | 
|  | ^^^^^^^^^^^^^^^ | 
|  |  | 
|  | In PTX, a function can be either a `kernel` function (callable from the host | 
|  | program), or a `device` function (callable only from GPU code). You can think | 
|  | of `kernel` functions as entry-points in the GPU program. To mark an LLVM IR | 
|  | function as a `kernel` function, we make use of special LLVM metadata. The | 
|  | NVPTX back-end will look for a named metadata node called | 
|  | ``nvvm.annotations``. This named metadata must contain a list of metadata that | 
|  | describe the IR. For our purposes, we need to declare a metadata node that | 
|  | assigns the "kernel" attribute to the LLVM IR function that should be emitted | 
|  | as a PTX `kernel` function. These metadata nodes take the form: | 
|  |  | 
|  | .. code-block:: text | 
|  |  | 
|  | !{<function ref>, metadata !"kernel", i32 1} | 
|  |  | 
|  | For the previous example, we have: | 
|  |  | 
|  | .. code-block:: llvm | 
|  |  | 
|  | !nvvm.annotations = !{!0} | 
|  | !0 = !{void (float addrspace(1)*, | 
|  | float addrspace(1)*, | 
|  | float addrspace(1)*)* @kernel, !"kernel", i32 1} | 
|  |  | 
|  | Here, we have a single metadata declaration in ``nvvm.annotations``. This | 
|  | metadata annotates our ``@kernel`` function with the ``kernel`` attribute. | 
|  |  | 
|  |  | 
|  | Running the Kernel | 
|  | ------------------ | 
|  |  | 
|  | Generating PTX from LLVM IR is all well and good, but how do we execute it on | 
|  | a real GPU device? The CUDA Driver API provides a convenient mechanism for | 
|  | loading and JIT compiling PTX to a native GPU device, and launching a kernel. | 
|  | The API is similar to OpenCL.  A simple example showing how to load and | 
|  | execute our vector addition code is shown below. Note that for brevity this | 
|  | code does not perform much error checking! | 
|  |  | 
|  | .. note:: | 
|  |  | 
|  | You can also use the ``ptxas`` tool provided by the CUDA Toolkit to offline | 
|  | compile PTX to machine code (SASS) for a specific GPU architecture. Such | 
|  | binaries can be loaded by the CUDA Driver API in the same way as PTX. This | 
|  | can be useful for reducing startup time by precompiling the PTX kernels. | 
|  |  | 
|  |  | 
|  | .. code-block:: c++ | 
|  |  | 
|  | #include <iostream> | 
|  | #include <fstream> | 
|  | #include <cassert> | 
|  | #include "cuda.h" | 
|  |  | 
|  |  | 
|  | void checkCudaErrors(CUresult err) { | 
|  | assert(err == CUDA_SUCCESS); | 
|  | } | 
|  |  | 
|  | /// main - Program entry point | 
|  | int main(int argc, char **argv) { | 
|  | CUdevice    device; | 
|  | CUmodule    cudaModule; | 
|  | CUcontext   context; | 
|  | CUfunction  function; | 
|  | CUlinkState linker; | 
|  | int         devCount; | 
|  |  | 
|  | // CUDA initialization | 
|  | checkCudaErrors(cuInit(0)); | 
|  | checkCudaErrors(cuDeviceGetCount(&devCount)); | 
|  | checkCudaErrors(cuDeviceGet(&device, 0)); | 
|  |  | 
|  | char name[128]; | 
|  | checkCudaErrors(cuDeviceGetName(name, 128, device)); | 
|  | std::cout << "Using CUDA Device [0]: " << name << "\n"; | 
|  |  | 
|  | int devMajor, devMinor; | 
|  | checkCudaErrors(cuDeviceComputeCapability(&devMajor, &devMinor, device)); | 
|  | std::cout << "Device Compute Capability: " | 
|  | << devMajor << "." << devMinor << "\n"; | 
|  | if (devMajor < 2) { | 
