|  | //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines a pattern matching instruction selector for PowerPC, | 
|  | // converting from a legalized dag to a PPC dag. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "MCTargetDesc/PPCMCTargetDesc.h" | 
|  | #include "MCTargetDesc/PPCPredicates.h" | 
|  | #include "PPC.h" | 
|  | #include "PPCISelLowering.h" | 
|  | #include "PPCMachineFunctionInfo.h" | 
|  | #include "PPCSubtarget.h" | 
|  | #include "PPCTargetMachine.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/BranchProbabilityInfo.h" | 
|  | #include "llvm/CodeGen/FunctionLoweringInfo.h" | 
|  | #include "llvm/CodeGen/ISDOpcodes.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/CodeGen/SelectionDAGISel.h" | 
|  | #include "llvm/CodeGen/SelectionDAGNodes.h" | 
|  | #include "llvm/CodeGen/TargetInstrInfo.h" | 
|  | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | #include "llvm/CodeGen/ValueTypes.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/DebugLoc.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/IR/InlineAsm.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CodeGen.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/KnownBits.h" | 
|  | #include "llvm/Support/MachineValueType.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <iterator> | 
|  | #include <limits> | 
|  | #include <memory> | 
|  | #include <new> | 
|  | #include <tuple> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "ppc-codegen" | 
|  |  | 
|  | STATISTIC(NumSextSetcc, | 
|  | "Number of (sext(setcc)) nodes expanded into GPR sequence."); | 
|  | STATISTIC(NumZextSetcc, | 
|  | "Number of (zext(setcc)) nodes expanded into GPR sequence."); | 
|  | STATISTIC(SignExtensionsAdded, | 
|  | "Number of sign extensions for compare inputs added."); | 
|  | STATISTIC(ZeroExtensionsAdded, | 
|  | "Number of zero extensions for compare inputs added."); | 
|  | STATISTIC(NumLogicOpsOnComparison, | 
|  | "Number of logical ops on i1 values calculated in GPR."); | 
|  | STATISTIC(OmittedForNonExtendUses, | 
|  | "Number of compares not eliminated as they have non-extending uses."); | 
|  | STATISTIC(NumP9Setb, | 
|  | "Number of compares lowered to setb."); | 
|  |  | 
|  | // FIXME: Remove this once the bug has been fixed! | 
|  | cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug", | 
|  | cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true), | 
|  | cl::desc("use aggressive ppc isel for bit permutations"), | 
|  | cl::Hidden); | 
|  | static cl::opt<bool> BPermRewriterNoMasking( | 
|  | "ppc-bit-perm-rewriter-stress-rotates", | 
|  | cl::desc("stress rotate selection in aggressive ppc isel for " | 
|  | "bit permutations"), | 
|  | cl::Hidden); | 
|  |  | 
|  | static cl::opt<bool> EnableBranchHint( | 
|  | "ppc-use-branch-hint", cl::init(true), | 
|  | cl::desc("Enable static hinting of branches on ppc"), | 
|  | cl::Hidden); | 
|  |  | 
|  | static cl::opt<bool> EnableTLSOpt( | 
|  | "ppc-tls-opt", cl::init(true), | 
|  | cl::desc("Enable tls optimization peephole"), | 
|  | cl::Hidden); | 
|  |  | 
|  | enum ICmpInGPRType { ICGPR_All, ICGPR_None, ICGPR_I32, ICGPR_I64, | 
|  | ICGPR_NonExtIn, ICGPR_Zext, ICGPR_Sext, ICGPR_ZextI32, | 
|  | ICGPR_SextI32, ICGPR_ZextI64, ICGPR_SextI64 }; | 
|  |  | 
|  | static cl::opt<ICmpInGPRType> CmpInGPR( | 
|  | "ppc-gpr-icmps", cl::Hidden, cl::init(ICGPR_All), | 
|  | cl::desc("Specify the types of comparisons to emit GPR-only code for."), | 
|  | cl::values(clEnumValN(ICGPR_None, "none", "Do not modify integer comparisons."), | 
|  | clEnumValN(ICGPR_All, "all", "All possible int comparisons in GPRs."), | 
|  | clEnumValN(ICGPR_I32, "i32", "Only i32 comparisons in GPRs."), | 
|  | clEnumValN(ICGPR_I64, "i64", "Only i64 comparisons in GPRs."), | 
|  | clEnumValN(ICGPR_NonExtIn, "nonextin", | 
|  | "Only comparisons where inputs don't need [sz]ext."), | 
|  | clEnumValN(ICGPR_Zext, "zext", "Only comparisons with zext result."), | 
|  | clEnumValN(ICGPR_ZextI32, "zexti32", | 
|  | "Only i32 comparisons with zext result."), | 
|  | clEnumValN(ICGPR_ZextI64, "zexti64", | 
|  | "Only i64 comparisons with zext result."), | 
|  | clEnumValN(ICGPR_Sext, "sext", "Only comparisons with sext result."), | 
|  | clEnumValN(ICGPR_SextI32, "sexti32", | 
|  | "Only i32 comparisons with sext result."), | 
|  | clEnumValN(ICGPR_SextI64, "sexti64", | 
|  | "Only i64 comparisons with sext result."))); | 
|  | namespace { | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | /// PPCDAGToDAGISel - PPC specific code to select PPC machine | 
|  | /// instructions for SelectionDAG operations. | 
|  | /// | 
|  | class PPCDAGToDAGISel : public SelectionDAGISel { | 
|  | const PPCTargetMachine &TM; | 
|  | const PPCSubtarget *PPCSubTarget = nullptr; | 
|  | const PPCSubtarget *Subtarget = nullptr; | 
|  | const PPCTargetLowering *PPCLowering = nullptr; | 
|  | unsigned GlobalBaseReg = 0; | 
|  |  | 
|  | public: | 
|  | explicit PPCDAGToDAGISel(PPCTargetMachine &tm, CodeGenOpt::Level OptLevel) | 
|  | : SelectionDAGISel(tm, OptLevel), TM(tm) {} | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &MF) override { | 
|  | // Make sure we re-emit a set of the global base reg if necessary | 
|  | GlobalBaseReg = 0; | 
|  | PPCSubTarget = &MF.getSubtarget<PPCSubtarget>(); | 
|  | Subtarget = &MF.getSubtarget<PPCSubtarget>(); | 
|  | PPCLowering = Subtarget->getTargetLowering(); | 
|  | SelectionDAGISel::runOnMachineFunction(MF); | 
|  |  | 
|  | if (!Subtarget->isSVR4ABI()) | 
|  | InsertVRSaveCode(MF); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void PreprocessISelDAG() override; | 
|  | void PostprocessISelDAG() override; | 
|  |  | 
|  | /// getI16Imm - Return a target constant with the specified value, of type | 
|  | /// i16. | 
|  | inline SDValue getI16Imm(unsigned Imm, const SDLoc &dl) { | 
|  | return CurDAG->getTargetConstant(Imm, dl, MVT::i16); | 
|  | } | 
|  |  | 
|  | /// getI32Imm - Return a target constant with the specified value, of type | 
|  | /// i32. | 
|  | inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) { | 
|  | return CurDAG->getTargetConstant(Imm, dl, MVT::i32); | 
|  | } | 
|  |  | 
|  | /// getI64Imm - Return a target constant with the specified value, of type | 
|  | /// i64. | 
|  | inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) { | 
|  | return CurDAG->getTargetConstant(Imm, dl, MVT::i64); | 
|  | } | 
|  |  | 
|  | /// getSmallIPtrImm - Return a target constant of pointer type. | 
|  | inline SDValue getSmallIPtrImm(unsigned Imm, const SDLoc &dl) { | 
|  | return CurDAG->getTargetConstant( | 
|  | Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout())); | 
|  | } | 
|  |  | 
|  | /// isRotateAndMask - Returns true if Mask and Shift can be folded into a | 
|  | /// rotate and mask opcode and mask operation. | 
|  | static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask, | 
|  | unsigned &SH, unsigned &MB, unsigned &ME); | 
|  |  | 
|  | /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC | 
|  | /// base register.  Return the virtual register that holds this value. | 
|  | SDNode *getGlobalBaseReg(); | 
|  |  | 
|  | void selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0); | 
|  |  | 
|  | // Select - Convert the specified operand from a target-independent to a | 
|  | // target-specific node if it hasn't already been changed. | 
|  | void Select(SDNode *N) override; | 
|  |  | 
|  | bool tryBitfieldInsert(SDNode *N); | 
|  | bool tryBitPermutation(SDNode *N); | 
|  | bool tryIntCompareInGPR(SDNode *N); | 
|  |  | 
|  | // tryTLSXFormLoad - Convert an ISD::LOAD fed by a PPCISD::ADD_TLS into | 
|  | // an X-Form load instruction with the offset being a relocation coming from | 
|  | // the PPCISD::ADD_TLS. | 
|  | bool tryTLSXFormLoad(LoadSDNode *N); | 
|  | // tryTLSXFormStore - Convert an ISD::STORE fed by a PPCISD::ADD_TLS into | 
|  | // an X-Form store instruction with the offset being a relocation coming from | 
|  | // the PPCISD::ADD_TLS. | 
|  | bool tryTLSXFormStore(StoreSDNode *N); | 
|  | /// SelectCC - Select a comparison of the specified values with the | 
|  | /// specified condition code, returning the CR# of the expression. | 
|  | SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, | 
|  | const SDLoc &dl); | 
|  |  | 
|  | /// SelectAddrImmOffs - Return true if the operand is valid for a preinc | 
|  | /// immediate field.  Note that the operand at this point is already the | 
|  | /// result of a prior SelectAddressRegImm call. | 
|  | bool SelectAddrImmOffs(SDValue N, SDValue &Out) const { | 
|  | if (N.getOpcode() == ISD::TargetConstant || | 
|  | N.getOpcode() == ISD::TargetGlobalAddress) { | 
|  | Out = N; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// SelectAddrIdx - Given the specified address, check to see if it can be | 
|  | /// represented as an indexed [r+r] operation. | 
|  | /// This is for xform instructions whose associated displacement form is D. | 
|  | /// The last parameter \p 0 means associated D form has no requirment for 16 | 
|  | /// bit signed displacement. | 
|  | /// Returns false if it can be represented by [r+imm], which are preferred. | 
|  | bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) { | 
|  | return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, None); | 
|  | } | 
|  |  | 
|  | /// SelectAddrIdx4 - Given the specified address, check to see if it can be | 
|  | /// represented as an indexed [r+r] operation. | 
|  | /// This is for xform instructions whose associated displacement form is DS. | 
|  | /// The last parameter \p 4 means associated DS form 16 bit signed | 
|  | /// displacement must be a multiple of 4. | 
|  | /// Returns false if it can be represented by [r+imm], which are preferred. | 
|  | bool SelectAddrIdxX4(SDValue N, SDValue &Base, SDValue &Index) { | 
|  | return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, | 
|  | Align(4)); | 
|  | } | 
|  |  | 
|  | /// SelectAddrIdx16 - Given the specified address, check to see if it can be | 
|  | /// represented as an indexed [r+r] operation. | 
|  | /// This is for xform instructions whose associated displacement form is DQ. | 
|  | /// The last parameter \p 16 means associated DQ form 16 bit signed | 
|  | /// displacement must be a multiple of 16. | 
|  | /// Returns false if it can be represented by [r+imm], which are preferred. | 
|  | bool SelectAddrIdxX16(SDValue N, SDValue &Base, SDValue &Index) { | 
|  | return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, | 
|  | Align(16)); | 
|  | } | 
|  |  | 
|  | /// SelectAddrIdxOnly - Given the specified address, force it to be | 
|  | /// represented as an indexed [r+r] operation. | 
|  | bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) { | 
|  | return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG); | 
|  | } | 
|  |  | 
|  | /// SelectAddrImm - Returns true if the address N can be represented by | 
|  | /// a base register plus a signed 16-bit displacement [r+imm]. | 
|  | /// The last parameter \p 0 means D form has no requirment for 16 bit signed | 
|  | /// displacement. | 
|  | bool SelectAddrImm(SDValue N, SDValue &Disp, | 
|  | SDValue &Base) { | 
|  | return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, None); | 
|  | } | 
|  |  | 
|  | /// SelectAddrImmX4 - Returns true if the address N can be represented by | 
|  | /// a base register plus a signed 16-bit displacement that is a multiple of | 
|  | /// 4 (last parameter). Suitable for use by STD and friends. | 
|  | bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) { | 
|  | return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, Align(4)); | 
|  | } | 
|  |  | 
|  | /// SelectAddrImmX16 - Returns true if the address N can be represented by | 
|  | /// a base register plus a signed 16-bit displacement that is a multiple of | 
|  | /// 16(last parameter). Suitable for use by STXV and friends. | 
|  | bool SelectAddrImmX16(SDValue N, SDValue &Disp, SDValue &Base) { | 
|  | return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, | 
|  | Align(16)); | 
|  | } | 
|  |  | 
|  | // Select an address into a single register. | 
|  | bool SelectAddr(SDValue N, SDValue &Base) { | 
|  | Base = N; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SelectAddrPCRel(SDValue N, SDValue &Base) { | 
|  | return PPCLowering->SelectAddressPCRel(N, Base); | 
|  | } | 
|  |  | 
|  | /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for | 
|  | /// inline asm expressions.  It is always correct to compute the value into | 
|  | /// a register.  The case of adding a (possibly relocatable) constant to a | 
|  | /// register can be improved, but it is wrong to substitute Reg+Reg for | 
|  | /// Reg in an asm, because the load or store opcode would have to change. | 
|  | bool SelectInlineAsmMemoryOperand(const SDValue &Op, | 
|  | unsigned ConstraintID, | 
|  | std::vector<SDValue> &OutOps) override { | 
|  | switch(ConstraintID) { | 
|  | default: | 
|  | errs() << "ConstraintID: " << ConstraintID << "\n"; | 
|  | llvm_unreachable("Unexpected asm memory constraint"); | 
|  | case InlineAsm::Constraint_es: | 
|  | case InlineAsm::Constraint_m: | 
|  | case InlineAsm::Constraint_o: | 
|  | case InlineAsm::Constraint_Q: | 
|  | case InlineAsm::Constraint_Z: | 
|  | case InlineAsm::Constraint_Zy: | 
|  | // We need to make sure that this one operand does not end up in r0 | 
|  | // (because we might end up lowering this as 0(%op)). | 
|  | const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo(); | 
|  | const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1); | 
|  | SDLoc dl(Op); | 
|  | SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32); | 
|  | SDValue NewOp = | 
|  | SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, | 
|  | dl, Op.getValueType(), | 
|  | Op, RC), 0); | 
|  |  | 
|  | OutOps.push_back(NewOp); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void InsertVRSaveCode(MachineFunction &MF); | 
|  |  | 
|  | StringRef getPassName() const override { | 
|  | return "PowerPC DAG->DAG Pattern Instruction Selection"; | 
|  | } | 
|  |  | 
|  | // Include the pieces autogenerated from the target description. | 
|  | #include "PPCGenDAGISel.inc" | 
|  |  | 
|  | private: | 
|  | bool trySETCC(SDNode *N); | 
|  | bool tryAsSingleRLDICL(SDNode *N); | 
|  | bool tryAsSingleRLDICR(SDNode *N); | 
|  | bool tryAsSingleRLWINM(SDNode *N); | 
|  | bool tryAsSingleRLWINM8(SDNode *N); | 
|  | bool tryAsSingleRLWIMI(SDNode *N); | 
|  | bool tryAsPairOfRLDICL(SDNode *N); | 
|  | bool tryAsSingleRLDIMI(SDNode *N); | 
|  |  | 
|  | void PeepholePPC64(); | 
|  | void PeepholePPC64ZExt(); | 
|  | void PeepholeCROps(); | 
|  |  | 
|  | SDValue combineToCMPB(SDNode *N); | 
|  | void foldBoolExts(SDValue &Res, SDNode *&N); | 
|  |  | 
|  | bool AllUsersSelectZero(SDNode *N); | 
|  | void SwapAllSelectUsers(SDNode *N); | 
|  |  | 
|  | bool isOffsetMultipleOf(SDNode *N, unsigned Val) const; | 
|  | void transferMemOperands(SDNode *N, SDNode *Result); | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// InsertVRSaveCode - Once the entire function has been instruction selected, | 
|  | /// all virtual registers are created and all machine instructions are built, | 
|  | /// check to see if we need to save/restore VRSAVE.  If so, do it. | 
|  | void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) { | 
|  | // Check to see if this function uses vector registers, which means we have to | 
|  | // save and restore the VRSAVE register and update it with the regs we use. | 
|  | // | 
|  | // In this case, there will be virtual registers of vector type created | 
|  | // by the scheduler.  Detect them now. | 
|  | bool HasVectorVReg = false; | 
|  | for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) { | 
|  | unsigned Reg = Register::index2VirtReg(i); | 
|  | if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) { | 
|  | HasVectorVReg = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!HasVectorVReg) return;  // nothing to do. | 
|  |  | 
|  | // If we have a vector register, we want to emit code into the entry and exit | 
|  | // blocks to save and restore the VRSAVE register.  We do this here (instead | 
|  | // of marking all vector instructions as clobbering VRSAVE) for two reasons: | 
|  | // | 
|  | // 1. This (trivially) reduces the load on the register allocator, by not | 
|  | //    having to represent the live range of the VRSAVE register. | 
|  | // 2. This (more significantly) allows us to create a temporary virtual | 
|  | //    register to hold the saved VRSAVE value, allowing this temporary to be | 
|  | //    register allocated, instead of forcing it to be spilled to the stack. | 
|  |  | 
|  | // Create two vregs - one to hold the VRSAVE register that is live-in to the | 
|  | // function and one for the value after having bits or'd into it. | 
|  | Register InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); | 
|  | Register UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); | 
|  |  | 
|  | const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); | 
|  | MachineBasicBlock &EntryBB = *Fn.begin(); | 
|  | DebugLoc dl; | 
|  | // Emit the following code into the entry block: | 
|  | // InVRSAVE = MFVRSAVE | 
|  | // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE | 
|  | // MTVRSAVE UpdatedVRSAVE | 
|  | MachineBasicBlock::iterator IP = EntryBB.begin();  // Insert Point | 
|  | BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE); | 
|  | BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE), | 
|  | UpdatedVRSAVE).addReg(InVRSAVE); | 
|  | BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE); | 
|  |  | 
|  | // Find all return blocks, outputting a restore in each epilog. | 
|  | for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { | 
|  | if (BB->isReturnBlock()) { | 
|  | IP = BB->end(); --IP; | 
|  |  | 
|  | // Skip over all terminator instructions, which are part of the return | 
|  | // sequence. | 
|  | MachineBasicBlock::iterator I2 = IP; | 
|  | while (I2 != BB->begin() && (--I2)->isTerminator()) | 
|  | IP = I2; | 
|  |  | 
|  | // Emit: MTVRSAVE InVRSave | 
|  | BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getGlobalBaseReg - Output the instructions required to put the | 
|  | /// base address to use for accessing globals into a register. | 
|  | /// | 
|  | SDNode *PPCDAGToDAGISel::getGlobalBaseReg() { | 
|  | if (!GlobalBaseReg) { | 
|  | const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); | 
|  | // Insert the set of GlobalBaseReg into the first MBB of the function | 
|  | MachineBasicBlock &FirstMBB = MF->front(); | 
|  | MachineBasicBlock::iterator MBBI = FirstMBB.begin(); | 
|  | const Module *M = MF->getFunction().getParent(); | 
|  | DebugLoc dl; | 
|  |  | 
|  | if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) { | 
|  | if (Subtarget->isTargetELF()) { | 
|  | GlobalBaseReg = PPC::R30; | 
|  | if (!Subtarget->isSecurePlt() && | 
|  | M->getPICLevel() == PICLevel::SmallPIC) { | 
|  | BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR)); | 
|  | BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); | 
|  | MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true); | 
|  | } else { | 
|  | BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); | 
|  | BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); | 
|  | Register TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass); | 
|  | BuildMI(FirstMBB, MBBI, dl, | 
|  | TII.get(PPC::UpdateGBR), GlobalBaseReg) | 
|  | .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg); | 
|  | MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true); | 
|  | } | 
|  | } else { | 
|  | GlobalBaseReg = | 
|  | RegInfo->createVirtualRegister(&PPC::GPRC_and_GPRC_NOR0RegClass); | 
|  | BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR)); | 
|  | BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg); | 
|  | } | 
|  | } else { | 
|  | // We must ensure that this sequence is dominated by the prologue. | 
|  | // FIXME: This is a bit of a big hammer since we don't get the benefits | 
|  | // of shrink-wrapping whenever we emit this instruction. Considering | 
|  | // this is used in any function where we emit a jump table, this may be | 
|  | // a significant limitation. We should consider inserting this in the | 
|  | // block where it is used and then commoning this sequence up if it | 
|  | // appears in multiple places. | 
|  | // Note: on ISA 3.0 cores, we can use lnia (addpcis) instead of | 
|  | // MovePCtoLR8. | 
|  | MF->getInfo<PPCFunctionInfo>()->setShrinkWrapDisabled(true); | 
|  | GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); | 
|  | BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8)); | 
|  | BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg); | 
|  | } | 
|  | } | 
|  | return CurDAG->getRegister(GlobalBaseReg, | 
|  | PPCLowering->getPointerTy(CurDAG->getDataLayout())) | 
|  | .getNode(); | 
|  | } | 
|  |  | 
|  | /// isInt32Immediate - This method tests to see if the node is a 32-bit constant | 
|  | /// operand. If so Imm will receive the 32-bit value. | 
|  | static bool isInt32Immediate(SDNode *N, unsigned &Imm) { | 
|  | if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) { | 
|  | Imm = cast<ConstantSDNode>(N)->getZExtValue(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isInt64Immediate - This method tests to see if the node is a 64-bit constant | 
|  | /// operand.  If so Imm will receive the 64-bit value. | 
|  | static bool isInt64Immediate(SDNode *N, uint64_t &Imm) { | 
|  | if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) { | 
|  | Imm = cast<ConstantSDNode>(N)->getZExtValue(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // isInt32Immediate - This method tests to see if a constant operand. | 
|  | // If so Imm will receive the 32 bit value. | 
|  | static bool isInt32Immediate(SDValue N, unsigned &Imm) { | 
|  | return isInt32Immediate(N.getNode(), Imm); | 
|  | } | 
|  |  | 
|  | /// isInt64Immediate - This method tests to see if the value is a 64-bit | 
|  | /// constant operand. If so Imm will receive the 64-bit value. | 
|  | static bool isInt64Immediate(SDValue N, uint64_t &Imm) { | 
|  | return isInt64Immediate(N.getNode(), Imm); | 
|  | } | 
|  |  | 
|  | static unsigned getBranchHint(unsigned PCC, | 
|  | const FunctionLoweringInfo &FuncInfo, | 
|  | const SDValue &DestMBB) { | 
|  | assert(isa<BasicBlockSDNode>(DestMBB)); | 
|  |  | 
|  | if (!FuncInfo.BPI) return PPC::BR_NO_HINT; | 
|  |  | 
|  | const BasicBlock *BB = FuncInfo.MBB->getBasicBlock(); | 
|  | const Instruction *BBTerm = BB->getTerminator(); | 
|  |  | 
|  | if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT; | 
|  |  | 
|  | const BasicBlock *TBB = BBTerm->getSuccessor(0); | 
|  | const BasicBlock *FBB = BBTerm->getSuccessor(1); | 
|  |  | 
|  | auto TProb = FuncInfo.BPI->getEdgeProbability(BB, TBB); | 
|  | auto FProb = FuncInfo.BPI->getEdgeProbability(BB, FBB); | 
|  |  | 
|  | // We only want to handle cases which are easy to predict at static time, e.g. | 
|  | // C++ throw statement, that is very likely not taken, or calling never | 
|  | // returned function, e.g. stdlib exit(). So we set Threshold to filter | 
|  | // unwanted cases. | 
|  | // | 
|  | // Below is LLVM branch weight table, we only want to handle case 1, 2 | 
|  | // | 
|  | // Case                  Taken:Nontaken  Example | 
|  | // 1. Unreachable        1048575:1       C++ throw, stdlib exit(), | 
|  | // 2. Invoke-terminating 1:1048575 | 
|  | // 3. Coldblock          4:64            __builtin_expect | 
|  | // 4. Loop Branch        124:4           For loop | 
|  | // 5. PH/ZH/FPH          20:12 | 
|  | const uint32_t Threshold = 10000; | 
|  |  | 
|  | if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb)) | 
|  | return PPC::BR_NO_HINT; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Use branch hint for '" << FuncInfo.Fn->getName() | 
|  | << "::" << BB->getName() << "'\n" | 
|  | << " -> " << TBB->getName() << ": " << TProb << "\n" | 
|  | << " -> " << FBB->getName() << ": " << FProb << "\n"); | 
|  |  | 
|  | const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB); | 
|  |  | 
|  | // If Dest BasicBlock is False-BasicBlock (FBB), swap branch probabilities, | 
|  | // because we want 'TProb' stands for 'branch probability' to Dest BasicBlock | 
|  | if (BBDN->getBasicBlock()->getBasicBlock() != TBB) | 
|  | std::swap(TProb, FProb); | 
|  |  | 
|  | return (TProb > FProb) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT; | 
|  | } | 
|  |  | 
|  | // isOpcWithIntImmediate - This method tests to see if the node is a specific | 
|  | // opcode and that it has a immediate integer right operand. | 
|  | // If so Imm will receive the 32 bit value. | 
|  | static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) { | 
|  | return N->getOpcode() == Opc | 
|  | && isInt32Immediate(N->getOperand(1).getNode(), Imm); | 
|  | } | 
|  |  | 
|  | void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) { | 
|  | SDLoc dl(SN); | 
|  | int FI = cast<FrameIndexSDNode>(N)->getIndex(); | 
|  | SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0)); | 
|  | unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8; | 
|  | if (SN->hasOneUse()) | 
|  | CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI, | 
|  | getSmallIPtrImm(Offset, dl)); | 
|  | else | 
|  | ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI, | 
|  | getSmallIPtrImm(Offset, dl))); | 
|  | } | 
|  |  | 
|  | bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask, | 
|  | bool isShiftMask, unsigned &SH, | 
|  | unsigned &MB, unsigned &ME) { | 
|  | // Don't even go down this path for i64, since different logic will be | 
|  | // necessary for rldicl/rldicr/rldimi. | 
|  | if (N->getValueType(0) != MVT::i32) | 
|  | return false; | 
|  |  | 
|  | unsigned Shift  = 32; | 
|  | unsigned Indeterminant = ~0;  // bit mask marking indeterminant results | 
|  | unsigned Opcode = N->getOpcode(); | 
|  | if (N->getNumOperands() != 2 || | 
|  | !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31)) | 
|  | return false; | 
|  |  | 
|  | if (Opcode == ISD::SHL) { | 
|  | // apply shift left to mask if it comes first | 
|  | if (isShiftMask) Mask = Mask << Shift; | 
|  | // determine which bits are made indeterminant by shift | 
|  | Indeterminant = ~(0xFFFFFFFFu << Shift); | 
|  | } else if (Opcode == ISD::SRL) { | 
|  | // apply shift right to mask if it comes first | 
|  | if (isShiftMask) Mask = Mask >> Shift; | 
|  | // determine which bits are made indeterminant by shift | 
|  | Indeterminant = ~(0xFFFFFFFFu >> Shift); | 
|  | // adjust for the left rotate | 
|  | Shift = 32 - Shift; | 
|  | } else if (Opcode == ISD::ROTL) { | 
|  | Indeterminant = 0; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // if the mask doesn't intersect any Indeterminant bits | 
|  | if (Mask && !(Mask & Indeterminant)) { | 
|  | SH = Shift & 31; | 
|  | // make sure the mask is still a mask (wrap arounds may not be) | 
|  | return isRunOfOnes(Mask, MB, ME); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool PPCDAGToDAGISel::tryTLSXFormStore(StoreSDNode *ST) { | 
|  | SDValue Base = ST->getBasePtr(); | 
|  | if (Base.getOpcode() != PPCISD::ADD_TLS) | 
|  | return false; | 
|  | SDValue Offset = ST->getOffset(); | 
|  | if (!Offset.isUndef()) | 
|  | return false; | 
|  |  | 
|  | SDLoc dl(ST); | 
|  | EVT MemVT = ST->getMemoryVT(); | 
|  | EVT RegVT = ST->getValue().getValueType(); | 
|  |  | 
|  | unsigned Opcode; | 
|  | switch (MemVT.getSimpleVT().SimpleTy) { | 
|  | default: | 
|  | return false; | 
|  | case MVT::i8: { | 
|  | Opcode = (RegVT == MVT::i32) ? PPC::STBXTLS_32 : PPC::STBXTLS; | 
|  | break; | 
|  | } | 
|  | case MVT::i16: { | 
|  | Opcode = (RegVT == MVT::i32) ? PPC::STHXTLS_32 : PPC::STHXTLS; | 
|  | break; | 
|  | } | 
|  | case MVT::i32: { | 
|  | Opcode = (RegVT == MVT::i32) ? PPC::STWXTLS_32 : PPC::STWXTLS; | 
|  | break; | 
|  | } | 
|  | case MVT::i64: { | 
|  | Opcode = PPC::STDXTLS; | 
|  | break; | 
|  | } | 
|  | } | 
|  | SDValue Chain = ST->getChain(); | 
|  | SDVTList VTs = ST->getVTList(); | 
|  | SDValue Ops[] = {ST->getValue(), Base.getOperand(0), Base.getOperand(1), | 
|  | Chain}; | 
|  | SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); | 
|  | transferMemOperands(ST, MN); | 
|  | ReplaceNode(ST, MN); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool PPCDAGToDAGISel::tryTLSXFormLoad(LoadSDNode *LD) { | 
|  | SDValue Base = LD->getBasePtr(); | 
|  | if (Base.getOpcode() != PPCISD::ADD_TLS) | 
|  | return false; | 
|  | SDValue Offset = LD->getOffset(); | 
|  | if (!Offset.isUndef()) | 
|  | return false; | 
|  |  | 
|  | SDLoc dl(LD); | 
|  | EVT MemVT = LD->getMemoryVT(); | 
|  | EVT RegVT = LD->getValueType(0); | 
|  | unsigned Opcode; | 
|  | switch (MemVT.getSimpleVT().SimpleTy) { | 
|  | default: | 
|  | return false; | 
|  | case MVT::i8: { | 
|  | Opcode = (RegVT == MVT::i32) ? PPC::LBZXTLS_32 : PPC::LBZXTLS; | 
|  | break; | 
|  | } | 
|  | case MVT::i16: { | 
|  | Opcode = (RegVT == MVT::i32) ? PPC::LHZXTLS_32 : PPC::LHZXTLS; | 
|  | break; | 
|  | } | 
|  | case MVT::i32: { | 
|  | Opcode = (RegVT == MVT::i32) ? PPC::LWZXTLS_32 : PPC::LWZXTLS; | 
|  | break; | 
|  | } | 
|  | case MVT::i64: { | 
|  | Opcode = PPC::LDXTLS; | 
|  | break; | 
|  | } | 
|  | } | 
|  | SDValue Chain = LD->getChain(); | 
|  | SDVTList VTs = LD->getVTList(); | 
|  | SDValue Ops[] = {Base.getOperand(0), Base.getOperand(1), Chain}; | 
|  | SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops); | 
|  | transferMemOperands(LD, MN); | 
|  | ReplaceNode(LD, MN); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Turn an or of two masked values into the rotate left word immediate then | 
|  | /// mask insert (rlwimi) instruction. | 
|  | bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) { | 
|  | SDValue Op0 = N->getOperand(0); | 
|  | SDValue Op1 = N->getOperand(1); | 
|  | SDLoc dl(N); | 
|  |  | 
|  | KnownBits LKnown = CurDAG->computeKnownBits(Op0); | 
|  | KnownBits RKnown = CurDAG->computeKnownBits(Op1); | 
|  |  | 
|  | unsigned TargetMask = LKnown.Zero.getZExtValue(); | 
|  | unsigned InsertMask = RKnown.Zero.getZExtValue(); | 
|  |  | 
|  | if ((TargetMask | InsertMask) == 0xFFFFFFFF) { | 
|  | unsigned Op0Opc = Op0.getOpcode(); | 
|  | unsigned Op1Opc = Op1.getOpcode(); | 
|  | unsigned Value, SH = 0; | 
|  | TargetMask = ~TargetMask; | 
|  | InsertMask = ~InsertMask; | 
|  |  | 
|  | // If the LHS has a foldable shift and the RHS does not, then swap it to the | 
|  | // RHS so that we can fold the shift into the insert. | 
|  | if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) { | 
|  | if (Op0.getOperand(0).getOpcode() == ISD::SHL || | 
|  | Op0.getOperand(0).getOpcode() == ISD::SRL) { | 
|  | if (Op1.getOperand(0).getOpcode() != ISD::SHL && | 
|  | Op1.getOperand(0).getOpcode() != ISD::SRL) { | 
|  | std::swap(Op0, Op1); | 
|  | std::swap(Op0Opc, Op1Opc); | 
|  | std::swap(TargetMask, InsertMask); | 
|  | } | 
|  | } | 
|  | } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) { | 
|  | if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL && | 
|  | Op1.getOperand(0).getOpcode() != ISD::SRL) { | 
|  | std::swap(Op0, Op1); | 
|  | std::swap(Op0Opc, Op1Opc); | 
|  | std::swap(TargetMask, InsertMask); | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned MB, ME; | 
|  | if (isRunOfOnes(InsertMask, MB, ME)) { | 
|  | if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) && | 
|  | isInt32Immediate(Op1.getOperand(1), Value)) { | 
|  | Op1 = Op1.getOperand(0); | 
|  | SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value; | 
|  | } | 
|  | if (Op1Opc == ISD::AND) { | 
|  | // The AND mask might not be a constant, and we need to make sure that | 
|  | // if we're going to fold the masking with the insert, all bits not | 
|  | // know to be zero in the mask are known to be one. | 
|  | KnownBits MKnown = CurDAG->computeKnownBits(Op1.getOperand(1)); | 
|  | bool CanFoldMask = InsertMask == MKnown.One.getZExtValue(); | 
|  |  | 
|  | unsigned SHOpc = Op1.getOperand(0).getOpcode(); | 
|  | if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask && | 
|  | isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) { | 
|  | // Note that Value must be in range here (less than 32) because | 
