blob: 999b7a6b5416783fc82883fd9adbb966f4b2c3d4 [file] [log] [blame]
//===-- Generic implementation of memory function building blocks ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file provides generic C++ building blocks.
// Depending on the requested size, the block operation uses unsigned integral
// types, vector types or an array of the type with the maximum size.
//
// The maximum size is passed as a template argument. For instance, on x86
// platforms that only supports integral types the maximum size would be 8
// (corresponding to uint64_t). On this platform if we request the size 32, this
// would be treated as a cpp::array<uint64_t, 4>.
//
// On the other hand, if the platform is x86 with support for AVX the maximum
// size is 32 and the operation can be handled with a single native operation.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_SRC_STRING_MEMORY_UTILS_OP_GENERIC_H
#define LLVM_LIBC_SRC_STRING_MEMORY_UTILS_OP_GENERIC_H
#include "src/__support/CPP/array.h"
#include "src/__support/CPP/type_traits.h"
#include "src/__support/common.h"
#include "src/__support/endian.h"
#include "src/__support/macros/optimization.h"
#include "src/string/memory_utils/op_builtin.h"
#include "src/string/memory_utils/utils.h"
#include <stdint.h>
static_assert((UINTPTR_MAX == 4294967295U) ||
(UINTPTR_MAX == 18446744073709551615UL),
"We currently only support 32- or 64-bit platforms");
#if defined(UINT64_MAX)
#define LLVM_LIBC_HAS_UINT64
#endif
namespace __llvm_libc {
// Compiler types using the vector attributes.
using generic_v128 = uint8_t __attribute__((__vector_size__(16)));
using generic_v256 = uint8_t __attribute__((__vector_size__(32)));
using generic_v512 = uint8_t __attribute__((__vector_size__(64)));
} // namespace __llvm_libc
namespace __llvm_libc::generic {
// We accept three types of values as elements for generic operations:
// - scalar : unsigned integral types,
// - vector : compiler types using the vector attributes or platform builtins,
// - array : a cpp::array<T, N> where T is itself either a scalar or a vector.
// The following traits help discriminate between these cases.
template <typename T> struct is_scalar : cpp::false_type {};
template <> struct is_scalar<uint8_t> : cpp::true_type {};
template <> struct is_scalar<uint16_t> : cpp::true_type {};
template <> struct is_scalar<uint32_t> : cpp::true_type {};
#ifdef LLVM_LIBC_HAS_UINT64
template <> struct is_scalar<uint64_t> : cpp::true_type {};
#endif // LLVM_LIBC_HAS_UINT64
template <typename T> constexpr bool is_scalar_v = is_scalar<T>::value;
template <typename T> struct is_vector : cpp::false_type {};
template <> struct is_vector<generic_v128> : cpp::true_type {};
template <> struct is_vector<generic_v256> : cpp::true_type {};
template <> struct is_vector<generic_v512> : cpp::true_type {};
template <typename T> constexpr bool is_vector_v = is_vector<T>::value;
template <class T> struct is_array : cpp::false_type {};
template <class T, size_t N> struct is_array<cpp::array<T, N>> {
static constexpr bool value = is_scalar_v<T> || is_vector_v<T>;
};
template <typename T> constexpr bool is_array_v = is_array<T>::value;
template <typename T>
constexpr bool is_element_type_v =
is_scalar_v<T> || is_vector_v<T> || is_array_v<T>;
// Helper struct to retrieve the number of elements of an array.
template <class T> struct array_size {};
template <class T, size_t N>
struct array_size<cpp::array<T, N>> : cpp::integral_constant<size_t, N> {};
template <typename T> constexpr size_t array_size_v = array_size<T>::value;
// Generic operations for the above type categories.
template <typename T> T load(CPtr src) {
static_assert(is_element_type_v<T>);
if constexpr (is_scalar_v<T> || is_vector_v<T>) {
return ::__llvm_libc::load<T>(src);
} else if constexpr (is_array_v<T>) {
using value_type = typename T::value_type;
T Value;
for (size_t I = 0; I < array_size_v<T>; ++I)
Value[I] = load<value_type>(src + (I * sizeof(value_type)));
return Value;
}
}
template <typename T> void store(Ptr dst, T value) {
static_assert(is_element_type_v<T>);
if constexpr (is_scalar_v<T> || is_vector_v<T>) {
::__llvm_libc::store<T>(dst, value);
} else if constexpr (is_array_v<T>) {
using value_type = typename T::value_type;
for (size_t I = 0; I < array_size_v<T>; ++I)
store<value_type>(dst + (I * sizeof(value_type)), value[I]);
}
}
template <typename T> T splat(uint8_t value) {
static_assert(is_scalar_v<T> || is_vector_v<T>);
if constexpr (is_scalar_v<T>)
return T(~0) / T(0xFF) * T(value);
else if constexpr (is_vector_v<T>) {
T Out;
// This for loop is optimized out for vector types.