|  | std::cerr << "ERROR: Device 0 is not SM 2.0 or greater\n"; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | std::ifstream t("kernel.ptx"); | 
|  | if (!t.is_open()) { | 
|  | std::cerr << "kernel.ptx not found\n"; | 
|  | return 1; | 
|  | } | 
|  | std::string str((std::istreambuf_iterator<char>(t)), | 
|  | std::istreambuf_iterator<char>()); | 
|  |  | 
|  | // Create driver context | 
|  | checkCudaErrors(cuCtxCreate(&context, 0, device)); | 
|  |  | 
|  | // Create module for object | 
|  | checkCudaErrors(cuModuleLoadDataEx(&cudaModule, str.c_str(), 0, 0, 0)); | 
|  |  | 
|  | // Get kernel function | 
|  | checkCudaErrors(cuModuleGetFunction(&function, cudaModule, "kernel")); | 
|  |  | 
|  | // Device data | 
|  | CUdeviceptr devBufferA; | 
|  | CUdeviceptr devBufferB; | 
|  | CUdeviceptr devBufferC; | 
|  |  | 
|  | checkCudaErrors(cuMemAlloc(&devBufferA, sizeof(float)*16)); | 
|  | checkCudaErrors(cuMemAlloc(&devBufferB, sizeof(float)*16)); | 
|  | checkCudaErrors(cuMemAlloc(&devBufferC, sizeof(float)*16)); | 
|  |  | 
|  | float* hostA = new float[16]; | 
|  | float* hostB = new float[16]; | 
|  | float* hostC = new float[16]; | 
|  |  | 
|  | // Populate input | 
|  | for (unsigned i = 0; i != 16; ++i) { | 
|  | hostA[i] = (float)i; | 
|  | hostB[i] = (float)(2*i); | 
|  | hostC[i] = 0.0f; | 
|  | } | 
|  |  | 
|  | checkCudaErrors(cuMemcpyHtoD(devBufferA, &hostA[0], sizeof(float)*16)); | 
|  | checkCudaErrors(cuMemcpyHtoD(devBufferB, &hostB[0], sizeof(float)*16)); | 
|  |  | 
|  |  | 
|  | unsigned blockSizeX = 16; | 
|  | unsigned blockSizeY = 1; | 
|  | unsigned blockSizeZ = 1; | 
|  | unsigned gridSizeX  = 1; | 
|  | unsigned gridSizeY  = 1; | 
|  | unsigned gridSizeZ  = 1; | 
|  |  | 
|  | // Kernel parameters | 
|  | void *KernelParams[] = { &devBufferA, &devBufferB, &devBufferC }; | 
|  |  | 
|  | std::cout << "Launching kernel\n"; | 
|  |  | 
|  | // Kernel launch | 
|  | checkCudaErrors(cuLaunchKernel(function, gridSizeX, gridSizeY, gridSizeZ, | 
|  | blockSizeX, blockSizeY, blockSizeZ, | 
|  | 0, NULL, KernelParams, NULL)); | 
|  |  | 
|  | // Retrieve device data | 
|  | checkCudaErrors(cuMemcpyDtoH(&hostC[0], devBufferC, sizeof(float)*16)); | 
|  |  | 
|  |  | 
|  | std::cout << "Results:\n"; | 
|  | for (unsigned i = 0; i != 16; ++i) { | 
|  | std::cout << hostA[i] << " + " << hostB[i] << " = " << hostC[i] << "\n"; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Clean up after ourselves | 
|  | delete [] hostA; | 
|  | delete [] hostB; | 
|  | delete [] hostC; | 
|  |  | 
|  | // Clean-up | 
|  | checkCudaErrors(cuMemFree(devBufferA)); | 
|  | checkCudaErrors(cuMemFree(devBufferB)); | 
|  | checkCudaErrors(cuMemFree(devBufferC)); | 
|  | checkCudaErrors(cuModuleUnload(cudaModule)); | 
|  | checkCudaErrors(cuCtxDestroy(context)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | You will need to link with the CUDA driver and specify the path to cuda.h. | 
|  |  | 
|  | .. code-block:: text | 
|  |  | 
|  | # clang++ sample.cpp -o sample -O2 -g -I/usr/local/cuda-5.5/include -lcuda | 
|  |  | 
|  | We don't need to specify a path to ``libcuda.so`` since this is installed in a | 
|  | system location by the driver, not the CUDA toolkit. | 
|  |  | 
|  | If everything goes as planned, you should see the following output when | 
|  | running the compiled program: | 
|  |  | 
|  | .. code-block:: text | 
|  |  | 
|  | Using CUDA Device [0]: GeForce GTX 680 | 