|  | // otherwise there would not be any bits set in InsertMask. | 
|  | Op1 = Op1.getOperand(0).getOperand(0); | 
|  | SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value; | 
|  | } | 
|  | } | 
|  |  | 
|  | SH &= 31; | 
|  | SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl), | 
|  | getI32Imm(ME, dl) }; | 
|  | ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops)); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Predict the number of instructions that would be generated by calling | 
|  | // selectI64Imm(N). | 
|  | static unsigned selectI64ImmInstrCountDirect(int64_t Imm) { | 
|  | // Assume no remaining bits. | 
|  | unsigned Remainder = 0; | 
|  | // Assume no shift required. | 
|  | unsigned Shift = 0; | 
|  |  | 
|  | // If it can't be represented as a 32 bit value. | 
|  | if (!isInt<32>(Imm)) { | 
|  | Shift = countTrailingZeros<uint64_t>(Imm); | 
|  | int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; | 
|  |  | 
|  | // If the shifted value fits 32 bits. | 
|  | if (isInt<32>(ImmSh)) { | 
|  | // Go with the shifted value. | 
|  | Imm = ImmSh; | 
|  | } else { | 
|  | // Still stuck with a 64 bit value. | 
|  | Remainder = Imm; | 
|  | Shift = 32; | 
|  | Imm >>= 32; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Intermediate operand. | 
|  | unsigned Result = 0; | 
|  |  | 
|  | // Handle first 32 bits. | 
|  | unsigned Lo = Imm & 0xFFFF; | 
|  |  | 
|  | // Simple value. | 
|  | if (isInt<16>(Imm)) { | 
|  | // Just the Lo bits. | 
|  | ++Result; | 
|  | } else if (Lo) { | 
|  | // Handle the Hi bits and Lo bits. | 
|  | Result += 2; | 
|  | } else { | 
|  | // Just the Hi bits. | 
|  | ++Result; | 
|  | } | 
|  |  | 
|  | // If no shift, we're done. | 
|  | if (!Shift) return Result; | 
|  |  | 
|  | // If Hi word == Lo word, | 
|  | // we can use rldimi to insert the Lo word into Hi word. | 
|  | if ((unsigned)(Imm & 0xFFFFFFFF) == Remainder) { | 
|  | ++Result; | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // Shift for next step if the upper 32-bits were not zero. | 
|  | if (Imm) | 
|  | ++Result; | 
|  |  | 
|  | // Add in the last bits as required. | 
|  | if ((Remainder >> 16) & 0xFFFF) | 
|  | ++Result; | 
|  | if (Remainder & 0xFFFF) | 
|  | ++Result; | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | static uint64_t Rot64(uint64_t Imm, unsigned R) { | 
|  | return (Imm << R) | (Imm >> (64 - R)); | 
|  | } | 
|  |  | 
|  | static unsigned selectI64ImmInstrCount(int64_t Imm) { | 
|  | unsigned Count = selectI64ImmInstrCountDirect(Imm); | 
|  |  | 
|  | // If the instruction count is 1 or 2, we do not need further analysis | 
|  | // since rotate + load constant requires at least 2 instructions. | 
|  | if (Count <= 2) | 
|  | return Count; | 
|  |  | 
|  | for (unsigned r = 1; r < 63; ++r) { | 
|  | uint64_t RImm = Rot64(Imm, r); | 
|  | unsigned RCount = selectI64ImmInstrCountDirect(RImm) + 1; | 
|  | Count = std::min(Count, RCount); | 
|  |  | 
|  | // See comments in selectI64Imm for an explanation of the logic below. | 
|  | unsigned LS = findLastSet(RImm); | 
|  | if (LS != r-1) | 
|  | continue; | 
|  |  | 
|  | uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1)); | 
|  | uint64_t RImmWithOnes = RImm | OnesMask; | 
|  |  | 
|  | RCount = selectI64ImmInstrCountDirect(RImmWithOnes) + 1; | 
|  | Count = std::min(Count, RCount); | 
|  | } | 
|  |  | 
|  | return Count; | 
|  | } | 
|  |  | 
|  | // Select a 64-bit constant. For cost-modeling purposes, selectI64ImmInstrCount | 
|  | // (above) needs to be kept in sync with this function. | 
|  | static SDNode *selectI64ImmDirect(SelectionDAG *CurDAG, const SDLoc &dl, | 
|  | int64_t Imm) { | 
|  | // Assume no remaining bits. | 
|  | unsigned Remainder = 0; | 
|  | // Assume no shift required. | 
|  | unsigned Shift = 0; | 
|  |  | 
|  | // If it can't be represented as a 32 bit value. | 
|  | if (!isInt<32>(Imm)) { | 
|  | Shift = countTrailingZeros<uint64_t>(Imm); | 
|  | int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; | 
|  |  | 
|  | // If the shifted value fits 32 bits. | 
|  | if (isInt<32>(ImmSh)) { | 
|  | // Go with the shifted value. | 
|  | Imm = ImmSh; | 
|  | } else { | 
|  | // Still stuck with a 64 bit value. | 
|  | Remainder = Imm; | 
|  | Shift = 32; | 
|  | Imm >>= 32; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Intermediate operand. | 
|  | SDNode *Result; | 
|  |  | 
|  | // Handle first 32 bits. | 
|  | unsigned Lo = Imm & 0xFFFF; | 
|  | unsigned Hi = (Imm >> 16) & 0xFFFF; | 
|  |  | 
|  | auto getI32Imm = [CurDAG, dl](unsigned Imm) { | 
|  | return CurDAG->getTargetConstant(Imm, dl, MVT::i32); | 
|  | }; | 
|  |  | 
|  | // Simple value. | 
|  | if (isInt<16>(Imm)) { | 
|  | uint64_t SextImm = SignExtend64(Lo, 16); | 
|  | SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64); | 
|  | // Just the Lo bits. | 
|  | Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm); | 
|  | } else if (Lo) { | 
|  | // Handle the Hi bits. | 
|  | unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8; | 
|  | Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi)); | 
|  | // And Lo bits. | 
|  | Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, | 
|  | SDValue(Result, 0), getI32Imm(Lo)); | 
|  | } else { | 
|  | // Just the Hi bits. | 
|  | Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi)); | 
|  | } | 
|  |  | 
|  | // If no shift, we're done. | 
|  | if (!Shift) return Result; | 
|  |  | 
|  | // If Hi word == Lo word, | 
|  | // we can use rldimi to insert the Lo word into Hi word. | 
|  | if ((unsigned)(Imm & 0xFFFFFFFF) == Remainder) { | 
|  | SDValue Ops[] = | 
|  | { SDValue(Result, 0), SDValue(Result, 0), getI32Imm(Shift), getI32Imm(0)}; | 
|  | return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops); | 
|  | } | 
|  |  | 
|  | // Shift for next step if the upper 32-bits were not zero. | 
|  | if (Imm) { | 
|  | Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, | 
|  | SDValue(Result, 0), | 
|  | getI32Imm(Shift), | 
|  | getI32Imm(63 - Shift)); | 
|  | } | 
|  |  | 
|  | // Add in the last bits as required. | 
|  | if ((Hi = (Remainder >> 16) & 0xFFFF)) { | 
|  | Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, | 
|  | SDValue(Result, 0), getI32Imm(Hi)); | 
|  | } | 
|  | if ((Lo = Remainder & 0xFFFF)) { | 
|  | Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, | 
|  | SDValue(Result, 0), getI32Imm(Lo)); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | static SDNode *selectI64Imm(SelectionDAG *CurDAG, const SDLoc &dl, | 
|  | int64_t Imm) { | 
|  | unsigned Count = selectI64ImmInstrCountDirect(Imm); | 
|  |  | 
|  | // If the instruction count is 1 or 2, we do not need further analysis | 
|  | // since rotate + load constant requires at least 2 instructions. | 
|  | if (Count <= 2) | 
|  | return selectI64ImmDirect(CurDAG, dl, Imm); | 
|  |  | 
|  | unsigned RMin = 0; | 
|  |  | 
|  | int64_t MatImm; | 
|  | unsigned MaskEnd; | 
|  |  | 
|  | for (unsigned r = 1; r < 63; ++r) { | 
|  | uint64_t RImm = Rot64(Imm, r); | 
|  | unsigned RCount = selectI64ImmInstrCountDirect(RImm) + 1; | 
|  | if (RCount < Count) { | 
|  | Count = RCount; | 
|  | RMin = r; | 
|  | MatImm = RImm; | 
|  | MaskEnd = 63; | 
|  | } | 
|  |  | 
|  | // If the immediate to generate has many trailing zeros, it might be | 
|  | // worthwhile to generate a rotated value with too many leading ones | 
|  | // (because that's free with li/lis's sign-extension semantics), and then | 
|  | // mask them off after rotation. | 
|  |  | 
|  | unsigned LS = findLastSet(RImm); | 
|  | // We're adding (63-LS) higher-order ones, and we expect to mask them off | 
|  | // after performing the inverse rotation by (64-r). So we need that: | 
|  | //   63-LS == 64-r => LS == r-1 | 
|  | if (LS != r-1) | 
|  | continue; | 
|  |  | 
|  | uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1)); | 
|  | uint64_t RImmWithOnes = RImm | OnesMask; | 
|  |  | 
|  | RCount = selectI64ImmInstrCountDirect(RImmWithOnes) + 1; | 
|  | if (RCount < Count) { | 
|  | Count = RCount; | 
|  | RMin = r; | 
|  | MatImm = RImmWithOnes; | 
|  | MaskEnd = LS; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!RMin) | 
|  | return selectI64ImmDirect(CurDAG, dl, Imm); | 
|  |  | 
|  | auto getI32Imm = [CurDAG, dl](unsigned Imm) { | 
|  | return CurDAG->getTargetConstant(Imm, dl, MVT::i32); | 
|  | }; | 
|  |  | 
|  | SDValue Val = SDValue(selectI64ImmDirect(CurDAG, dl, MatImm), 0); | 
|  | return CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Val, | 
|  | getI32Imm(64 - RMin), getI32Imm(MaskEnd)); | 
|  | } | 
|  |  | 
|  | static unsigned allUsesTruncate(SelectionDAG *CurDAG, SDNode *N) { | 
|  | unsigned MaxTruncation = 0; | 
|  | // Cannot use range-based for loop here as we need the actual use (i.e. we | 
|  | // need the operand number corresponding to the use). A range-based for | 
|  | // will unbox the use and provide an SDNode*. | 
|  | for (SDNode::use_iterator Use = N->use_begin(), UseEnd = N->use_end(); | 
|  | Use != UseEnd; ++Use) { | 
|  | unsigned Opc = | 
|  | Use->isMachineOpcode() ? Use->getMachineOpcode() : Use->getOpcode(); | 
|  | switch (Opc) { | 
|  | default: return 0; | 
|  | case ISD::TRUNCATE: | 
|  | if (Use->isMachineOpcode()) | 
|  | return 0; | 
|  | MaxTruncation = | 
|  | std::max(MaxTruncation, (unsigned)Use->getValueType(0).getSizeInBits()); | 
|  | continue; | 
|  | case ISD::STORE: { | 
|  | if (Use->isMachineOpcode()) | 
|  | return 0; | 
|  | StoreSDNode *STN = cast<StoreSDNode>(*Use); | 
|  | unsigned MemVTSize = STN->getMemoryVT().getSizeInBits(); | 
|  | if (MemVTSize == 64 || Use.getOperandNo() != 0) | 
|  | return 0; | 
|  | MaxTruncation = std::max(MaxTruncation, MemVTSize); | 
|  | continue; | 
|  | } | 
|  | case PPC::STW8: | 
|  | case PPC::STWX8: | 
|  | case PPC::STWU8: | 
|  | case PPC::STWUX8: | 
|  | if (Use.getOperandNo() != 0) | 
|  | return 0; | 
|  | MaxTruncation = std::max(MaxTruncation, 32u); | 
|  | continue; | 
|  | case PPC::STH8: | 
|  | case PPC::STHX8: | 
|  | case PPC::STHU8: | 
|  | case PPC::STHUX8: | 
|  | if (Use.getOperandNo() != 0) | 
|  | return 0; | 
|  | MaxTruncation = std::max(MaxTruncation, 16u); | 
|  | continue; | 
|  | case PPC::STB8: | 
|  | case PPC::STBX8: | 
|  | case PPC::STBU8: | 
|  | case PPC::STBUX8: | 
|  | if (Use.getOperandNo() != 0) | 
|  | return 0; | 
|  | MaxTruncation = std::max(MaxTruncation, 8u); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | return MaxTruncation; | 
|  | } | 
|  |  | 
|  | // Select a 64-bit constant. | 
|  | static SDNode *selectI64Imm(SelectionDAG *CurDAG, SDNode *N) { | 
|  | SDLoc dl(N); | 
|  |  | 
|  | // Get 64 bit value. | 
|  | int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue(); | 
|  | if (unsigned MinSize = allUsesTruncate(CurDAG, N)) { | 
|  | uint64_t SextImm = SignExtend64(Imm, MinSize); | 
|  | SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64); | 
|  | if (isInt<16>(SextImm)) | 
|  | return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm); | 
|  | } | 
|  | return selectI64Imm(CurDAG, dl, Imm); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class BitPermutationSelector { | 
|  | struct ValueBit { | 
|  | SDValue V; | 
|  |  | 
|  | // The bit number in the value, using a convention where bit 0 is the | 
|  | // lowest-order bit. | 
|  | unsigned Idx; | 
|  |  | 
|  | // ConstZero means a bit we need to mask off. | 
|  | // Variable is a bit comes from an input variable. | 
|  | // VariableKnownToBeZero is also a bit comes from an input variable, | 
|  | // but it is known to be already zero. So we do not need to mask them. | 
|  | enum Kind { | 
|  | ConstZero, | 
|  | Variable, | 
|  | VariableKnownToBeZero | 
|  | } K; | 
|  |  | 
|  | ValueBit(SDValue V, unsigned I, Kind K = Variable) | 
|  | : V(V), Idx(I), K(K) {} | 
|  | ValueBit(Kind K = Variable) | 
|  | : V(SDValue(nullptr, 0)), Idx(UINT32_MAX), K(K) {} | 
|  |  | 
|  | bool isZero() const { | 
|  | return K == ConstZero || K == VariableKnownToBeZero; | 
|  | } | 
|  |  | 
|  | bool hasValue() const { | 
|  | return K == Variable || K == VariableKnownToBeZero; | 
|  | } | 
|  |  | 
|  | SDValue getValue() const { | 
|  | assert(hasValue() && "Cannot get the value of a constant bit"); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | unsigned getValueBitIndex() const { | 
|  | assert(hasValue() && "Cannot get the value bit index of a constant bit"); | 
|  | return Idx; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // A bit group has the same underlying value and the same rotate factor. | 
|  | struct BitGroup { | 
|  | SDValue V; | 
|  | unsigned RLAmt; | 
|  | unsigned StartIdx, EndIdx; | 
|  |  | 
|  | // This rotation amount assumes that the lower 32 bits of the quantity are | 
|  | // replicated in the high 32 bits by the rotation operator (which is done | 
|  | // by rlwinm and friends in 64-bit mode). | 
|  | bool Repl32; | 
|  | // Did converting to Repl32 == true change the rotation factor? If it did, | 
|  | // it decreased it by 32. | 
|  | bool Repl32CR; | 
|  | // Was this group coalesced after setting Repl32 to true? | 
|  | bool Repl32Coalesced; | 
|  |  | 
|  | BitGroup(SDValue V, unsigned R, unsigned S, unsigned E) | 
|  | : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false), | 
|  | Repl32Coalesced(false) { | 
|  | LLVM_DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R | 
|  | << " [" << S << ", " << E << "]\n"); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Information on each (Value, RLAmt) pair (like the number of groups | 
|  | // associated with each) used to choose the lowering method. | 
|  | struct ValueRotInfo { | 
|  | SDValue V; | 
|  | unsigned RLAmt = std::numeric_limits<unsigned>::max(); | 
|  | unsigned NumGroups = 0; | 
|  | unsigned FirstGroupStartIdx = std::numeric_limits<unsigned>::max(); | 
|  | bool Repl32 = false; | 
|  |  | 
|  | ValueRotInfo() = default; | 
|  |  | 
|  | // For sorting (in reverse order) by NumGroups, and then by | 
|  | // FirstGroupStartIdx. | 
|  | bool operator < (const ValueRotInfo &Other) const { | 
|  | // We need to sort so that the non-Repl32 come first because, when we're | 
|  | // doing masking, the Repl32 bit groups might be subsumed into the 64-bit | 
|  | // masking operation. | 
|  | if (Repl32 < Other.Repl32) | 
|  | return true; | 
|  | else if (Repl32 > Other.Repl32) | 
|  | return false; | 
|  | else if (NumGroups > Other.NumGroups) | 
|  | return true; | 
|  | else if (NumGroups < Other.NumGroups) | 
|  | return false; | 
|  | else if (RLAmt == 0 && Other.RLAmt != 0) | 
|  | return true; | 
|  | else if (RLAmt != 0 && Other.RLAmt == 0) | 
|  | return false; | 
|  | else if (FirstGroupStartIdx < Other.FirstGroupStartIdx) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  | }; | 
|  |  | 
|  | using ValueBitsMemoizedValue = std::pair<bool, SmallVector<ValueBit, 64>>; | 
|  | using ValueBitsMemoizer = | 
|  | DenseMap<SDValue, std::unique_ptr<ValueBitsMemoizedValue>>; | 
|  | ValueBitsMemoizer Memoizer; | 
|  |  | 
|  | // Return a pair of bool and a SmallVector pointer to a memoization entry. | 
|  | // The bool is true if something interesting was deduced, otherwise if we're | 
|  | // providing only a generic representation of V (or something else likewise | 
|  | // uninteresting for instruction selection) through the SmallVector. | 
|  | std::pair<bool, SmallVector<ValueBit, 64> *> getValueBits(SDValue V, | 
|  | unsigned NumBits) { | 
|  | auto &ValueEntry = Memoizer[V]; | 
|  | if (ValueEntry) | 
|  | return std::make_pair(ValueEntry->first, &ValueEntry->second); | 
|  | ValueEntry.reset(new ValueBitsMemoizedValue()); | 
|  | bool &Interesting = ValueEntry->first; | 
|  | SmallVector<ValueBit, 64> &Bits = ValueEntry->second; | 
|  | Bits.resize(NumBits); | 
|  |  | 
|  | switch (V.getOpcode()) { | 
|  | default: break; | 
|  | case ISD::ROTL: | 
|  | if (isa<ConstantSDNode>(V.getOperand(1))) { | 
|  | unsigned RotAmt = V.getConstantOperandVal(1); | 
|  |  | 
|  | const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; | 
|  |  | 
|  | for (unsigned i = 0; i < NumBits; ++i) | 
|  | Bits[i] = LHSBits[i < RotAmt ? i + (NumBits - RotAmt) : i - RotAmt]; | 
|  |  | 
|  | return std::make_pair(Interesting = true, &Bits); | 
|  | } | 
|  | break; | 
|  | case ISD::SHL: | 
|  | if (isa<ConstantSDNode>(V.getOperand(1))) { | 
|  | unsigned ShiftAmt = V.getConstantOperandVal(1); | 
|  |  | 
|  | const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; | 
|  |  | 
|  | for (unsigned i = ShiftAmt; i < NumBits; ++i) | 
|  | Bits[i] = LHSBits[i - ShiftAmt]; | 
|  |  | 
|  | for (unsigned i = 0; i < ShiftAmt; ++i) | 
|  | Bits[i] = ValueBit(ValueBit::ConstZero); | 
|  |  | 
|  | return std::make_pair(Interesting = true, &Bits); | 
|  | } | 
|  | break; | 
|  | case ISD::SRL: | 
|  | if (isa<ConstantSDNode>(V.getOperand(1))) { | 
|  | unsigned ShiftAmt = V.getConstantOperandVal(1); | 
|  |  | 
|  | const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; | 
|  |  | 
|  | for (unsigned i = 0; i < NumBits - ShiftAmt; ++i) | 
|  | Bits[i] = LHSBits[i + ShiftAmt]; | 
|  |  | 
|  | for (unsigned i = NumBits - ShiftAmt; i < NumBits; ++i) | 
|  | Bits[i] = ValueBit(ValueBit::ConstZero); | 
|  |  | 
|  | return std::make_pair(Interesting = true, &Bits); | 
|  | } | 
|  | break; | 
|  | case ISD::AND: | 
|  | if (isa<ConstantSDNode>(V.getOperand(1))) { | 
|  | uint64_t Mask = V.getConstantOperandVal(1); | 
|  |  | 
|  | const SmallVector<ValueBit, 64> *LHSBits; | 
|  | // Mark this as interesting, only if the LHS was also interesting. This | 
|  | // prevents the overall procedure from matching a single immediate 'and' | 
|  | // (which is non-optimal because such an and might be folded with other | 
|  | // things if we don't select it here). | 
|  | std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumBits); | 
|  |  | 
|  | for (unsigned i = 0; i < NumBits; ++i) | 
|  | if (((Mask >> i) & 1) == 1) | 
|  | Bits[i] = (*LHSBits)[i]; | 
|  | else { | 
|  | // AND instruction masks this bit. If the input is already zero, | 
|  | // we have nothing to do here. Otherwise, make the bit ConstZero. | 
|  | if ((*LHSBits)[i].isZero()) | 
|  | Bits[i] = (*LHSBits)[i]; | 
|  | else | 
|  | Bits[i] = ValueBit(ValueBit::ConstZero); | 
|  | } | 
|  |  | 
|  | return std::make_pair(Interesting, &Bits); | 
|  | } | 
|  | break; | 
|  | case ISD::OR: { | 
|  | const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second; | 
|  | const auto &RHSBits = *getValueBits(V.getOperand(1), NumBits).second; | 
|  |  | 
|  | bool AllDisjoint = true; | 
|  | SDValue LastVal = SDValue(); | 
|  | unsigned LastIdx = 0; | 
|  | for (unsigned i = 0; i < NumBits; ++i) { | 
|  | if (LHSBits[i].isZero() && RHSBits[i].isZero()) { | 
|  | // If both inputs are known to be zero and one is ConstZero and | 
|  | // another is VariableKnownToBeZero, we can select whichever | 
|  | // we like. To minimize the number of bit groups, we select | 
|  | // VariableKnownToBeZero if this bit is the next bit of the same | 
|  | // input variable from the previous bit. Otherwise, we select | 
|  | // ConstZero. | 
|  | if (LHSBits[i].hasValue() && LHSBits[i].getValue() == LastVal && | 
|  | LHSBits[i].getValueBitIndex() == LastIdx + 1) | 
|  | Bits[i] = LHSBits[i]; | 
|  | else if (RHSBits[i].hasValue() && RHSBits[i].getValue() == LastVal && | 
|  | RHSBits[i].getValueBitIndex() == LastIdx + 1) | 
|  | Bits[i] = RHSBits[i]; | 
|  | else | 
|  | Bits[i] = ValueBit(ValueBit::ConstZero); | 
|  | } | 
|  | else if (LHSBits[i].isZero()) | 
|  | Bits[i] = RHSBits[i]; | 
|  | else if (RHSBits[i].isZero()) | 
|  | Bits[i] = LHSBits[i]; | 
|  | else { | 
|  | AllDisjoint = false; | 
|  | break; | 
|  | } | 
|  | // We remember the value and bit index of this bit. | 
|  | if (Bits[i].hasValue()) { | 
|  | LastVal = Bits[i].getValue(); | 
|  | LastIdx = Bits[i].getValueBitIndex(); | 
|  | } | 
|  | else { | 
|  | if (LastVal) LastVal = SDValue(); | 
|  | LastIdx = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!AllDisjoint) | 
|  | break; | 
|  |  | 
|  | return std::make_pair(Interesting = true, &Bits); | 
|  | } | 
|  | case ISD::ZERO_EXTEND: { | 
|  | // We support only the case with zero extension from i32 to i64 so far. | 
|  | if (V.getValueType() != MVT::i64 || | 
|  | V.getOperand(0).getValueType() != MVT::i32) | 
|  | break; | 
|  |  | 
|  | const SmallVector<ValueBit, 64> *LHSBits; | 
|  | const unsigned NumOperandBits = 32; | 
|  | std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), | 
|  | NumOperandBits); | 
|  |  | 
|  | for (unsigned i = 0; i < NumOperandBits; ++i) | 
|  | Bits[i] = (*LHSBits)[i]; | 
|  |  | 
|  | for (unsigned i = NumOperandBits; i < NumBits; ++i) | 
|  | Bits[i] = ValueBit(ValueBit::ConstZero); | 
|  |  | 
|  | return std::make_pair(Interesting, &Bits); | 
|  | } | 
|  | case ISD::TRUNCATE: { | 
|  | EVT FromType = V.getOperand(0).getValueType(); | 
|  | EVT ToType = V.getValueType(); | 
|  | // We support only the case with truncate from i64 to i32. | 
|  | if (FromType != MVT::i64 || ToType != MVT::i32) | 
|  | break; | 
|  | const unsigned NumAllBits = FromType.getSizeInBits(); | 
|  | SmallVector<ValueBit, 64> *InBits; | 
|  | std::tie(Interesting, InBits) = getValueBits(V.getOperand(0), | 
|  | NumAllBits); | 
|  | const unsigned NumValidBits = ToType.getSizeInBits(); | 
|  |  | 
|  | // A 32-bit instruction cannot touch upper 32-bit part of 64-bit value. | 
|  | // So, we cannot include this truncate. | 
|  | bool UseUpper32bit = false; | 
|  | for (unsigned i = 0; i < NumValidBits; ++i) | 
|  | if ((*InBits)[i].hasValue() && (*InBits)[i].getValueBitIndex() >= 32) { | 
|  | UseUpper32bit = true; | 
|  | break; | 
|  | } | 
|  | if (UseUpper32bit) | 
|  | break; | 
|  |  | 
|  | for (unsigned i = 0; i < NumValidBits; ++i) | 
|  | Bits[i] = (*InBits)[i]; | 
|  |  | 
|  | return std::make_pair(Interesting, &Bits); | 
|  | } | 
|  | case ISD::AssertZext: { | 
|  | // For AssertZext, we look through the operand and | 
|  | // mark the bits known to be zero. | 
|  | const SmallVector<ValueBit, 64> *LHSBits; | 
|  | std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), | 
|  | NumBits); | 
|  |  | 
|  | EVT FromType = cast<VTSDNode>(V.getOperand(1))->getVT(); | 
|  | const unsigned NumValidBits = FromType.getSizeInBits(); | 
|  | for (unsigned i = 0; i < NumValidBits; ++i) | 
|  | Bits[i] = (*LHSBits)[i]; | 
|  |  | 
|  | // These bits are known to be zero but the AssertZext may be from a value | 
|  | // that already has some constant zero bits (i.e. from a masking and). | 
|  | for (unsigned i = NumValidBits; i < NumBits; ++i) | 
|  | Bits[i] = (*LHSBits)[i].hasValue() | 
|  | ? ValueBit((*LHSBits)[i].getValue(), | 
|  | (*LHSBits)[i].getValueBitIndex(), | 
|  | ValueBit::VariableKnownToBeZero) | 
|  | : ValueBit(ValueBit::ConstZero); | 
|  |  | 
|  | return std::make_pair(Interesting, &Bits); | 
|  | } | 
|  | case ISD::LOAD: | 
|  | LoadSDNode *LD = cast<LoadSDNode>(V); | 
|  | if (ISD::isZEXTLoad(V.getNode()) && V.getResNo() == 0) { | 
|  | EVT VT = LD->getMemoryVT(); | 
|  | const unsigned NumValidBits = VT.getSizeInBits(); | 
|  |  | 
|  | for (unsigned i = 0; i < NumValidBits; ++i) | 
|  | Bits[i] = ValueBit(V, i); | 
|  |  | 
|  | // These bits are known to be zero. | 
|  | for (unsigned i = NumValidBits; i < NumBits; ++i) | 
|  | Bits[i] = ValueBit(V, i, ValueBit::VariableKnownToBeZero); | 
|  |  | 
|  | // Zero-extending load itself cannot be optimized. So, it is not | 
|  | // interesting by itself though it gives useful information. | 
|  | return std::make_pair(Interesting = false, &Bits); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0; i < NumBits; ++i) | 
|  | Bits[i] = ValueBit(V, i); | 
|  |  | 
|  | return std::make_pair(Interesting = false, &Bits); | 
|  | } | 
|  |  | 
|  | // For each value (except the constant ones), compute the left-rotate amount | 
|  | // to get it from its original to final position. | 
|  | void computeRotationAmounts() { | 
|  | NeedMask = false; | 
|  | RLAmt.resize(Bits.size()); | 
|  | for (unsigned i = 0; i < Bits.size(); ++i) | 
|  | if (Bits[i].hasValue()) { | 
|  | unsigned VBI = Bits[i].getValueBitIndex(); | 
|  | if (i >= VBI) | 
|  | RLAmt[i] = i - VBI; | 
|  | else | 
|  | RLAmt[i] = Bits.size() - (VBI - i); | 
|  | } else if (Bits[i].isZero()) { | 
|  | NeedMask = true; | 
|  | RLAmt[i] = UINT32_MAX; | 
|  | } else { | 
|  | llvm_unreachable("Unknown value bit type"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Collect groups of consecutive bits with the same underlying value and | 
|  | // rotation factor. If we're doing late masking, we ignore zeros, otherwise | 
|  | // they break up groups. | 
|  | void collectBitGroups(bool LateMask) { | 
|  | BitGroups.clear(); | 
|  |  | 
|  | unsigned LastRLAmt = RLAmt[0]; | 
|  | SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue(); | 
|  | unsigned LastGroupStartIdx = 0; | 
|  | bool IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue(); | 
|  | for (unsigned i = 1; i < Bits.size(); ++i) { | 
|  | unsigned ThisRLAmt = RLAmt[i]; | 
|  | SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue(); | 
|  | if (LateMask && !ThisValue) { | 
|  | ThisValue = LastValue; | 
|  | ThisRLAmt = LastRLAmt; | 
|  | // If we're doing late masking, then the first bit group always starts | 
|  | // at zero (even if the first bits were zero). | 
|  | if (BitGroups.empty()) | 
|  | LastGroupStartIdx = 0; | 
|  | } | 
|  |  | 
|  | // If this bit is known to be zero and the current group is a bit group | 
|  | // of zeros, we do not need to terminate the current bit group even the | 
|  | // Value or RLAmt does not match here. Instead, we terminate this group | 
|  | // when the first non-zero bit appears later. | 
|  | if (IsGroupOfZeros && Bits[i].isZero()) | 
|  | continue; | 
|  |  | 
|  | // If this bit has the same underlying value and the same rotate factor as | 
|  | // the last one, then they're part of the same group. | 
|  | if (ThisRLAmt == LastRLAmt && ThisValue == LastValue) | 
|  | // We cannot continue the current group if this bits is not known to | 
|  | // be zero in a bit group of zeros. | 
|  | if (!(IsGroupOfZeros && ThisValue && !Bits[i].isZero())) | 
|  | continue; | 
|  |  | 
|  | if (LastValue.getNode()) | 
|  | BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx, | 
|  | i-1)); | 
|  | LastRLAmt = ThisRLAmt; | 
|  | LastValue = ThisValue; | 
|  | LastGroupStartIdx = i; | 
|  | IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue(); | 
|  | } | 
|  | if (LastValue.getNode()) | 
|  | BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx, | 
|  | Bits.size()-1)); | 
|  |  | 
|  | if (BitGroups.empty()) | 
|  | return; | 
|  |  | 
|  | // We might be able to combine the first and last groups. | 
|  | if (BitGroups.size() > 1) { | 
|  | // If the first and last groups are the same, then remove the first group | 
|  | // in favor of the last group, making the ending index of the last group | 
|  | // equal to the ending index of the to-be-removed first group. | 
|  | if (BitGroups[0].StartIdx == 0 && | 
|  | BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 && | 
|  | BitGroups[0].V == BitGroups[BitGroups.size()-1].V && | 
|  | BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) { | 
|  | LLVM_DEBUG(dbgs() << "\tcombining final bit group with initial one\n"); | 
|  | BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx; | 
|  | BitGroups.erase(BitGroups.begin()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Take all (SDValue, RLAmt) pairs and sort them by the number of groups | 
|  | // associated with each. If the number of groups are same, we prefer a group | 
|  | // which does not require rotate, i.e. RLAmt is 0, to avoid the first rotate | 
|  | // instruction. If there is a degeneracy, pick the one that occurs | 
|  | // first (in the final value). | 
|  | void collectValueRotInfo() { | 
|  | ValueRots.clear(); | 
|  |  | 
|  | for (auto &BG : BitGroups) { | 
|  | unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0); | 
|  | ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)]; | 
|  | VRI.V = BG.V; | 
|  | VRI.RLAmt = BG.RLAmt; | 
|  | VRI.Repl32 = BG.Repl32; | 
|  | VRI.NumGroups += 1; | 
|  | VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx); | 
|  | } | 
|  |  | 
|  | // Now that we've collected the various ValueRotInfo instances, we need to | 
|  | // sort them. | 
|  | ValueRotsVec.clear(); | 
|  | for (auto &I : ValueRots) { | 
|  | ValueRotsVec.push_back(I.second); | 
|  | } | 
|  | llvm::sort(ValueRotsVec); | 
|  | } | 
|  |  | 
|  | // In 64-bit mode, rlwinm and friends have a rotation operator that | 
|  | // replicates the low-order 32 bits into the high-order 32-bits. The mask | 
|  | // indices of these instructions can only be in the lower 32 bits, so they | 
|  | // can only represent some 64-bit bit groups. However, when they can be used, | 
|  | // the 32-bit replication can be used to represent, as a single bit group, | 
|  | // otherwise separate bit groups. We'll convert to replicated-32-bit bit | 
|  | // groups when possible. Returns true if any of the bit groups were | 
|  | // converted. | 
|  | void assignRepl32BitGroups() { | 
|  | // If we have bits like this: | 
|  | // | 
|  | // Indices:    15 14 13 12 11 10 9 8  7  6  5  4  3  2  1  0 | 
|  | // V bits: ... 7  6  5  4  3  2  1 0 31 30 29 28 27 26 25 24 | 
|  | // Groups:    |      RLAmt = 8      |      RLAmt = 40       | | 
|  | // | 
|  | // But, making use of a 32-bit operation that replicates the low-order 32 | 
|  | // bits into the high-order 32 bits, this can be one bit group with a RLAmt | 
|  | // of 8. | 
|  |  | 
|  | auto IsAllLow32 = [this](BitGroup & BG) { | 
|  | if (BG.StartIdx <= BG.EndIdx) { | 
|  | for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) { | 
|  | if (!Bits[i].hasValue()) | 
|  | continue; | 
|  | if (Bits[i].getValueBitIndex() >= 32) | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) { | 
|  | if (!Bits[i].hasValue()) | 
|  | continue; | 
|  | if (Bits[i].getValueBitIndex() >= 32) | 
|  | return false; | 
|  | } | 
|  | for (unsigned i = 0; i <= BG.EndIdx; ++i) { | 
|  | if (!Bits[i].hasValue()) | 
|  | continue; | 
|  | if (Bits[i].getValueBitIndex() >= 32) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | for (auto &BG : BitGroups) { | 
|  | // If this bit group has RLAmt of 0 and will not be merged with | 
|  | // another bit group, we don't benefit from Repl32. We don't mark | 
|  | // such group to give more freedom for later instruction selection. | 
|  | if (BG.RLAmt == 0) { | 
|  | auto PotentiallyMerged = [this](BitGroup & BG) { | 
|  | for (auto &BG2 : BitGroups) | 
|  | if (&BG != &BG2 && BG.V == BG2.V && | 
|  | (BG2.RLAmt == 0 || BG2.RLAmt == 32)) | 
|  | return true; | 
|  | return false; | 
|  | }; | 
|  | if (!PotentiallyMerged(BG)) | 
|  | continue; | 
|  | } | 
|  | if (BG.StartIdx < 32 && BG.EndIdx < 32) { | 
|  | if (IsAllLow32(BG)) { | 
|  | if (BG.RLAmt >= 32) { | 
|  | BG.RLAmt -= 32; | 
|  | BG.Repl32CR = true; | 
|  | } | 
|  |  | 
|  | BG.Repl32 = true; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "\t32-bit replicated bit group for " | 
|  | << BG.V.getNode() << " RLAmt = " << BG.RLAmt << " [" | 
|  | << BG.StartIdx << ", " << BG.EndIdx << "]\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now walk through the bit groups, consolidating where possible. | 
|  | for (auto I = BitGroups.begin(); I != BitGroups.end();) { | 
|  | // We might want to remove this bit group by merging it with the previous | 
|  | // group (which might be the ending group). | 
|  | auto IP = (I == BitGroups.begin()) ? | 
|  | std::prev(BitGroups.end()) : std::prev(I); | 
|  | if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt && | 
|  | I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) { | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for " | 
|  | << I->V.getNode() << " RLAmt = " << I->RLAmt << " [" | 
|  | << I->StartIdx << ", " << I->EndIdx | 
|  | << "] with group with range [" << IP->StartIdx << ", " | 
|  | << IP->EndIdx << "]\n"); | 
|  |  | 
|  | IP->EndIdx = I->EndIdx; | 
|  | IP->Repl32CR = IP->Repl32CR || I->Repl32CR; | 
|  | IP->Repl32Coalesced = true; | 
|  | I = BitGroups.erase(I); | 
|  | continue; | 
|  | } else { | 
