|  | //===- X86EvexToVex.cpp ---------------------------------------------------===// | 
|  | // Compress EVEX instructions to VEX encoding when possible to reduce code size | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | /// \file | 
|  | /// This file defines the pass that goes over all AVX-512 instructions which | 
|  | /// are encoded using the EVEX prefix and if possible replaces them by their | 
|  | /// corresponding VEX encoding which is usually shorter by 2 bytes. | 
|  | /// EVEX instructions may be encoded via the VEX prefix when the AVX-512 | 
|  | /// instruction has a corresponding AVX/AVX2 opcode, when vector length | 
|  | /// accessed by instruction is less than 512 bits and when it does not use | 
|  | //  the xmm or the mask registers or xmm/ymm registers with indexes higher than 15. | 
|  | /// The pass applies code reduction on the generated code for AVX-512 instrs. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "MCTargetDesc/X86BaseInfo.h" | 
|  | #include "MCTargetDesc/X86InstComments.h" | 
|  | #include "X86.h" | 
|  | #include "X86InstrInfo.h" | 
|  | #include "X86Subtarget.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/MC/MCInstrDesc.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | // Including the generated EVEX2VEX tables. | 
|  | struct X86EvexToVexCompressTableEntry { | 
|  | uint16_t EvexOpcode; | 
|  | uint16_t VexOpcode; | 
|  |  | 
|  | bool operator<(const X86EvexToVexCompressTableEntry &RHS) const { | 
|  | return EvexOpcode < RHS.EvexOpcode; | 
|  | } | 
|  |  | 
|  | friend bool operator<(const X86EvexToVexCompressTableEntry &TE, | 
|  | unsigned Opc) { | 
|  | return TE.EvexOpcode < Opc; | 
|  | } | 
|  | }; | 
|  | #include "X86GenEVEX2VEXTables.inc" | 
|  |  | 
|  | #define EVEX2VEX_DESC "Compressing EVEX instrs to VEX encoding when possible" | 
|  | #define EVEX2VEX_NAME "x86-evex-to-vex-compress" | 
|  |  | 
|  | #define DEBUG_TYPE EVEX2VEX_NAME | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class EvexToVexInstPass : public MachineFunctionPass { | 
|  |  | 
|  | /// For EVEX instructions that can be encoded using VEX encoding, replace | 
|  | /// them by the VEX encoding in order to reduce size. | 
|  | bool CompressEvexToVexImpl(MachineInstr &MI) const; | 
|  |  | 
|  | public: | 
|  | static char ID; | 
|  |  | 
|  | EvexToVexInstPass() : MachineFunctionPass(ID) { } | 
|  |  | 
|  | StringRef getPassName() const override { return EVEX2VEX_DESC; } | 
|  |  | 
|  | /// Loop over all of the basic blocks, replacing EVEX instructions | 
|  | /// by equivalent VEX instructions when possible for reducing code size. | 
|  | bool runOnMachineFunction(MachineFunction &MF) override; | 
|  |  | 
|  | // This pass runs after regalloc and doesn't support VReg operands. | 
|  | MachineFunctionProperties getRequiredProperties() const override { | 
|  | return MachineFunctionProperties().set( | 
|  | MachineFunctionProperties::Property::NoVRegs); | 
|  | } | 
|  |  | 
|  | private: | 
|  | /// Machine instruction info used throughout the class. | 
|  | const X86InstrInfo *TII = nullptr; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char EvexToVexInstPass::ID = 0; | 
|  |  | 
|  | bool EvexToVexInstPass::runOnMachineFunction(MachineFunction &MF) { | 