|  | Device Compute Capability: 3.0 | 
|  | Launching kernel | 
|  | Results: | 
|  | 0 + 0 = 0 | 
|  | 1 + 2 = 3 | 
|  | 2 + 4 = 6 | 
|  | 3 + 6 = 9 | 
|  | 4 + 8 = 12 | 
|  | 5 + 10 = 15 | 
|  | 6 + 12 = 18 | 
|  | 7 + 14 = 21 | 
|  | 8 + 16 = 24 | 
|  | 9 + 18 = 27 | 
|  | 10 + 20 = 30 | 
|  | 11 + 22 = 33 | 
|  | 12 + 24 = 36 | 
|  | 13 + 26 = 39 | 
|  | 14 + 28 = 42 | 
|  | 15 + 30 = 45 | 
|  |  | 
|  | .. note:: | 
|  |  | 
|  | You will likely see a different device identifier based on your hardware | 
|  |  | 
|  |  | 
|  | Tutorial: Linking with Libdevice | 
|  | ================================ | 
|  |  | 
|  | In this tutorial, we show a simple example of linking LLVM IR with the | 
|  | libdevice library. We will use the same kernel as the previous tutorial, | 
|  | except that we will compute ``C = pow(A, B)`` instead of ``C = A + B``. | 
|  | Libdevice provides an ``__nv_powf`` function that we will use. | 
|  |  | 
|  | .. code-block:: llvm | 
|  |  | 
|  | target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64" | 
|  | target triple = "nvptx64-nvidia-cuda" | 
|  |  | 
|  | ; Intrinsic to read X component of thread ID | 
|  | declare i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind | 
|  | ; libdevice function | 
|  | declare float @__nv_powf(float, float) | 
|  |  | 
|  | define void @kernel(float addrspace(1)* %A, | 
|  | float addrspace(1)* %B, | 
|  | float addrspace(1)* %C) { | 
|  | entry: | 
|  | ; What is my ID? | 
|  | %id = tail call i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind | 
|  |  | 
|  | ; Compute pointers into A, B, and C | 
|  | %ptrA = getelementptr float, float addrspace(1)* %A, i32 %id | 
|  | %ptrB = getelementptr float, float addrspace(1)* %B, i32 %id | 
|  | %ptrC = getelementptr float, float addrspace(1)* %C, i32 %id | 
|  |  | 
|  | ; Read A, B | 
|  | %valA = load float, float addrspace(1)* %ptrA, align 4 | 
|  | %valB = load float, float addrspace(1)* %ptrB, align 4 | 
|  |  | 
|  | ; Compute C = pow(A, B) | 
|  | %valC = call float @__nv_powf(float %valA, float %valB) | 
|  |  | 
|  | ; Store back to C | 
|  | store float %valC, float addrspace(1)* %ptrC, align 4 | 
|  |  | 
|  | ret void | 
|  | } | 
|  |  | 
|  | !nvvm.annotations = !{!0} | 
|  | !0 = !{void (float addrspace(1)*, | 
|  | float addrspace(1)*, | 
|  | float addrspace(1)*)* @kernel, !"kernel", i32 1} | 
|  |  | 
|  |  | 
|  | To compile this kernel, we perform the following steps: | 
|  |  | 
|  | 1. Link with libdevice | 
|  | 2. Internalize all but the public kernel function | 
|  | 3. Run ``NVVMReflect`` and set ``__CUDA_FTZ`` to 0 | 
|  | 4. Optimize the linked module | 
|  | 5. Codegen the module | 
|  |  | 
|  |  | 
|  | These steps can be performed by the LLVM ``llvm-link``, ``opt``, and ``llc`` | 
|  | tools. In a complete compiler, these steps can also be performed entirely | 
|  | programmatically by setting up an appropriate pass configuration (see | 
|  | :ref:`libdevice`). | 
|  |  | 
|  | .. code-block:: text | 
|  |  | 
|  | # llvm-link t2.bc libdevice.compute_20.10.bc -o t2.linked.bc | 
|  | # opt -internalize -internalize-public-api-list=kernel -nvvm-reflect-list=__CUDA_FTZ=0 -nvvm-reflect -O3 t2.linked.bc -o t2.opt.bc | 
|  | # llc -mcpu=sm_20 t2.opt.bc -o t2.ptx | 
|  |  | 
|  | .. note:: | 
|  |  | 
|  | The ``-nvvm-reflect-list=_CUDA_FTZ=0`` is not strictly required, as any | 