|  | // There is a special case worth handling: If there is a single group | 
|  | // covering the entire upper 32 bits, and it can be merged with both | 
|  | // the next and previous groups (which might be the same group), then | 
|  | // do so. If it is the same group (so there will be only one group in | 
|  | // total), then we need to reverse the order of the range so that it | 
|  | // covers the entire 64 bits. | 
|  | if (I->StartIdx == 32 && I->EndIdx == 63) { | 
|  | assert(std::next(I) == BitGroups.end() && | 
|  | "bit group ends at index 63 but there is another?"); | 
|  | auto IN = BitGroups.begin(); | 
|  |  | 
|  | if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V && | 
|  | (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt && | 
|  | IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP && | 
|  | IsAllLow32(*I)) { | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "\tcombining bit group for " << I->V.getNode() | 
|  | << " RLAmt = " << I->RLAmt << " [" << I->StartIdx | 
|  | << ", " << I->EndIdx | 
|  | << "] with 32-bit replicated groups with ranges [" | 
|  | << IP->StartIdx << ", " << IP->EndIdx << "] and [" | 
|  | << IN->StartIdx << ", " << IN->EndIdx << "]\n"); | 
|  |  | 
|  | if (IP == IN) { | 
|  | // There is only one other group; change it to cover the whole | 
|  | // range (backward, so that it can still be Repl32 but cover the | 
|  | // whole 64-bit range). | 
|  | IP->StartIdx = 31; | 
|  | IP->EndIdx = 30; | 
|  | IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32; | 
|  | IP->Repl32Coalesced = true; | 
|  | I = BitGroups.erase(I); | 
|  | } else { | 
|  | // There are two separate groups, one before this group and one | 
|  | // after us (at the beginning). We're going to remove this group, | 
|  | // but also the group at the very beginning. | 
|  | IP->EndIdx = IN->EndIdx; | 
|  | IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32; | 
|  | IP->Repl32Coalesced = true; | 
|  | I = BitGroups.erase(I); | 
|  | BitGroups.erase(BitGroups.begin()); | 
|  | } | 
|  |  | 
|  | // This must be the last group in the vector (and we might have | 
|  | // just invalidated the iterator above), so break here. | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ++I; | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue getI32Imm(unsigned Imm, const SDLoc &dl) { | 
|  | return CurDAG->getTargetConstant(Imm, dl, MVT::i32); | 
|  | } | 
|  |  | 
|  | uint64_t getZerosMask() { | 
|  | uint64_t Mask = 0; | 
|  | for (unsigned i = 0; i < Bits.size(); ++i) { | 
|  | if (Bits[i].hasValue()) | 
|  | continue; | 
|  | Mask |= (UINT64_C(1) << i); | 
|  | } | 
|  |  | 
|  | return ~Mask; | 
|  | } | 
|  |  | 
|  | // This method extends an input value to 64 bit if input is 32-bit integer. | 
|  | // While selecting instructions in BitPermutationSelector in 64-bit mode, | 
|  | // an input value can be a 32-bit integer if a ZERO_EXTEND node is included. | 
|  | // In such case, we extend it to 64 bit to be consistent with other values. | 
|  | SDValue ExtendToInt64(SDValue V, const SDLoc &dl) { | 
|  | if (V.getValueSizeInBits() == 64) | 
|  | return V; | 
|  |  | 
|  | assert(V.getValueSizeInBits() == 32); | 
|  | SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); | 
|  | SDValue ImDef = SDValue(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, | 
|  | MVT::i64), 0); | 
|  | SDValue ExtVal = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, | 
|  | MVT::i64, ImDef, V, | 
|  | SubRegIdx), 0); | 
|  | return ExtVal; | 
|  | } | 
|  |  | 
|  | SDValue TruncateToInt32(SDValue V, const SDLoc &dl) { | 
|  | if (V.getValueSizeInBits() == 32) | 
|  | return V; | 
|  |  | 
|  | assert(V.getValueSizeInBits() == 64); | 
|  | SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); | 
|  | SDValue SubVal = SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, | 
|  | MVT::i32, V, SubRegIdx), 0); | 
|  | return SubVal; | 
|  | } | 
|  |  | 
|  | // Depending on the number of groups for a particular value, it might be | 
|  | // better to rotate, mask explicitly (using andi/andis), and then or the | 
|  | // result. Select this part of the result first. | 
|  | void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) { | 
|  | if (BPermRewriterNoMasking) | 
|  | return; | 
|  |  | 
|  | for (ValueRotInfo &VRI : ValueRotsVec) { | 
|  | unsigned Mask = 0; | 
|  | for (unsigned i = 0; i < Bits.size(); ++i) { | 
|  | if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V) | 
|  | continue; | 
|  | if (RLAmt[i] != VRI.RLAmt) | 
|  | continue; | 
|  | Mask |= (1u << i); | 
|  | } | 
|  |  | 
|  | // Compute the masks for andi/andis that would be necessary. | 
|  | unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16; | 
|  | assert((ANDIMask != 0 || ANDISMask != 0) && | 
|  | "No set bits in mask for value bit groups"); | 
|  | bool NeedsRotate = VRI.RLAmt != 0; | 
|  |  | 
|  | // We're trying to minimize the number of instructions. If we have one | 
|  | // group, using one of andi/andis can break even.  If we have three | 
|  | // groups, we can use both andi and andis and break even (to use both | 
|  | // andi and andis we also need to or the results together). We need four | 
|  | // groups if we also need to rotate. To use andi/andis we need to do more | 
|  | // than break even because rotate-and-mask instructions tend to be easier | 
|  | // to schedule. | 
|  |  | 
|  | // FIXME: We've biased here against using andi/andis, which is right for | 
|  | // POWER cores, but not optimal everywhere. For example, on the A2, | 
|  | // andi/andis have single-cycle latency whereas the rotate-and-mask | 
|  | // instructions take two cycles, and it would be better to bias toward | 
|  | // andi/andis in break-even cases. | 
|  |  | 
|  | unsigned NumAndInsts = (unsigned) NeedsRotate + | 
|  | (unsigned) (ANDIMask != 0) + | 
|  | (unsigned) (ANDISMask != 0) + | 
|  | (unsigned) (ANDIMask != 0 && ANDISMask != 0) + | 
|  | (unsigned) (bool) Res; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() | 
|  | << " RL: " << VRI.RLAmt << ":" | 
|  | << "\n\t\t\tisel using masking: " << NumAndInsts | 
|  | << " using rotates: " << VRI.NumGroups << "\n"); | 
|  |  | 
|  | if (NumAndInsts >= VRI.NumGroups) | 
|  | continue; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n"); | 
|  |  | 
|  | if (InstCnt) *InstCnt += NumAndInsts; | 
|  |  | 
|  | SDValue VRot; | 
|  | if (VRI.RLAmt) { | 
|  | SDValue Ops[] = | 
|  | { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl), | 
|  | getI32Imm(0, dl), getI32Imm(31, dl) }; | 
|  | VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, | 
|  | Ops), 0); | 
|  | } else { | 
|  | VRot = TruncateToInt32(VRI.V, dl); | 
|  | } | 
|  |  | 
|  | SDValue ANDIVal, ANDISVal; | 
|  | if (ANDIMask != 0) | 
|  | ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32, | 
|  | VRot, getI32Imm(ANDIMask, dl)), | 
|  | 0); | 
|  | if (ANDISMask != 0) | 
|  | ANDISVal = | 
|  | SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, VRot, | 
|  | getI32Imm(ANDISMask, dl)), | 
|  | 0); | 
|  |  | 
|  | SDValue TotalVal; | 
|  | if (!ANDIVal) | 
|  | TotalVal = ANDISVal; | 
|  | else if (!ANDISVal) | 
|  | TotalVal = ANDIVal; | 
|  | else | 
|  | TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, | 
|  | ANDIVal, ANDISVal), 0); | 
|  |  | 
|  | if (!Res) | 
|  | Res = TotalVal; | 
|  | else | 
|  | Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, | 
|  | Res, TotalVal), 0); | 
|  |  | 
|  | // Now, remove all groups with this underlying value and rotation | 
|  | // factor. | 
|  | eraseMatchingBitGroups([VRI](const BitGroup &BG) { | 
|  | return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt; | 
|  | }); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Instruction selection for the 32-bit case. | 
|  | SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) { | 
|  | SDLoc dl(N); | 
|  | SDValue Res; | 
|  |  | 
|  | if (InstCnt) *InstCnt = 0; | 
|  |  | 
|  | // Take care of cases that should use andi/andis first. | 
|  | SelectAndParts32(dl, Res, InstCnt); | 
|  |  | 
|  | // If we've not yet selected a 'starting' instruction, and we have no zeros | 
|  | // to fill in, select the (Value, RLAmt) with the highest priority (largest | 
|  | // number of groups), and start with this rotated value. | 
|  | if ((!NeedMask || LateMask) && !Res) { | 
|  | ValueRotInfo &VRI = ValueRotsVec[0]; | 
|  | if (VRI.RLAmt) { | 
|  | if (InstCnt) *InstCnt += 1; | 
|  | SDValue Ops[] = | 
|  | { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl), | 
|  | getI32Imm(0, dl), getI32Imm(31, dl) }; | 
|  | Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), | 
|  | 0); | 
|  | } else { | 
|  | Res = TruncateToInt32(VRI.V, dl); | 
|  | } | 
|  |  | 
|  | // Now, remove all groups with this underlying value and rotation factor. | 
|  | eraseMatchingBitGroups([VRI](const BitGroup &BG) { | 
|  | return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt; | 
|  | }); | 
|  | } | 
|  |  | 
|  | if (InstCnt) *InstCnt += BitGroups.size(); | 
|  |  | 
|  | // Insert the other groups (one at a time). | 
|  | for (auto &BG : BitGroups) { | 
|  | if (!Res) { | 
|  | SDValue Ops[] = | 
|  | { TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl), | 
|  | getI32Imm(Bits.size() - BG.EndIdx - 1, dl), | 
|  | getI32Imm(Bits.size() - BG.StartIdx - 1, dl) }; | 
|  | Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); | 
|  | } else { | 
|  | SDValue Ops[] = | 
|  | { Res, TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl), | 
|  | getI32Imm(Bits.size() - BG.EndIdx - 1, dl), | 
|  | getI32Imm(Bits.size() - BG.StartIdx - 1, dl) }; | 
|  | Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (LateMask) { | 
|  | unsigned Mask = (unsigned) getZerosMask(); | 
|  |  | 
|  | unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16; | 
|  | assert((ANDIMask != 0 || ANDISMask != 0) && | 
|  | "No set bits in zeros mask?"); | 
|  |  | 
|  | if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) + | 
|  | (unsigned) (ANDISMask != 0) + | 
|  | (unsigned) (ANDIMask != 0 && ANDISMask != 0); | 
|  |  | 
|  | SDValue ANDIVal, ANDISVal; | 
|  | if (ANDIMask != 0) | 
|  | ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32, | 
|  | Res, getI32Imm(ANDIMask, dl)), | 
|  | 0); | 
|  | if (ANDISMask != 0) | 
|  | ANDISVal = | 
|  | SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, Res, | 
|  | getI32Imm(ANDISMask, dl)), | 
|  | 0); | 
|  |  | 
|  | if (!ANDIVal) | 
|  | Res = ANDISVal; | 
|  | else if (!ANDISVal) | 
|  | Res = ANDIVal; | 
|  | else | 
|  | Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32, | 
|  | ANDIVal, ANDISVal), 0); | 
|  | } | 
|  |  | 
|  | return Res.getNode(); | 
|  | } | 
|  |  | 
|  | unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32, | 
|  | unsigned MaskStart, unsigned MaskEnd, | 
|  | bool IsIns) { | 
|  | // In the notation used by the instructions, 'start' and 'end' are reversed | 
|  | // because bits are counted from high to low order. | 
|  | unsigned InstMaskStart = 64 - MaskEnd - 1, | 
|  | InstMaskEnd   = 64 - MaskStart - 1; | 
|  |  | 
|  | if (Repl32) | 
|  | return 1; | 
|  |  | 
|  | if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) || | 
|  | InstMaskEnd == 63 - RLAmt) | 
|  | return 1; | 
|  |  | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | // For 64-bit values, not all combinations of rotates and masks are | 
|  | // available. Produce one if it is available. | 
|  | SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt, | 
|  | bool Repl32, unsigned MaskStart, unsigned MaskEnd, | 
|  | unsigned *InstCnt = nullptr) { | 
|  | // In the notation used by the instructions, 'start' and 'end' are reversed | 
|  | // because bits are counted from high to low order. | 
|  | unsigned InstMaskStart = 64 - MaskEnd - 1, | 
|  | InstMaskEnd   = 64 - MaskStart - 1; | 
|  |  | 
|  | if (InstCnt) *InstCnt += 1; | 
|  |  | 
|  | if (Repl32) { | 
|  | // This rotation amount assumes that the lower 32 bits of the quantity | 
|  | // are replicated in the high 32 bits by the rotation operator (which is | 
|  | // done by rlwinm and friends). | 
|  | assert(InstMaskStart >= 32 && "Mask cannot start out of range"); | 
|  | assert(InstMaskEnd   >= 32 && "Mask cannot end out of range"); | 
|  | SDValue Ops[] = | 
|  | { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), | 
|  | getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) }; | 
|  | return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64, | 
|  | Ops), 0); | 
|  | } | 
|  |  | 
|  | if (InstMaskEnd == 63) { | 
|  | SDValue Ops[] = | 
|  | { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), | 
|  | getI32Imm(InstMaskStart, dl) }; | 
|  | return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0); | 
|  | } | 
|  |  | 
|  | if (InstMaskStart == 0) { | 
|  | SDValue Ops[] = | 
|  | { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), | 
|  | getI32Imm(InstMaskEnd, dl) }; | 
|  | return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0); | 
|  | } | 
|  |  | 
|  | if (InstMaskEnd == 63 - RLAmt) { | 
|  | SDValue Ops[] = | 
|  | { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), | 
|  | getI32Imm(InstMaskStart, dl) }; | 
|  | return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0); | 
|  | } | 
|  |  | 
|  | // We cannot do this with a single instruction, so we'll use two. The | 
|  | // problem is that we're not free to choose both a rotation amount and mask | 
|  | // start and end independently. We can choose an arbitrary mask start and | 
|  | // end, but then the rotation amount is fixed. Rotation, however, can be | 
|  | // inverted, and so by applying an "inverse" rotation first, we can get the | 
|  | // desired result. | 
|  | if (InstCnt) *InstCnt += 1; | 
|  |  | 
|  | // The rotation mask for the second instruction must be MaskStart. | 
|  | unsigned RLAmt2 = MaskStart; | 
|  | // The first instruction must rotate V so that the overall rotation amount | 
|  | // is RLAmt. | 
|  | unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64; | 
|  | if (RLAmt1) | 
|  | V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63); | 
|  | return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd); | 
|  | } | 
|  |  | 
|  | // For 64-bit values, not all combinations of rotates and masks are | 
|  | // available. Produce a rotate-mask-and-insert if one is available. | 
|  | SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl, | 
|  | unsigned RLAmt, bool Repl32, unsigned MaskStart, | 
|  | unsigned MaskEnd, unsigned *InstCnt = nullptr) { | 
|  | // In the notation used by the instructions, 'start' and 'end' are reversed | 
|  | // because bits are counted from high to low order. | 
|  | unsigned InstMaskStart = 64 - MaskEnd - 1, | 
|  | InstMaskEnd   = 64 - MaskStart - 1; | 
|  |  | 
|  | if (InstCnt) *InstCnt += 1; | 
|  |  | 
|  | if (Repl32) { | 
|  | // This rotation amount assumes that the lower 32 bits of the quantity | 
|  | // are replicated in the high 32 bits by the rotation operator (which is | 
|  | // done by rlwinm and friends). | 
|  | assert(InstMaskStart >= 32 && "Mask cannot start out of range"); | 
|  | assert(InstMaskEnd   >= 32 && "Mask cannot end out of range"); | 
|  | SDValue Ops[] = | 
|  | { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), | 
|  | getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) }; | 
|  | return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64, | 
|  | Ops), 0); | 
|  | } | 
|  |  | 
|  | if (InstMaskEnd == 63 - RLAmt) { | 
|  | SDValue Ops[] = | 
|  | { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl), | 
|  | getI32Imm(InstMaskStart, dl) }; | 
|  | return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0); | 
|  | } | 
|  |  | 
|  | // We cannot do this with a single instruction, so we'll use two. The | 
|  | // problem is that we're not free to choose both a rotation amount and mask | 
|  | // start and end independently. We can choose an arbitrary mask start and | 
|  | // end, but then the rotation amount is fixed. Rotation, however, can be | 
|  | // inverted, and so by applying an "inverse" rotation first, we can get the | 
|  | // desired result. | 
|  | if (InstCnt) *InstCnt += 1; | 
|  |  | 
|  | // The rotation mask for the second instruction must be MaskStart. | 
|  | unsigned RLAmt2 = MaskStart; | 
|  | // The first instruction must rotate V so that the overall rotation amount | 
|  | // is RLAmt. | 
|  | unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64; | 
|  | if (RLAmt1) | 
|  | V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63); | 
|  | return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd); | 
|  | } | 
|  |  | 
|  | void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) { | 
|  | if (BPermRewriterNoMasking) | 
|  | return; | 
|  |  | 
|  | // The idea here is the same as in the 32-bit version, but with additional | 
|  | // complications from the fact that Repl32 might be true. Because we | 
|  | // aggressively convert bit groups to Repl32 form (which, for small | 
|  | // rotation factors, involves no other change), and then coalesce, it might | 
|  | // be the case that a single 64-bit masking operation could handle both | 
|  | // some Repl32 groups and some non-Repl32 groups. If converting to Repl32 | 
|  | // form allowed coalescing, then we must use a 32-bit rotaton in order to | 
|  | // completely capture the new combined bit group. | 
|  |  | 
|  | for (ValueRotInfo &VRI : ValueRotsVec) { | 
|  | uint64_t Mask = 0; | 
|  |  | 
|  | // We need to add to the mask all bits from the associated bit groups. | 
|  | // If Repl32 is false, we need to add bits from bit groups that have | 
|  | // Repl32 true, but are trivially convertable to Repl32 false. Such a | 
|  | // group is trivially convertable if it overlaps only with the lower 32 | 
|  | // bits, and the group has not been coalesced. | 
|  | auto MatchingBG = [VRI](const BitGroup &BG) { | 
|  | if (VRI.V != BG.V) | 
|  | return false; | 
|  |  | 
|  | unsigned EffRLAmt = BG.RLAmt; | 
|  | if (!VRI.Repl32 && BG.Repl32) { | 
|  | if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx && | 
|  | !BG.Repl32Coalesced) { | 
|  | if (BG.Repl32CR) | 
|  | EffRLAmt += 32; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | } else if (VRI.Repl32 != BG.Repl32) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return VRI.RLAmt == EffRLAmt; | 
|  | }; | 
|  |  | 
|  | for (auto &BG : BitGroups) { | 
|  | if (!MatchingBG(BG)) | 
|  | continue; | 
|  |  | 
|  | if (BG.StartIdx <= BG.EndIdx) { | 
|  | for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) | 
|  | Mask |= (UINT64_C(1) << i); | 
|  | } else { | 
|  | for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) | 
|  | Mask |= (UINT64_C(1) << i); | 
|  | for (unsigned i = 0; i <= BG.EndIdx; ++i) | 
|  | Mask |= (UINT64_C(1) << i); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We can use the 32-bit andi/andis technique if the mask does not | 
|  | // require any higher-order bits. This can save an instruction compared | 
|  | // to always using the general 64-bit technique. | 
|  | bool Use32BitInsts = isUInt<32>(Mask); | 
|  | // Compute the masks for andi/andis that would be necessary. | 
|  | unsigned ANDIMask = (Mask & UINT16_MAX), | 
|  | ANDISMask = (Mask >> 16) & UINT16_MAX; | 
|  |  | 
|  | bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)); | 
|  |  | 
|  | unsigned NumAndInsts = (unsigned) NeedsRotate + | 
|  | (unsigned) (bool) Res; | 
|  | if (Use32BitInsts) | 
|  | NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) + | 
|  | (unsigned) (ANDIMask != 0 && ANDISMask != 0); | 
|  | else | 
|  | NumAndInsts += selectI64ImmInstrCount(Mask) + /* and */ 1; | 
|  |  | 
|  | unsigned NumRLInsts = 0; | 
|  | bool FirstBG = true; | 
|  | bool MoreBG = false; | 
|  | for (auto &BG : BitGroups) { | 
|  | if (!MatchingBG(BG)) { | 
|  | MoreBG = true; | 
|  | continue; | 
|  | } | 
|  | NumRLInsts += | 
|  | SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx, | 
|  | !FirstBG); | 
|  | FirstBG = false; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() | 
|  | << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") | 
|  | << "\n\t\t\tisel using masking: " << NumAndInsts | 
|  | << " using rotates: " << NumRLInsts << "\n"); | 
|  |  | 
|  | // When we'd use andi/andis, we bias toward using the rotates (andi only | 
|  | // has a record form, and is cracked on POWER cores). However, when using | 
|  | // general 64-bit constant formation, bias toward the constant form, | 
|  | // because that exposes more opportunities for CSE. | 
|  | if (NumAndInsts > NumRLInsts) | 
|  | continue; | 
|  | // When merging multiple bit groups, instruction or is used. | 
|  | // But when rotate is used, rldimi can inert the rotated value into any | 
|  | // register, so instruction or can be avoided. | 
|  | if ((Use32BitInsts || MoreBG) && NumAndInsts == NumRLInsts) | 
|  | continue; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n"); | 
|  |  | 
|  | if (InstCnt) *InstCnt += NumAndInsts; | 
|  |  | 
|  | SDValue VRot; | 
|  | // We actually need to generate a rotation if we have a non-zero rotation | 
|  | // factor or, in the Repl32 case, if we care about any of the | 
|  | // higher-order replicated bits. In the latter case, we generate a mask | 
|  | // backward so that it actually includes the entire 64 bits. | 
|  | if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask))) | 
|  | VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32, | 
|  | VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63); | 
|  | else | 
|  | VRot = VRI.V; | 
|  |  | 
|  | SDValue TotalVal; | 
|  | if (Use32BitInsts) { | 
|  | assert((ANDIMask != 0 || ANDISMask != 0) && | 
|  | "No set bits in mask when using 32-bit ands for 64-bit value"); | 
|  |  | 
|  | SDValue ANDIVal, ANDISVal; | 
|  | if (ANDIMask != 0) | 
|  | ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64, | 
|  | ExtendToInt64(VRot, dl), | 
|  | getI32Imm(ANDIMask, dl)), | 
|  | 0); | 
|  | if (ANDISMask != 0) | 
|  | ANDISVal = | 
|  | SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64, | 
|  | ExtendToInt64(VRot, dl), | 
|  | getI32Imm(ANDISMask, dl)), | 
|  | 0); | 
|  |  | 
|  | if (!ANDIVal) | 
|  | TotalVal = ANDISVal; | 
|  | else if (!ANDISVal) | 
|  | TotalVal = ANDIVal; | 
|  | else | 
|  | TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, | 
|  | ExtendToInt64(ANDIVal, dl), ANDISVal), 0); | 
|  | } else { | 
|  | TotalVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0); | 
|  | TotalVal = | 
|  | SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64, | 
|  | ExtendToInt64(VRot, dl), TotalVal), | 
|  | 0); | 
|  | } | 
|  |  | 
|  | if (!Res) | 
|  | Res = TotalVal; | 
|  | else | 
|  | Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, | 
|  | ExtendToInt64(Res, dl), TotalVal), | 
|  | 0); | 
|  |  | 
|  | // Now, remove all groups with this underlying value and rotation | 
|  | // factor. | 
|  | eraseMatchingBitGroups(MatchingBG); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Instruction selection for the 64-bit case. | 
|  | SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) { | 
|  | SDLoc dl(N); | 
|  | SDValue Res; | 
|  |  | 
|  | if (InstCnt) *InstCnt = 0; | 
|  |  | 
|  | // Take care of cases that should use andi/andis first. | 
|  | SelectAndParts64(dl, Res, InstCnt); | 
|  |  | 
|  | // If we've not yet selected a 'starting' instruction, and we have no zeros | 
|  | // to fill in, select the (Value, RLAmt) with the highest priority (largest | 
|  | // number of groups), and start with this rotated value. | 
|  | if ((!NeedMask || LateMask) && !Res) { | 
|  | // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32 | 
|  | // groups will come first, and so the VRI representing the largest number | 
|  | // of groups might not be first (it might be the first Repl32 groups). | 
|  | unsigned MaxGroupsIdx = 0; | 
|  | if (!ValueRotsVec[0].Repl32) { | 
|  | for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i) | 
|  | if (ValueRotsVec[i].Repl32) { | 
|  | if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups) | 
|  | MaxGroupsIdx = i; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx]; | 
|  | bool NeedsRotate = false; | 
|  | if (VRI.RLAmt) { | 
|  | NeedsRotate = true; | 
|  | } else if (VRI.Repl32) { | 
|  | for (auto &BG : BitGroups) { | 
|  | if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt || | 
|  | BG.Repl32 != VRI.Repl32) | 
|  | continue; | 
|  |  | 
|  | // We don't need a rotate if the bit group is confined to the lower | 
|  | // 32 bits. | 
|  | if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx) | 
|  | continue; | 
|  |  | 
|  | NeedsRotate = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (NeedsRotate) | 
|  | Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32, | 
|  | VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63, | 
|  | InstCnt); | 
|  | else | 
|  | Res = VRI.V; | 
|  |  | 
|  | // Now, remove all groups with this underlying value and rotation factor. | 
|  | if (Res) | 
|  | eraseMatchingBitGroups([VRI](const BitGroup &BG) { | 
|  | return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt && | 
|  | BG.Repl32 == VRI.Repl32; | 
|  | }); | 
|  | } | 
|  |  | 
|  | // Because 64-bit rotates are more flexible than inserts, we might have a | 
|  | // preference regarding which one we do first (to save one instruction). | 
|  | if (!Res) | 
|  | for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) { | 
|  | if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx, | 
|  | false) < | 
|  | SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx, | 
|  | true)) { | 
|  | if (I != BitGroups.begin()) { | 
|  | BitGroup BG = *I; | 
|  | BitGroups.erase(I); | 
|  | BitGroups.insert(BitGroups.begin(), BG); | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Insert the other groups (one at a time). | 
|  | for (auto &BG : BitGroups) { | 
|  | if (!Res) | 
|  | Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx, | 
|  | BG.EndIdx, InstCnt); | 
|  | else | 
|  | Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32, | 
|  | BG.StartIdx, BG.EndIdx, InstCnt); | 
|  | } | 
|  |  | 
|  | if (LateMask) { | 
|  | uint64_t Mask = getZerosMask(); | 
|  |  | 
|  | // We can use the 32-bit andi/andis technique if the mask does not | 
|  | // require any higher-order bits. This can save an instruction compared | 
|  | // to always using the general 64-bit technique. | 
|  | bool Use32BitInsts = isUInt<32>(Mask); | 
|  | // Compute the masks for andi/andis that would be necessary. | 
|  | unsigned ANDIMask = (Mask & UINT16_MAX), | 
|  | ANDISMask = (Mask >> 16) & UINT16_MAX; | 
|  |  | 
|  | if (Use32BitInsts) { | 
|  | assert((ANDIMask != 0 || ANDISMask != 0) && | 
|  | "No set bits in mask when using 32-bit ands for 64-bit value"); | 
|  |  | 
|  | if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) + | 
|  | (unsigned) (ANDISMask != 0) + | 
|  | (unsigned) (ANDIMask != 0 && ANDISMask != 0); | 
|  |  | 
|  | SDValue ANDIVal, ANDISVal; | 
|  | if (ANDIMask != 0) | 
|  | ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64, | 
|  | ExtendToInt64(Res, dl), | 
|  | getI32Imm(ANDIMask, dl)), | 
|  | 0); | 
|  | if (ANDISMask != 0) | 
|  | ANDISVal = | 
|  | SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64, | 
|  | ExtendToInt64(Res, dl), | 
|  | getI32Imm(ANDISMask, dl)), | 
|  | 0); | 
|  |  | 
|  | if (!ANDIVal) | 
|  | Res = ANDISVal; | 
|  | else if (!ANDISVal) | 
|  | Res = ANDIVal; | 
|  | else | 
|  | Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, | 
|  | ExtendToInt64(ANDIVal, dl), ANDISVal), 0); | 
|  | } else { | 
|  | if (InstCnt) *InstCnt += selectI64ImmInstrCount(Mask) + /* and */ 1; | 
|  |  | 
|  | SDValue MaskVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0); | 
|  | Res = | 
|  | SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64, | 
|  | ExtendToInt64(Res, dl), MaskVal), 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Res.getNode(); | 
|  | } | 
|  |  | 
|  | SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) { | 
|  | // Fill in BitGroups. | 
|  | collectBitGroups(LateMask); | 
|  | if (BitGroups.empty()) | 
|  | return nullptr; | 
|  |  | 
|  | // For 64-bit values, figure out when we can use 32-bit instructions. | 
|  | if (Bits.size() == 64) | 
|  | assignRepl32BitGroups(); | 
|  |  | 
|  | // Fill in ValueRotsVec. | 
|  | collectValueRotInfo(); | 
|  |  | 
|  | if (Bits.size() == 32) { | 
|  | return Select32(N, LateMask, InstCnt); | 
|  | } else { | 
|  | assert(Bits.size() == 64 && "Not 64 bits here?"); | 
|  | return Select64(N, LateMask, InstCnt); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) { | 
|  | BitGroups.erase(remove_if(BitGroups, F), BitGroups.end()); | 
|  | } | 
|  |  | 
|  | SmallVector<ValueBit, 64> Bits; | 
|  |  | 
|  | bool NeedMask = false; | 
|  | SmallVector<unsigned, 64> RLAmt; | 
|  |  | 
|  | SmallVector<BitGroup, 16> BitGroups; | 
|  |  | 
|  | DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots; | 
|  | SmallVector<ValueRotInfo, 16> ValueRotsVec; | 
|  |  | 
|  | SelectionDAG *CurDAG = nullptr; | 
|  |  | 
|  | public: | 
|  | BitPermutationSelector(SelectionDAG *DAG) | 
|  | : CurDAG(DAG) {} | 
|  |  | 
|  | // Here we try to match complex bit permutations into a set of | 
|  | // rotate-and-shift/shift/and/or instructions, using a set of heuristics | 
|  | // known to produce optimal code for common cases (like i32 byte swapping). | 
|  | SDNode *Select(SDNode *N) { | 
|  | Memoizer.clear(); | 
|  | auto Result = | 
|  | getValueBits(SDValue(N, 0), N->getValueType(0).getSizeInBits()); | 
|  | if (!Result.first) | 
|  | return nullptr; | 
|  | Bits = std::move(*Result.second); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Considering bit-permutation-based instruction" | 
|  | " selection for:    "); | 
|  | LLVM_DEBUG(N->dump(CurDAG)); | 
|  |  | 
|  | // Fill it RLAmt and set NeedMask. | 
|  | computeRotationAmounts(); | 
|  |  | 
|  | if (!NeedMask) | 
|  | return Select(N, false); | 
|  |  | 
|  | // We currently have two techniques for handling results with zeros: early | 
|  | // masking (the default) and late masking. Late masking is sometimes more | 
|  | // efficient, but because the structure of the bit groups is different, it | 
|  | // is hard to tell without generating both and comparing the results. With | 
|  | // late masking, we ignore zeros in the resulting value when inserting each | 
|  | // set of bit groups, and then mask in the zeros at the end. With early | 
|  | // masking, we only insert the non-zero parts of the result at every step. | 
|  |  | 
|  | unsigned InstCnt = 0, InstCntLateMask = 0; | 
|  | LLVM_DEBUG(dbgs() << "\tEarly masking:\n"); | 
|  | SDNode *RN = Select(N, false, &InstCnt); | 
|  | LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n"); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "\tLate masking:\n"); | 
|  | SDNode *RNLM = Select(N, true, &InstCntLateMask); | 
|  | LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask | 
|  | << " instructions\n"); | 
|  |  | 
|  | if (InstCnt <= InstCntLateMask) { | 
|  | LLVM_DEBUG(dbgs() << "\tUsing early-masking for isel\n"); | 
|  | return RN; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "\tUsing late-masking for isel\n"); | 
|  | return RNLM; | 
|  | } | 
|  | }; | 
|  |  | 
|  | class IntegerCompareEliminator { | 
|  | SelectionDAG *CurDAG; | 
|  | PPCDAGToDAGISel *S; | 
|  | // Conversion type for interpreting results of a 32-bit instruction as | 
|  | // a 64-bit value or vice versa. | 
|  | enum ExtOrTruncConversion { Ext, Trunc }; | 
|  |  | 
|  | // Modifiers to guide how an ISD::SETCC node's result is to be computed | 
|  | // in a GPR. | 
|  | // ZExtOrig - use the original condition code, zero-extend value | 
|  | // ZExtInvert - invert the condition code, zero-extend value | 
|  | // SExtOrig - use the original condition code, sign-extend value | 
|  | // SExtInvert - invert the condition code, sign-extend value | 
|  | enum SetccInGPROpts { ZExtOrig, ZExtInvert, SExtOrig, SExtInvert }; | 
|  |  | 
|  | // Comparisons against zero to emit GPR code sequences for. Each of these | 
|  | // sequences may need to be emitted for two or more equivalent patterns. | 