|  | TII = MF.getSubtarget<X86Subtarget>().getInstrInfo(); | 
|  |  | 
|  | const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>(); | 
|  | if (!ST.hasAVX512()) | 
|  | return false; | 
|  |  | 
|  | bool Changed = false; | 
|  |  | 
|  | /// Go over all basic blocks in function and replace | 
|  | /// EVEX encoded instrs by VEX encoding when possible. | 
|  | for (MachineBasicBlock &MBB : MF) { | 
|  |  | 
|  | // Traverse the basic block. | 
|  | for (MachineInstr &MI : MBB) | 
|  | Changed |= CompressEvexToVexImpl(MI); | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | static bool usesExtendedRegister(const MachineInstr &MI) { | 
|  | auto isHiRegIdx = [](unsigned Reg) { | 
|  | // Check for XMM register with indexes between 16 - 31. | 
|  | if (Reg >= X86::XMM16 && Reg <= X86::XMM31) | 
|  | return true; | 
|  |  | 
|  | // Check for YMM register with indexes between 16 - 31. | 
|  | if (Reg >= X86::YMM16 && Reg <= X86::YMM31) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | // Check that operands are not ZMM regs or | 
|  | // XMM/YMM regs with hi indexes between 16 - 31. | 
|  | for (const MachineOperand &MO : MI.explicit_operands()) { | 
|  | if (!MO.isReg()) | 
|  | continue; | 
|  |  | 
|  | Register Reg = MO.getReg(); | 
|  |  | 
|  | assert(!(Reg >= X86::ZMM0 && Reg <= X86::ZMM31) && | 
|  | "ZMM instructions should not be in the EVEX->VEX tables"); | 
|  |  | 
|  | if (isHiRegIdx(Reg)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Do any custom cleanup needed to finalize the conversion. | 
|  | static bool performCustomAdjustments(MachineInstr &MI, unsigned NewOpc) { | 
|  | (void)NewOpc; | 
|  | unsigned Opc = MI.getOpcode(); | 
|  | switch (Opc) { | 
|  | case X86::VALIGNDZ128rri: | 
|  | case X86::VALIGNDZ128rmi: | 
|  | case X86::VALIGNQZ128rri: | 
|  | case X86::VALIGNQZ128rmi: { | 
|  | assert((NewOpc == X86::VPALIGNRrri || NewOpc == X86::VPALIGNRrmi) && | 
|  | "Unexpected new opcode!"); | 
|  | unsigned Scale = (Opc == X86::VALIGNQZ128rri || | 
|  | Opc == X86::VALIGNQZ128rmi) ? 8 : 4; | 
|  | MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands()-1); | 
|  | Imm.setImm(Imm.getImm() * Scale); | 
|  | break; | 
|  | } | 
|  | case X86::VSHUFF32X4Z256rmi: | 
|  | case X86::VSHUFF32X4Z256rri: | 
|  | case X86::VSHUFF64X2Z256rmi: | 
|  | case X86::VSHUFF64X2Z256rri: | 
|  | case X86::VSHUFI32X4Z256rmi: | 
|  | case X86::VSHUFI32X4Z256rri: | 
|  | case X86::VSHUFI64X2Z256rmi: | 
|  | case X86::VSHUFI64X2Z256rri: { | 
|  | assert((NewOpc == X86::VPERM2F128rr || NewOpc == X86::VPERM2I128rr || | 
|  | NewOpc == X86::VPERM2F128rm || NewOpc == X86::VPERM2I128rm) && | 
|  | "Unexpected new opcode!"); | 
|  | MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands()-1); | 
|  | int64_t ImmVal = Imm.getImm(); | 
|  | // Set bit 5, move bit 1 to bit 4, copy bit 0. | 
|  | Imm.setImm(0x20 | ((ImmVal & 2) << 3) | (ImmVal & 1)); | 
|  | break; | 
|  | } | 
|  | case X86::VRNDSCALEPDZ128rri: | 
|  | case X86::VRNDSCALEPDZ128rmi: | 
|  | case X86::VRNDSCALEPSZ128rri: | 
|  | case X86::VRNDSCALEPSZ128rmi: | 
|  | case X86::VRNDSCALEPDZ256rri: | 
|  | case X86::VRNDSCALEPDZ256rmi: | 
|  | case X86::VRNDSCALEPSZ256rri: | 
|  | case X86::VRNDSCALEPSZ256rmi: | 
|  | case X86::VRNDSCALESDZr: | 