for (size_t i = 0; i < sizeof(T); ++i)
Out[i] = value;
return Out;
}
}
///////////////////////////////////////////////////////////////////////////////
// Memset
///////////////////////////////////////////////////////////////////////////////
template <typename T> struct Memset {
static_assert(is_element_type_v<T>);
static constexpr size_t SIZE = sizeof(T);
LIBC_INLINE static void block(Ptr dst, uint8_t value) {
if constexpr (is_scalar_v<T> || is_vector_v<T>) {
store<T>(dst, splat<T>(value));
} else if constexpr (is_array_v<T>) {
using value_type = typename T::value_type;
const auto Splat = splat<value_type>(value);
for (size_t I = 0; I < array_size_v<T>; ++I)
store<value_type>(dst + (I * sizeof(value_type)), Splat);
}
}
LIBC_INLINE static void tail(Ptr dst, uint8_t value, size_t count) {
block(dst + count - SIZE, value);
}
LIBC_INLINE static void head_tail(Ptr dst, uint8_t value, size_t count) {
block(dst, value);
tail(dst, value, count);
}
LIBC_INLINE static void loop_and_tail(Ptr dst, uint8_t value, size_t count) {
static_assert(SIZE > 1, "a loop of size 1 does not need tail");
size_t offset = 0;
do {
block(dst + offset, value);
offset += SIZE;
} while (offset < count - SIZE);
tail(dst, value, count);
}
};
template <typename T, typename... TS> struct MemsetSequence {
static constexpr size_t SIZE = (sizeof(T) + ... + sizeof(TS));
LIBC_INLINE static void block(Ptr dst, uint8_t value) {
Memset<T>::block(dst, value);
if constexpr (sizeof...(TS) > 0)
return MemsetSequence<TS...>::block(dst + sizeof(T), value);
}
};
///////////////////////////////////////////////////////////////////////////////
// Memmove
///////////////////////////////////////////////////////////////////////////////
template <typename T> struct Memmove {
static_assert(is_element_type_v<T>);
static constexpr size_t SIZE = sizeof(T);
LIBC_INLINE static void block(Ptr dst, CPtr src) {
store<T>(dst, load<T>(src));
}
LIBC_INLINE static void head_tail(Ptr dst, CPtr src, size_t count) {
const size_t offset = count - SIZE;
// The load and store operations can be performed in any order as long as
// they are not interleaved. More investigations are needed to determine
// the best order.
const auto head = load<T>(src);
const auto tail = load<T>(src + offset);
store<T>(dst, head);
store<T>(dst + offset, tail);
}
// Align forward suitable when dst < src. The alignment is performed with
// an HeadTail operation of count ∈ [Alignment, 2 x Alignment].
//
// e.g. Moving two bytes forward, we make sure src is aligned.
// [ | | | | ]
// [____XXXXXXXXXXXXXXXXXXXXXXXXXXXX_]
// [____LLLLLLLL_____________________]
// [___________LLLLLLLA______________]
// [_SSSSSSSS________________________]
// [________SSSSSSSS_________________]
//
// e.g. Moving two bytes forward, we make sure dst is aligned.
// [ | | | | ]
// [____XXXXXXXXXXXXXXXXXXXXXXXXXXXX_]
// [____LLLLLLLL_____________________]
// [______LLLLLLLL___________________]
// [_SSSSSSSS________________________]
// [___SSSSSSSA______________________]
template <Arg AlignOn>
LIBC_INLINE static void align_forward(Ptr &dst, CPtr &src, size_t &count) {
Ptr prev_dst = dst;
CPtr prev_src = src;
size_t prev_count = count;
align_to_next_boundary<SIZE, AlignOn>(dst, src, count);
adjust(SIZE, dst, src, count);
head_tail(prev_dst, prev_src, prev_count - count);
}
// Align backward suitable when dst > src. The alignment is performed with
// an HeadTail operation of count ∈ [Alignment, 2 x Alignment].
//
// e.g. Moving two bytes backward, we make sure src is aligned.