|  | // For example (a >= 0) == (a > -1). The direction of the comparison (</>) | 
|  | // matters as well as the extension type: sext (-1/0), zext (1/0). | 
|  | // GEZExt - (zext (LHS >= 0)) | 
|  | // GESExt - (sext (LHS >= 0)) | 
|  | // LEZExt - (zext (LHS <= 0)) | 
|  | // LESExt - (sext (LHS <= 0)) | 
|  | enum ZeroCompare { GEZExt, GESExt, LEZExt, LESExt }; | 
|  |  | 
|  | SDNode *tryEXTEND(SDNode *N); | 
|  | SDNode *tryLogicOpOfCompares(SDNode *N); | 
|  | SDValue computeLogicOpInGPR(SDValue LogicOp); | 
|  | SDValue signExtendInputIfNeeded(SDValue Input); | 
|  | SDValue zeroExtendInputIfNeeded(SDValue Input); | 
|  | SDValue addExtOrTrunc(SDValue NatWidthRes, ExtOrTruncConversion Conv); | 
|  | SDValue getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl, | 
|  | ZeroCompare CmpTy); | 
|  | SDValue get32BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, | 
|  | int64_t RHSValue, SDLoc dl); | 
|  | SDValue get32BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, | 
|  | int64_t RHSValue, SDLoc dl); | 
|  | SDValue get64BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, | 
|  | int64_t RHSValue, SDLoc dl); | 
|  | SDValue get64BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC, | 
|  | int64_t RHSValue, SDLoc dl); | 
|  | SDValue getSETCCInGPR(SDValue Compare, SetccInGPROpts ConvOpts); | 
|  |  | 
|  | public: | 
|  | IntegerCompareEliminator(SelectionDAG *DAG, | 
|  | PPCDAGToDAGISel *Sel) : CurDAG(DAG), S(Sel) { | 
|  | assert(CurDAG->getTargetLoweringInfo() | 
|  | .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 && | 
|  | "Only expecting to use this on 64 bit targets."); | 
|  | } | 
|  | SDNode *Select(SDNode *N) { | 
|  | if (CmpInGPR == ICGPR_None) | 
|  | return nullptr; | 
|  | switch (N->getOpcode()) { | 
|  | default: break; | 
|  | case ISD::ZERO_EXTEND: | 
|  | if (CmpInGPR == ICGPR_Sext || CmpInGPR == ICGPR_SextI32 || | 
|  | CmpInGPR == ICGPR_SextI64) | 
|  | return nullptr; | 
|  | LLVM_FALLTHROUGH; | 
|  | case ISD::SIGN_EXTEND: | 
|  | if (CmpInGPR == ICGPR_Zext || CmpInGPR == ICGPR_ZextI32 || | 
|  | CmpInGPR == ICGPR_ZextI64) | 
|  | return nullptr; | 
|  | return tryEXTEND(N); | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | return tryLogicOpOfCompares(N); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  | }; | 
|  |  | 
|  | static bool isLogicOp(unsigned Opc) { | 
|  | return Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR; | 
|  | } | 
|  | // The obvious case for wanting to keep the value in a GPR. Namely, the | 
|  | // result of the comparison is actually needed in a GPR. | 
|  | SDNode *IntegerCompareEliminator::tryEXTEND(SDNode *N) { | 
|  | assert((N->getOpcode() == ISD::ZERO_EXTEND || | 
|  | N->getOpcode() == ISD::SIGN_EXTEND) && | 
|  | "Expecting a zero/sign extend node!"); | 
|  | SDValue WideRes; | 
|  | // If we are zero-extending the result of a logical operation on i1 | 
|  | // values, we can keep the values in GPRs. | 
|  | if (isLogicOp(N->getOperand(0).getOpcode()) && | 
|  | N->getOperand(0).getValueType() == MVT::i1 && | 
|  | N->getOpcode() == ISD::ZERO_EXTEND) | 
|  | WideRes = computeLogicOpInGPR(N->getOperand(0)); | 
|  | else if (N->getOperand(0).getOpcode() != ISD::SETCC) | 
|  | return nullptr; | 
|  | else | 
|  | WideRes = | 
|  | getSETCCInGPR(N->getOperand(0), | 
|  | N->getOpcode() == ISD::SIGN_EXTEND ? | 
|  | SetccInGPROpts::SExtOrig : SetccInGPROpts::ZExtOrig); | 
|  |  | 
|  | if (!WideRes) | 
|  | return nullptr; | 
|  |  | 
|  | SDLoc dl(N); | 
|  | bool Input32Bit = WideRes.getValueType() == MVT::i32; | 
|  | bool Output32Bit = N->getValueType(0) == MVT::i32; | 
|  |  | 
|  | NumSextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 1 : 0; | 
|  | NumZextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 0 : 1; | 
|  |  | 
|  | SDValue ConvOp = WideRes; | 
|  | if (Input32Bit != Output32Bit) | 
|  | ConvOp = addExtOrTrunc(WideRes, Input32Bit ? ExtOrTruncConversion::Ext : | 
|  | ExtOrTruncConversion::Trunc); | 
|  | return ConvOp.getNode(); | 
|  | } | 
|  |  | 
|  | // Attempt to perform logical operations on the results of comparisons while | 
|  | // keeping the values in GPRs. Without doing so, these would end up being | 
|  | // lowered to CR-logical operations which suffer from significant latency and | 
|  | // low ILP. | 
|  | SDNode *IntegerCompareEliminator::tryLogicOpOfCompares(SDNode *N) { | 
|  | if (N->getValueType(0) != MVT::i1) | 
|  | return nullptr; | 
|  | assert(isLogicOp(N->getOpcode()) && | 
|  | "Expected a logic operation on setcc results."); | 
|  | SDValue LoweredLogical = computeLogicOpInGPR(SDValue(N, 0)); | 
|  | if (!LoweredLogical) | 
|  | return nullptr; | 
|  |  | 
|  | SDLoc dl(N); | 
|  | bool IsBitwiseNegate = LoweredLogical.getMachineOpcode() == PPC::XORI8; | 
|  | unsigned SubRegToExtract = IsBitwiseNegate ? PPC::sub_eq : PPC::sub_gt; | 
|  | SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32); | 
|  | SDValue LHS = LoweredLogical.getOperand(0); | 
|  | SDValue RHS = LoweredLogical.getOperand(1); | 
|  | SDValue WideOp; | 
|  | SDValue OpToConvToRecForm; | 
|  |  | 
|  | // Look through any 32-bit to 64-bit implicit extend nodes to find the | 
|  | // opcode that is input to the XORI. | 
|  | if (IsBitwiseNegate && | 
|  | LoweredLogical.getOperand(0).getMachineOpcode() == PPC::INSERT_SUBREG) | 
|  | OpToConvToRecForm = LoweredLogical.getOperand(0).getOperand(1); | 
|  | else if (IsBitwiseNegate) | 
|  | // If the input to the XORI isn't an extension, that's what we're after. | 
|  | OpToConvToRecForm = LoweredLogical.getOperand(0); | 
|  | else | 
|  | // If this is not an XORI, it is a reg-reg logical op and we can convert | 
|  | // it to record-form. | 
|  | OpToConvToRecForm = LoweredLogical; | 
|  |  | 
|  | // Get the record-form version of the node we're looking to use to get the | 
|  | // CR result from. | 
|  | uint16_t NonRecOpc = OpToConvToRecForm.getMachineOpcode(); | 
|  | int NewOpc = PPCInstrInfo::getRecordFormOpcode(NonRecOpc); | 
|  |  | 
|  | // Convert the right node to record-form. This is either the logical we're | 
|  | // looking at or it is the input node to the negation (if we're looking at | 
|  | // a bitwise negation). | 
|  | if (NewOpc != -1 && IsBitwiseNegate) { | 
|  | // The input to the XORI has a record-form. Use it. | 
|  | assert(LoweredLogical.getConstantOperandVal(1) == 1 && | 
|  | "Expected a PPC::XORI8 only for bitwise negation."); | 
|  | // Emit the record-form instruction. | 
|  | std::vector<SDValue> Ops; | 
|  | for (int i = 0, e = OpToConvToRecForm.getNumOperands(); i < e; i++) | 
|  | Ops.push_back(OpToConvToRecForm.getOperand(i)); | 
|  |  | 
|  | WideOp = | 
|  | SDValue(CurDAG->getMachineNode(NewOpc, dl, | 
|  | OpToConvToRecForm.getValueType(), | 
|  | MVT::Glue, Ops), 0); | 
|  | } else { | 
|  | assert((NewOpc != -1 || !IsBitwiseNegate) && | 
|  | "No record form available for AND8/OR8/XOR8?"); | 
|  | WideOp = | 
|  | SDValue(CurDAG->getMachineNode(NewOpc == -1 ? PPC::ANDI8_rec : NewOpc, | 
|  | dl, MVT::i64, MVT::Glue, LHS, RHS), | 
|  | 0); | 
|  | } | 
|  |  | 
|  | // Select this node to a single bit from CR0 set by the record-form node | 
|  | // just created. For bitwise negation, use the EQ bit which is the equivalent | 
|  | // of negating the result (i.e. it is a bit set when the result of the | 
|  | // operation is zero). | 
|  | SDValue SRIdxVal = | 
|  | CurDAG->getTargetConstant(SubRegToExtract, dl, MVT::i32); | 
|  | SDValue CRBit = | 
|  | SDValue(CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, | 
|  | MVT::i1, CR0Reg, SRIdxVal, | 
|  | WideOp.getValue(1)), 0); | 
|  | return CRBit.getNode(); | 
|  | } | 
|  |  | 
|  | // Lower a logical operation on i1 values into a GPR sequence if possible. | 
|  | // The result can be kept in a GPR if requested. | 
|  | // Three types of inputs can be handled: | 
|  | // - SETCC | 
|  | // - TRUNCATE | 
|  | // - Logical operation (AND/OR/XOR) | 
|  | // There is also a special case that is handled (namely a complement operation | 
|  | // achieved with xor %a, -1). | 
|  | SDValue IntegerCompareEliminator::computeLogicOpInGPR(SDValue LogicOp) { | 
|  | assert(isLogicOp(LogicOp.getOpcode()) && | 
|  | "Can only handle logic operations here."); | 
|  | assert(LogicOp.getValueType() == MVT::i1 && | 
|  | "Can only handle logic operations on i1 values here."); | 
|  | SDLoc dl(LogicOp); | 
|  | SDValue LHS, RHS; | 
|  |  | 
|  | // Special case: xor %a, -1 | 
|  | bool IsBitwiseNegation = isBitwiseNot(LogicOp); | 
|  |  | 
|  | // Produces a GPR sequence for each operand of the binary logic operation. | 
|  | // For SETCC, it produces the respective comparison, for TRUNCATE it truncates | 
|  | // the value in a GPR and for logic operations, it will recursively produce | 
|  | // a GPR sequence for the operation. | 
|  | auto getLogicOperand = [&] (SDValue Operand) -> SDValue { | 
|  | unsigned OperandOpcode = Operand.getOpcode(); | 
|  | if (OperandOpcode == ISD::SETCC) | 
|  | return getSETCCInGPR(Operand, SetccInGPROpts::ZExtOrig); | 
|  | else if (OperandOpcode == ISD::TRUNCATE) { | 
|  | SDValue InputOp = Operand.getOperand(0); | 
|  | EVT InVT = InputOp.getValueType(); | 
|  | return SDValue(CurDAG->getMachineNode(InVT == MVT::i32 ? PPC::RLDICL_32 : | 
|  | PPC::RLDICL, dl, InVT, InputOp, | 
|  | S->getI64Imm(0, dl), | 
|  | S->getI64Imm(63, dl)), 0); | 
|  | } else if (isLogicOp(OperandOpcode)) | 
|  | return computeLogicOpInGPR(Operand); | 
|  | return SDValue(); | 
|  | }; | 
|  | LHS = getLogicOperand(LogicOp.getOperand(0)); | 
|  | RHS = getLogicOperand(LogicOp.getOperand(1)); | 
|  |  | 
|  | // If a GPR sequence can't be produced for the LHS we can't proceed. | 
|  | // Not producing a GPR sequence for the RHS is only a problem if this isn't | 
|  | // a bitwise negation operation. | 
|  | if (!LHS || (!RHS && !IsBitwiseNegation)) | 
|  | return SDValue(); | 
|  |  | 
|  | NumLogicOpsOnComparison++; | 
|  |  | 
|  | // We will use the inputs as 64-bit values. | 
|  | if (LHS.getValueType() == MVT::i32) | 
|  | LHS = addExtOrTrunc(LHS, ExtOrTruncConversion::Ext); | 
|  | if (!IsBitwiseNegation && RHS.getValueType() == MVT::i32) | 
|  | RHS = addExtOrTrunc(RHS, ExtOrTruncConversion::Ext); | 
|  |  | 
|  | unsigned NewOpc; | 
|  | switch (LogicOp.getOpcode()) { | 
|  | default: llvm_unreachable("Unknown logic operation."); | 
|  | case ISD::AND: NewOpc = PPC::AND8; break; | 
|  | case ISD::OR:  NewOpc = PPC::OR8;  break; | 
|  | case ISD::XOR: NewOpc = PPC::XOR8; break; | 
|  | } | 
|  |  | 
|  | if (IsBitwiseNegation) { | 
|  | RHS = S->getI64Imm(1, dl); | 
|  | NewOpc = PPC::XORI8; | 
|  | } | 
|  |  | 
|  | return SDValue(CurDAG->getMachineNode(NewOpc, dl, MVT::i64, LHS, RHS), 0); | 
|  |  | 
|  | } | 
|  |  | 
|  | /// If the value isn't guaranteed to be sign-extended to 64-bits, extend it. | 
|  | /// Otherwise just reinterpret it as a 64-bit value. | 
|  | /// Useful when emitting comparison code for 32-bit values without using | 
|  | /// the compare instruction (which only considers the lower 32-bits). | 
|  | SDValue IntegerCompareEliminator::signExtendInputIfNeeded(SDValue Input) { | 
|  | assert(Input.getValueType() == MVT::i32 && | 
|  | "Can only sign-extend 32-bit values here."); | 
|  | unsigned Opc = Input.getOpcode(); | 
|  |  | 
|  | // The value was sign extended and then truncated to 32-bits. No need to | 
|  | // sign extend it again. | 
|  | if (Opc == ISD::TRUNCATE && | 
|  | (Input.getOperand(0).getOpcode() == ISD::AssertSext || | 
|  | Input.getOperand(0).getOpcode() == ISD::SIGN_EXTEND)) | 
|  | return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); | 
|  |  | 
|  | LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input); | 
|  | // The input is a sign-extending load. All ppc sign-extending loads | 
|  | // sign-extend to the full 64-bits. | 
|  | if (InputLoad && InputLoad->getExtensionType() == ISD::SEXTLOAD) | 
|  | return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); | 
|  |  | 
|  | ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input); | 
|  | // We don't sign-extend constants. | 
|  | if (InputConst) | 
|  | return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); | 
|  |  | 
|  | SDLoc dl(Input); | 
|  | SignExtensionsAdded++; | 
|  | return SDValue(CurDAG->getMachineNode(PPC::EXTSW_32_64, dl, | 
|  | MVT::i64, Input), 0); | 
|  | } | 
|  |  | 
|  | /// If the value isn't guaranteed to be zero-extended to 64-bits, extend it. | 
|  | /// Otherwise just reinterpret it as a 64-bit value. | 
|  | /// Useful when emitting comparison code for 32-bit values without using | 
|  | /// the compare instruction (which only considers the lower 32-bits). | 
|  | SDValue IntegerCompareEliminator::zeroExtendInputIfNeeded(SDValue Input) { | 
|  | assert(Input.getValueType() == MVT::i32 && | 
|  | "Can only zero-extend 32-bit values here."); | 
|  | unsigned Opc = Input.getOpcode(); | 
|  |  | 
|  | // The only condition under which we can omit the actual extend instruction: | 
|  | // - The value is a positive constant | 
|  | // - The value comes from a load that isn't a sign-extending load | 
|  | // An ISD::TRUNCATE needs to be zero-extended unless it is fed by a zext. | 
|  | bool IsTruncateOfZExt = Opc == ISD::TRUNCATE && | 
|  | (Input.getOperand(0).getOpcode() == ISD::AssertZext || | 
|  | Input.getOperand(0).getOpcode() == ISD::ZERO_EXTEND); | 
|  | if (IsTruncateOfZExt) | 
|  | return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); | 
|  |  | 
|  | ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input); | 
|  | if (InputConst && InputConst->getSExtValue() >= 0) | 
|  | return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); | 
|  |  | 
|  | LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input); | 
|  | // The input is a load that doesn't sign-extend (it will be zero-extended). | 
|  | if (InputLoad && InputLoad->getExtensionType() != ISD::SEXTLOAD) | 
|  | return addExtOrTrunc(Input, ExtOrTruncConversion::Ext); | 
|  |  | 
|  | // None of the above, need to zero-extend. | 
|  | SDLoc dl(Input); | 
|  | ZeroExtensionsAdded++; | 
|  | return SDValue(CurDAG->getMachineNode(PPC::RLDICL_32_64, dl, MVT::i64, Input, | 
|  | S->getI64Imm(0, dl), | 
|  | S->getI64Imm(32, dl)), 0); | 
|  | } | 
|  |  | 
|  | // Handle a 32-bit value in a 64-bit register and vice-versa. These are of | 
|  | // course not actual zero/sign extensions that will generate machine code, | 
|  | // they're just a way to reinterpret a 32 bit value in a register as a | 
|  | // 64 bit value and vice-versa. | 
|  | SDValue IntegerCompareEliminator::addExtOrTrunc(SDValue NatWidthRes, | 
|  | ExtOrTruncConversion Conv) { | 
|  | SDLoc dl(NatWidthRes); | 
|  |  | 
|  | // For reinterpreting 32-bit values as 64 bit values, we generate | 
|  | // INSERT_SUBREG IMPLICIT_DEF:i64, <input>, TargetConstant:i32<1> | 
|  | if (Conv == ExtOrTruncConversion::Ext) { | 
|  | SDValue ImDef(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, MVT::i64), 0); | 
|  | SDValue SubRegIdx = | 
|  | CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); | 
|  | return SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, MVT::i64, | 
|  | ImDef, NatWidthRes, SubRegIdx), 0); | 
|  | } | 
|  |  | 
|  | assert(Conv == ExtOrTruncConversion::Trunc && | 
|  | "Unknown convertion between 32 and 64 bit values."); | 
|  | // For reinterpreting 64-bit values as 32-bit values, we just need to | 
|  | // EXTRACT_SUBREG (i.e. extract the low word). | 
|  | SDValue SubRegIdx = | 
|  | CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32); | 
|  | return SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, MVT::i32, | 
|  | NatWidthRes, SubRegIdx), 0); | 
|  | } | 
|  |  | 
|  | // Produce a GPR sequence for compound comparisons (<=, >=) against zero. | 
|  | // Handle both zero-extensions and sign-extensions. | 
|  | SDValue | 
|  | IntegerCompareEliminator::getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl, | 
|  | ZeroCompare CmpTy) { | 
|  | EVT InVT = LHS.getValueType(); | 
|  | bool Is32Bit = InVT == MVT::i32; | 
|  | SDValue ToExtend; | 
|  |  | 
|  | // Produce the value that needs to be either zero or sign extended. | 
|  | switch (CmpTy) { | 
|  | case ZeroCompare::GEZExt: | 
|  | case ZeroCompare::GESExt: | 
|  | ToExtend = SDValue(CurDAG->getMachineNode(Is32Bit ? PPC::NOR : PPC::NOR8, | 
|  | dl, InVT, LHS, LHS), 0); | 
|  | break; | 
|  | case ZeroCompare::LEZExt: | 
|  | case ZeroCompare::LESExt: { | 
|  | if (Is32Bit) { | 
|  | // Upper 32 bits cannot be undefined for this sequence. | 
|  | LHS = signExtendInputIfNeeded(LHS); | 
|  | SDValue Neg = | 
|  | SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); | 
|  | ToExtend = | 
|  | SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, | 
|  | Neg, S->getI64Imm(1, dl), | 
|  | S->getI64Imm(63, dl)), 0); | 
|  | } else { | 
|  | SDValue Addi = | 
|  | SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, | 
|  | S->getI64Imm(~0ULL, dl)), 0); | 
|  | ToExtend = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64, | 
|  | Addi, LHS), 0); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // For 64-bit sequences, the extensions are the same for the GE/LE cases. | 
|  | if (!Is32Bit && | 
|  | (CmpTy == ZeroCompare::GEZExt || CmpTy == ZeroCompare::LEZExt)) | 
|  | return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, | 
|  | ToExtend, S->getI64Imm(1, dl), | 
|  | S->getI64Imm(63, dl)), 0); | 
|  | if (!Is32Bit && | 
|  | (CmpTy == ZeroCompare::GESExt || CmpTy == ZeroCompare::LESExt)) | 
|  | return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, ToExtend, | 
|  | S->getI64Imm(63, dl)), 0); | 
|  |  | 
|  | assert(Is32Bit && "Should have handled the 32-bit sequences above."); | 
|  | // For 32-bit sequences, the extensions differ between GE/LE cases. | 
|  | switch (CmpTy) { | 
|  | case ZeroCompare::GEZExt: { | 
|  | SDValue ShiftOps[] = { ToExtend, S->getI32Imm(1, dl), S->getI32Imm(31, dl), | 
|  | S->getI32Imm(31, dl) }; | 
|  | return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, | 
|  | ShiftOps), 0); | 
|  | } | 
|  | case ZeroCompare::GESExt: | 
|  | return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, ToExtend, | 
|  | S->getI32Imm(31, dl)), 0); | 
|  | case ZeroCompare::LEZExt: | 
|  | return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, ToExtend, | 
|  | S->getI32Imm(1, dl)), 0); | 
|  | case ZeroCompare::LESExt: | 
|  | return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, ToExtend, | 
|  | S->getI32Imm(-1, dl)), 0); | 
|  | } | 
|  |  | 
|  | // The above case covers all the enumerators so it can't have a default clause | 
|  | // to avoid compiler warnings. | 
|  | llvm_unreachable("Unknown zero-comparison type."); | 
|  | } | 
|  |  | 
|  | /// Produces a zero-extended result of comparing two 32-bit values according to | 
|  | /// the passed condition code. | 
|  | SDValue | 
|  | IntegerCompareEliminator::get32BitZExtCompare(SDValue LHS, SDValue RHS, | 
|  | ISD::CondCode CC, | 
|  | int64_t RHSValue, SDLoc dl) { | 
|  | if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 || | 
|  | CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Sext) | 
|  | return SDValue(); | 
|  | bool IsRHSZero = RHSValue == 0; | 
|  | bool IsRHSOne = RHSValue == 1; | 
|  | bool IsRHSNegOne = RHSValue == -1LL; | 
|  | switch (CC) { | 
|  | default: return SDValue(); | 
|  | case ISD::SETEQ: { | 
|  | // (zext (setcc %a, %b, seteq)) -> (lshr (cntlzw (xor %a, %b)), 5) | 
|  | // (zext (setcc %a, 0, seteq))  -> (lshr (cntlzw %a), 5) | 
|  | SDValue Xor = IsRHSZero ? LHS : | 
|  | SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); | 
|  | SDValue Clz = | 
|  | SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); | 
|  | SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), | 
|  | S->getI32Imm(31, dl) }; | 
|  | return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, | 
|  | ShiftOps), 0); | 
|  | } | 
|  | case ISD::SETNE: { | 
|  | // (zext (setcc %a, %b, setne)) -> (xor (lshr (cntlzw (xor %a, %b)), 5), 1) | 
|  | // (zext (setcc %a, 0, setne))  -> (xor (lshr (cntlzw %a), 5), 1) | 
|  | SDValue Xor = IsRHSZero ? LHS : | 
|  | SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); | 
|  | SDValue Clz = | 
|  | SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); | 
|  | SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), | 
|  | S->getI32Imm(31, dl) }; | 
|  | SDValue Shift = | 
|  | SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0); | 
|  | return SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift, | 
|  | S->getI32Imm(1, dl)), 0); | 
|  | } | 
|  | case ISD::SETGE: { | 
|  | // (zext (setcc %a, %b, setge)) -> (xor (lshr (sub %a, %b), 63), 1) | 
|  | // (zext (setcc %a, 0, setge))  -> (lshr (~ %a), 31) | 
|  | if(IsRHSZero) | 
|  | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); | 
|  |  | 
|  | // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a) | 
|  | // by swapping inputs and falling through. | 
|  | std::swap(LHS, RHS); | 
|  | ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); | 
|  | IsRHSZero = RHSConst && RHSConst->isNullValue(); | 
|  | LLVM_FALLTHROUGH; | 
|  | } | 
|  | case ISD::SETLE: { | 
|  | if (CmpInGPR == ICGPR_NonExtIn) | 
|  | return SDValue(); | 
|  | // (zext (setcc %a, %b, setle)) -> (xor (lshr (sub %b, %a), 63), 1) | 
|  | // (zext (setcc %a, 0, setle))  -> (xor (lshr (- %a), 63), 1) | 
|  | if(IsRHSZero) { | 
|  | if (CmpInGPR == ICGPR_NonExtIn) | 
|  | return SDValue(); | 
|  | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); | 
|  | } | 
|  |  | 
|  | // The upper 32-bits of the register can't be undefined for this sequence. | 
|  | LHS = signExtendInputIfNeeded(LHS); | 
|  | RHS = signExtendInputIfNeeded(RHS); | 
|  | SDValue Sub = | 
|  | SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); | 
|  | SDValue Shift = | 
|  | SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Sub, | 
|  | S->getI64Imm(1, dl), S->getI64Imm(63, dl)), | 
|  | 0); | 
|  | return | 
|  | SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, | 
|  | MVT::i64, Shift, S->getI32Imm(1, dl)), 0); | 
|  | } | 
|  | case ISD::SETGT: { | 
|  | // (zext (setcc %a, %b, setgt)) -> (lshr (sub %b, %a), 63) | 
|  | // (zext (setcc %a, -1, setgt)) -> (lshr (~ %a), 31) | 
|  | // (zext (setcc %a, 0, setgt))  -> (lshr (- %a), 63) | 
|  | // Handle SETLT -1 (which is equivalent to SETGE 0). | 
|  | if (IsRHSNegOne) | 
|  | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); | 
|  |  | 
|  | if (IsRHSZero) { | 
|  | if (CmpInGPR == ICGPR_NonExtIn) | 
|  | return SDValue(); | 
|  | // The upper 32-bits of the register can't be undefined for this sequence. | 
|  | LHS = signExtendInputIfNeeded(LHS); | 
|  | RHS = signExtendInputIfNeeded(RHS); | 
|  | SDValue Neg = | 
|  | SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); | 
|  | return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, | 
|  | Neg, S->getI32Imm(1, dl), S->getI32Imm(63, dl)), 0); | 
|  | } | 
|  | // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as | 
|  | // (%b < %a) by swapping inputs and falling through. | 
|  | std::swap(LHS, RHS); | 
|  | ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); | 
|  | IsRHSZero = RHSConst && RHSConst->isNullValue(); | 
|  | IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; | 
|  | LLVM_FALLTHROUGH; | 
|  | } | 
|  | case ISD::SETLT: { | 
|  | // (zext (setcc %a, %b, setlt)) -> (lshr (sub %a, %b), 63) | 
|  | // (zext (setcc %a, 1, setlt))  -> (xor (lshr (- %a), 63), 1) | 
|  | // (zext (setcc %a, 0, setlt))  -> (lshr %a, 31) | 
|  | // Handle SETLT 1 (which is equivalent to SETLE 0). | 
|  | if (IsRHSOne) { | 
|  | if (CmpInGPR == ICGPR_NonExtIn) | 
|  | return SDValue(); | 
|  | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); | 
|  | } | 
|  |  | 
|  | if (IsRHSZero) { | 
|  | SDValue ShiftOps[] = { LHS, S->getI32Imm(1, dl), S->getI32Imm(31, dl), | 
|  | S->getI32Imm(31, dl) }; | 
|  | return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, | 
|  | ShiftOps), 0); | 
|  | } | 
|  |  | 
|  | if (CmpInGPR == ICGPR_NonExtIn) | 
|  | return SDValue(); | 
|  | // The upper 32-bits of the register can't be undefined for this sequence. | 
|  | LHS = signExtendInputIfNeeded(LHS); | 
|  | RHS = signExtendInputIfNeeded(RHS); | 
|  | SDValue SUBFNode = | 
|  | SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); | 
|  | return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, | 
|  | SUBFNode, S->getI64Imm(1, dl), | 
|  | S->getI64Imm(63, dl)), 0); | 
|  | } | 
|  | case ISD::SETUGE: | 
|  | // (zext (setcc %a, %b, setuge)) -> (xor (lshr (sub %b, %a), 63), 1) | 
|  | // (zext (setcc %a, %b, setule)) -> (xor (lshr (sub %a, %b), 63), 1) | 
|  | std::swap(LHS, RHS); | 
|  | LLVM_FALLTHROUGH; | 
|  | case ISD::SETULE: { | 
|  | if (CmpInGPR == ICGPR_NonExtIn) | 
|  | return SDValue(); | 
|  | // The upper 32-bits of the register can't be undefined for this sequence. | 
|  | LHS = zeroExtendInputIfNeeded(LHS); | 
|  | RHS = zeroExtendInputIfNeeded(RHS); | 
|  | SDValue Subtract = | 
|  | SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); | 
|  | SDValue SrdiNode = | 
|  | SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, | 
|  | Subtract, S->getI64Imm(1, dl), | 
|  | S->getI64Imm(63, dl)), 0); | 
|  | return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, SrdiNode, | 
|  | S->getI32Imm(1, dl)), 0); | 
|  | } | 
|  | case ISD::SETUGT: | 
|  | // (zext (setcc %a, %b, setugt)) -> (lshr (sub %b, %a), 63) | 
|  | // (zext (setcc %a, %b, setult)) -> (lshr (sub %a, %b), 63) | 
|  | std::swap(LHS, RHS); | 
|  | LLVM_FALLTHROUGH; | 
|  | case ISD::SETULT: { | 
|  | if (CmpInGPR == ICGPR_NonExtIn) | 
|  | return SDValue(); | 
|  | // The upper 32-bits of the register can't be undefined for this sequence. | 
|  | LHS = zeroExtendInputIfNeeded(LHS); | 
|  | RHS = zeroExtendInputIfNeeded(RHS); | 
|  | SDValue Subtract = | 
|  | SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); | 
|  | return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, | 
|  | Subtract, S->getI64Imm(1, dl), | 
|  | S->getI64Imm(63, dl)), 0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Produces a sign-extended result of comparing two 32-bit values according to | 
|  | /// the passed condition code. | 
|  | SDValue | 
|  | IntegerCompareEliminator::get32BitSExtCompare(SDValue LHS, SDValue RHS, | 
|  | ISD::CondCode CC, | 
|  | int64_t RHSValue, SDLoc dl) { | 
|  | if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 || | 
|  | CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Zext) | 
|  | return SDValue(); | 
|  | bool IsRHSZero = RHSValue == 0; | 
|  | bool IsRHSOne = RHSValue == 1; | 
|  | bool IsRHSNegOne = RHSValue == -1LL; | 
|  |  | 
|  | switch (CC) { | 
|  | default: return SDValue(); | 
|  | case ISD::SETEQ: { | 
|  | // (sext (setcc %a, %b, seteq)) -> | 
|  | //   (ashr (shl (ctlz (xor %a, %b)), 58), 63) | 
|  | // (sext (setcc %a, 0, seteq)) -> | 
|  | //   (ashr (shl (ctlz %a), 58), 63) | 
|  | SDValue CountInput = IsRHSZero ? LHS : | 
|  | SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); | 
|  | SDValue Cntlzw = | 
|  | SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, CountInput), 0); | 
|  | SDValue SHLOps[] = { Cntlzw, S->getI32Imm(27, dl), | 
|  | S->getI32Imm(5, dl), S->getI32Imm(31, dl) }; | 
|  | SDValue Slwi = | 
|  | SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, SHLOps), 0); | 
|  | return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Slwi), 0); | 
|  | } | 
|  | case ISD::SETNE: { | 
|  | // Bitwise xor the operands, count leading zeros, shift right by 5 bits and | 
|  | // flip the bit, finally take 2's complement. | 
|  | // (sext (setcc %a, %b, setne)) -> | 
|  | //   (neg (xor (lshr (ctlz (xor %a, %b)), 5), 1)) | 
|  | // Same as above, but the first xor is not needed. | 
|  | // (sext (setcc %a, 0, setne)) -> | 
|  | //   (neg (xor (lshr (ctlz %a), 5), 1)) | 
|  | SDValue Xor = IsRHSZero ? LHS : | 
|  | SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0); | 
|  | SDValue Clz = | 
|  | SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0); | 
|  | SDValue ShiftOps[] = | 
|  | { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), S->getI32Imm(31, dl) }; | 
|  | SDValue Shift = | 
|  | SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0); | 
|  | SDValue Xori = | 
|  | SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift, | 
|  | S->getI32Imm(1, dl)), 0); | 
|  | return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Xori), 0); | 
|  | } | 
|  | case ISD::SETGE: { | 
|  | // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %a, %b), 63), -1) | 
|  | // (sext (setcc %a, 0, setge))  -> (ashr (~ %a), 31) | 
|  | if (IsRHSZero) | 
|  | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); | 
|  |  | 
|  | // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a) | 
|  | // by swapping inputs and falling through. | 
|  | std::swap(LHS, RHS); | 
|  | ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); | 
|  | IsRHSZero = RHSConst && RHSConst->isNullValue(); | 
|  | LLVM_FALLTHROUGH; | 
|  | } | 
|  | case ISD::SETLE: { | 
|  | if (CmpInGPR == ICGPR_NonExtIn) | 
|  | return SDValue(); | 
|  | // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %b, %a), 63), -1) | 
|  | // (sext (setcc %a, 0, setle))  -> (add (lshr (- %a), 63), -1) | 
|  | if (IsRHSZero) | 
|  | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); | 
|  |  | 
|  | // The upper 32-bits of the register can't be undefined for this sequence. | 
|  | LHS = signExtendInputIfNeeded(LHS); | 
|  | RHS = signExtendInputIfNeeded(RHS); | 
|  | SDValue SUBFNode = | 
|  | SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, MVT::Glue, | 
|  | LHS, RHS), 0); | 
|  | SDValue Srdi = | 
|  | SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, | 
|  | SUBFNode, S->getI64Imm(1, dl), | 
|  | S->getI64Imm(63, dl)), 0); | 
|  | return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Srdi, | 
|  | S->getI32Imm(-1, dl)), 0); | 
|  | } | 
|  | case ISD::SETGT: { | 
|  | // (sext (setcc %a, %b, setgt)) -> (ashr (sub %b, %a), 63) | 
|  | // (sext (setcc %a, -1, setgt)) -> (ashr (~ %a), 31) | 
|  | // (sext (setcc %a, 0, setgt))  -> (ashr (- %a), 63) | 
|  | if (IsRHSNegOne) | 
|  | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); | 
|  | if (IsRHSZero) { | 
|  | if (CmpInGPR == ICGPR_NonExtIn) | 
|  | return SDValue(); | 
|  | // The upper 32-bits of the register can't be undefined for this sequence. | 
|  | LHS = signExtendInputIfNeeded(LHS); | 
|  | RHS = signExtendInputIfNeeded(RHS); | 
|  | SDValue Neg = | 
|  | SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0); | 
|  | return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Neg, | 
|  | S->getI64Imm(63, dl)), 0); | 
|  | } | 
|  | // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as | 
|  | // (%b < %a) by swapping inputs and falling through. | 
|  | std::swap(LHS, RHS); | 
|  | ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); | 
|  | IsRHSZero = RHSConst && RHSConst->isNullValue(); | 
|  | IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; | 
|  | LLVM_FALLTHROUGH; | 
|  | } | 
|  | case ISD::SETLT: { | 
|  | // (sext (setcc %a, %b, setgt)) -> (ashr (sub %a, %b), 63) | 
|  | // (sext (setcc %a, 1, setgt))  -> (add (lshr (- %a), 63), -1) | 
|  | // (sext (setcc %a, 0, setgt))  -> (ashr %a, 31) | 
|  | if (IsRHSOne) { | 
|  | if (CmpInGPR == ICGPR_NonExtIn) | 
|  | return SDValue(); | 
|  | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); | 
|  | } | 
|  | if (IsRHSZero) | 
|  | return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, LHS, | 
|  | S->getI32Imm(31, dl)), 0); | 
|  |  | 
|  | if (CmpInGPR == ICGPR_NonExtIn) | 
|  | return SDValue(); | 
|  | // The upper 32-bits of the register can't be undefined for this sequence. | 
|  | LHS = signExtendInputIfNeeded(LHS); | 
|  | RHS = signExtendInputIfNeeded(RHS); | 
|  | SDValue SUBFNode = | 
|  | SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); | 
|  | return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, | 
|  | SUBFNode, S->getI64Imm(63, dl)), 0); | 
|  | } | 
|  | case ISD::SETUGE: | 
|  | // (sext (setcc %a, %b, setuge)) -> (add (lshr (sub %a, %b), 63), -1) | 
|  | // (sext (setcc %a, %b, setule)) -> (add (lshr (sub %b, %a), 63), -1) | 