|  | case X86::VRNDSCALESDZm: | 
|  | case X86::VRNDSCALESSZr: | 
|  | case X86::VRNDSCALESSZm: | 
|  | case X86::VRNDSCALESDZr_Int: | 
|  | case X86::VRNDSCALESDZm_Int: | 
|  | case X86::VRNDSCALESSZr_Int: | 
|  | case X86::VRNDSCALESSZm_Int: | 
|  | const MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands()-1); | 
|  | int64_t ImmVal = Imm.getImm(); | 
|  | // Ensure that only bits 3:0 of the immediate are used. | 
|  | if ((ImmVal & 0xf) != ImmVal) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | // For EVEX instructions that can be encoded using VEX encoding | 
|  | // replace them by the VEX encoding in order to reduce size. | 
|  | bool EvexToVexInstPass::CompressEvexToVexImpl(MachineInstr &MI) const { | 
|  | // VEX format. | 
|  | // # of bytes: 0,2,3  1      1      0,1   0,1,2,4  0,1 | 
|  | //  [Prefixes] [VEX]  OPCODE ModR/M [SIB] [DISP]  [IMM] | 
|  | // | 
|  | // EVEX format. | 
|  | //  # of bytes: 4    1      1      1      4       / 1         1 | 
|  | //  [Prefixes]  EVEX Opcode ModR/M [SIB] [Disp32] / [Disp8*N] [Immediate] | 
|  |  | 
|  | const MCInstrDesc &Desc = MI.getDesc(); | 
|  |  | 
|  | // Check for EVEX instructions only. | 
|  | if ((Desc.TSFlags & X86II::EncodingMask) != X86II::EVEX) | 
|  | return false; | 
|  |  | 
|  | // Check for EVEX instructions with mask or broadcast as in these cases | 
|  | // the EVEX prefix is needed in order to carry this information | 
|  | // thus preventing the transformation to VEX encoding. | 
|  | if (Desc.TSFlags & (X86II::EVEX_K | X86II::EVEX_B)) | 
|  | return false; | 
|  |  | 
|  | // Check for EVEX instructions with L2 set. These instructions are 512-bits | 
|  | // and can't be converted to VEX. | 
|  | if (Desc.TSFlags & X86II::EVEX_L2) | 
|  | return false; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Make sure the tables are sorted. | 
|  | static std::atomic<bool> TableChecked(false); | 
|  | if (!TableChecked.load(std::memory_order_relaxed)) { | 
|  | assert(llvm::is_sorted(X86EvexToVex128CompressTable) && | 
|  | "X86EvexToVex128CompressTable is not sorted!"); | 
|  | assert(llvm::is_sorted(X86EvexToVex256CompressTable) && | 
|  | "X86EvexToVex256CompressTable is not sorted!"); | 
|  | TableChecked.store(true, std::memory_order_relaxed); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Use the VEX.L bit to select the 128 or 256-bit table. | 
|  | ArrayRef<X86EvexToVexCompressTableEntry> Table = | 
|  | (Desc.TSFlags & X86II::VEX_L) ? makeArrayRef(X86EvexToVex256CompressTable) | 
|  | : makeArrayRef(X86EvexToVex128CompressTable); | 
|  |  | 
|  | auto I = llvm::lower_bound(Table, MI.getOpcode()); | 
|  | if (I == Table.end() || I->EvexOpcode != MI.getOpcode()) | 
|  | return false; | 
|  |  | 
|  | unsigned NewOpc = I->VexOpcode; | 
|  |  | 
|  | if (usesExtendedRegister(MI)) | 
|  | return false; | 
|  |  | 
|  | if (!performCustomAdjustments(MI, NewOpc)) | 
|  | return false; | 
|  |  | 
|  | MI.setDesc(TII->get(NewOpc)); | 
|  | MI.setAsmPrinterFlag(X86::AC_EVEX_2_VEX); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | INITIALIZE_PASS(EvexToVexInstPass, EVEX2VEX_NAME, EVEX2VEX_DESC, false, false) | 
|  |  | 
|  | FunctionPass *llvm::createX86EvexToVexInsts() { | 
|  | return new EvexToVexInstPass(); | 
|  | } |