// [ | | | | ]
// [____XXXXXXXXXXXXXXXXXXXXXXXX_____]
// [ _________________ALLLLLLL_______]
// [ ___________________LLLLLLLL_____]
// [____________________SSSSSSSS_____]
// [______________________SSSSSSSS___]
//
// e.g. Moving two bytes backward, we make sure dst is aligned.
// [ | | | | ]
// [____XXXXXXXXXXXXXXXXXXXXXXXX_____]
// [ _______________LLLLLLLL_________]
// [ ___________________LLLLLLLL_____]
// [__________________ASSSSSSS_______]
// [______________________SSSSSSSS___]
template <Arg AlignOn>
LIBC_INLINE static void align_backward(Ptr &dst, CPtr &src, size_t &count) {
Ptr headtail_dst = dst + count;
CPtr headtail_src = src + count;
size_t headtail_size = 0;
align_to_next_boundary<SIZE, AlignOn>(headtail_dst, headtail_src,
headtail_size);
adjust(-2 * SIZE, headtail_dst, headtail_src, headtail_size);
head_tail(headtail_dst, headtail_src, headtail_size);
count -= headtail_size;
}
// Move forward suitable when dst < src. We load the tail bytes before
// handling the loop.
//
// e.g. Moving two bytes
// [ | | | | |]
// [___XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX___]
// [_________________________LLLLLLLL___]
// [___LLLLLLLL_________________________]
// [_SSSSSSSS___________________________]
// [___________LLLLLLLL_________________]
// [_________SSSSSSSS___________________]
// [___________________LLLLLLLL_________]
// [_________________SSSSSSSS___________]
// [_______________________SSSSSSSS_____]
LIBC_INLINE static void loop_and_tail_forward(Ptr dst, CPtr src,
size_t count) {
static_assert(SIZE > 1, "a loop of size 1 does not need tail");
const size_t tail_offset = count - SIZE;
const auto tail_value = load<T>(src + tail_offset);
size_t offset = 0;
LIBC_LOOP_NOUNROLL
do {
block(dst + offset, src + offset);
offset += SIZE;
} while (offset < count - SIZE);
store<T>(dst + tail_offset, tail_value);
}
// Move backward suitable when dst > src. We load the head bytes before
// handling the loop.
//
// e.g. Moving two bytes
// [ | | | | |]
// [___XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX___]
// [___LLLLLLLL_________________________]
// [_________________________LLLLLLLL___]
// [___________________________SSSSSSSS_]
// [_________________LLLLLLLL___________]
// [___________________SSSSSSSS_________]
// [_________LLLLLLLL___________________]
// [___________SSSSSSSS_________________]
// [_____SSSSSSSS_______________________]
LIBC_INLINE static void loop_and_tail_backward(Ptr dst, CPtr src,
size_t count) {
static_assert(SIZE > 1, "a loop of size 1 does not need tail");
const auto head_value = load<T>(src);
ptrdiff_t offset = count - SIZE;
LIBC_LOOP_NOUNROLL
do {
block(dst + offset, src + offset);
offset -= SIZE;
} while (offset >= 0);
store<T>(dst, head_value);
}
};
///////////////////////////////////////////////////////////////////////////////
// Low level operations for Bcmp and Memcmp that operate on memory locations.
///////////////////////////////////////////////////////////////////////////////
// Same as load above but with an offset to the pointer.
// Making the offset explicit hints the compiler to use relevant addressing mode
// consistently.
template <typename T> LIBC_INLINE T load(CPtr ptr, size_t offset) {
return ::__llvm_libc::load<T>(ptr + offset);
}
// Same as above but also makes sure the loaded value is in big endian format.
// This is useful when implementing lexicograhic comparisons as big endian
// scalar comparison directly maps to lexicographic byte comparisons.
template <typename T> LIBC_INLINE T load_be(CPtr ptr, size_t offset) {
return Endian::to_big_endian(load<T>(ptr, offset));
}
// Equality: returns true iff values at locations (p1 + offset) and (p2 +
// offset) compare equal.
template <typename T> LIBC_INLINE bool eq(CPtr p1, CPtr p2, size_t offset);
// Not equals: returns non-zero iff values at locations (p1 + offset) and (p2 +
// offset) differ.
template <typename T> LIBC_INLINE uint32_t neq(CPtr p1, CPtr p2, size_t offset);
// Lexicographic comparison:
// - returns 0 iff values at locations (p1 + offset) and (p2 + offset) compare
// equal.