|  | std::swap(LHS, RHS); | 
|  | LLVM_FALLTHROUGH; | 
|  | case ISD::SETULE: { | 
|  | if (CmpInGPR == ICGPR_NonExtIn) | 
|  | return SDValue(); | 
|  | // The upper 32-bits of the register can't be undefined for this sequence. | 
|  | LHS = zeroExtendInputIfNeeded(LHS); | 
|  | RHS = zeroExtendInputIfNeeded(RHS); | 
|  | SDValue Subtract = | 
|  | SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0); | 
|  | SDValue Shift = | 
|  | SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Subtract, | 
|  | S->getI32Imm(1, dl), S->getI32Imm(63,dl)), | 
|  | 0); | 
|  | return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Shift, | 
|  | S->getI32Imm(-1, dl)), 0); | 
|  | } | 
|  | case ISD::SETUGT: | 
|  | // (sext (setcc %a, %b, setugt)) -> (ashr (sub %b, %a), 63) | 
|  | // (sext (setcc %a, %b, setugt)) -> (ashr (sub %a, %b), 63) | 
|  | std::swap(LHS, RHS); | 
|  | LLVM_FALLTHROUGH; | 
|  | case ISD::SETULT: { | 
|  | if (CmpInGPR == ICGPR_NonExtIn) | 
|  | return SDValue(); | 
|  | // The upper 32-bits of the register can't be undefined for this sequence. | 
|  | LHS = zeroExtendInputIfNeeded(LHS); | 
|  | RHS = zeroExtendInputIfNeeded(RHS); | 
|  | SDValue Subtract = | 
|  | SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0); | 
|  | return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, | 
|  | Subtract, S->getI64Imm(63, dl)), 0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Produces a zero-extended result of comparing two 64-bit values according to | 
|  | /// the passed condition code. | 
|  | SDValue | 
|  | IntegerCompareEliminator::get64BitZExtCompare(SDValue LHS, SDValue RHS, | 
|  | ISD::CondCode CC, | 
|  | int64_t RHSValue, SDLoc dl) { | 
|  | if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 || | 
|  | CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Sext) | 
|  | return SDValue(); | 
|  | bool IsRHSZero = RHSValue == 0; | 
|  | bool IsRHSOne = RHSValue == 1; | 
|  | bool IsRHSNegOne = RHSValue == -1LL; | 
|  | switch (CC) { | 
|  | default: return SDValue(); | 
|  | case ISD::SETEQ: { | 
|  | // (zext (setcc %a, %b, seteq)) -> (lshr (ctlz (xor %a, %b)), 6) | 
|  | // (zext (setcc %a, 0, seteq)) ->  (lshr (ctlz %a), 6) | 
|  | SDValue Xor = IsRHSZero ? LHS : | 
|  | SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); | 
|  | SDValue Clz = | 
|  | SDValue(CurDAG->getMachineNode(PPC::CNTLZD, dl, MVT::i64, Xor), 0); | 
|  | return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Clz, | 
|  | S->getI64Imm(58, dl), | 
|  | S->getI64Imm(63, dl)), 0); | 
|  | } | 
|  | case ISD::SETNE: { | 
|  | // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1) | 
|  | // (zext (setcc %a, %b, setne)) -> (sube addc.reg, addc.reg, addc.CA) | 
|  | // {addcz.reg, addcz.CA} = (addcarry %a, -1) | 
|  | // (zext (setcc %a, 0, setne)) -> (sube addcz.reg, addcz.reg, addcz.CA) | 
|  | SDValue Xor = IsRHSZero ? LHS : | 
|  | SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); | 
|  | SDValue AC = | 
|  | SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue, | 
|  | Xor, S->getI32Imm(~0U, dl)), 0); | 
|  | return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, AC, | 
|  | Xor, AC.getValue(1)), 0); | 
|  | } | 
|  | case ISD::SETGE: { | 
|  | // {subc.reg, subc.CA} = (subcarry %a, %b) | 
|  | // (zext (setcc %a, %b, setge)) -> | 
|  | //   (adde (lshr %b, 63), (ashr %a, 63), subc.CA) | 
|  | // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 63) | 
|  | if (IsRHSZero) | 
|  | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); | 
|  | std::swap(LHS, RHS); | 
|  | ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); | 
|  | IsRHSZero = RHSConst && RHSConst->isNullValue(); | 
|  | LLVM_FALLTHROUGH; | 
|  | } | 
|  | case ISD::SETLE: { | 
|  | // {subc.reg, subc.CA} = (subcarry %b, %a) | 
|  | // (zext (setcc %a, %b, setge)) -> | 
|  | //   (adde (lshr %a, 63), (ashr %b, 63), subc.CA) | 
|  | // (zext (setcc %a, 0, setge)) -> (lshr (or %a, (add %a, -1)), 63) | 
|  | if (IsRHSZero) | 
|  | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); | 
|  | SDValue ShiftL = | 
|  | SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, | 
|  | S->getI64Imm(1, dl), | 
|  | S->getI64Imm(63, dl)), 0); | 
|  | SDValue ShiftR = | 
|  | SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS, | 
|  | S->getI64Imm(63, dl)), 0); | 
|  | SDValue SubtractCarry = | 
|  | SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, | 
|  | LHS, RHS), 1); | 
|  | return SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, | 
|  | ShiftR, ShiftL, SubtractCarry), 0); | 
|  | } | 
|  | case ISD::SETGT: { | 
|  | // {subc.reg, subc.CA} = (subcarry %b, %a) | 
|  | // (zext (setcc %a, %b, setgt)) -> | 
|  | //   (xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1) | 
|  | // (zext (setcc %a, 0, setgt)) -> (lshr (nor (add %a, -1), %a), 63) | 
|  | if (IsRHSNegOne) | 
|  | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt); | 
|  | if (IsRHSZero) { | 
|  | SDValue Addi = | 
|  | SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, | 
|  | S->getI64Imm(~0ULL, dl)), 0); | 
|  | SDValue Nor = | 
|  | SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Addi, LHS), 0); | 
|  | return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Nor, | 
|  | S->getI64Imm(1, dl), | 
|  | S->getI64Imm(63, dl)), 0); | 
|  | } | 
|  | std::swap(LHS, RHS); | 
|  | ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); | 
|  | IsRHSZero = RHSConst && RHSConst->isNullValue(); | 
|  | IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; | 
|  | LLVM_FALLTHROUGH; | 
|  | } | 
|  | case ISD::SETLT: { | 
|  | // {subc.reg, subc.CA} = (subcarry %a, %b) | 
|  | // (zext (setcc %a, %b, setlt)) -> | 
|  | //   (xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1) | 
|  | // (zext (setcc %a, 0, setlt)) -> (lshr %a, 63) | 
|  | if (IsRHSOne) | 
|  | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt); | 
|  | if (IsRHSZero) | 
|  | return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, | 
|  | S->getI64Imm(1, dl), | 
|  | S->getI64Imm(63, dl)), 0); | 
|  | SDValue SRADINode = | 
|  | SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, | 
|  | LHS, S->getI64Imm(63, dl)), 0); | 
|  | SDValue SRDINode = | 
|  | SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, | 
|  | RHS, S->getI64Imm(1, dl), | 
|  | S->getI64Imm(63, dl)), 0); | 
|  | SDValue SUBFC8Carry = | 
|  | SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, | 
|  | RHS, LHS), 1); | 
|  | SDValue ADDE8Node = | 
|  | SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, | 
|  | SRDINode, SRADINode, SUBFC8Carry), 0); | 
|  | return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, | 
|  | ADDE8Node, S->getI64Imm(1, dl)), 0); | 
|  | } | 
|  | case ISD::SETUGE: | 
|  | // {subc.reg, subc.CA} = (subcarry %a, %b) | 
|  | // (zext (setcc %a, %b, setuge)) -> (add (sube %b, %b, subc.CA), 1) | 
|  | std::swap(LHS, RHS); | 
|  | LLVM_FALLTHROUGH; | 
|  | case ISD::SETULE: { | 
|  | // {subc.reg, subc.CA} = (subcarry %b, %a) | 
|  | // (zext (setcc %a, %b, setule)) -> (add (sube %a, %a, subc.CA), 1) | 
|  | SDValue SUBFC8Carry = | 
|  | SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, | 
|  | LHS, RHS), 1); | 
|  | SDValue SUBFE8Node = | 
|  | SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, | 
|  | LHS, LHS, SUBFC8Carry), 0); | 
|  | return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, | 
|  | SUBFE8Node, S->getI64Imm(1, dl)), 0); | 
|  | } | 
|  | case ISD::SETUGT: | 
|  | // {subc.reg, subc.CA} = (subcarry %b, %a) | 
|  | // (zext (setcc %a, %b, setugt)) -> -(sube %b, %b, subc.CA) | 
|  | std::swap(LHS, RHS); | 
|  | LLVM_FALLTHROUGH; | 
|  | case ISD::SETULT: { | 
|  | // {subc.reg, subc.CA} = (subcarry %a, %b) | 
|  | // (zext (setcc %a, %b, setult)) -> -(sube %a, %a, subc.CA) | 
|  | SDValue SubtractCarry = | 
|  | SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, | 
|  | RHS, LHS), 1); | 
|  | SDValue ExtSub = | 
|  | SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, | 
|  | LHS, LHS, SubtractCarry), 0); | 
|  | return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, | 
|  | ExtSub), 0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Produces a sign-extended result of comparing two 64-bit values according to | 
|  | /// the passed condition code. | 
|  | SDValue | 
|  | IntegerCompareEliminator::get64BitSExtCompare(SDValue LHS, SDValue RHS, | 
|  | ISD::CondCode CC, | 
|  | int64_t RHSValue, SDLoc dl) { | 
|  | if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 || | 
|  | CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Zext) | 
|  | return SDValue(); | 
|  | bool IsRHSZero = RHSValue == 0; | 
|  | bool IsRHSOne = RHSValue == 1; | 
|  | bool IsRHSNegOne = RHSValue == -1LL; | 
|  | switch (CC) { | 
|  | default: return SDValue(); | 
|  | case ISD::SETEQ: { | 
|  | // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1) | 
|  | // (sext (setcc %a, %b, seteq)) -> (sube addc.reg, addc.reg, addc.CA) | 
|  | // {addcz.reg, addcz.CA} = (addcarry %a, -1) | 
|  | // (sext (setcc %a, 0, seteq)) -> (sube addcz.reg, addcz.reg, addcz.CA) | 
|  | SDValue AddInput = IsRHSZero ? LHS : | 
|  | SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); | 
|  | SDValue Addic = | 
|  | SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue, | 
|  | AddInput, S->getI32Imm(~0U, dl)), 0); | 
|  | return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, Addic, | 
|  | Addic, Addic.getValue(1)), 0); | 
|  | } | 
|  | case ISD::SETNE: { | 
|  | // {subfc.reg, subfc.CA} = (subcarry 0, (xor %a, %b)) | 
|  | // (sext (setcc %a, %b, setne)) -> (sube subfc.reg, subfc.reg, subfc.CA) | 
|  | // {subfcz.reg, subfcz.CA} = (subcarry 0, %a) | 
|  | // (sext (setcc %a, 0, setne)) -> (sube subfcz.reg, subfcz.reg, subfcz.CA) | 
|  | SDValue Xor = IsRHSZero ? LHS : | 
|  | SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0); | 
|  | SDValue SC = | 
|  | SDValue(CurDAG->getMachineNode(PPC::SUBFIC8, dl, MVT::i64, MVT::Glue, | 
|  | Xor, S->getI32Imm(0, dl)), 0); | 
|  | return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, SC, | 
|  | SC, SC.getValue(1)), 0); | 
|  | } | 
|  | case ISD::SETGE: { | 
|  | // {subc.reg, subc.CA} = (subcarry %a, %b) | 
|  | // (zext (setcc %a, %b, setge)) -> | 
|  | //   (- (adde (lshr %b, 63), (ashr %a, 63), subc.CA)) | 
|  | // (zext (setcc %a, 0, setge)) -> (~ (ashr %a, 63)) | 
|  | if (IsRHSZero) | 
|  | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); | 
|  | std::swap(LHS, RHS); | 
|  | ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); | 
|  | IsRHSZero = RHSConst && RHSConst->isNullValue(); | 
|  | LLVM_FALLTHROUGH; | 
|  | } | 
|  | case ISD::SETLE: { | 
|  | // {subc.reg, subc.CA} = (subcarry %b, %a) | 
|  | // (zext (setcc %a, %b, setge)) -> | 
|  | //   (- (adde (lshr %a, 63), (ashr %b, 63), subc.CA)) | 
|  | // (zext (setcc %a, 0, setge)) -> (ashr (or %a, (add %a, -1)), 63) | 
|  | if (IsRHSZero) | 
|  | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); | 
|  | SDValue ShiftR = | 
|  | SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS, | 
|  | S->getI64Imm(63, dl)), 0); | 
|  | SDValue ShiftL = | 
|  | SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS, | 
|  | S->getI64Imm(1, dl), | 
|  | S->getI64Imm(63, dl)), 0); | 
|  | SDValue SubtractCarry = | 
|  | SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, | 
|  | LHS, RHS), 1); | 
|  | SDValue Adde = | 
|  | SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue, | 
|  | ShiftR, ShiftL, SubtractCarry), 0); | 
|  | return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, Adde), 0); | 
|  | } | 
|  | case ISD::SETGT: { | 
|  | // {subc.reg, subc.CA} = (subcarry %b, %a) | 
|  | // (zext (setcc %a, %b, setgt)) -> | 
|  | //   -(xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1) | 
|  | // (zext (setcc %a, 0, setgt)) -> (ashr (nor (add %a, -1), %a), 63) | 
|  | if (IsRHSNegOne) | 
|  | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt); | 
|  | if (IsRHSZero) { | 
|  | SDValue Add = | 
|  | SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS, | 
|  | S->getI64Imm(-1, dl)), 0); | 
|  | SDValue Nor = | 
|  | SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Add, LHS), 0); | 
|  | return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Nor, | 
|  | S->getI64Imm(63, dl)), 0); | 
|  | } | 
|  | std::swap(LHS, RHS); | 
|  | ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); | 
|  | IsRHSZero = RHSConst && RHSConst->isNullValue(); | 
|  | IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1; | 
|  | LLVM_FALLTHROUGH; | 
|  | } | 
|  | case ISD::SETLT: { | 
|  | // {subc.reg, subc.CA} = (subcarry %a, %b) | 
|  | // (zext (setcc %a, %b, setlt)) -> | 
|  | //   -(xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1) | 
|  | // (zext (setcc %a, 0, setlt)) -> (ashr %a, 63) | 
|  | if (IsRHSOne) | 
|  | return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt); | 
|  | if (IsRHSZero) { | 
|  | return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, LHS, | 
|  | S->getI64Imm(63, dl)), 0); | 
|  | } | 
|  | SDValue SRADINode = | 
|  | SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, | 
|  | LHS, S->getI64Imm(63, dl)), 0); | 
|  | SDValue SRDINode = | 
|  | SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, | 
|  | RHS, S->getI64Imm(1, dl), | 
|  | S->getI64Imm(63, dl)), 0); | 
|  | SDValue SUBFC8Carry = | 
|  | SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, | 
|  | RHS, LHS), 1); | 
|  | SDValue ADDE8Node = | 
|  | SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, | 
|  | SRDINode, SRADINode, SUBFC8Carry), 0); | 
|  | SDValue XORI8Node = | 
|  | SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, | 
|  | ADDE8Node, S->getI64Imm(1, dl)), 0); | 
|  | return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, | 
|  | XORI8Node), 0); | 
|  | } | 
|  | case ISD::SETUGE: | 
|  | // {subc.reg, subc.CA} = (subcarry %a, %b) | 
|  | // (sext (setcc %a, %b, setuge)) -> ~(sube %b, %b, subc.CA) | 
|  | std::swap(LHS, RHS); | 
|  | LLVM_FALLTHROUGH; | 
|  | case ISD::SETULE: { | 
|  | // {subc.reg, subc.CA} = (subcarry %b, %a) | 
|  | // (sext (setcc %a, %b, setule)) -> ~(sube %a, %a, subc.CA) | 
|  | SDValue SubtractCarry = | 
|  | SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, | 
|  | LHS, RHS), 1); | 
|  | SDValue ExtSub = | 
|  | SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, LHS, | 
|  | LHS, SubtractCarry), 0); | 
|  | return SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, | 
|  | ExtSub, ExtSub), 0); | 
|  | } | 
|  | case ISD::SETUGT: | 
|  | // {subc.reg, subc.CA} = (subcarry %b, %a) | 
|  | // (sext (setcc %a, %b, setugt)) -> (sube %b, %b, subc.CA) | 
|  | std::swap(LHS, RHS); | 
|  | LLVM_FALLTHROUGH; | 
|  | case ISD::SETULT: { | 
|  | // {subc.reg, subc.CA} = (subcarry %a, %b) | 
|  | // (sext (setcc %a, %b, setult)) -> (sube %a, %a, subc.CA) | 
|  | SDValue SubCarry = | 
|  | SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue, | 
|  | RHS, LHS), 1); | 
|  | return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, | 
|  | LHS, LHS, SubCarry), 0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Do all uses of this SDValue need the result in a GPR? | 
|  | /// This is meant to be used on values that have type i1 since | 
|  | /// it is somewhat meaningless to ask if values of other types | 
|  | /// should be kept in GPR's. | 
|  | static bool allUsesExtend(SDValue Compare, SelectionDAG *CurDAG) { | 
|  | assert(Compare.getOpcode() == ISD::SETCC && | 
|  | "An ISD::SETCC node required here."); | 
|  |  | 
|  | // For values that have a single use, the caller should obviously already have | 
|  | // checked if that use is an extending use. We check the other uses here. | 
|  | if (Compare.hasOneUse()) | 
|  | return true; | 
|  | // We want the value in a GPR if it is being extended, used for a select, or | 
|  | // used in logical operations. | 
|  | for (auto CompareUse : Compare.getNode()->uses()) | 
|  | if (CompareUse->getOpcode() != ISD::SIGN_EXTEND && | 
|  | CompareUse->getOpcode() != ISD::ZERO_EXTEND && | 
|  | CompareUse->getOpcode() != ISD::SELECT && | 
|  | !isLogicOp(CompareUse->getOpcode())) { | 
|  | OmittedForNonExtendUses++; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Returns an equivalent of a SETCC node but with the result the same width as | 
|  | /// the inputs. This can also be used for SELECT_CC if either the true or false | 
|  | /// values is a power of two while the other is zero. | 
|  | SDValue IntegerCompareEliminator::getSETCCInGPR(SDValue Compare, | 
|  | SetccInGPROpts ConvOpts) { | 
|  | assert((Compare.getOpcode() == ISD::SETCC || | 
|  | Compare.getOpcode() == ISD::SELECT_CC) && | 
|  | "An ISD::SETCC node required here."); | 
|  |  | 
|  | // Don't convert this comparison to a GPR sequence because there are uses | 
|  | // of the i1 result (i.e. uses that require the result in the CR). | 
|  | if ((Compare.getOpcode() == ISD::SETCC) && !allUsesExtend(Compare, CurDAG)) | 
|  | return SDValue(); | 
|  |  | 
|  | SDValue LHS = Compare.getOperand(0); | 
|  | SDValue RHS = Compare.getOperand(1); | 
|  |  | 
|  | // The condition code is operand 2 for SETCC and operand 4 for SELECT_CC. | 
|  | int CCOpNum = Compare.getOpcode() == ISD::SELECT_CC ? 4 : 2; | 
|  | ISD::CondCode CC = | 
|  | cast<CondCodeSDNode>(Compare.getOperand(CCOpNum))->get(); | 
|  | EVT InputVT = LHS.getValueType(); | 
|  | if (InputVT != MVT::i32 && InputVT != MVT::i64) | 
|  | return SDValue(); | 
|  |  | 
|  | if (ConvOpts == SetccInGPROpts::ZExtInvert || | 
|  | ConvOpts == SetccInGPROpts::SExtInvert) | 
|  | CC = ISD::getSetCCInverse(CC, InputVT); | 
|  |  | 
|  | bool Inputs32Bit = InputVT == MVT::i32; | 
|  |  | 
|  | SDLoc dl(Compare); | 
|  | ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS); | 
|  | int64_t RHSValue = RHSConst ? RHSConst->getSExtValue() : INT64_MAX; | 
|  | bool IsSext = ConvOpts == SetccInGPROpts::SExtOrig || | 
|  | ConvOpts == SetccInGPROpts::SExtInvert; | 
|  |  | 
|  | if (IsSext && Inputs32Bit) | 
|  | return get32BitSExtCompare(LHS, RHS, CC, RHSValue, dl); | 
|  | else if (Inputs32Bit) | 
|  | return get32BitZExtCompare(LHS, RHS, CC, RHSValue, dl); | 
|  | else if (IsSext) | 
|  | return get64BitSExtCompare(LHS, RHS, CC, RHSValue, dl); | 
|  | return get64BitZExtCompare(LHS, RHS, CC, RHSValue, dl); | 
|  | } | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | bool PPCDAGToDAGISel::tryIntCompareInGPR(SDNode *N) { | 
|  | if (N->getValueType(0) != MVT::i32 && | 
|  | N->getValueType(0) != MVT::i64) | 
|  | return false; | 
|  |  | 
|  | // This optimization will emit code that assumes 64-bit registers | 
|  | // so we don't want to run it in 32-bit mode. Also don't run it | 
|  | // on functions that are not to be optimized. | 
|  | if (TM.getOptLevel() == CodeGenOpt::None || !TM.isPPC64()) | 
|  | return false; | 
|  |  | 
|  | switch (N->getOpcode()) { | 
|  | default: break; | 
|  | case ISD::ZERO_EXTEND: | 
|  | case ISD::SIGN_EXTEND: | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: { | 
|  | IntegerCompareEliminator ICmpElim(CurDAG, this); | 
|  | if (SDNode *New = ICmpElim.Select(N)) { | 
|  | ReplaceNode(N, New); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) { | 
|  | if (N->getValueType(0) != MVT::i32 && | 
|  | N->getValueType(0) != MVT::i64) | 
|  | return false; | 
|  |  | 
|  | if (!UseBitPermRewriter) | 
|  | return false; | 
|  |  | 
|  | switch (N->getOpcode()) { | 
|  | default: break; | 
|  | case ISD::ROTL: | 
|  | case ISD::SHL: | 
|  | case ISD::SRL: | 
|  | case ISD::AND: | 
|  | case ISD::OR: { | 
|  | BitPermutationSelector BPS(CurDAG); | 
|  | if (SDNode *New = BPS.Select(N)) { | 
|  | ReplaceNode(N, New); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// SelectCC - Select a comparison of the specified values with the specified | 
|  | /// condition code, returning the CR# of the expression. | 
|  | SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, | 
|  | const SDLoc &dl) { | 
|  | // Always select the LHS. | 
|  | unsigned Opc; | 
|  |  | 
|  | if (LHS.getValueType() == MVT::i32) { | 
|  | unsigned Imm; | 
|  | if (CC == ISD::SETEQ || CC == ISD::SETNE) { | 
|  | if (isInt32Immediate(RHS, Imm)) { | 
|  | // SETEQ/SETNE comparison with 16-bit immediate, fold it. | 
|  | if (isUInt<16>(Imm)) | 
|  | return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, | 
|  | getI32Imm(Imm & 0xFFFF, dl)), | 
|  | 0); | 
|  | // If this is a 16-bit signed immediate, fold it. | 
|  | if (isInt<16>((int)Imm)) | 
|  | return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, | 
|  | getI32Imm(Imm & 0xFFFF, dl)), | 
|  | 0); | 
|  |  | 
|  | // For non-equality comparisons, the default code would materialize the | 
|  | // constant, then compare against it, like this: | 
|  | //   lis r2, 4660 | 
|  | //   ori r2, r2, 22136 | 
|  | //   cmpw cr0, r3, r2 | 
|  | // Since we are just comparing for equality, we can emit this instead: | 
|  | //   xoris r0,r3,0x1234 | 
|  | //   cmplwi cr0,r0,0x5678 | 
|  | //   beq cr0,L6 | 
|  | SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS, | 
|  | getI32Imm(Imm >> 16, dl)), 0); | 
|  | return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor, | 
|  | getI32Imm(Imm & 0xFFFF, dl)), 0); | 
|  | } | 
|  | Opc = PPC::CMPLW; | 
|  | } else if (ISD::isUnsignedIntSetCC(CC)) { | 
|  | if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm)) | 
|  | return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS, | 
|  | getI32Imm(Imm & 0xFFFF, dl)), 0); | 
|  | Opc = PPC::CMPLW; | 
|  | } else { | 
|  | int16_t SImm; | 
|  | if (isIntS16Immediate(RHS, SImm)) | 
|  | return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS, | 
|  | getI32Imm((int)SImm & 0xFFFF, | 
|  | dl)), | 
|  | 0); | 
|  | Opc = PPC::CMPW; | 
|  | } | 
|  | } else if (LHS.getValueType() == MVT::i64) { | 
|  | uint64_t Imm; | 
|  | if (CC == ISD::SETEQ || CC == ISD::SETNE) { | 
|  | if (isInt64Immediate(RHS.getNode(), Imm)) { | 
|  | // SETEQ/SETNE comparison with 16-bit immediate, fold it. | 
|  | if (isUInt<16>(Imm)) | 
|  | return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, | 
|  | getI32Imm(Imm & 0xFFFF, dl)), | 
|  | 0); | 
|  | // If this is a 16-bit signed immediate, fold it. | 
|  | if (isInt<16>(Imm)) | 
|  | return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, | 
|  | getI32Imm(Imm & 0xFFFF, dl)), | 
|  | 0); | 
|  |  | 
|  | // For non-equality comparisons, the default code would materialize the | 
|  | // constant, then compare against it, like this: | 
|  | //   lis r2, 4660 | 
|  | //   ori r2, r2, 22136 | 
|  | //   cmpd cr0, r3, r2 | 
|  | // Since we are just comparing for equality, we can emit this instead: | 
|  | //   xoris r0,r3,0x1234 | 
|  | //   cmpldi cr0,r0,0x5678 | 
|  | //   beq cr0,L6 | 
|  | if (isUInt<32>(Imm)) { | 
|  | SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS, | 
|  | getI64Imm(Imm >> 16, dl)), 0); | 
|  | return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor, | 
|  | getI64Imm(Imm & 0xFFFF, dl)), | 
|  | 0); | 
|  | } | 
|  | } | 
|  | Opc = PPC::CMPLD; | 
|  | } else if (ISD::isUnsignedIntSetCC(CC)) { | 
|  | if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm)) | 
|  | return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS, | 
|  | getI64Imm(Imm & 0xFFFF, dl)), 0); | 
|  | Opc = PPC::CMPLD; | 
|  | } else { | 
|  | int16_t SImm; | 
|  | if (isIntS16Immediate(RHS, SImm)) | 
|  | return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS, | 
|  | getI64Imm(SImm & 0xFFFF, dl)), | 
|  | 0); | 
|  | Opc = PPC::CMPD; | 
|  | } | 
|  | } else if (LHS.getValueType() == MVT::f32) { | 
|  | if (Subtarget->hasSPE()) { | 
|  | switch (CC) { | 
|  | default: | 
|  | case ISD::SETEQ: | 
|  | case ISD::SETNE: | 
|  | Opc = PPC::EFSCMPEQ; | 
|  | break; | 
|  | case ISD::SETLT: | 
|  | case ISD::SETGE: | 
|  | case ISD::SETOLT: | 
|  | case ISD::SETOGE: | 
|  | case ISD::SETULT: | 
|  | case ISD::SETUGE: | 
|  | Opc = PPC::EFSCMPLT; | 
|  | break; | 
|  | case ISD::SETGT: | 
|  | case ISD::SETLE: | 
|  | case ISD::SETOGT: | 
|  | case ISD::SETOLE: | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETULE: | 
|  | Opc = PPC::EFSCMPGT; | 
|  | break; | 
|  | } | 
|  | } else | 
|  | Opc = PPC::FCMPUS; | 
|  | } else if (LHS.getValueType() == MVT::f64) { | 
|  | if (Subtarget->hasSPE()) { | 
|  | switch (CC) { | 
|  | default: | 
|  | case ISD::SETEQ: | 
|  | case ISD::SETNE: | 
|  | Opc = PPC::EFDCMPEQ; | 
|  | break; | 
|  | case ISD::SETLT: | 
|  | case ISD::SETGE: | 
|  | case ISD::SETOLT: | 
|  | case ISD::SETOGE: | 
|  | case ISD::SETULT: | 
|  | case ISD::SETUGE: | 
|  | Opc = PPC::EFDCMPLT; | 
|  | break; | 
|  | case ISD::SETGT: | 
|  | case ISD::SETLE: | 
|  | case ISD::SETOGT: | 
|  | case ISD::SETOLE: | 
|  | case ISD::SETUGT: | 
|  | case ISD::SETULE: | 
|  | Opc = PPC::EFDCMPGT; | 
|  | break; | 
|  | } | 
|  | } else | 
|  | Opc = Subtarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD; | 
|  | } else { | 
|  | assert(LHS.getValueType() == MVT::f128 && "Unknown vt!"); | 
|  | assert(Subtarget->hasVSX() && "__float128 requires VSX"); | 
|  | Opc = PPC::XSCMPUQP; | 
|  | } | 
|  | return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0); | 
|  | } | 
|  |  | 
|  | static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC, const EVT &VT, | 
|  | const PPCSubtarget *Subtarget) { | 
|  | // For SPE instructions, the result is in GT bit of the CR | 
|  | bool UseSPE = Subtarget->hasSPE() && VT.isFloatingPoint(); | 
|  |  | 
|  | switch (CC) { | 
|  | case ISD::SETUEQ: | 
|  | case ISD::SETONE: | 
|  | case ISD::SETOLE: | 
|  | case ISD::SETOGE: | 
|  | llvm_unreachable("Should be lowered by legalize!"); | 
|  | default: llvm_unreachable("Unknown condition!"); | 
|  | case ISD::SETOEQ: | 
|  | case ISD::SETEQ: | 
|  | return UseSPE ? PPC::PRED_GT : PPC::PRED_EQ; | 
|  | case ISD::SETUNE: | 
|  | case ISD::SETNE: | 
|  | return UseSPE ? PPC::PRED_LE : PPC::PRED_NE; | 
|  | case ISD::SETOLT: | 
|  | case ISD::SETLT: | 
|  | return UseSPE ? PPC::PRED_GT : PPC::PRED_LT; | 
|  | case ISD::SETULE: | 
|  | case ISD::SETLE: | 
|  | return PPC::PRED_LE; | 
|  | case ISD::SETOGT: | 
|  | case ISD::SETGT: | 
|  | return PPC::PRED_GT; | 
|  | case ISD::SETUGE: | 
|  | case ISD::SETGE: | 
|  | return UseSPE ? PPC::PRED_LE : PPC::PRED_GE; | 
|  | case ISD::SETO:   return PPC::PRED_NU; | 
|  | case ISD::SETUO:  return PPC::PRED_UN; | 
|  | // These two are invalid for floating point.  Assume we have int. | 
|  | case ISD::SETULT: return PPC::PRED_LT; | 
|  | case ISD::SETUGT: return PPC::PRED_GT; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getCRIdxForSetCC - Return the index of the condition register field | 
|  | /// associated with the SetCC condition, and whether or not the field is | 
|  | /// treated as inverted.  That is, lt = 0; ge = 0 inverted. | 
|  | static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) { | 
|  | Invert = false; | 
|  | switch (CC) { | 
|  | default: llvm_unreachable("Unknown condition!"); | 
|  | case ISD::SETOLT: | 
|  | case ISD::SETLT:  return 0;                  // Bit #0 = SETOLT | 
|  | case ISD::SETOGT: | 
|  | case ISD::SETGT:  return 1;                  // Bit #1 = SETOGT | 
|  | case ISD::SETOEQ: | 
|  | case ISD::SETEQ:  return 2;                  // Bit #2 = SETOEQ | 
|  | case ISD::SETUO:  return 3;                  // Bit #3 = SETUO | 
|  | case ISD::SETUGE: | 
|  | case ISD::SETGE:  Invert = true; return 0;   // !Bit #0 = SETUGE | 
|  | case ISD::SETULE: | 
|  | case ISD::SETLE:  Invert = true; return 1;   // !Bit #1 = SETULE | 
|  | case ISD::SETUNE: | 
|  | case ISD::SETNE:  Invert = true; return 2;   // !Bit #2 = SETUNE | 
|  | case ISD::SETO:   Invert = true; return 3;   // !Bit #3 = SETO | 
|  | case ISD::SETUEQ: | 
|  | case ISD::SETOGE: | 
|  | case ISD::SETOLE: | 
|  | case ISD::SETONE: | 
|  | llvm_unreachable("Invalid branch code: should be expanded by legalize"); | 
|  | // These are invalid for floating point.  Assume integer. | 
|  | case ISD::SETULT: return 0; | 
|  | case ISD::SETUGT: return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // getVCmpInst: return the vector compare instruction for the specified | 
|  | // vector type and condition code. Since this is for altivec specific code, | 
|  | // only support the altivec types (v16i8, v8i16, v4i32, v2i64, and v4f32). | 
|  | static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC, | 
|  | bool HasVSX, bool &Swap, bool &Negate) { | 
|  | Swap = false; | 
|  | Negate = false; | 
|  |  | 
|  | if (VecVT.isFloatingPoint()) { | 
|  | /* Handle some cases by swapping input operands.  */ | 
|  | switch (CC) { | 
|  | case ISD::SETLE: CC = ISD::SETGE; Swap = true; break; | 
|  | case ISD::SETLT: CC = ISD::SETGT; Swap = true; break; | 
|  | case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break; | 
|  | case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break; | 
|  | case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break; | 
|  | case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break; | 
|  | default: break; | 
|  | } | 
|  | /* Handle some cases by negating the result.  */ | 
|  | switch (CC) { | 
|  | case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break; | 
|  | case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break; | 
|  | case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break; | 
|  | case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break; | 
|  | default: break; | 
|  | } | 
|  | /* We have instructions implementing the remaining cases.  */ | 
|  | switch (CC) { | 
|  | case ISD::SETEQ: | 
|  | case ISD::SETOEQ: | 
|  | if (VecVT == MVT::v4f32) | 
|  | return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP; | 
|  | else if (VecVT == MVT::v2f64) | 
|  | return PPC::XVCMPEQDP; | 
|  | break; | 
|  | case ISD::SETGT: | 
|  | case ISD::SETOGT: | 
|  | if (VecVT == MVT::v4f32) | 
|  | return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP; | 
|  | else if (VecVT == MVT::v2f64) | 
|  | return PPC::XVCMPGTDP; | 
|  | break; | 
|  | case ISD::SETGE: | 
|  | case ISD::SETOGE: | 
|  | if (VecVT == MVT::v4f32) | 
|  | return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP; | 
|  | else if (VecVT == MVT::v2f64) | 
|  | return PPC::XVCMPGEDP; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | llvm_unreachable("Invalid floating-point vector compare condition"); | 
|  | } else { | 
|  | /* Handle some cases by swapping input operands.  */ | 
|  | switch (CC) { | 
|  | case ISD::SETGE: CC = ISD::SETLE; Swap = true; break; | 
|  | case ISD::SETLT: CC = ISD::SETGT; Swap = true; break; | 
|  | case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break; | 
|  | case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break; | 
|  | default: break; | 
|  | } | 
|  | /* Handle some cases by negating the result.  */ | 
|  | switch (CC) { | 
|  | case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break; | 
|  | case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break; | 
|  | case ISD::SETLE: CC = ISD::SETGT; Negate = true; break; | 
|  | case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break; | 
|  | default: break; | 
|  | } | 
|  | /* We have instructions implementing the remaining cases.  */ | 
|  | switch (CC) { | 
|  | case ISD::SETEQ: | 
|  | case ISD::SETUEQ: | 
|  | if (VecVT == MVT::v16i8) | 
|  | return PPC::VCMPEQUB; | 
|  | else if (VecVT == MVT::v8i16) | 
|  | return PPC::VCMPEQUH; | 
|  | else if (VecVT == MVT::v4i32) | 
|  | return PPC::VCMPEQUW; | 
|  | else if (VecVT == MVT::v2i64) | 
|  | return PPC::VCMPEQUD; | 
|  | break; | 
|  | case ISD::SETGT: | 
|  | if (VecVT == MVT::v16i8) | 
|  | return PPC::VCMPGTSB; | 
|  | else if (VecVT == MVT::v8i16) | 
|  | return PPC::VCMPGTSH; | 
|  | else if (VecVT == MVT::v4i32) | 
|  | return PPC::VCMPGTSW; | 
|  | else if (VecVT == MVT::v2i64) | 
|  | return PPC::VCMPGTSD; | 
|  | break; | 
|  | case ISD::SETUGT: | 
|  | if (VecVT == MVT::v16i8) | 
|  | return PPC::VCMPGTUB; | 
|  | else if (VecVT == MVT::v8i16) | 
|  | return PPC::VCMPGTUH; | 
|  | else if (VecVT == MVT::v4i32) | 
|  | return PPC::VCMPGTUW; | 
|  | else if (VecVT == MVT::v2i64) | 
