| //= lib/fp_trunc_impl.inc - high precision -> low precision conversion *-*-===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is dual licensed under the MIT and the University of Illinois Open | 
 | // Source Licenses. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements a fairly generic conversion from a wider to a narrower | 
 | // IEEE-754 floating-point type in the default (round to nearest, ties to even) | 
 | // rounding mode.  The constants and types defined following the includes below | 
 | // parameterize the conversion. | 
 | // | 
 | // This routine can be trivially adapted to support conversions to | 
 | // half-precision or from quad-precision. It does not support types that don't | 
 | // use the usual IEEE-754 interchange formats; specifically, some work would be | 
 | // needed to adapt it to (for example) the Intel 80-bit format or PowerPC | 
 | // double-double format. | 
 | // | 
 | // Note please, however, that this implementation is only intended to support | 
 | // *narrowing* operations; if you need to convert to a *wider* floating-point | 
 | // type (e.g. float -> double), then this routine will not do what you want it | 
 | // to. | 
 | // | 
 | // It also requires that integer types at least as large as both formats | 
 | // are available on the target platform; this may pose a problem when trying | 
 | // to add support for quad on some 32-bit systems, for example. | 
 | // | 
 | // Finally, the following assumptions are made: | 
 | // | 
 | // 1. floating-point types and integer types have the same endianness on the | 
 | //    target platform | 
 | // | 
 | // 2. quiet NaNs, if supported, are indicated by the leading bit of the | 
 | //    significand field being set | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "fp_trunc.h" | 
 |  | 
 | static __inline dst_t __truncXfYf2__(src_t a) { | 
 |     // Various constants whose values follow from the type parameters. | 
 |     // Any reasonable optimizer will fold and propagate all of these. | 
 |     const int srcBits = sizeof(src_t)*CHAR_BIT; | 
 |     const int srcExpBits = srcBits - srcSigBits - 1; | 
 |     const int srcInfExp = (1 << srcExpBits) - 1; | 
 |     const int srcExpBias = srcInfExp >> 1; | 
 |  | 
 |     const src_rep_t srcMinNormal = SRC_REP_C(1) << srcSigBits; | 
 |     const src_rep_t srcSignificandMask = srcMinNormal - 1; | 
 |     const src_rep_t srcInfinity = (src_rep_t)srcInfExp << srcSigBits; | 
 |     const src_rep_t srcSignMask = SRC_REP_C(1) << (srcSigBits + srcExpBits); | 
 |     const src_rep_t srcAbsMask = srcSignMask - 1; | 
 |     const src_rep_t roundMask = (SRC_REP_C(1) << (srcSigBits - dstSigBits)) - 1; | 
 |     const src_rep_t halfway = SRC_REP_C(1) << (srcSigBits - dstSigBits - 1); | 
 |     const src_rep_t srcQNaN = SRC_REP_C(1) << (srcSigBits - 1); | 
 |     const src_rep_t srcNaNCode = srcQNaN - 1; | 
 |  | 
 |     const int dstBits = sizeof(dst_t)*CHAR_BIT; | 
 |     const int dstExpBits = dstBits - dstSigBits - 1; | 
 |     const int dstInfExp = (1 << dstExpBits) - 1; | 
 |     const int dstExpBias = dstInfExp >> 1; | 
 |  | 
 |     const int underflowExponent = srcExpBias + 1 - dstExpBias; | 
 |     const int overflowExponent = srcExpBias + dstInfExp - dstExpBias; | 
 |     const src_rep_t underflow = (src_rep_t)underflowExponent << srcSigBits; | 
 |     const src_rep_t overflow = (src_rep_t)overflowExponent << srcSigBits; | 
 |  | 
 |     const dst_rep_t dstQNaN = DST_REP_C(1) << (dstSigBits - 1); | 
 |     const dst_rep_t dstNaNCode = dstQNaN - 1; | 
 |  | 
 |     // Break a into a sign and representation of the absolute value | 
 |     const src_rep_t aRep = srcToRep(a); | 
 |     const src_rep_t aAbs = aRep & srcAbsMask; | 
 |     const src_rep_t sign = aRep & srcSignMask; | 
 |     dst_rep_t absResult; | 
 |  | 
 |     if (aAbs - underflow < aAbs - overflow) { | 
 |         // The exponent of a is within the range of normal numbers in the | 
 |         // destination format.  We can convert by simply right-shifting with | 
 |         // rounding and adjusting the exponent. | 
 |         absResult = aAbs >> (srcSigBits - dstSigBits); | 
 |         absResult -= (dst_rep_t)(srcExpBias - dstExpBias) << dstSigBits; | 
 |  | 
 |         const src_rep_t roundBits = aAbs & roundMask; | 
 |         // Round to nearest | 
 |         if (roundBits > halfway) | 
 |             absResult++; | 
 |         // Ties to even | 
 |         else if (roundBits == halfway) | 
 |             absResult += absResult & 1; | 
 |     } | 
 |     else if (aAbs > srcInfinity) { | 
 |         // a is NaN. | 
 |         // Conjure the result by beginning with infinity, setting the qNaN | 
 |         // bit and inserting the (truncated) trailing NaN field. | 
 |         absResult = (dst_rep_t)dstInfExp << dstSigBits; | 
 |         absResult |= dstQNaN; | 
 |         absResult |= ((aAbs & srcNaNCode) >> (srcSigBits - dstSigBits)) & dstNaNCode; | 
 |     } | 
 |     else if (aAbs >= overflow) { | 
 |         // a overflows to infinity. | 
 |         absResult = (dst_rep_t)dstInfExp << dstSigBits; | 
 |     } | 
 |     else { | 
 |         // a underflows on conversion to the destination type or is an exact | 
 |         // zero.  The result may be a denormal or zero.  Extract the exponent | 
 |         // to get the shift amount for the denormalization. | 
 |         const int aExp = aAbs >> srcSigBits; | 
 |         const int shift = srcExpBias - dstExpBias - aExp + 1; | 
 |  | 
 |         const src_rep_t significand = (aRep & srcSignificandMask) | srcMinNormal; | 
 |  | 
 |         // Right shift by the denormalization amount with sticky. | 
 |         if (shift > srcSigBits) { | 
 |             absResult = 0; | 
 |         } else { | 
 |             const bool sticky = significand << (srcBits - shift); | 
 |             src_rep_t denormalizedSignificand = significand >> shift | sticky; | 
 |             absResult = denormalizedSignificand >> (srcSigBits - dstSigBits); | 
 |             const src_rep_t roundBits = denormalizedSignificand & roundMask; | 
 |             // Round to nearest | 
 |             if (roundBits > halfway) | 
 |                 absResult++; | 
 |             // Ties to even | 
 |             else if (roundBits == halfway) | 
 |                 absResult += absResult & 1; | 
 |         } | 
 |     } | 
 |  | 
 |     // Apply the signbit to (dst_t)abs(a). | 
 |     const dst_rep_t result = absResult | sign >> (srcBits - dstBits); | 
 |     return dstFromRep(result); | 
 | } |