// - returns a negative value if value at location (p1 + offset) is
// lexicographically less than value at (p2 + offset).
// - returns a positive value if value at location (p1 + offset) is
// lexicographically greater than value at (p2 + offset).
template <typename T>
LIBC_INLINE MemcmpReturnType cmp(CPtr p1, CPtr p2, size_t offset);
// Lexicographic comparison of non-equal values:
// - returns a negative value if value at location (p1 + offset) is
// lexicographically less than value at (p2 + offset).
// - returns a positive value if value at location (p1 + offset) is
// lexicographically greater than value at (p2 + offset).
template <typename T>
LIBC_INLINE MemcmpReturnType cmp_neq(CPtr p1, CPtr p2, size_t offset);
///////////////////////////////////////////////////////////////////////////////
// Memcmp implementation
//
// When building memcmp, not all types are considered equals.
//
// For instance, the lexicographic comparison of two uint8_t can be implemented
// as a simple subtraction, but for wider operations the logic can be much more
// involving, especially on little endian platforms.
//
// For such wider types it is a good strategy to test for equality first and
// only do the expensive lexicographic comparison if necessary.
//
// Decomposing the algorithm like this for wider types allows us to have
// efficient implementation of higher order functions like 'head_tail' or
// 'loop_and_tail'.
///////////////////////////////////////////////////////////////////////////////
// Type traits to decide whether we can use 'cmp' directly or if we need to
// split the computation.
template <typename T> struct cmp_is_expensive;
template <typename T> struct Memcmp {
static_assert(is_element_type_v<T>);
static constexpr size_t SIZE = sizeof(T);
private:
LIBC_INLINE static MemcmpReturnType block_offset(CPtr p1, CPtr p2,
size_t offset) {
if constexpr (cmp_is_expensive<T>::value) {
if (!eq<T>(p1, p2, offset))
return cmp_neq<T>(p1, p2, offset);
return MemcmpReturnType::ZERO();
} else {
return cmp<T>(p1, p2, offset);
}
}
public:
LIBC_INLINE static MemcmpReturnType block(CPtr p1, CPtr p2) {
return block_offset(p1, p2, 0);
}
LIBC_INLINE static MemcmpReturnType tail(CPtr p1, CPtr p2, size_t count) {
return block_offset(p1, p2, count - SIZE);
}
LIBC_INLINE static MemcmpReturnType head_tail(CPtr p1, CPtr p2,
size_t count) {
if constexpr (cmp_is_expensive<T>::value) {
if (!eq<T>(p1, p2, 0))
return cmp_neq<T>(p1, p2, 0);
} else {
if (const auto value = cmp<T>(p1, p2, 0))
return value;
}
return tail(p1, p2, count);
}
LIBC_INLINE static MemcmpReturnType loop_and_tail(CPtr p1, CPtr p2,
size_t count) {
return loop_and_tail_offset(p1, p2, count, 0);
}
LIBC_INLINE static MemcmpReturnType
loop_and_tail_offset(CPtr p1, CPtr p2, size_t count, size_t offset) {
if constexpr (SIZE > 1) {
const size_t limit = count - SIZE;
LIBC_LOOP_NOUNROLL
for (; offset < limit; offset += SIZE) {
if constexpr (cmp_is_expensive<T>::value) {
if (!eq<T>(p1, p2, offset))
return cmp_neq<T>(p1, p2, offset);
} else {
if (const auto value = cmp<T>(p1, p2, offset))
return value;
}
}
return block_offset(p1, p2, limit); // tail
} else {
// No need for a tail operation when SIZE == 1.
LIBC_LOOP_NOUNROLL
for (; offset < count; offset += SIZE)
if (auto value = cmp<T>(p1, p2, offset))
return value;
return MemcmpReturnType::ZERO();
}
}
LIBC_INLINE static MemcmpReturnType
loop_and_tail_align_above(size_t threshold, CPtr p1, CPtr p2, size_t count) {
const AlignHelper<sizeof(T)> helper(p1);
if (LIBC_UNLIKELY(count >= threshold) && helper.not_aligned()) {
if (auto value = block(p1, p2))
return value;
adjust(helper.offset(), p1, p2, count);
}
return loop_and_tail(p1, p2, count);
}
};
template <typename T, typename... TS> struct MemcmpSequence {
static constexpr size_t SIZE = (sizeof(T) + ... + sizeof(TS));
LIBC_INLINE static MemcmpReturnType block(CPtr p1, CPtr p2) {
// TODO: test suggestion in
// https://reviews.llvm.org/D148717?id=515724#inline-1446890
// once we have a proper way to check memory operation latency.