|  | return PPC::VCMPGTUD; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | llvm_unreachable("Invalid integer vector compare condition"); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool PPCDAGToDAGISel::trySETCC(SDNode *N) { | 
|  | SDLoc dl(N); | 
|  | unsigned Imm; | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); | 
|  | EVT PtrVT = | 
|  | CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout()); | 
|  | bool isPPC64 = (PtrVT == MVT::i64); | 
|  |  | 
|  | if (!Subtarget->useCRBits() && isInt32Immediate(N->getOperand(1), Imm)) { | 
|  | // We can codegen setcc op, imm very efficiently compared to a brcond. | 
|  | // Check for those cases here. | 
|  | // setcc op, 0 | 
|  | if (Imm == 0) { | 
|  | SDValue Op = N->getOperand(0); | 
|  | switch (CC) { | 
|  | default: break; | 
|  | case ISD::SETEQ: { | 
|  | Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0); | 
|  | SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl), | 
|  | getI32Imm(31, dl) }; | 
|  | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); | 
|  | return true; | 
|  | } | 
|  | case ISD::SETNE: { | 
|  | if (isPPC64) break; | 
|  | SDValue AD = | 
|  | SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, | 
|  | Op, getI32Imm(~0U, dl)), 0); | 
|  | CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1)); | 
|  | return true; | 
|  | } | 
|  | case ISD::SETLT: { | 
|  | SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl), | 
|  | getI32Imm(31, dl) }; | 
|  | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); | 
|  | return true; | 
|  | } | 
|  | case ISD::SETGT: { | 
|  | SDValue T = | 
|  | SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0); | 
|  | T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0); | 
|  | SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl), | 
|  | getI32Imm(31, dl) }; | 
|  | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } else if (Imm == ~0U) {        // setcc op, -1 | 
|  | SDValue Op = N->getOperand(0); | 
|  | switch (CC) { | 
|  | default: break; | 
|  | case ISD::SETEQ: | 
|  | if (isPPC64) break; | 
|  | Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, | 
|  | Op, getI32Imm(1, dl)), 0); | 
|  | CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, | 
|  | SDValue(CurDAG->getMachineNode(PPC::LI, dl, | 
|  | MVT::i32, | 
|  | getI32Imm(0, dl)), | 
|  | 0), Op.getValue(1)); | 
|  | return true; | 
|  | case ISD::SETNE: { | 
|  | if (isPPC64) break; | 
|  | Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0); | 
|  | SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, | 
|  | Op, getI32Imm(~0U, dl)); | 
|  | CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op, | 
|  | SDValue(AD, 1)); | 
|  | return true; | 
|  | } | 
|  | case ISD::SETLT: { | 
|  | SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op, | 
|  | getI32Imm(1, dl)), 0); | 
|  | SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD, | 
|  | Op), 0); | 
|  | SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl), | 
|  | getI32Imm(31, dl) }; | 
|  | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); | 
|  | return true; | 
|  | } | 
|  | case ISD::SETGT: { | 
|  | SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl), | 
|  | getI32Imm(31, dl) }; | 
|  | Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); | 
|  | CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl)); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  |  | 
|  | // Altivec Vector compare instructions do not set any CR register by default and | 
|  | // vector compare operations return the same type as the operands. | 
|  | if (LHS.getValueType().isVector()) { | 
|  | if (Subtarget->hasQPX() || Subtarget->hasSPE()) | 
|  | return false; | 
|  |  | 
|  | EVT VecVT = LHS.getValueType(); | 
|  | bool Swap, Negate; | 
|  | unsigned int VCmpInst = | 
|  | getVCmpInst(VecVT.getSimpleVT(), CC, Subtarget->hasVSX(), Swap, Negate); | 
|  | if (Swap) | 
|  | std::swap(LHS, RHS); | 
|  |  | 
|  | EVT ResVT = VecVT.changeVectorElementTypeToInteger(); | 
|  | if (Negate) { | 
|  | SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0); | 
|  | CurDAG->SelectNodeTo(N, Subtarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR, | 
|  | ResVT, VCmp, VCmp); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (Subtarget->useCRBits()) | 
|  | return false; | 
|  |  | 
|  | bool Inv; | 
|  | unsigned Idx = getCRIdxForSetCC(CC, Inv); | 
|  | SDValue CCReg = SelectCC(LHS, RHS, CC, dl); | 
|  | SDValue IntCR; | 
|  |  | 
|  | // SPE e*cmp* instructions only set the 'gt' bit, so hard-code that | 
|  | // The correct compare instruction is already set by SelectCC() | 
|  | if (Subtarget->hasSPE() && LHS.getValueType().isFloatingPoint()) { | 
|  | Idx = 1; | 
|  | } | 
|  |  | 
|  | // Force the ccreg into CR7. | 
|  | SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32); | 
|  |  | 
|  | SDValue InFlag(nullptr, 0);  // Null incoming flag value. | 
|  | CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg, | 
|  | InFlag).getValue(1); | 
|  |  | 
|  | IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg, | 
|  | CCReg), 0); | 
|  |  | 
|  | SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl), | 
|  | getI32Imm(31, dl), getI32Imm(31, dl) }; | 
|  | if (!Inv) { | 
|  | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Get the specified bit. | 
|  | SDValue Tmp = | 
|  | SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0); | 
|  | CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Does this node represent a load/store node whose address can be represented | 
|  | /// with a register plus an immediate that's a multiple of \p Val: | 
|  | bool PPCDAGToDAGISel::isOffsetMultipleOf(SDNode *N, unsigned Val) const { | 
|  | LoadSDNode *LDN = dyn_cast<LoadSDNode>(N); | 
|  | StoreSDNode *STN = dyn_cast<StoreSDNode>(N); | 
|  | SDValue AddrOp; | 
|  | if (LDN) | 
|  | AddrOp = LDN->getOperand(1); | 
|  | else if (STN) | 
|  | AddrOp = STN->getOperand(2); | 
|  |  | 
|  | // If the address points a frame object or a frame object with an offset, | 
|  | // we need to check the object alignment. | 
|  | short Imm = 0; | 
|  | if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>( | 
|  | AddrOp.getOpcode() == ISD::ADD ? AddrOp.getOperand(0) : | 
|  | AddrOp)) { | 
|  | // If op0 is a frame index that is under aligned, we can't do it either, | 
|  | // because it is translated to r31 or r1 + slot + offset. We won't know the | 
|  | // slot number until the stack frame is finalized. | 
|  | const MachineFrameInfo &MFI = CurDAG->getMachineFunction().getFrameInfo(); | 
|  | unsigned SlotAlign = MFI.getObjectAlign(FI->getIndex()).value(); | 
|  | if ((SlotAlign % Val) != 0) | 
|  | return false; | 
|  |  | 
|  | // If we have an offset, we need further check on the offset. | 
|  | if (AddrOp.getOpcode() != ISD::ADD) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (AddrOp.getOpcode() == ISD::ADD) | 
|  | return isIntS16Immediate(AddrOp.getOperand(1), Imm) && !(Imm % Val); | 
|  |  | 
|  | // If the address comes from the outside, the offset will be zero. | 
|  | return AddrOp.getOpcode() == ISD::CopyFromReg; | 
|  | } | 
|  |  | 
|  | void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) { | 
|  | // Transfer memoperands. | 
|  | MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand(); | 
|  | CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp}); | 
|  | } | 
|  |  | 
|  | static bool mayUseP9Setb(SDNode *N, const ISD::CondCode &CC, SelectionDAG *DAG, | 
|  | bool &NeedSwapOps, bool &IsUnCmp) { | 
|  |  | 
|  | assert(N->getOpcode() == ISD::SELECT_CC && "Expecting a SELECT_CC here."); | 
|  |  | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  | SDValue TrueRes = N->getOperand(2); | 
|  | SDValue FalseRes = N->getOperand(3); | 
|  | ConstantSDNode *TrueConst = dyn_cast<ConstantSDNode>(TrueRes); | 
|  | if (!TrueConst || (N->getSimpleValueType(0) != MVT::i64 && | 
|  | N->getSimpleValueType(0) != MVT::i32)) | 
|  | return false; | 
|  |  | 
|  | // We are looking for any of: | 
|  | // (select_cc lhs, rhs,  1, (sext (setcc [lr]hs, [lr]hs, cc2)), cc1) | 
|  | // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, cc2)), cc1) | 
|  | // (select_cc lhs, rhs,  0, (select_cc [lr]hs, [lr]hs,  1, -1, cc2), seteq) | 
|  | // (select_cc lhs, rhs,  0, (select_cc [lr]hs, [lr]hs, -1,  1, cc2), seteq) | 
|  | int64_t TrueResVal = TrueConst->getSExtValue(); | 
|  | if ((TrueResVal < -1 || TrueResVal > 1) || | 
|  | (TrueResVal == -1 && FalseRes.getOpcode() != ISD::ZERO_EXTEND) || | 
|  | (TrueResVal == 1 && FalseRes.getOpcode() != ISD::SIGN_EXTEND) || | 
|  | (TrueResVal == 0 && | 
|  | (FalseRes.getOpcode() != ISD::SELECT_CC || CC != ISD::SETEQ))) | 
|  | return false; | 
|  |  | 
|  | bool InnerIsSel = FalseRes.getOpcode() == ISD::SELECT_CC; | 
|  | SDValue SetOrSelCC = InnerIsSel ? FalseRes : FalseRes.getOperand(0); | 
|  | if (SetOrSelCC.getOpcode() != ISD::SETCC && | 
|  | SetOrSelCC.getOpcode() != ISD::SELECT_CC) | 
|  | return false; | 
|  |  | 
|  | // Without this setb optimization, the outer SELECT_CC will be manually | 
|  | // selected to SELECT_CC_I4/SELECT_CC_I8 Pseudo, then expand-isel-pseudos pass | 
|  | // transforms pseudo instruction to isel instruction. When there are more than | 
|  | // one use for result like zext/sext, with current optimization we only see | 
|  | // isel is replaced by setb but can't see any significant gain. Since | 
|  | // setb has longer latency than original isel, we should avoid this. Another | 
|  | // point is that setb requires comparison always kept, it can break the | 
|  | // opportunity to get the comparison away if we have in future. | 
|  | if (!SetOrSelCC.hasOneUse() || (!InnerIsSel && !FalseRes.hasOneUse())) | 
|  | return false; | 
|  |  | 
|  | SDValue InnerLHS = SetOrSelCC.getOperand(0); | 
|  | SDValue InnerRHS = SetOrSelCC.getOperand(1); | 
|  | ISD::CondCode InnerCC = | 
|  | cast<CondCodeSDNode>(SetOrSelCC.getOperand(InnerIsSel ? 4 : 2))->get(); | 
|  | // If the inner comparison is a select_cc, make sure the true/false values are | 
|  | // 1/-1 and canonicalize it if needed. | 
|  | if (InnerIsSel) { | 
|  | ConstantSDNode *SelCCTrueConst = | 
|  | dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(2)); | 
|  | ConstantSDNode *SelCCFalseConst = | 
|  | dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(3)); | 
|  | if (!SelCCTrueConst || !SelCCFalseConst) | 
|  | return false; | 
|  | int64_t SelCCTVal = SelCCTrueConst->getSExtValue(); | 
|  | int64_t SelCCFVal = SelCCFalseConst->getSExtValue(); | 
|  | // The values must be -1/1 (requiring a swap) or 1/-1. | 
|  | if (SelCCTVal == -1 && SelCCFVal == 1) { | 
|  | std::swap(InnerLHS, InnerRHS); | 
|  | } else if (SelCCTVal != 1 || SelCCFVal != -1) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Canonicalize unsigned case | 
|  | if (InnerCC == ISD::SETULT || InnerCC == ISD::SETUGT) { | 
|  | IsUnCmp = true; | 
|  | InnerCC = (InnerCC == ISD::SETULT) ? ISD::SETLT : ISD::SETGT; | 
|  | } | 
|  |  | 
|  | bool InnerSwapped = false; | 
|  | if (LHS == InnerRHS && RHS == InnerLHS) | 
|  | InnerSwapped = true; | 
|  | else if (LHS != InnerLHS || RHS != InnerRHS) | 
|  | return false; | 
|  |  | 
|  | switch (CC) { | 
|  | // (select_cc lhs, rhs,  0, \ | 
|  | //     (select_cc [lr]hs, [lr]hs, 1, -1, setlt/setgt), seteq) | 
|  | case ISD::SETEQ: | 
|  | if (!InnerIsSel) | 
|  | return false; | 
|  | if (InnerCC != ISD::SETLT && InnerCC != ISD::SETGT) | 
|  | return false; | 
|  | NeedSwapOps = (InnerCC == ISD::SETGT) ? InnerSwapped : !InnerSwapped; | 
|  | break; | 
|  |  | 
|  | // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?lt) | 
|  | // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setgt)), setu?lt) | 
|  | // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setlt)), setu?lt) | 
|  | // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?lt) | 
|  | // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setgt)), setu?lt) | 
|  | // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setlt)), setu?lt) | 
|  | case ISD::SETULT: | 
|  | if (!IsUnCmp && InnerCC != ISD::SETNE) | 
|  | return false; | 
|  | IsUnCmp = true; | 
|  | LLVM_FALLTHROUGH; | 
|  | case ISD::SETLT: | 
|  | if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETGT && !InnerSwapped) || | 
|  | (InnerCC == ISD::SETLT && InnerSwapped)) | 
|  | NeedSwapOps = (TrueResVal == 1); | 
|  | else | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?gt) | 
|  | // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setlt)), setu?gt) | 
|  | // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setgt)), setu?gt) | 
|  | // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?gt) | 
|  | // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setlt)), setu?gt) | 
|  | // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setgt)), setu?gt) | 
|  | case ISD::SETUGT: | 
|  | if (!IsUnCmp && InnerCC != ISD::SETNE) | 
|  | return false; | 
|  | IsUnCmp = true; | 
|  | LLVM_FALLTHROUGH; | 
|  | case ISD::SETGT: | 
|  | if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETLT && !InnerSwapped) || | 
|  | (InnerCC == ISD::SETGT && InnerSwapped)) | 
|  | NeedSwapOps = (TrueResVal == -1); | 
|  | else | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Found a node that can be lowered to a SETB: "); | 
|  | LLVM_DEBUG(N->dump()); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool PPCDAGToDAGISel::tryAsSingleRLWINM(SDNode *N) { | 
|  | assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); | 
|  | unsigned Imm; | 
|  | if (!isInt32Immediate(N->getOperand(1), Imm)) | 
|  | return false; | 
|  |  | 
|  | SDLoc dl(N); | 
|  | SDValue Val = N->getOperand(0); | 
|  | unsigned SH, MB, ME; | 
|  | // If this is an and of a value rotated between 0 and 31 bits and then and'd | 
|  | // with a mask, emit rlwinm | 
|  | if (isRotateAndMask(Val.getNode(), Imm, false, SH, MB, ME)) { | 
|  | Val = Val.getOperand(0); | 
|  | SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl), | 
|  | getI32Imm(ME, dl)}; | 
|  | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If this is just a masked value where the input is not handled, and | 
|  | // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm | 
|  | if (isRunOfOnes(Imm, MB, ME) && Val.getOpcode() != ISD::ROTL) { | 
|  | SDValue Ops[] = {Val, getI32Imm(0, dl), getI32Imm(MB, dl), | 
|  | getI32Imm(ME, dl)}; | 
|  | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // AND X, 0 -> 0, not "rlwinm 32". | 
|  | if (Imm == 0) { | 
|  | ReplaceUses(SDValue(N, 0), N->getOperand(1)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool PPCDAGToDAGISel::tryAsSingleRLWINM8(SDNode *N) { | 
|  | assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); | 
|  | uint64_t Imm64; | 
|  | if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64)) | 
|  | return false; | 
|  |  | 
|  | unsigned MB, ME; | 
|  | if (isRunOfOnes64(Imm64, MB, ME) && MB >= 32 && MB <= ME) { | 
|  | //                MB  ME | 
|  | // +----------------------+ | 
|  | // |xxxxxxxxxxx00011111000| | 
|  | // +----------------------+ | 
|  | //  0         32         64 | 
|  | // We can only do it if the MB is larger than 32 and MB <= ME | 
|  | // as RLWINM will replace the contents of [0 - 32) with [32 - 64) even | 
|  | // we didn't rotate it. | 
|  | SDLoc dl(N); | 
|  | SDValue Ops[] = {N->getOperand(0), getI64Imm(0, dl), getI64Imm(MB - 32, dl), | 
|  | getI64Imm(ME - 32, dl)}; | 
|  | CurDAG->SelectNodeTo(N, PPC::RLWINM8, MVT::i64, Ops); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool PPCDAGToDAGISel::tryAsPairOfRLDICL(SDNode *N) { | 
|  | assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); | 
|  | uint64_t Imm64; | 
|  | if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64)) | 
|  | return false; | 
|  |  | 
|  | // Do nothing if it is 16-bit imm as the pattern in the .td file handle | 
|  | // it well with "andi.". | 
|  | if (isUInt<16>(Imm64)) | 
|  | return false; | 
|  |  | 
|  | SDLoc Loc(N); | 
|  | SDValue Val = N->getOperand(0); | 
|  |  | 
|  | // Optimized with two rldicl's as follows: | 
|  | // Add missing bits on left to the mask and check that the mask is a | 
|  | // wrapped run of ones, i.e. | 
|  | // Change pattern |0001111100000011111111| | 
|  | //             to |1111111100000011111111|. | 
|  | unsigned NumOfLeadingZeros = countLeadingZeros(Imm64); | 
|  | if (NumOfLeadingZeros != 0) | 
|  | Imm64 |= maskLeadingOnes<uint64_t>(NumOfLeadingZeros); | 
|  |  | 
|  | unsigned MB, ME; | 
|  | if (!isRunOfOnes64(Imm64, MB, ME)) | 
|  | return false; | 
|  |  | 
|  | //         ME     MB                   MB-ME+63 | 
|  | // +----------------------+     +----------------------+ | 
|  | // |1111111100000011111111| ->  |0000001111111111111111| | 
|  | // +----------------------+     +----------------------+ | 
|  | //  0                    63      0                    63 | 
|  | // There are ME + 1 ones on the left and (MB - ME + 63) & 63 zeros in between. | 
|  | unsigned OnesOnLeft = ME + 1; | 
|  | unsigned ZerosInBetween = (MB - ME + 63) & 63; | 
|  | // Rotate left by OnesOnLeft (so leading ones are now trailing ones) and clear | 
|  | // on the left the bits that are already zeros in the mask. | 
|  | Val = SDValue(CurDAG->getMachineNode(PPC::RLDICL, Loc, MVT::i64, Val, | 
|  | getI64Imm(OnesOnLeft, Loc), | 
|  | getI64Imm(ZerosInBetween, Loc)), | 
|  | 0); | 
|  | //        MB-ME+63                      ME     MB | 
|  | // +----------------------+     +----------------------+ | 
|  | // |0000001111111111111111| ->  |0001111100000011111111| | 
|  | // +----------------------+     +----------------------+ | 
|  | //  0                    63      0                    63 | 
|  | // Rotate back by 64 - OnesOnLeft to undo previous rotate. Then clear on the | 
|  | // left the number of ones we previously added. | 
|  | SDValue Ops[] = {Val, getI64Imm(64 - OnesOnLeft, Loc), | 
|  | getI64Imm(NumOfLeadingZeros, Loc)}; | 
|  | CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool PPCDAGToDAGISel::tryAsSingleRLWIMI(SDNode *N) { | 
|  | assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); | 
|  | unsigned Imm; | 
|  | if (!isInt32Immediate(N->getOperand(1), Imm)) | 
|  | return false; | 
|  |  | 
|  | SDValue Val = N->getOperand(0); | 
|  | unsigned Imm2; | 
|  | // ISD::OR doesn't get all the bitfield insertion fun. | 
|  | // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a | 
|  | // bitfield insert. | 
|  | if (Val.getOpcode() != ISD::OR || !isInt32Immediate(Val.getOperand(1), Imm2)) | 
|  | return false; | 
|  |  | 
|  | // The idea here is to check whether this is equivalent to: | 
|  | //   (c1 & m) | (x & ~m) | 
|  | // where m is a run-of-ones mask. The logic here is that, for each bit in | 
|  | // c1 and c2: | 
|  | //  - if both are 1, then the output will be 1. | 
|  | //  - if both are 0, then the output will be 0. | 
|  | //  - if the bit in c1 is 0, and the bit in c2 is 1, then the output will | 
|  | //    come from x. | 
|  | //  - if the bit in c1 is 1, and the bit in c2 is 0, then the output will | 
|  | //    be 0. | 
|  | //  If that last condition is never the case, then we can form m from the | 
|  | //  bits that are the same between c1 and c2. | 
|  | unsigned MB, ME; | 
|  | if (isRunOfOnes(~(Imm ^ Imm2), MB, ME) && !(~Imm & Imm2)) { | 
|  | SDLoc dl(N); | 
|  | SDValue Ops[] = {Val.getOperand(0), Val.getOperand(1), getI32Imm(0, dl), | 
|  | getI32Imm(MB, dl), getI32Imm(ME, dl)}; | 
|  | ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool PPCDAGToDAGISel::tryAsSingleRLDICL(SDNode *N) { | 
|  | assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); | 
|  | uint64_t Imm64; | 
|  | if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || !isMask_64(Imm64)) | 
|  | return false; | 
|  |  | 
|  | // If this is a 64-bit zero-extension mask, emit rldicl. | 
|  | unsigned MB = 64 - countTrailingOnes(Imm64); | 
|  | unsigned SH = 0; | 
|  | unsigned Imm; | 
|  | SDValue Val = N->getOperand(0); | 
|  | SDLoc dl(N); | 
|  |  | 
|  | if (Val.getOpcode() == ISD::ANY_EXTEND) { | 
|  | auto Op0 = Val.getOperand(0); | 
|  | if (Op0.getOpcode() == ISD::SRL && | 
|  | isInt32Immediate(Op0.getOperand(1).getNode(), Imm) && Imm <= MB) { | 
|  |  | 
|  | auto ResultType = Val.getNode()->getValueType(0); | 
|  | auto ImDef = CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, ResultType); | 
|  | SDValue IDVal(ImDef, 0); | 
|  |  | 
|  | Val = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, ResultType, | 
|  | IDVal, Op0.getOperand(0), | 
|  | getI32Imm(1, dl)), | 
|  | 0); | 
|  | SH = 64 - Imm; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the operand is a logical right shift, we can fold it into this | 
|  | // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb) | 
|  | // for n <= mb. The right shift is really a left rotate followed by a | 
|  | // mask, and this mask is a more-restrictive sub-mask of the mask implied | 
|  | // by the shift. | 
|  | if (Val.getOpcode() == ISD::SRL && | 
|  | isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) { | 
|  | assert(Imm < 64 && "Illegal shift amount"); | 
|  | Val = Val.getOperand(0); | 
|  | SH = 64 - Imm; | 
|  | } | 
|  |  | 
|  | SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl)}; | 
|  | CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool PPCDAGToDAGISel::tryAsSingleRLDICR(SDNode *N) { | 
|  | assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected"); | 
|  | uint64_t Imm64; | 
|  | if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || | 
|  | !isMask_64(~Imm64)) | 
|  | return false; | 
|  |  | 
|  | // If this is a negated 64-bit zero-extension mask, | 
|  | // i.e. the immediate is a sequence of ones from most significant side | 
|  | // and all zero for reminder, we should use rldicr. | 
|  | unsigned MB = 63 - countTrailingOnes(~Imm64); | 
|  | unsigned SH = 0; | 
|  | SDLoc dl(N); | 
|  | SDValue Ops[] = {N->getOperand(0), getI32Imm(SH, dl), getI32Imm(MB, dl)}; | 
|  | CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool PPCDAGToDAGISel::tryAsSingleRLDIMI(SDNode *N) { | 
|  | assert(N->getOpcode() == ISD::OR && "ISD::OR SDNode expected"); | 
|  | uint64_t Imm64; | 
|  | unsigned MB, ME; | 
|  | SDValue N0 = N->getOperand(0); | 
|  |  | 
|  | // We won't get fewer instructions if the imm is 32-bit integer. | 
|  | // rldimi requires the imm to have consecutive ones with both sides zero. | 
|  | // Also, make sure the first Op has only one use, otherwise this may increase | 
|  | // register pressure since rldimi is destructive. | 
|  | if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || | 
|  | isUInt<32>(Imm64) || !isRunOfOnes64(Imm64, MB, ME) || !N0.hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | unsigned SH = 63 - ME; | 
|  | SDLoc Dl(N); | 
|  | // Use select64Imm for making LI instr instead of directly putting Imm64 | 
|  | SDValue Ops[] = { | 
|  | N->getOperand(0), | 
|  | SDValue(selectI64Imm(CurDAG, getI64Imm(-1, Dl).getNode()), 0), | 
|  | getI32Imm(SH, Dl), getI32Imm(MB, Dl)}; | 
|  | CurDAG->SelectNodeTo(N, PPC::RLDIMI, MVT::i64, Ops); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Select - Convert the specified operand from a target-independent to a | 
|  | // target-specific node if it hasn't already been changed. | 
|  | void PPCDAGToDAGISel::Select(SDNode *N) { | 
|  | SDLoc dl(N); | 
|  | if (N->isMachineOpcode()) { | 
|  | N->setNodeId(-1); | 
|  | return;   // Already selected. | 
|  | } | 
|  |  | 
|  | // In case any misguided DAG-level optimizations form an ADD with a | 
|  | // TargetConstant operand, crash here instead of miscompiling (by selecting | 
|  | // an r+r add instead of some kind of r+i add). | 
|  | if (N->getOpcode() == ISD::ADD && | 
|  | N->getOperand(1).getOpcode() == ISD::TargetConstant) | 
|  | llvm_unreachable("Invalid ADD with TargetConstant operand"); | 
|  |  | 
|  | // Try matching complex bit permutations before doing anything else. | 
|  | if (tryBitPermutation(N)) | 
|  | return; | 
|  |  | 
|  | // Try to emit integer compares as GPR-only sequences (i.e. no use of CR). | 
|  | if (tryIntCompareInGPR(N)) | 
|  | return; | 
|  |  | 
|  | switch (N->getOpcode()) { | 
|  | default: break; | 
|  |  | 
|  | case ISD::Constant: | 
|  | if (N->getValueType(0) == MVT::i64) { | 
|  | ReplaceNode(N, selectI64Imm(CurDAG, N)); | 
|  | return; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ISD::SETCC: | 
|  | if (trySETCC(N)) | 
|  | return; | 
|  | break; | 
|  | // These nodes will be transformed into GETtlsADDR32 node, which | 
|  | // later becomes BL_TLS __tls_get_addr(sym at tlsgd)@PLT | 
|  | case PPCISD::ADDI_TLSLD_L_ADDR: | 
|  | case PPCISD::ADDI_TLSGD_L_ADDR: { | 
|  | const Module *Mod = MF->getFunction().getParent(); | 
|  | if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 || | 
|  | !Subtarget->isSecurePlt() || !Subtarget->isTargetELF() || | 
|  | Mod->getPICLevel() == PICLevel::SmallPIC) | 
|  | break; | 
|  | // Attach global base pointer on GETtlsADDR32 node in order to | 
|  | // generate secure plt code for TLS symbols. | 
|  | getGlobalBaseReg(); | 
|  | } break; | 
|  | case PPCISD::CALL: { | 
|  | if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 || | 
|  | !TM.isPositionIndependent() || !Subtarget->isSecurePlt() || | 
|  | !Subtarget->isTargetELF()) | 
|  | break; | 
|  |  | 
|  | SDValue Op = N->getOperand(1); | 
|  |  | 
|  | if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) { | 
|  | if (GA->getTargetFlags() == PPCII::MO_PLT) | 
|  | getGlobalBaseReg(); | 
|  | } | 
|  | else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) { | 
|  | if (ES->getTargetFlags() == PPCII::MO_PLT) | 
|  | getGlobalBaseReg(); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case PPCISD::GlobalBaseReg: | 
|  | ReplaceNode(N, getGlobalBaseReg()); | 
|  | return; | 
|  |  | 
|  | case ISD::FrameIndex: | 
|  | selectFrameIndex(N, N); | 
|  | return; | 
|  |  | 
|  | case PPCISD::MFOCRF: { | 
|  | SDValue InFlag = N->getOperand(1); | 
|  | ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, | 
|  | N->getOperand(0), InFlag)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case PPCISD::READ_TIME_BASE: | 
|  | ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32, | 
|  | MVT::Other, N->getOperand(0))); | 
|  | return; | 
|  |  | 
|  | case PPCISD::SRA_ADDZE: { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue ShiftAmt = | 
|  | CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))-> | 
|  | getConstantIntValue(), dl, | 
|  | N->getValueType(0)); | 
|  | if (N->getValueType(0) == MVT::i64) { | 
|  | SDNode *Op = | 
|  | CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue, | 
|  | N0, ShiftAmt); | 
|  | CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0), | 
|  | SDValue(Op, 1)); | 
|  | return; | 
|  | } else { | 
|  | assert(N->getValueType(0) == MVT::i32 && | 
|  | "Expecting i64 or i32 in PPCISD::SRA_ADDZE"); | 
|  | SDNode *Op = | 
|  | CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue, | 
|  | N0, ShiftAmt); | 
|  | CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0), | 
|  | SDValue(Op, 1)); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | case ISD::STORE: { | 
|  | // Change TLS initial-exec D-form stores to X-form stores. | 
|  | StoreSDNode *ST = cast<StoreSDNode>(N); | 
|  | if (EnableTLSOpt && Subtarget->isELFv2ABI() && | 
|  | ST->getAddressingMode() != ISD::PRE_INC) | 
|  | if (tryTLSXFormStore(ST)) | 
|  | return; | 
|  | break; | 
|  | } | 
|  | case ISD::LOAD: { | 
|  | // Handle preincrement loads. | 
|  | LoadSDNode *LD = cast<LoadSDNode>(N); | 
|  | EVT LoadedVT = LD->getMemoryVT(); | 
|  |  | 
|  | // Normal loads are handled by code generated from the .td file. | 
|  | if (LD->getAddressingMode() != ISD::PRE_INC) { | 
|  | // Change TLS initial-exec D-form loads to X-form loads. | 
|  | if (EnableTLSOpt && Subtarget->isELFv2ABI()) | 
|  | if (tryTLSXFormLoad(LD)) | 
|  | return; | 
|  | break; | 
|  | } | 
|  |  | 
|  | SDValue Offset = LD->getOffset(); | 
|  | if (Offset.getOpcode() == ISD::TargetConstant || | 
|  | Offset.getOpcode() == ISD::TargetGlobalAddress) { | 
|  |  | 
|  | unsigned Opcode; | 
|  | bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; | 
|  | if (LD->getValueType(0) != MVT::i64) { | 
|  | // Handle PPC32 integer and normal FP loads. | 
|  | assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); | 
|  | switch (LoadedVT.getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("Invalid PPC load type!"); | 
|  | case MVT::f64: Opcode = PPC::LFDU; break; | 
|  | case MVT::f32: Opcode = PPC::LFSU; break; | 
|  | case MVT::i32: Opcode = PPC::LWZU; break; | 
|  | case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break; | 
|  | case MVT::i1: | 
|  | case MVT::i8:  Opcode = PPC::LBZU; break; | 
|  | } | 
|  | } else { | 
|  | assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); | 
|  | assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); | 
|  | switch (LoadedVT.getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("Invalid PPC load type!"); | 
|  | case MVT::i64: Opcode = PPC::LDU; break; | 
|  | case MVT::i32: Opcode = PPC::LWZU8; break; | 
|  | case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break; | 
|  | case MVT::i1: | 
|  | case MVT::i8:  Opcode = PPC::LBZU8; break; | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue Chain = LD->getChain(); | 
|  | SDValue Base = LD->getBasePtr(); | 
|  | SDValue Ops[] = { Offset, Base, Chain }; | 
|  | SDNode *MN = CurDAG->getMachineNode( | 
|  | Opcode, dl, LD->getValueType(0), | 
|  | PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops); | 
|  | transferMemOperands(N, MN); | 
|  | ReplaceNode(N, MN); | 
|  | return; | 
|  | } else { | 
|  | unsigned Opcode; | 
|  | bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD; | 
|  | if (LD->getValueType(0) != MVT::i64) { | 
|  | // Handle PPC32 integer and normal FP loads. | 
|  | assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load"); | 
|  | switch (LoadedVT.getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("Invalid PPC load type!"); | 
|  | case MVT::v4f64: Opcode = PPC::QVLFDUX; break; // QPX | 
|  | case MVT::v4f32: Opcode = PPC::QVLFSUX; break; // QPX | 
|  | case MVT::f64: Opcode = PPC::LFDUX; break; | 
|  | case MVT::f32: Opcode = PPC::LFSUX; break; | 
|  | case MVT::i32: Opcode = PPC::LWZUX; break; | 
|  | case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break; | 
|  | case MVT::i1: | 
|  | case MVT::i8:  Opcode = PPC::LBZUX; break; | 
|  | } | 
|  | } else { | 
|  | assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!"); | 
|  | assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) && | 
|  | "Invalid sext update load"); | 
|  | switch (LoadedVT.getSimpleVT().SimpleTy) { | 
|  | default: llvm_unreachable("Invalid PPC load type!"); | 
|  | case MVT::i64: Opcode = PPC::LDUX; break; | 
|  | case MVT::i32: Opcode = isSExt ? PPC::LWAUX  : PPC::LWZUX8; break; | 
|  | case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break; | 
|  | case MVT::i1: | 
|  | case MVT::i8:  Opcode = PPC::LBZUX8; break; | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue Chain = LD->getChain(); | 
|  | SDValue Base = LD->getBasePtr(); | 
|  | SDValue Ops[] = { Base, Offset, Chain }; | 
|  | SDNode *MN = CurDAG->getMachineNode( | 
|  | Opcode, dl, LD->getValueType(0), | 
|  | PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops); | 
|  | transferMemOperands(N, MN); | 
|  | ReplaceNode(N, MN); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | case ISD::AND: | 
|  | // If this is an 'and' with a mask, try to emit rlwinm/rldicl/rldicr | 
|  | if (tryAsSingleRLWINM(N) || tryAsSingleRLWIMI(N) || tryAsSingleRLDICL(N) || | 
|  | tryAsSingleRLDICR(N) || tryAsSingleRLWINM8(N) || tryAsPairOfRLDICL(N)) | 
|  | return; | 
|  |  | 
|  | // Other cases are autogenerated. | 
|  | break; | 
|  | case ISD::OR: { | 
|  | if (N->getValueType(0) == MVT::i32) | 
|  | if (tryBitfieldInsert(N)) | 
|  | return; | 
|  |  | 
|  | int16_t Imm; | 
|  | if (N->getOperand(0)->getOpcode() == ISD::FrameIndex && | 
|  | isIntS16Immediate(N->getOperand(1), Imm)) { | 
|  | KnownBits LHSKnown = CurDAG->computeKnownBits(N->getOperand(0)); | 
|  |  | 
|  | // If this is equivalent to an add, then we can fold it with the | 
|  | // FrameIndex calculation. | 
|  | if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) { | 