|  | undefined variables will default to zero. It is shown here for evaluation | 
|  | purposes. | 
|  |  | 
|  |  | 
|  | This gives us the following PTX (excerpt): | 
|  |  | 
|  | .. code-block:: text | 
|  |  | 
|  | // | 
|  | // Generated by LLVM NVPTX Back-End | 
|  | // | 
|  |  | 
|  | .version 3.1 | 
|  | .target sm_20 | 
|  | .address_size 64 | 
|  |  | 
|  | // .globl kernel | 
|  | // @kernel | 
|  | .visible .entry kernel( | 
|  | .param .u64 kernel_param_0, | 
|  | .param .u64 kernel_param_1, | 
|  | .param .u64 kernel_param_2 | 
|  | ) | 
|  | { | 
|  | .reg .pred  %p<30>; | 
|  | .reg .f32   %f<111>; | 
|  | .reg .s32   %r<21>; | 
|  | .reg .s64   %rl<8>; | 
|  |  | 
|  | // %bb.0:                                // %entry | 
|  | ld.param.u64  %rl2, [kernel_param_0]; | 
|  | mov.u32   %r3, %tid.x; | 
|  | ld.param.u64  %rl3, [kernel_param_1]; | 
|  | mul.wide.s32  %rl4, %r3, 4; | 
|  | add.s64   %rl5, %rl2, %rl4; | 
|  | ld.param.u64  %rl6, [kernel_param_2]; | 
|  | add.s64   %rl7, %rl3, %rl4; | 
|  | add.s64   %rl1, %rl6, %rl4; | 
|  | ld.global.f32   %f1, [%rl5]; | 
|  | ld.global.f32   %f2, [%rl7]; | 
|  | setp.eq.f32 %p1, %f1, 0f3F800000; | 
|  | setp.eq.f32 %p2, %f2, 0f00000000; | 
|  | or.pred   %p3, %p1, %p2; | 
|  | @%p3 bra  BB0_1; | 
|  | bra.uni   BB0_2; | 
|  | BB0_1: | 
|  | mov.f32   %f110, 0f3F800000; | 
|  | st.global.f32   [%rl1], %f110; | 
|  | ret; | 
|  | BB0_2:                                  // %__nv_isnanf.exit.i | 
|  | abs.f32   %f4, %f1; | 
|  | setp.gtu.f32  %p4, %f4, 0f7F800000; | 
|  | @%p4 bra  BB0_4; | 
|  | // %bb.3:                                // %__nv_isnanf.exit5.i | 
|  | abs.f32   %f5, %f2; | 
|  | setp.le.f32 %p5, %f5, 0f7F800000; | 
|  | @%p5 bra  BB0_5; | 
|  | BB0_4:                                  // %.critedge1.i | 
|  | add.f32   %f110, %f1, %f2; | 
|  | st.global.f32   [%rl1], %f110; | 
|  | ret; | 
|  | BB0_5:                                  // %__nv_isinff.exit.i | 
|  |  | 
|  | ... | 
|  |  | 
|  | BB0_26:                                 // %__nv_truncf.exit.i.i.i.i.i | 
|  | mul.f32   %f90, %f107, 0f3FB8AA3B; | 
|  | cvt.rzi.f32.f32 %f91, %f90; | 
|  | mov.f32   %f92, 0fBF317200; | 
|  | fma.rn.f32  %f93, %f91, %f92, %f107; | 
|  | mov.f32   %f94, 0fB5BFBE8E; | 
|  | fma.rn.f32  %f95, %f91, %f94, %f93; | 
|  | mul.f32   %f89, %f95, 0f3FB8AA3B; | 
|  | // inline asm | 
|  | ex2.approx.ftz.f32 %f88,%f89; | 
|  | // inline asm | 
|  | add.f32   %f96, %f91, 0f00000000; | 
|  | ex2.approx.f32  %f97, %f96; | 
|  | mul.f32   %f98, %f88, %f97; | 
|  | setp.lt.f32 %p15, %f107, 0fC2D20000; | 
|  | selp.f32  %f99, 0f00000000, %f98, %p15; | 
|  | setp.gt.f32 %p16, %f107, 0f42D20000; | 
|  | selp.f32  %f110, 0f7F800000, %f99, %p16; | 
|  | setp.eq.f32 %p17, %f110, 0f7F800000; | 
|  | @%p17 bra   BB0_28; | 
|  | // %bb.27: | 
|  | fma.rn.f32  %f110, %f110, %f108, %f110; | 
|  | BB0_28:                                 // %__internal_accurate_powf.exit.i | 
|  | setp.lt.f32 %p18, %f1, 0f00000000; | 
|  | setp.eq.f32 %p19, %f3, 0f3F800000; | 
|  | and.pred    %p20, %p18, %p19; | 
|  | @!%p20 bra  BB0_30; | 
|  | bra.uni   BB0_29; | 
|  | BB0_29: | 
|  | mov.b32    %r9, %f110; | 
|  | xor.b32   %r10, %r9, -2147483648; | 
|  | mov.b32    %f110, %r10; | 
|  | BB0_30:                                 // %__nv_powf.exit | 
|  | st.global.f32   [%rl1], %f110; | 
|  | ret; | 
|  | } | 
|  |  |