if constexpr (cmp_is_expensive<T>::value) {
if (!eq<T>(p1, p2, 0))
return cmp_neq<T>(p1, p2, 0);
} else {
if (auto value = cmp<T>(p1, p2, 0))
return value;
}
if constexpr (sizeof...(TS) > 0)
return MemcmpSequence<TS...>::block(p1 + sizeof(T), p2 + sizeof(T));
else
return MemcmpReturnType::ZERO();
}
};
///////////////////////////////////////////////////////////////////////////////
// Bcmp
///////////////////////////////////////////////////////////////////////////////
template <typename T> struct Bcmp {
static_assert(is_element_type_v<T>);
static constexpr size_t SIZE = sizeof(T);
LIBC_INLINE static BcmpReturnType block(CPtr p1, CPtr p2) {
return neq<T>(p1, p2, 0);
}
LIBC_INLINE static BcmpReturnType tail(CPtr p1, CPtr p2, size_t count) {
const size_t tail_offset = count - SIZE;
return neq<T>(p1, p2, tail_offset);
}
LIBC_INLINE static BcmpReturnType head_tail(CPtr p1, CPtr p2, size_t count) {
if (const auto value = neq<T>(p1, p2, 0))
return value;
return tail(p1, p2, count);
}
LIBC_INLINE static BcmpReturnType loop_and_tail(CPtr p1, CPtr p2,
size_t count) {
return loop_and_tail_offset(p1, p2, count, 0);
}
LIBC_INLINE static BcmpReturnType
loop_and_tail_offset(CPtr p1, CPtr p2, size_t count, size_t offset) {
if constexpr (SIZE > 1) {
const size_t limit = count - SIZE;
LIBC_LOOP_NOUNROLL
for (; offset < limit; offset += SIZE)
if (const auto value = neq<T>(p1, p2, offset))
return value;
return tail(p1, p2, count);
} else {
// No need for a tail operation when SIZE == 1.
LIBC_LOOP_NOUNROLL
for (; offset < count; offset += SIZE)
if (const auto value = neq<T>(p1, p2, offset))
return value;
return BcmpReturnType::ZERO();
}
}
LIBC_INLINE static BcmpReturnType
loop_and_tail_align_above(size_t threshold, CPtr p1, CPtr p2, size_t count) {
static_assert(SIZE > 1,
"No need to align when processing one byte at a time");
const AlignHelper<sizeof(T)> helper(p1);
if (LIBC_UNLIKELY(count >= threshold) && helper.not_aligned()) {
if (auto value = block(p1, p2))
return value;
adjust(helper.offset(), p1, p2, count);
}
return loop_and_tail(p1, p2, count);
}
};
template <typename T, typename... TS> struct BcmpSequence {
static constexpr size_t SIZE = (sizeof(T) + ... + sizeof(TS));
LIBC_INLINE static BcmpReturnType block(CPtr p1, CPtr p2) {
if (auto value = neq<T>(p1, p2, 0))
return value;
if constexpr (sizeof...(TS) > 0)
return BcmpSequence<TS...>::block(p1 + sizeof(T), p2 + sizeof(T));
else
return BcmpReturnType::ZERO();
}
};
///////////////////////////////////////////////////////////////////////////////
// Specializations for uint8_t
template <> struct cmp_is_expensive<uint8_t> : public cpp::false_type {};
template <> LIBC_INLINE bool eq<uint8_t>(CPtr p1, CPtr p2, size_t offset) {
return load<uint8_t>(p1, offset) == load<uint8_t>(p2, offset);
}
template <> LIBC_INLINE uint32_t neq<uint8_t>(CPtr p1, CPtr p2, size_t offset) {
return load<uint8_t>(p1, offset) ^ load<uint8_t>(p2, offset);
}
template <>
LIBC_INLINE MemcmpReturnType cmp<uint8_t>(CPtr p1, CPtr p2, size_t offset) {
return static_cast<int32_t>(load<uint8_t>(p1, offset)) -
static_cast<int32_t>(load<uint8_t>(p2, offset));
}
template <>
LIBC_INLINE MemcmpReturnType cmp_neq<uint8_t>(CPtr p1, CPtr p2, size_t offset);
} // namespace __llvm_libc::generic
#endif // LLVM_LIBC_SRC_STRING_MEMORY_UTILS_OP_GENERIC_H