|  | selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is 'or' against an imm with consecutive ones and both sides zero, | 
|  | // try to emit rldimi | 
|  | if (tryAsSingleRLDIMI(N)) | 
|  | return; | 
|  |  | 
|  | // OR with a 32-bit immediate can be handled by ori + oris | 
|  | // without creating an immediate in a GPR. | 
|  | uint64_t Imm64 = 0; | 
|  | bool IsPPC64 = Subtarget->isPPC64(); | 
|  | if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) && | 
|  | (Imm64 & ~0xFFFFFFFFuLL) == 0) { | 
|  | // If ImmHi (ImmHi) is zero, only one ori (oris) is generated later. | 
|  | uint64_t ImmHi = Imm64 >> 16; | 
|  | uint64_t ImmLo = Imm64 & 0xFFFF; | 
|  | if (ImmHi != 0 && ImmLo != 0) { | 
|  | SDNode *Lo = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, | 
|  | N->getOperand(0), | 
|  | getI16Imm(ImmLo, dl)); | 
|  | SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)}; | 
|  | CurDAG->SelectNodeTo(N, PPC::ORIS8, MVT::i64, Ops1); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Other cases are autogenerated. | 
|  | break; | 
|  | } | 
|  | case ISD::XOR: { | 
|  | // XOR with a 32-bit immediate can be handled by xori + xoris | 
|  | // without creating an immediate in a GPR. | 
|  | uint64_t Imm64 = 0; | 
|  | bool IsPPC64 = Subtarget->isPPC64(); | 
|  | if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) && | 
|  | (Imm64 & ~0xFFFFFFFFuLL) == 0) { | 
|  | // If ImmHi (ImmHi) is zero, only one xori (xoris) is generated later. | 
|  | uint64_t ImmHi = Imm64 >> 16; | 
|  | uint64_t ImmLo = Imm64 & 0xFFFF; | 
|  | if (ImmHi != 0 && ImmLo != 0) { | 
|  | SDNode *Lo = CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, | 
|  | N->getOperand(0), | 
|  | getI16Imm(ImmLo, dl)); | 
|  | SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)}; | 
|  | CurDAG->SelectNodeTo(N, PPC::XORIS8, MVT::i64, Ops1); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | case ISD::ADD: { | 
|  | int16_t Imm; | 
|  | if (N->getOperand(0)->getOpcode() == ISD::FrameIndex && | 
|  | isIntS16Immediate(N->getOperand(1), Imm)) { | 
|  | selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm); | 
|  | return; | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | case ISD::SHL: { | 
|  | unsigned Imm, SH, MB, ME; | 
|  | if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && | 
|  | isRotateAndMask(N, Imm, true, SH, MB, ME)) { | 
|  | SDValue Ops[] = { N->getOperand(0).getOperand(0), | 
|  | getI32Imm(SH, dl), getI32Imm(MB, dl), | 
|  | getI32Imm(ME, dl) }; | 
|  | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Other cases are autogenerated. | 
|  | break; | 
|  | } | 
|  | case ISD::SRL: { | 
|  | unsigned Imm, SH, MB, ME; | 
|  | if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) && | 
|  | isRotateAndMask(N, Imm, true, SH, MB, ME)) { | 
|  | SDValue Ops[] = { N->getOperand(0).getOperand(0), | 
|  | getI32Imm(SH, dl), getI32Imm(MB, dl), | 
|  | getI32Imm(ME, dl) }; | 
|  | CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Other cases are autogenerated. | 
|  | break; | 
|  | } | 
|  | // FIXME: Remove this once the ANDI glue bug is fixed: | 
|  | case PPCISD::ANDI_rec_1_EQ_BIT: | 
|  | case PPCISD::ANDI_rec_1_GT_BIT: { | 
|  | if (!ANDIGlueBug) | 
|  | break; | 
|  |  | 
|  | EVT InVT = N->getOperand(0).getValueType(); | 
|  | assert((InVT == MVT::i64 || InVT == MVT::i32) && | 
|  | "Invalid input type for ANDI_rec_1_EQ_BIT"); | 
|  |  | 
|  | unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDI8_rec : PPC::ANDI_rec; | 
|  | SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue, | 
|  | N->getOperand(0), | 
|  | CurDAG->getTargetConstant(1, dl, InVT)), | 
|  | 0); | 
|  | SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32); | 
|  | SDValue SRIdxVal = CurDAG->getTargetConstant( | 
|  | N->getOpcode() == PPCISD::ANDI_rec_1_EQ_BIT ? PPC::sub_eq : PPC::sub_gt, | 
|  | dl, MVT::i32); | 
|  |  | 
|  | CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg, | 
|  | SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */); | 
|  | return; | 
|  | } | 
|  | case ISD::SELECT_CC: { | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get(); | 
|  | EVT PtrVT = | 
|  | CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout()); | 
|  | bool isPPC64 = (PtrVT == MVT::i64); | 
|  |  | 
|  | // If this is a select of i1 operands, we'll pattern match it. | 
|  | if (Subtarget->useCRBits() && N->getOperand(0).getValueType() == MVT::i1) | 
|  | break; | 
|  |  | 
|  | if (Subtarget->isISA3_0() && Subtarget->isPPC64()) { | 
|  | bool NeedSwapOps = false; | 
|  | bool IsUnCmp = false; | 
|  | if (mayUseP9Setb(N, CC, CurDAG, NeedSwapOps, IsUnCmp)) { | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  | if (NeedSwapOps) | 
|  | std::swap(LHS, RHS); | 
|  |  | 
|  | // Make use of SelectCC to generate the comparison to set CR bits, for | 
|  | // equality comparisons having one literal operand, SelectCC probably | 
|  | // doesn't need to materialize the whole literal and just use xoris to | 
|  | // check it first, it leads the following comparison result can't | 
|  | // exactly represent GT/LT relationship. So to avoid this we specify | 
|  | // SETGT/SETUGT here instead of SETEQ. | 
|  | SDValue GenCC = | 
|  | SelectCC(LHS, RHS, IsUnCmp ? ISD::SETUGT : ISD::SETGT, dl); | 
|  | CurDAG->SelectNodeTo( | 
|  | N, N->getSimpleValueType(0) == MVT::i64 ? PPC::SETB8 : PPC::SETB, | 
|  | N->getValueType(0), GenCC); | 
|  | NumP9Setb++; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc | 
|  | if (!isPPC64) | 
|  | if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1))) | 
|  | if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2))) | 
|  | if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3))) | 
|  | if (N1C->isNullValue() && N3C->isNullValue() && | 
|  | N2C->getZExtValue() == 1ULL && CC == ISD::SETNE && | 
|  | // FIXME: Implement this optzn for PPC64. | 
|  | N->getValueType(0) == MVT::i32) { | 
|  | SDNode *Tmp = | 
|  | CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue, | 
|  | N->getOperand(0), getI32Imm(~0U, dl)); | 
|  | CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0), | 
|  | N->getOperand(0), SDValue(Tmp, 1)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl); | 
|  |  | 
|  | if (N->getValueType(0) == MVT::i1) { | 
|  | // An i1 select is: (c & t) | (!c & f). | 
|  | bool Inv; | 
|  | unsigned Idx = getCRIdxForSetCC(CC, Inv); | 
|  |  | 
|  | unsigned SRI; | 
|  | switch (Idx) { | 
|  | default: llvm_unreachable("Invalid CC index"); | 
|  | case 0: SRI = PPC::sub_lt; break; | 
|  | case 1: SRI = PPC::sub_gt; break; | 
|  | case 2: SRI = PPC::sub_eq; break; | 
|  | case 3: SRI = PPC::sub_un; break; | 
|  | } | 
|  |  | 
|  | SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg); | 
|  |  | 
|  | SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1, | 
|  | CCBit, CCBit), 0); | 
|  | SDValue C =    Inv ? NotCCBit : CCBit, | 
|  | NotC = Inv ? CCBit    : NotCCBit; | 
|  |  | 
|  | SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1, | 
|  | C, N->getOperand(2)), 0); | 
|  | SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1, | 
|  | NotC, N->getOperand(3)), 0); | 
|  |  | 
|  | CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF); | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned BROpc = | 
|  | getPredicateForSetCC(CC, N->getOperand(0).getValueType(), Subtarget); | 
|  |  | 
|  | unsigned SelectCCOp; | 
|  | if (N->getValueType(0) == MVT::i32) | 
|  | SelectCCOp = PPC::SELECT_CC_I4; | 
|  | else if (N->getValueType(0) == MVT::i64) | 
|  | SelectCCOp = PPC::SELECT_CC_I8; | 
|  | else if (N->getValueType(0) == MVT::f32) { | 
|  | if (Subtarget->hasP8Vector()) | 
|  | SelectCCOp = PPC::SELECT_CC_VSSRC; | 
|  | else if (Subtarget->hasSPE()) | 
|  | SelectCCOp = PPC::SELECT_CC_SPE4; | 
|  | else | 
|  | SelectCCOp = PPC::SELECT_CC_F4; | 
|  | } else if (N->getValueType(0) == MVT::f64) { | 
|  | if (Subtarget->hasVSX()) | 
|  | SelectCCOp = PPC::SELECT_CC_VSFRC; | 
|  | else if (Subtarget->hasSPE()) | 
|  | SelectCCOp = PPC::SELECT_CC_SPE; | 
|  | else | 
|  | SelectCCOp = PPC::SELECT_CC_F8; | 
|  | } else if (N->getValueType(0) == MVT::f128) | 
|  | SelectCCOp = PPC::SELECT_CC_F16; | 
|  | else if (Subtarget->hasSPE()) | 
|  | SelectCCOp = PPC::SELECT_CC_SPE; | 
|  | else if (Subtarget->hasQPX() && N->getValueType(0) == MVT::v4f64) | 
|  | SelectCCOp = PPC::SELECT_CC_QFRC; | 
|  | else if (Subtarget->hasQPX() && N->getValueType(0) == MVT::v4f32) | 
|  | SelectCCOp = PPC::SELECT_CC_QSRC; | 
|  | else if (Subtarget->hasQPX() && N->getValueType(0) == MVT::v4i1) | 
|  | SelectCCOp = PPC::SELECT_CC_QBRC; | 
|  | else if (N->getValueType(0) == MVT::v2f64 || | 
|  | N->getValueType(0) == MVT::v2i64) | 
|  | SelectCCOp = PPC::SELECT_CC_VSRC; | 
|  | else | 
|  | SelectCCOp = PPC::SELECT_CC_VRRC; | 
|  |  | 
|  | SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3), | 
|  | getI32Imm(BROpc, dl) }; | 
|  | CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops); | 
|  | return; | 
|  | } | 
|  | case ISD::VECTOR_SHUFFLE: | 
|  | if (Subtarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 || | 
|  | N->getValueType(0) == MVT::v2i64)) { | 
|  | ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); | 
|  |  | 
|  | SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1), | 
|  | Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1); | 
|  | unsigned DM[2]; | 
|  |  | 
|  | for (int i = 0; i < 2; ++i) | 
|  | if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2) | 
|  | DM[i] = 0; | 
|  | else | 
|  | DM[i] = 1; | 
|  |  | 
|  | if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 && | 
|  | Op1.getOpcode() == ISD::SCALAR_TO_VECTOR && | 
|  | isa<LoadSDNode>(Op1.getOperand(0))) { | 
|  | LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0)); | 
|  | SDValue Base, Offset; | 
|  |  | 
|  | if (LD->isUnindexed() && LD->hasOneUse() && Op1.hasOneUse() && | 
|  | (LD->getMemoryVT() == MVT::f64 || | 
|  | LD->getMemoryVT() == MVT::i64) && | 
|  | SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) { | 
|  | SDValue Chain = LD->getChain(); | 
|  | SDValue Ops[] = { Base, Offset, Chain }; | 
|  | MachineMemOperand *MemOp = LD->getMemOperand(); | 
|  | SDNode *NewN = CurDAG->SelectNodeTo(N, PPC::LXVDSX, | 
|  | N->getValueType(0), Ops); | 
|  | CurDAG->setNodeMemRefs(cast<MachineSDNode>(NewN), {MemOp}); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // For little endian, we must swap the input operands and adjust | 
|  | // the mask elements (reverse and invert them). | 
|  | if (Subtarget->isLittleEndian()) { | 
|  | std::swap(Op1, Op2); | 
|  | unsigned tmp = DM[0]; | 
|  | DM[0] = 1 - DM[1]; | 
|  | DM[1] = 1 - tmp; | 
|  | } | 
|  |  | 
|  | SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl, | 
|  | MVT::i32); | 
|  | SDValue Ops[] = { Op1, Op2, DMV }; | 
|  | CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops); | 
|  | return; | 
|  | } | 
|  |  | 
|  | break; | 
|  | case PPCISD::BDNZ: | 
|  | case PPCISD::BDZ: { | 
|  | bool IsPPC64 = Subtarget->isPPC64(); | 
|  | SDValue Ops[] = { N->getOperand(1), N->getOperand(0) }; | 
|  | CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ | 
|  | ? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ) | 
|  | : (IsPPC64 ? PPC::BDZ8 : PPC::BDZ), | 
|  | MVT::Other, Ops); | 
|  | return; | 
|  | } | 
|  | case PPCISD::COND_BRANCH: { | 
|  | // Op #0 is the Chain. | 
|  | // Op #1 is the PPC::PRED_* number. | 
|  | // Op #2 is the CR# | 
|  | // Op #3 is the Dest MBB | 
|  | // Op #4 is the Flag. | 
|  | // Prevent PPC::PRED_* from being selected into LI. | 
|  | unsigned PCC = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); | 
|  | if (EnableBranchHint) | 
|  | PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(3)); | 
|  |  | 
|  | SDValue Pred = getI32Imm(PCC, dl); | 
|  | SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3), | 
|  | N->getOperand(0), N->getOperand(4) }; | 
|  | CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); | 
|  | return; | 
|  | } | 
|  | case ISD::BR_CC: { | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get(); | 
|  | unsigned PCC = | 
|  | getPredicateForSetCC(CC, N->getOperand(2).getValueType(), Subtarget); | 
|  |  | 
|  | if (N->getOperand(2).getValueType() == MVT::i1) { | 
|  | unsigned Opc; | 
|  | bool Swap; | 
|  | switch (PCC) { | 
|  | default: llvm_unreachable("Unexpected Boolean-operand predicate"); | 
|  | case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true;  break; | 
|  | case PPC::PRED_LE: Opc = PPC::CRORC;  Swap = true;  break; | 
|  | case PPC::PRED_EQ: Opc = PPC::CREQV;  Swap = false; break; | 
|  | case PPC::PRED_GE: Opc = PPC::CRORC;  Swap = false; break; | 
|  | case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break; | 
|  | case PPC::PRED_NE: Opc = PPC::CRXOR;  Swap = false; break; | 
|  | } | 
|  |  | 
|  | // A signed comparison of i1 values produces the opposite result to an | 
|  | // unsigned one if the condition code includes less-than or greater-than. | 
|  | // This is because 1 is the most negative signed i1 number and the most | 
|  | // positive unsigned i1 number. The CR-logical operations used for such | 
|  | // comparisons are non-commutative so for signed comparisons vs. unsigned | 
|  | // ones, the input operands just need to be swapped. | 
|  | if (ISD::isSignedIntSetCC(CC)) | 
|  | Swap = !Swap; | 
|  |  | 
|  | SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1, | 
|  | N->getOperand(Swap ? 3 : 2), | 
|  | N->getOperand(Swap ? 2 : 3)), 0); | 
|  | CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4), | 
|  | N->getOperand(0)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (EnableBranchHint) | 
|  | PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(4)); | 
|  |  | 
|  | SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl); | 
|  | SDValue Ops[] = { getI32Imm(PCC, dl), CondCode, | 
|  | N->getOperand(4), N->getOperand(0) }; | 
|  | CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops); | 
|  | return; | 
|  | } | 
|  | case ISD::BRIND: { | 
|  | // FIXME: Should custom lower this. | 
|  | SDValue Chain = N->getOperand(0); | 
|  | SDValue Target = N->getOperand(1); | 
|  | unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8; | 
|  | unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8; | 
|  | Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target, | 
|  | Chain), 0); | 
|  | CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain); | 
|  | return; | 
|  | } | 
|  | case PPCISD::TOC_ENTRY: { | 
|  | const bool isPPC64 = Subtarget->isPPC64(); | 
|  | const bool isELFABI = Subtarget->isSVR4ABI(); | 
|  | const bool isAIXABI = Subtarget->isAIXABI(); | 
|  |  | 
|  | // PowerPC only support small, medium and large code model. | 
|  | const CodeModel::Model CModel = TM.getCodeModel(); | 
|  | assert(!(CModel == CodeModel::Tiny || CModel == CodeModel::Kernel) && | 
|  | "PowerPC doesn't support tiny or kernel code models."); | 
|  |  | 
|  | if (isAIXABI && CModel == CodeModel::Medium) | 
|  | report_fatal_error("Medium code model is not supported on AIX."); | 
|  |  | 
|  | // For 64-bit small code model, we allow SelectCodeCommon to handle this, | 
|  | // selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA. | 
|  | if (isPPC64 && CModel == CodeModel::Small) | 
|  | break; | 
|  |  | 
|  | // Handle 32-bit small code model. | 
|  | if (!isPPC64) { | 
|  | // Transforms the ISD::TOC_ENTRY node to a PPCISD::LWZtoc. | 
|  | auto replaceWithLWZtoc = [this, &dl](SDNode *TocEntry) { | 
|  | SDValue GA = TocEntry->getOperand(0); | 
|  | SDValue TocBase = TocEntry->getOperand(1); | 
|  | SDNode *MN = CurDAG->getMachineNode(PPC::LWZtoc, dl, MVT::i32, GA, | 
|  | TocBase); | 
|  | transferMemOperands(TocEntry, MN); | 
|  | ReplaceNode(TocEntry, MN); | 
|  | }; | 
|  |  | 
|  | if (isELFABI) { | 
|  | assert(TM.isPositionIndependent() && | 
|  | "32-bit ELF can only have TOC entries in position independent" | 
|  | " code."); | 
|  | // 32-bit ELF always uses a small code model toc access. | 
|  | replaceWithLWZtoc(N); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (isAIXABI && CModel == CodeModel::Small) { | 
|  | replaceWithLWZtoc(N); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(CModel != CodeModel::Small && "All small code models handled."); | 
|  |  | 
|  | assert((isPPC64 || (isAIXABI && !isPPC64)) && "We are dealing with 64-bit" | 
|  | " ELF/AIX or 32-bit AIX in the following."); | 
|  |  | 
|  | // Transforms the ISD::TOC_ENTRY node for 32-bit AIX large code model mode | 
|  | // or 64-bit medium (ELF-only) or large (ELF and AIX) code model code. We | 
|  | // generate two instructions as described below. The first source operand | 
|  | // is a symbol reference. If it must be toc-referenced according to | 
|  | // Subtarget, we generate: | 
|  | // [32-bit AIX] | 
|  | //   LWZtocL(@sym, ADDIStocHA(%r2, @sym)) | 
|  | // [64-bit ELF/AIX] | 
|  | //   LDtocL(@sym, ADDIStocHA8(%x2, @sym)) | 
|  | // Otherwise we generate: | 
|  | //   ADDItocL(ADDIStocHA8(%x2, @sym), @sym) | 
|  | SDValue GA = N->getOperand(0); | 
|  | SDValue TOCbase = N->getOperand(1); | 
|  |  | 
|  | EVT VT = isPPC64 ? MVT::i64 : MVT::i32; | 
|  | SDNode *Tmp = CurDAG->getMachineNode( | 
|  | isPPC64 ? PPC::ADDIStocHA8 : PPC::ADDIStocHA, dl, VT, TOCbase, GA); | 
|  |  | 
|  | if (PPCLowering->isAccessedAsGotIndirect(GA)) { | 
|  | // If it is accessed as got-indirect, we need an extra LWZ/LD to load | 
|  | // the address. | 
|  | SDNode *MN = CurDAG->getMachineNode( | 
|  | isPPC64 ? PPC::LDtocL : PPC::LWZtocL, dl, VT, GA, SDValue(Tmp, 0)); | 
|  |  | 
|  | transferMemOperands(N, MN); | 
|  | ReplaceNode(N, MN); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Build the address relative to the TOC-pointer. | 
|  | ReplaceNode(N, CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64, | 
|  | SDValue(Tmp, 0), GA)); | 
|  | return; | 
|  | } | 
|  | case PPCISD::PPC32_PICGOT: | 
|  | // Generate a PIC-safe GOT reference. | 
|  | assert(Subtarget->is32BitELFABI() && | 
|  | "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4"); | 
|  | CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT, | 
|  | PPCLowering->getPointerTy(CurDAG->getDataLayout()), | 
|  | MVT::i32); | 
|  | return; | 
|  |  | 
|  | case PPCISD::VADD_SPLAT: { | 
|  | // This expands into one of three sequences, depending on whether | 
|  | // the first operand is odd or even, positive or negative. | 
|  | assert(isa<ConstantSDNode>(N->getOperand(0)) && | 
|  | isa<ConstantSDNode>(N->getOperand(1)) && | 
|  | "Invalid operand on VADD_SPLAT!"); | 
|  |  | 
|  | int Elt     = N->getConstantOperandVal(0); | 
|  | int EltSize = N->getConstantOperandVal(1); | 
|  | unsigned Opc1, Opc2, Opc3; | 
|  | EVT VT; | 
|  |  | 
|  | if (EltSize == 1) { | 
|  | Opc1 = PPC::VSPLTISB; | 
|  | Opc2 = PPC::VADDUBM; | 
|  | Opc3 = PPC::VSUBUBM; | 
|  | VT = MVT::v16i8; | 
|  | } else if (EltSize == 2) { | 
|  | Opc1 = PPC::VSPLTISH; | 
|  | Opc2 = PPC::VADDUHM; | 
|  | Opc3 = PPC::VSUBUHM; | 
|  | VT = MVT::v8i16; | 
|  | } else { | 
|  | assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!"); | 
|  | Opc1 = PPC::VSPLTISW; | 
|  | Opc2 = PPC::VADDUWM; | 
|  | Opc3 = PPC::VSUBUWM; | 
|  | VT = MVT::v4i32; | 
|  | } | 
|  |  | 
|  | if ((Elt & 1) == 0) { | 
|  | // Elt is even, in the range [-32,-18] + [16,30]. | 
|  | // | 
|  | // Convert: VADD_SPLAT elt, size | 
|  | // Into:    tmp = VSPLTIS[BHW] elt | 
|  | //          VADDU[BHW]M tmp, tmp | 
|  | // Where:   [BHW] = B for size = 1, H for size = 2, W for size = 4 | 
|  | SDValue EltVal = getI32Imm(Elt >> 1, dl); | 
|  | SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); | 
|  | SDValue TmpVal = SDValue(Tmp, 0); | 
|  | ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal)); | 
|  | return; | 
|  | } else if (Elt > 0) { | 
|  | // Elt is odd and positive, in the range [17,31]. | 
|  | // | 
|  | // Convert: VADD_SPLAT elt, size | 
|  | // Into:    tmp1 = VSPLTIS[BHW] elt-16 | 
|  | //          tmp2 = VSPLTIS[BHW] -16 | 
|  | //          VSUBU[BHW]M tmp1, tmp2 | 
|  | SDValue EltVal = getI32Imm(Elt - 16, dl); | 
|  | SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); | 
|  | EltVal = getI32Imm(-16, dl); | 
|  | SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); | 
|  | ReplaceNode(N, CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0), | 
|  | SDValue(Tmp2, 0))); | 
|  | return; | 
|  | } else { | 
|  | // Elt is odd and negative, in the range [-31,-17]. | 
|  | // | 
|  | // Convert: VADD_SPLAT elt, size | 
|  | // Into:    tmp1 = VSPLTIS[BHW] elt+16 | 
|  | //          tmp2 = VSPLTIS[BHW] -16 | 
|  | //          VADDU[BHW]M tmp1, tmp2 | 
|  | SDValue EltVal = getI32Imm(Elt + 16, dl); | 
|  | SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); | 
|  | EltVal = getI32Imm(-16, dl); | 
|  | SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal); | 
|  | ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0), | 
|  | SDValue(Tmp2, 0))); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SelectCode(N); | 
|  | } | 
|  |  | 
|  | // If the target supports the cmpb instruction, do the idiom recognition here. | 
|  | // We don't do this as a DAG combine because we don't want to do it as nodes | 
|  | // are being combined (because we might miss part of the eventual idiom). We | 
|  | // don't want to do it during instruction selection because we want to reuse | 
|  | // the logic for lowering the masking operations already part of the | 
|  | // instruction selector. | 
|  | SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) { | 
|  | SDLoc dl(N); | 
|  |  | 
|  | assert(N->getOpcode() == ISD::OR && | 
|  | "Only OR nodes are supported for CMPB"); | 
|  |  | 
|  | SDValue Res; | 
|  | if (!Subtarget->hasCMPB()) | 
|  | return Res; | 
|  |  | 
|  | if (N->getValueType(0) != MVT::i32 && | 
|  | N->getValueType(0) != MVT::i64) | 
|  | return Res; | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | SDValue RHS, LHS; | 
|  | bool BytesFound[8] = {false, false, false, false, false, false, false, false}; | 
|  | uint64_t Mask = 0, Alt = 0; | 
|  |  | 
|  | auto IsByteSelectCC = [this](SDValue O, unsigned &b, | 
|  | uint64_t &Mask, uint64_t &Alt, | 
|  | SDValue &LHS, SDValue &RHS) { | 
|  | if (O.getOpcode() != ISD::SELECT_CC) | 
|  | return false; | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get(); | 
|  |  | 
|  | if (!isa<ConstantSDNode>(O.getOperand(2)) || | 
|  | !isa<ConstantSDNode>(O.getOperand(3))) | 
|  | return false; | 
|  |  | 
|  | uint64_t PM = O.getConstantOperandVal(2); | 
|  | uint64_t PAlt = O.getConstantOperandVal(3); | 
|  | for (b = 0; b < 8; ++b) { | 
|  | uint64_t Mask = UINT64_C(0xFF) << (8*b); | 
|  | if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (b == 8) | 
|  | return false; | 
|  | Mask |= PM; | 
|  | Alt  |= PAlt; | 
|  |  | 
|  | if (!isa<ConstantSDNode>(O.getOperand(1)) || | 
|  | O.getConstantOperandVal(1) != 0) { | 
|  | SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1); | 
|  | if (Op0.getOpcode() == ISD::TRUNCATE) | 
|  | Op0 = Op0.getOperand(0); | 
|  | if (Op1.getOpcode() == ISD::TRUNCATE) | 
|  | Op1 = Op1.getOperand(0); | 
|  |  | 
|  | if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL && | 
|  | Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ && | 
|  | isa<ConstantSDNode>(Op0.getOperand(1))) { | 
|  |  | 
|  | unsigned Bits = Op0.getValueSizeInBits(); | 
|  | if (b != Bits/8-1) | 
|  | return false; | 
|  | if (Op0.getConstantOperandVal(1) != Bits-8) | 
|  | return false; | 
|  |  | 
|  | LHS = Op0.getOperand(0); | 
|  | RHS = Op1.getOperand(0); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // When we have small integers (i16 to be specific), the form present | 
|  | // post-legalization uses SETULT in the SELECT_CC for the | 
|  | // higher-order byte, depending on the fact that the | 
|  | // even-higher-order bytes are known to all be zero, for example: | 
|  | //   select_cc (xor $lhs, $rhs), 256, 65280, 0, setult | 
|  | // (so when the second byte is the same, because all higher-order | 
|  | // bits from bytes 3 and 4 are known to be zero, the result of the | 
|  | // xor can be at most 255) | 
|  | if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT && | 
|  | isa<ConstantSDNode>(O.getOperand(1))) { | 
|  |  | 
|  | uint64_t ULim = O.getConstantOperandVal(1); | 
|  | if (ULim != (UINT64_C(1) << b*8)) | 
|  | return false; | 
|  |  | 
|  | // Now we need to make sure that the upper bytes are known to be | 
|  | // zero. | 
|  | unsigned Bits = Op0.getValueSizeInBits(); | 
|  | if (!CurDAG->MaskedValueIsZero( | 
|  | Op0, APInt::getHighBitsSet(Bits, Bits - (b + 1) * 8))) | 
|  | return false; | 
|  |  | 
|  | LHS = Op0.getOperand(0); | 
|  | RHS = Op0.getOperand(1); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (CC != ISD::SETEQ) | 
|  | return false; | 
|  |  | 
|  | SDValue Op = O.getOperand(0); | 
|  | if (Op.getOpcode() == ISD::AND) { | 
|  | if (!isa<ConstantSDNode>(Op.getOperand(1))) | 
|  | return false; | 
|  | if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b))) | 
|  | return false; | 
|  |  | 
|  | SDValue XOR = Op.getOperand(0); | 
|  | if (XOR.getOpcode() == ISD::TRUNCATE) | 
|  | XOR = XOR.getOperand(0); | 
|  | if (XOR.getOpcode() != ISD::XOR) | 
|  | return false; | 
|  |  | 
|  | LHS = XOR.getOperand(0); | 
|  | RHS = XOR.getOperand(1); | 
|  | return true; | 
|  | } else if (Op.getOpcode() == ISD::SRL) { | 
|  | if (!isa<ConstantSDNode>(Op.getOperand(1))) | 
|  | return false; | 
|  | unsigned Bits = Op.getValueSizeInBits(); | 
|  | if (b != Bits/8-1) | 
|  | return false; | 
|  | if (Op.getConstantOperandVal(1) != Bits-8) | 
|  | return false; | 
|  |  | 
|  | SDValue XOR = Op.getOperand(0); | 
|  | if (XOR.getOpcode() == ISD::TRUNCATE) | 
|  | XOR = XOR.getOperand(0); | 
|  | if (XOR.getOpcode() != ISD::XOR) | 
|  | return false; | 
|  |  | 
|  | LHS = XOR.getOperand(0); | 
|  | RHS = XOR.getOperand(1); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | SmallVector<SDValue, 8> Queue(1, SDValue(N, 0)); | 
|  | while (!Queue.empty()) { | 
|  | SDValue V = Queue.pop_back_val(); | 
|  |  | 
|  | for (const SDValue &O : V.getNode()->ops()) { | 
|  | unsigned b = 0; | 
|  | uint64_t M = 0, A = 0; | 
|  | SDValue OLHS, ORHS; | 
|  | if (O.getOpcode() == ISD::OR) { | 
|  | Queue.push_back(O); | 
|  | } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) { | 
|  | if (!LHS) { | 
|  | LHS = OLHS; | 
|  | RHS = ORHS; | 
|  | BytesFound[b] = true; | 
|  | Mask |= M; | 
|  | Alt  |= A; | 
|  | } else if ((LHS == ORHS && RHS == OLHS) || | 
|  | (RHS == ORHS && LHS == OLHS)) { | 
|  | BytesFound[b] = true; | 
|  | Mask |= M; | 
|  | Alt  |= A; | 
|  | } else { | 
|  | return Res; | 
|  | } | 
|  | } else { | 
|  | return Res; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned LastB = 0, BCnt = 0; | 
|  | for (unsigned i = 0; i < 8; ++i) | 
|  | if (BytesFound[LastB]) { | 
|  | ++BCnt; | 
|  | LastB = i; | 
|  | } | 
|  |  | 
|  | if (!LastB || BCnt < 2) | 
|  | return Res; | 
|  |  | 
|  | // Because we'll be zero-extending the output anyway if don't have a specific | 
|  | // value for each input byte (via the Mask), we can 'anyext' the inputs. | 
|  | if (LHS.getValueType() != VT) { | 
|  | LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT); | 
|  | RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT); | 
|  | } | 
|  |  | 
|  | Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS); | 
|  |  | 
|  | bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1); | 
|  | if (NonTrivialMask && !Alt) { | 
|  | // Res = Mask & CMPB | 
|  | Res = CurDAG->getNode(ISD::AND, dl, VT, Res, | 
|  | CurDAG->getConstant(Mask, dl, VT)); | 
|  | } else if (Alt) { | 
|  | // Res = (CMPB & Mask) | (~CMPB & Alt) | 
|  | // Which, as suggested here: | 
|  | //   https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge | 
|  | // can be written as: | 
|  | // Res = Alt ^ ((Alt ^ Mask) & CMPB) | 
|  | // useful because the (Alt ^ Mask) can be pre-computed. | 
|  | Res = CurDAG->getNode(ISD::AND, dl, VT, Res, | 
|  | CurDAG->getConstant(Mask ^ Alt, dl, VT)); | 
|  | Res = CurDAG->getNode(ISD::XOR, dl, VT, Res, | 
|  | CurDAG->getConstant(Alt, dl, VT)); | 
|  | } | 
|  |  | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | // When CR bit registers are enabled, an extension of an i1 variable to a i32 | 
|  | // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus | 
|  | // involves constant materialization of a 0 or a 1 or both. If the result of | 
|  | // the extension is then operated upon by some operator that can be constant | 
|  | // folded with a constant 0 or 1, and that constant can be materialized using | 
|  | // only one instruction (like a zero or one), then we should fold in those | 
|  | // operations with the select. | 
|  | void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) { | 
|  | if (!Subtarget->useCRBits()) | 
|  | return; | 
|  |  | 
|  | if (N->getOpcode() != ISD::ZERO_EXTEND && | 
|  | N->getOpcode() != ISD::SIGN_EXTEND && | 
|  | N->getOpcode() != ISD::ANY_EXTEND) | 
|  | return; | 
|  |  | 
|  | if (N->getOperand(0).getValueType() != MVT::i1) | 
|  | return; | 
|  |  | 
|  | if (!N->hasOneUse()) | 
|  | return; | 
|  |  | 
|  | SDLoc dl(N); | 
|  | EVT VT = N->getValueType(0); | 
|  | SDValue Cond = N->getOperand(0); | 
|  | SDValue ConstTrue = | 
|  | CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT); | 
|  | SDValue ConstFalse = CurDAG->getConstant(0, dl, VT); | 
|  |  | 
|  | do { | 
|  | SDNode *User = *N->use_begin(); | 
|  | if (User->getNumOperands() != 2) | 
|  | break; | 
|  |  | 
|  | auto TryFold = [this, N, User, dl](SDValue Val) { | 
|  | SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1); | 
|  | SDValue O0 = UserO0.getNode() == N ? Val : UserO0; | 
|  | SDValue O1 = UserO1.getNode() == N ? Val : UserO1; | 
|  |  | 
|  | return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl, | 
|  | User->getValueType(0), {O0, O1}); | 
|  | }; | 
|  |  | 
|  | // FIXME: When the semantics of the interaction between select and undef | 
|  | // are clearly defined, it may turn out to be unnecessary to break here. | 
|  | SDValue TrueRes = TryFold(ConstTrue); | 
|  | if (!TrueRes || TrueRes.isUndef()) | 
|  | break; | 
|  | SDValue FalseRes = TryFold(ConstFalse); | 
|  | if (!FalseRes || FalseRes.isUndef()) | 
|  | break; | 
|  |  | 
|  | // For us to materialize these using one instruction, we must be able to | 
|  | // represent them as signed 16-bit integers. | 
|  | uint64_t True  = cast<ConstantSDNode>(TrueRes)->getZExtValue(), | 
|  | False = cast<ConstantSDNode>(FalseRes)->getZExtValue(); | 
|  | if (!isInt<16>(True) || !isInt<16>(False)) | 
|  | break; | 
|  |  | 
|  | // We can replace User with a new SELECT node, and try again to see if we | 
|  | // can fold the select with its user. | 
|  | Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes); | 
|  | N = User; | 
|  | ConstTrue = TrueRes; | 
|  | ConstFalse = FalseRes; | 
|  | } while (N->hasOneUse()); | 
|  | } | 
|  |  | 
|  | void PPCDAGToDAGISel::PreprocessISelDAG() { | 
|  | SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); | 
|  |  | 
|  | bool MadeChange = false; | 
|  | while (Position != CurDAG->allnodes_begin()) { | 
|  | SDNode *N = &*--Position; | 
|  | if (N->use_empty()) | 
|  | continue; | 
|  |  | 
|  | SDValue Res; | 
|  | switch (N->getOpcode()) { | 
|  | default: break; | 
|  | case ISD::OR: | 
|  | Res = combineToCMPB(N); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!Res) | 
|  | foldBoolExts(Res, N); | 
|  |  | 
|  | if (Res) { | 
|  | LLVM_DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld:    "); | 
|  | LLVM_DEBUG(N->dump(CurDAG)); | 
|  | LLVM_DEBUG(dbgs() << "\nNew: "); | 
|  | LLVM_DEBUG(Res.getNode()->dump(CurDAG)); | 
|  | LLVM_DEBUG(dbgs() << "\n"); | 
|  |  | 
|  | CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res); | 
|  | MadeChange = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (MadeChange) | 
|  | CurDAG->RemoveDeadNodes(); | 
|  | } | 
|  |  | 
|  | /// PostprocessISelDAG - Perform some late peephole optimizations | 
|  | /// on the DAG representation. | 
|  | void PPCDAGToDAGISel::PostprocessISelDAG() { | 
|  | // Skip peepholes at -O0. | 
|  | if (TM.getOptLevel() == CodeGenOpt::None) | 
|  | return; | 
|  |  | 
|  | PeepholePPC64(); | 
|  | PeepholeCROps(); | 
|  | PeepholePPC64ZExt(); | 
|  | } | 
|  |  | 
|  | // Check if all users of this node will become isel where the second operand | 
|  | // is the constant zero. If this is so, and if we can negate the condition, | 
|  | // then we can flip the true and false operands. This will allow the zero to | 
|  | // be folded with the isel so that we don't need to materialize a register | 
|  | // containing zero. | 
|  | bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) { | 
|  | for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); | 
|  | UI != UE; ++UI) { | 
|  | SDNode *User = *UI; | 
|  | if (!User->isMachineOpcode()) | 
|  | return false; | 
|  | if (User->getMachineOpcode() != PPC::SELECT_I4 && | 
|  | User->getMachineOpcode() != PPC::SELECT_I8) | 
|  | return false; | 
|  |  | 
|  | SDNode *Op2 = User->getOperand(2).getNode(); | 
|  | if (!Op2->isMachineOpcode()) | 
|  | return false; | 
|  |  | 
|  | if (Op2->getMachineOpcode() != PPC::LI && | 
|  | Op2->getMachineOpcode() != PPC::LI8) | 
|  | return false; | 
|  |  | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0)); | 
|  | if (!C) | 
|  | return false; | 
|  |  | 
|  | if (!C->isNullValue()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) { | 
|  | SmallVector<SDNode *, 4> ToReplace; | 
|  | for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); | 
|  | UI != UE; ++UI) { | 
|  | SDNode *User = *UI; | 
|  | assert((User->getMachineOpcode() == PPC::SELECT_I4 || | 
|  | User->getMachineOpcode() == PPC::SELECT_I8) && | 
|  | "Must have all select users"); | 
|  | ToReplace.push_back(User); | 
|  | } | 
|  |  | 
|  | for (SmallVector<SDNode *, 4>::iterator UI = ToReplace.begin(), | 
|  | UE = ToReplace.end(); UI != UE; ++UI) { | 
|  | SDNode *User = *UI; | 
|  | SDNode *ResNode = | 
|  | CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User), | 
|  | User->getValueType(0), User->getOperand(0), | 
|  | User->getOperand(2), | 
|  | User->getOperand(1)); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld:    "); | 
|  | LLVM_DEBUG(User->dump(CurDAG)); | 
|  | LLVM_DEBUG(dbgs() << "\nNew: "); | 
|  | LLVM_DEBUG(ResNode->dump(CurDAG)); | 
|  | LLVM_DEBUG(dbgs() << "\n"); | 
|  |  | 
|  | ReplaceUses(User, ResNode); | 
|  | } | 
|  | } | 
|  |  | 
|  | void PPCDAGToDAGISel::PeepholeCROps() { | 
|  | bool IsModified; | 
|  | do { | 
|  | IsModified = false; | 
|  | for (SDNode &Node : CurDAG->allnodes()) { | 
|  | MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(&Node); | 
|  | if (!MachineNode || MachineNode->use_empty()) | 
|  | continue; | 
|  | SDNode *ResNode = MachineNode; | 
|  |  | 
|  | bool Op1Set   = false, Op1Unset = false, | 
|  | Op1Not   = false, | 
|  | Op2Set   = false, Op2Unset = false, | 
|  | Op2Not   = false; | 
|  |  | 
|  | unsigned Opcode = MachineNode->getMachineOpcode(); | 
|  | switch (Opcode) { | 
|  | default: break; | 
|  | case PPC::CRAND: | 
|  | case PPC::CRNAND: | 
|  | case PPC::CROR: | 
|  | case PPC::CRXOR: | 
|  | case PPC::CRNOR: | 
|  | case PPC::CREQV: | 
|  | case PPC::CRANDC: | 
|  | case PPC::CRORC: { | 
|  | SDValue Op = MachineNode->getOperand(1); | 
|  | if (Op.isMachineOpcode()) { | 
|  | if (Op.getMachineOpcode() == PPC::CRSET) | 
|  | Op2Set = true; | 
|  | else if (Op.getMachineOpcode() == PPC::CRUNSET) | 
|  | Op2Unset = true; | 
|  | else if (Op.getMachineOpcode() == PPC::CRNOR && | 
|  | Op.getOperand(0) == Op.getOperand(1)) | 
|  | Op2Not = true; | 
|  | } | 
|  | LLVM_FALLTHROUGH; | 
|  | } | 
|  | case PPC::BC: | 
|  | case PPC::BCn: | 
|  | case PPC::SELECT_I4: | 
|  | case PPC::SELECT_I8: | 
|  | case PPC::SELECT_F4: | 
|  | case PPC::SELECT_F8: | 
|  | case PPC::SELECT_QFRC: | 
|  | case PPC::SELECT_QSRC: | 
|  | case PPC::SELECT_QBRC: | 
|  | case PPC::SELECT_SPE: | 
|  | case PPC::SELECT_SPE4: | 
|  | case PPC::SELECT_VRRC: | 
|  | case PPC::SELECT_VSFRC: | 
|  | case PPC::SELECT_VSSRC: | 
|  | case PPC::SELECT_VSRC: { | 
|  | SDValue Op = MachineNode->getOperand(0); | 
|  | if (Op.isMachineOpcode()) { | 
|  | if (Op.getMachineOpcode() == PPC::CRSET) | 
|  | Op1Set = true; | 
|  | else if (Op.getMachineOpcode() == PPC::CRUNSET) | 
|  | Op1Unset = true; | 
|  | else if (Op.getMachineOpcode() == PPC::CRNOR && | 
|  | Op.getOperand(0) == Op.getOperand(1)) | 
|  | Op1Not = true; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | bool SelectSwap = false; | 
|  | switch (Opcode) { | 
|  | default: break; | 
|  | case PPC::CRAND: | 
|  | if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) | 
|  | // x & x = x | 
|  | ResNode = MachineNode->getOperand(0).getNode(); | 
|  | else if (Op1Set) | 
|  | // 1 & y = y | 
|  | ResNode = MachineNode->getOperand(1).getNode(); | 
|  | else if (Op2Set) | 
|  | // x & 1 = x | 
|  | ResNode = MachineNode->getOperand(0).getNode(); | 
|  | else if (Op1Unset || Op2Unset) | 
|  | // x & 0 = 0 & y = 0 | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), | 
|  | MVT::i1); | 
|  | else if (Op1Not) | 
|  | // ~x & y = andc(y, x) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(1), | 
|  | MachineNode->getOperand(0). | 
|  | getOperand(0)); | 
|  | else if (Op2Not) | 
|  | // x & ~y = andc(x, y) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0), | 
|  | MachineNode->getOperand(1). | 
|  | getOperand(0)); | 
|  | else if (AllUsersSelectZero(MachineNode)) { | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0), | 
|  | MachineNode->getOperand(1)); | 
|  | SelectSwap = true; | 
|  | } | 
|  | break; | 
|  | case PPC::CRNAND: | 
|  | if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) | 
|  | // nand(x, x) -> nor(x, x) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0), | 
|  | MachineNode->getOperand(0)); | 
|  | else if (Op1Set) | 
|  | // nand(1, y) -> nor(y, y) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(1), | 
|  | MachineNode->getOperand(1)); | 
|  | else if (Op2Set) | 
|  | // nand(x, 1) -> nor(x, x) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0), | 
|  | MachineNode->getOperand(0)); | 
|  | else if (Op1Unset || Op2Unset) | 
|  | // nand(x, 0) = nand(0, y) = 1 | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), | 
|  | MVT::i1); | 
|  | else if (Op1Not) | 
|  | // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0). | 
|  | getOperand(0), | 
|  | MachineNode->getOperand(1)); | 
|  | else if (Op2Not) | 
|  | // nand(x, ~y) = ~x | y = orc(y, x) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(1). | 
|  | getOperand(0), | 
|  | MachineNode->getOperand(0)); | 
|  | else if (AllUsersSelectZero(MachineNode)) { | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0), | 
|  | MachineNode->getOperand(1)); | 
|  | SelectSwap = true; | 
|  | } | 
|  | break; | 
|  | case PPC::CROR: | 
|  | if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) | 
|  | // x | x = x | 
|  | ResNode = MachineNode->getOperand(0).getNode(); | 
|  | else if (Op1Set || Op2Set) | 
|  | // x | 1 = 1 | y = 1 | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), | 
|  | MVT::i1); | 
|  | else if (Op1Unset) | 
|  | // 0 | y = y | 
|  | ResNode = MachineNode->getOperand(1).getNode(); | 
|  | else if (Op2Unset) | 
|  | // x | 0 = x | 
|  | ResNode = MachineNode->getOperand(0).getNode(); | 
|  | else if (Op1Not) | 
|  | // ~x | y = orc(y, x) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(1), | 
|  | MachineNode->getOperand(0). | 
|  | getOperand(0)); | 
|  | else if (Op2Not) | 
|  | // x | ~y = orc(x, y) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0), | 
|  | MachineNode->getOperand(1). | 
|  | getOperand(0)); | 
|  | else if (AllUsersSelectZero(MachineNode)) { | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0), | 
|  | MachineNode->getOperand(1)); | 
|  | SelectSwap = true; | 
|  | } | 
|  | break; | 
|  | case PPC::CRXOR: | 
|  | if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) | 
|  | // xor(x, x) = 0 | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), | 
|  | MVT::i1); | 
|  | else if (Op1Set) | 
|  | // xor(1, y) -> nor(y, y) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(1), | 
|  | MachineNode->getOperand(1)); | 
|  | else if (Op2Set) | 
|  | // xor(x, 1) -> nor(x, x) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0), | 
|  | MachineNode->getOperand(0)); | 
|  | else if (Op1Unset) | 
|  | // xor(0, y) = y | 
|  | ResNode = MachineNode->getOperand(1).getNode(); | 
|  | else if (Op2Unset) | 
|  | // xor(x, 0) = x | 
|  | ResNode = MachineNode->getOperand(0).getNode(); | 
|  | else if (Op1Not) | 
|  | // xor(~x, y) = eqv(x, y) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0). | 
|  | getOperand(0), | 
|  | MachineNode->getOperand(1)); | 
|  | else if (Op2Not) | 
|  | // xor(x, ~y) = eqv(x, y) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0), | 
|  | MachineNode->getOperand(1). | 
|  | getOperand(0)); | 
|  | else if (AllUsersSelectZero(MachineNode)) { | 
|  | ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0), | 
|  | MachineNode->getOperand(1)); | 
|  | SelectSwap = true; | 
|  | } | 
|  | break; | 
|  | case PPC::CRNOR: | 
|  | if (Op1Set || Op2Set) | 
|  | // nor(1, y) -> 0 | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), | 
|  | MVT::i1); | 
|  | else if (Op1Unset) | 
|  | // nor(0, y) = ~y -> nor(y, y) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(1), | 
|  | MachineNode->getOperand(1)); | 
|  | else if (Op2Unset) | 
|  | // nor(x, 0) = ~x | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0), | 
|  | MachineNode->getOperand(0)); | 
|  | else if (Op1Not) | 
|  | // nor(~x, y) = andc(x, y) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0). | 
|  | getOperand(0), | 
|  | MachineNode->getOperand(1)); | 
|  | else if (Op2Not) | 
|  | // nor(x, ~y) = andc(y, x) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(1). | 
|  | getOperand(0), | 
|  | MachineNode->getOperand(0)); | 
|  | else if (AllUsersSelectZero(MachineNode)) { | 
|  | ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0), | 
|  | MachineNode->getOperand(1)); | 
|  | SelectSwap = true; | 
|  | } | 
|  | break; | 
|  | case PPC::CREQV: | 
|  | if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) | 
|  | // eqv(x, x) = 1 | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), | 
|  | MVT::i1); | 
|  | else if (Op1Set) | 
|  | // eqv(1, y) = y | 
|  | ResNode = MachineNode->getOperand(1).getNode(); | 
|  | else if (Op2Set) | 
|  | // eqv(x, 1) = x | 
|  | ResNode = MachineNode->getOperand(0).getNode(); | 
|  | else if (Op1Unset) | 
|  | // eqv(0, y) = ~y -> nor(y, y) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(1), | 
|  | MachineNode->getOperand(1)); | 
|  | else if (Op2Unset) | 
|  | // eqv(x, 0) = ~x | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0), | 
|  | MachineNode->getOperand(0)); | 
|  | else if (Op1Not) | 
|  | // eqv(~x, y) = xor(x, y) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0). | 
|  | getOperand(0), | 
|  | MachineNode->getOperand(1)); | 
|  | else if (Op2Not) | 
|  | // eqv(x, ~y) = xor(x, y) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0), | 
|  | MachineNode->getOperand(1). | 
|  | getOperand(0)); | 
|  | else if (AllUsersSelectZero(MachineNode)) { | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0), | 
|  | MachineNode->getOperand(1)); | 
|  | SelectSwap = true; | 
|  | } | 
|  | break; | 
|  | case PPC::CRANDC: | 
|  | if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) | 
|  | // andc(x, x) = 0 | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), | 
|  | MVT::i1); | 
|  | else if (Op1Set) | 
|  | // andc(1, y) = ~y | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(1), | 
|  | MachineNode->getOperand(1)); | 
|  | else if (Op1Unset || Op2Set) | 
|  | // andc(0, y) = andc(x, 1) = 0 | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode), | 
|  | MVT::i1); | 
|  | else if (Op2Unset) | 
|  | // andc(x, 0) = x | 
|  | ResNode = MachineNode->getOperand(0).getNode(); | 
|  | else if (Op1Not) | 
|  | // andc(~x, y) = ~(x | y) = nor(x, y) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0). | 
|  | getOperand(0), | 
|  | MachineNode->getOperand(1)); | 
|  | else if (Op2Not) | 
|  | // andc(x, ~y) = x & y | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0), | 
|  | MachineNode->getOperand(1). | 
|  | getOperand(0)); | 
|  | else if (AllUsersSelectZero(MachineNode)) { | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(1), | 
|  | MachineNode->getOperand(0)); | 
|  | SelectSwap = true; | 
|  | } | 
|  | break; | 
|  | case PPC::CRORC: | 
|  | if (MachineNode->getOperand(0) == MachineNode->getOperand(1)) | 
|  | // orc(x, x) = 1 | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), | 
|  | MVT::i1); | 
|  | else if (Op1Set || Op2Unset) | 
|  | // orc(1, y) = orc(x, 0) = 1 | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode), | 
|  | MVT::i1); | 
|  | else if (Op2Set) | 
|  | // orc(x, 1) = x | 
|  | ResNode = MachineNode->getOperand(0).getNode(); | 
|  | else if (Op1Unset) | 
|  | // orc(0, y) = ~y | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(1), | 
|  | MachineNode->getOperand(1)); | 
|  | else if (Op1Not) | 
|  | // orc(~x, y) = ~(x & y) = nand(x, y) | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0). | 
|  | getOperand(0), | 
|  | MachineNode->getOperand(1)); | 
|  | else if (Op2Not) | 
|  | // orc(x, ~y) = x | y | 
|  | ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(0), | 
|  | MachineNode->getOperand(1). | 
|  | getOperand(0)); | 
|  | else if (AllUsersSelectZero(MachineNode)) { | 
|  | ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode), | 
|  | MVT::i1, MachineNode->getOperand(1), | 
|  | MachineNode->getOperand(0)); | 
|  | SelectSwap = true; | 
|  | } | 
|  | break; | 
|  | case PPC::SELECT_I4: | 
|  | case PPC::SELECT_I8: | 
|  | case PPC::SELECT_F4: | 
|  | case PPC::SELECT_F8: | 
|  | case PPC::SELECT_QFRC: | 
|  | case PPC::SELECT_QSRC: | 
|  | case PPC::SELECT_QBRC: | 
|  | case PPC::SELECT_SPE: | 
|  | case PPC::SELECT_SPE4: | 
|  | case PPC::SELECT_VRRC: | 
|  | case PPC::SELECT_VSFRC: | 
|  | case PPC::SELECT_VSSRC: | 
|  | case PPC::SELECT_VSRC: | 
|  | if (Op1Set) | 
|  | ResNode = MachineNode->getOperand(1).getNode(); | 
|  | else if (Op1Unset) | 
|  | ResNode = MachineNode->getOperand(2).getNode(); | 
|  | else if (Op1Not) | 
|  | ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(), | 
|  | SDLoc(MachineNode), | 
|  | MachineNode->getValueType(0), | 
|  | MachineNode->getOperand(0). | 
|  | getOperand(0), | 
|  | MachineNode->getOperand(2), | 
|  | MachineNode->getOperand(1)); | 
|  | break; | 
|  | case PPC::BC: | 
|  | case PPC::BCn: | 
|  | if (Op1Not) | 
|  | ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn : | 
|  | PPC::BC, | 
|  | SDLoc(MachineNode), | 
|  | MVT::Other, | 
|  | MachineNode->getOperand(0). | 
|  | getOperand(0), | 
|  | MachineNode->getOperand(1), | 
|  | MachineNode->getOperand(2)); | 
|  | // FIXME: Handle Op1Set, Op1Unset here too. | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If we're inverting this node because it is used only by selects that | 
|  | // we'd like to swap, then swap the selects before the node replacement. | 
|  | if (SelectSwap) | 
|  | SwapAllSelectUsers(MachineNode); | 
|  |  | 
|  | if (ResNode != MachineNode) { | 
|  | LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld:    "); | 
|  | LLVM_DEBUG(MachineNode->dump(CurDAG)); | 
|  | LLVM_DEBUG(dbgs() << "\nNew: "); | 
|  | LLVM_DEBUG(ResNode->dump(CurDAG)); | 
|  | LLVM_DEBUG(dbgs() << "\n"); | 
|  |  | 
|  | ReplaceUses(MachineNode, ResNode); | 
|  | IsModified = true; | 
|  | } | 
|  | } | 
|  | if (IsModified) | 
|  | CurDAG->RemoveDeadNodes(); | 
|  | } while (IsModified); | 
|  | } | 
|  |  | 
|  | // Gather the set of 32-bit operations that are known to have their | 
|  | // higher-order 32 bits zero, where ToPromote contains all such operations. | 
|  | static bool PeepholePPC64ZExtGather(SDValue Op32, | 
|  | SmallPtrSetImpl<SDNode *> &ToPromote) { | 
|  | if (!Op32.isMachineOpcode()) | 
|  | return false; | 
|  |  | 
|  | // First, check for the "frontier" instructions (those that will clear the | 
|  | // higher-order 32 bits. | 
|  |  | 
|  | // For RLWINM and RLWNM, we need to make sure that the mask does not wrap | 
|  | // around. If it does not, then these instructions will clear the | 
|  | // higher-order bits. | 
|  | if ((Op32.getMachineOpcode() == PPC::RLWINM || | 
|  | Op32.getMachineOpcode() == PPC::RLWNM) && | 
|  | Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) { | 
|  | ToPromote.insert(Op32.getNode()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // SLW and SRW always clear the higher-order bits. | 
|  | if (Op32.getMachineOpcode() == PPC::SLW || | 
|  | Op32.getMachineOpcode() == PPC::SRW) { | 
|  | ToPromote.insert(Op32.getNode()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // For LI and LIS, we need the immediate to be positive (so that it is not | 
|  | // sign extended). | 
|  | if (Op32.getMachineOpcode() == PPC::LI || | 
|  | Op32.getMachineOpcode() == PPC::LIS) { | 
|  | if (!isUInt<15>(Op32.getConstantOperandVal(0))) | 
|  | return false; | 
|  |  | 
|  | ToPromote.insert(Op32.getNode()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // LHBRX and LWBRX always clear the higher-order bits. | 
|  | if (Op32.getMachineOpcode() == PPC::LHBRX || | 
|  | Op32.getMachineOpcode() == PPC::LWBRX) { | 
|  | ToPromote.insert(Op32.getNode()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // CNT[LT]ZW always produce a 64-bit value in [0,32], and so is zero extended. | 
|  | if (Op32.getMachineOpcode() == PPC::CNTLZW || | 
|  | Op32.getMachineOpcode() == PPC::CNTTZW) { | 
|  | ToPromote.insert(Op32.getNode()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Next, check for those instructions we can look through. | 
|  |  | 
|  | // Assuming the mask does not wrap around, then the higher-order bits are | 
|  | // taken directly from the first operand. | 
|  | if (Op32.getMachineOpcode() == PPC::RLWIMI && | 
|  | Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) { | 
|  | SmallPtrSet<SDNode *, 16> ToPromote1; | 
|  | if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1)) | 
|  | return false; | 
|  |  | 
|  | ToPromote.insert(Op32.getNode()); | 
|  | ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // For OR, the higher-order bits are zero if that is true for both operands. | 
|  | // For SELECT_I4, the same is true (but the relevant operand numbers are | 
|  | // shifted by 1). | 
|  | if (Op32.getMachineOpcode() == PPC::OR || | 
|  | Op32.getMachineOpcode() == PPC::SELECT_I4) { | 
|  | unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0; | 
|  | SmallPtrSet<SDNode *, 16> ToPromote1; | 
|  | if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1)) | 
|  | return false; | 
|  | if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1)) | 
|  | return false; | 
|  |  | 
|  | ToPromote.insert(Op32.getNode()); | 
|  | ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // For ORI and ORIS, we need the higher-order bits of the first operand to be | 
|  | // zero, and also for the constant to be positive (so that it is not sign | 
|  | // extended). | 
|  | if (Op32.getMachineOpcode() == PPC::ORI || | 
|  | Op32.getMachineOpcode() == PPC::ORIS) { | 
|  | SmallPtrSet<SDNode *, 16> ToPromote1; | 
|  | if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1)) | 
|  | return false; | 
|  | if (!isUInt<15>(Op32.getConstantOperandVal(1))) | 
|  | return false; | 
|  |  | 
|  | ToPromote.insert(Op32.getNode()); | 
|  | ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // The higher-order bits of AND are zero if that is true for at least one of | 
|  | // the operands. | 
|  | if (Op32.getMachineOpcode() == PPC::AND) { | 
|  | SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2; | 
|  | bool Op0OK = | 
|  | PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1); | 
|  | bool Op1OK = | 
|  | PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2); | 
|  | if (!Op0OK && !Op1OK) | 
|  | return false; | 
|  |  | 
|  | ToPromote.insert(Op32.getNode()); | 
|  |  | 
|  | if (Op0OK) | 
|  | ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); | 
|  |  | 
|  | if (Op1OK) | 
|  | ToPromote.insert(ToPromote2.begin(), ToPromote2.end()); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // For ANDI and ANDIS, the higher-order bits are zero if either that is true | 
|  | // of the first operand, or if the second operand is positive (so that it is | 
|  | // not sign extended). | 
|  | if (Op32.getMachineOpcode() == PPC::ANDI_rec || | 
|  | Op32.getMachineOpcode() == PPC::ANDIS_rec) { | 
|  | SmallPtrSet<SDNode *, 16> ToPromote1; | 
|  | bool Op0OK = | 
|  | PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1); | 
|  | bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1)); | 
|  | if (!Op0OK && !Op1OK) | 
|  | return false; | 
|  |  | 
|  | ToPromote.insert(Op32.getNode()); | 
|  |  | 
|  | if (Op0OK) | 
|  | ToPromote.insert(ToPromote1.begin(), ToPromote1.end()); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void PPCDAGToDAGISel::PeepholePPC64ZExt() { | 
|  | if (!Subtarget->isPPC64()) | 
|  | return; | 
|  |  | 
|  | // When we zero-extend from i32 to i64, we use a pattern like this: | 
|  | // def : Pat<(i64 (zext i32:$in)), | 
|  | //           (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32), | 
|  | //                   0, 32)>; | 
|  | // There are several 32-bit shift/rotate instructions, however, that will | 
|  | // clear the higher-order bits of their output, rendering the RLDICL | 
|  | // unnecessary. When that happens, we remove it here, and redefine the | 
|  | // relevant 32-bit operation to be a 64-bit operation. | 
|  |  | 
|  | SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); | 
|  |  | 
|  | bool MadeChange = false; | 
|  | while (Position != CurDAG->allnodes_begin()) { | 
|  | SDNode *N = &*--Position; | 
|  | // Skip dead nodes and any non-machine opcodes. | 
|  | if (N->use_empty() || !N->isMachineOpcode()) | 
|  | continue; | 
|  |  | 
|  | if (N->getMachineOpcode() != PPC::RLDICL) | 
|  | continue; | 
|  |  | 
|  | if (N->getConstantOperandVal(1) != 0 || | 
|  | N->getConstantOperandVal(2) != 32) | 
|  | continue; | 
|  |  | 
|  | SDValue ISR = N->getOperand(0); | 
|  | if (!ISR.isMachineOpcode() || | 
|  | ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG) | 
|  | continue; | 
|  |  | 
|  | if (!ISR.hasOneUse()) | 
|  | continue; | 
|  |  | 
|  | if (ISR.getConstantOperandVal(2) != PPC::sub_32) | 
|  | continue; | 
|  |  | 
|  | SDValue IDef = ISR.getOperand(0); | 
|  | if (!IDef.isMachineOpcode() || | 
|  | IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF) | 
|  | continue; | 
|  |  | 
|  | // We now know that we're looking at a canonical i32 -> i64 zext. See if we | 
|  | // can get rid of it. | 
|  |  | 
|  | SDValue Op32 = ISR->getOperand(1); | 
|  | if (!Op32.isMachineOpcode()) | 
|  | continue; | 
|  |  | 
|  | // There are some 32-bit instructions that always clear the high-order 32 | 
|  | // bits, there are also some instructions (like AND) that we can look | 
|  | // through. | 
|  | SmallPtrSet<SDNode *, 16> ToPromote; | 
|  | if (!PeepholePPC64ZExtGather(Op32, ToPromote)) | 
|  | continue; | 
|  |  | 
|  | // If the ToPromote set contains nodes that have uses outside of the set | 
|  | // (except for the original INSERT_SUBREG), then abort the transformation. | 
|  | bool OutsideUse = false; | 
|  | for (SDNode *PN : ToPromote) { | 
|  | for (SDNode *UN : PN->uses()) { | 
|  | if (!ToPromote.count(UN) && UN != ISR.getNode()) { | 
|  | OutsideUse = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (OutsideUse) | 
|  | break; | 
|  | } | 
|  | if (OutsideUse) | 
|  | continue; | 
|  |  | 
|  | MadeChange = true; | 
|  |  | 
|  | // We now know that this zero extension can be removed by promoting to | 
|  | // nodes in ToPromote to 64-bit operations, where for operations in the | 
|  | // frontier of the set, we need to insert INSERT_SUBREGs for their | 
|  | // operands. | 
|  | for (SDNode *PN : ToPromote) { | 
|  | unsigned NewOpcode; | 
|  | switch (PN->getMachineOpcode()) { | 
|  | default: | 
|  | llvm_unreachable("Don't know the 64-bit variant of this instruction"); | 
|  | case PPC::RLWINM:    NewOpcode = PPC::RLWINM8; break; | 
|  | case PPC::RLWNM:     NewOpcode = PPC::RLWNM8; break; | 
|  | case PPC::SLW:       NewOpcode = PPC::SLW8; break; | 
|  | case PPC::SRW:       NewOpcode = PPC::SRW8; break; | 
|  | case PPC::LI:        NewOpcode = PPC::LI8; break; | 
|  | case PPC::LIS:       NewOpcode = PPC::LIS8; break; | 
|  | case PPC::LHBRX:     NewOpcode = PPC::LHBRX8; break; | 
|  | case PPC::LWBRX:     NewOpcode = PPC::LWBRX8; break; | 
|  | case PPC::CNTLZW:    NewOpcode = PPC::CNTLZW8; break; | 
|  | case PPC::CNTTZW:    NewOpcode = PPC::CNTTZW8; break; | 
|  | case PPC::RLWIMI:    NewOpcode = PPC::RLWIMI8; break; | 
|  | case PPC::OR:        NewOpcode = PPC::OR8; break; | 
|  | case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break; | 
|  | case PPC::ORI:       NewOpcode = PPC::ORI8; break; | 
|  | case PPC::ORIS:      NewOpcode = PPC::ORIS8; break; | 
|  | case PPC::AND:       NewOpcode = PPC::AND8; break; | 
|  | case PPC::ANDI_rec: | 
|  | NewOpcode = PPC::ANDI8_rec; | 
|  | break; | 
|  | case PPC::ANDIS_rec: | 
|  | NewOpcode = PPC::ANDIS8_rec; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Note: During the replacement process, the nodes will be in an | 
|  | // inconsistent state (some instructions will have operands with values | 
|  | // of the wrong type). Once done, however, everything should be right | 
|  | // again. | 
|  |  | 
|  | SmallVector<SDValue, 4> Ops; | 
|  | for (const SDValue &V : PN->ops()) { | 
|  | if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 && | 
|  | !isa<ConstantSDNode>(V)) { | 
|  | SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) }; | 
|  | SDNode *ReplOp = | 
|  | CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V), | 
|  | ISR.getNode()->getVTList(), ReplOpOps); | 
|  | Ops.push_back(SDValue(ReplOp, 0)); | 
|  | } else { | 
|  | Ops.push_back(V); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Because all to-be-promoted nodes only have users that are other | 
|  | // promoted nodes (or the original INSERT_SUBREG), we can safely replace | 
|  | // the i32 result value type with i64. | 
|  |  | 
|  | SmallVector<EVT, 2> NewVTs; | 
|  | SDVTList VTs = PN->getVTList(); | 
|  | for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i) | 
|  | if (VTs.VTs[i] == MVT::i32) | 
|  | NewVTs.push_back(MVT::i64); | 
|  | else | 
|  | NewVTs.push_back(VTs.VTs[i]); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld:    "); | 
|  | LLVM_DEBUG(PN->dump(CurDAG)); | 
|  |  | 
|  | CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "\nNew: "); | 
|  | LLVM_DEBUG(PN->dump(CurDAG)); | 
|  | LLVM_DEBUG(dbgs() << "\n"); | 
|  | } | 
|  |  | 
|  | // Now we replace the original zero extend and its associated INSERT_SUBREG | 
|  | // with the value feeding the INSERT_SUBREG (which has now been promoted to | 
|  | // return an i64). | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld:    "); | 
|  | LLVM_DEBUG(N->dump(CurDAG)); | 
|  | LLVM_DEBUG(dbgs() << "\nNew: "); | 
|  | LLVM_DEBUG(Op32.getNode()->dump(CurDAG)); | 
|  | LLVM_DEBUG(dbgs() << "\n"); | 
|  |  | 
|  | ReplaceUses(N, Op32.getNode()); | 
|  | } | 
|  |  | 
|  | if (MadeChange) | 
|  | CurDAG->RemoveDeadNodes(); | 
|  | } | 
|  |  | 
|  | void PPCDAGToDAGISel::PeepholePPC64() { | 
|  | SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); | 
|  |  | 
|  | while (Position != CurDAG->allnodes_begin()) { | 
|  | SDNode *N = &*--Position; | 
|  | // Skip dead nodes and any non-machine opcodes. | 
|  | if (N->use_empty() || !N->isMachineOpcode()) | 
|  | continue; | 
|  |  | 
|  | unsigned FirstOp; | 
|  | unsigned StorageOpcode = N->getMachineOpcode(); | 
|  | bool RequiresMod4Offset = false; | 
|  |  | 
|  | switch (StorageOpcode) { | 
|  | default: continue; | 
|  |  | 
|  | case PPC::LWA: | 
|  | case PPC::LD: | 
|  | case PPC::DFLOADf64: | 
|  | case PPC::DFLOADf32: | 
|  | RequiresMod4Offset = true; | 
|  | LLVM_FALLTHROUGH; | 
|  | case PPC::LBZ: | 
|  | case PPC::LBZ8: | 
|  | case PPC::LFD: | 
|  | case PPC::LFS: | 
|  | case PPC::LHA: | 
|  | case PPC::LHA8: | 
|  | case PPC::LHZ: | 
|  | case PPC::LHZ8: | 
|  | case PPC::LWZ: | 
|  | case PPC::LWZ8: | 
|  | FirstOp = 0; | 
|  | break; | 
|  |  | 
|  | case PPC::STD: | 
|  | case PPC::DFSTOREf64: | 
|  | case PPC::DFSTOREf32: | 
|  | RequiresMod4Offset = true; | 
|  | LLVM_FALLTHROUGH; | 
|  | case PPC::STB: | 
|  | case PPC::STB8: | 
|  | case PPC::STFD: | 
|  | case PPC::STFS: | 
|  | case PPC::STH: | 
|  | case PPC::STH8: | 
|  | case PPC::STW: | 
|  | case PPC::STW8: | 
|  | FirstOp = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If this is a load or store with a zero offset, or within the alignment, | 
|  | // we may be able to fold an add-immediate into the memory operation. | 
|  | // The check against alignment is below, as it can't occur until we check | 
|  | // the arguments to N | 
|  | if (!isa<ConstantSDNode>(N->getOperand(FirstOp))) | 
|  | continue; | 
|  |  | 
|  | SDValue Base = N->getOperand(FirstOp + 1); | 
|  | if (!Base.isMachineOpcode()) | 
|  | continue; | 
|  |  | 
|  | unsigned Flags = 0; | 
|  | bool ReplaceFlags = true; | 
|  |  | 
|  | // When the feeding operation is an add-immediate of some sort, | 
|  | // determine whether we need to add relocation information to the | 
|  | // target flags on the immediate operand when we fold it into the | 
|  | // load instruction. | 
|  | // | 
|  | // For something like ADDItocL, the relocation information is | 
|  | // inferred from the opcode; when we process it in the AsmPrinter, | 
|  | // we add the necessary relocation there.  A load, though, can receive | 
|  | // relocation from various flavors of ADDIxxx, so we need to carry | 
|  | // the relocation information in the target flags. | 
|  | switch (Base.getMachineOpcode()) { | 
|  | default: continue; | 
|  |  | 
|  | case PPC::ADDI8: | 
|  | case PPC::ADDI: | 
|  | // In some cases (such as TLS) the relocation information | 
|  | // is already in place on the operand, so copying the operand | 
|  | // is sufficient. | 
|  | ReplaceFlags = false; | 
|  | // For these cases, the immediate may not be divisible by 4, in | 
|  | // which case the fold is illegal for DS-form instructions.  (The | 
|  | // other cases provide aligned addresses and are always safe.) | 
|  | if (RequiresMod4Offset && | 
|  | (!isa<ConstantSDNode>(Base.getOperand(1)) || | 
|  | Base.getConstantOperandVal(1) % 4 != 0)) | 
|  | continue; | 
|  | break; | 
|  | case PPC::ADDIdtprelL: | 
|  | Flags = PPCII::MO_DTPREL_LO; | 
|  | break; | 
|  | case PPC::ADDItlsldL: | 
|  | Flags = PPCII::MO_TLSLD_LO; | 
|  | break; | 
|  | case PPC::ADDItocL: | 
|  | Flags = PPCII::MO_TOC_LO; | 
|  | break; | 
|  | } | 
|  |  | 
|  | SDValue ImmOpnd = Base.getOperand(1); | 
|  |  | 
|  | // On PPC64, the TOC base pointer is guaranteed by the ABI only to have | 
|  | // 8-byte alignment, and so we can only use offsets less than 8 (otherwise, | 
|  | // we might have needed different @ha relocation values for the offset | 
|  | // pointers). | 
|  | int MaxDisplacement = 7; | 
|  | if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) { | 
|  | const GlobalValue *GV = GA->getGlobal(); | 
|  | Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout()); | 
|  | MaxDisplacement = std::min((int)Alignment.value() - 1, MaxDisplacement); | 
|  | } | 
|  |  | 
|  | bool UpdateHBase = false; | 
|  | SDValue HBase = Base.getOperand(0); | 
|  |  | 
|  | int Offset = N->getConstantOperandVal(FirstOp); | 
|  | if (ReplaceFlags) { | 
|  | if (Offset < 0 || Offset > MaxDisplacement) { | 
|  | // If we have a addi(toc@l)/addis(toc@ha) pair, and the addis has only | 
|  | // one use, then we can do this for any offset, we just need to also | 
|  | // update the offset (i.e. the symbol addend) on the addis also. | 
|  | if (Base.getMachineOpcode() != PPC::ADDItocL) | 
|  | continue; | 
|  |  | 
|  | if (!HBase.isMachineOpcode() || | 
|  | HBase.getMachineOpcode() != PPC::ADDIStocHA8) | 
|  | continue; | 
|  |  | 
|  | if (!Base.hasOneUse() || !HBase.hasOneUse()) | 
|  | continue; | 
|  |  | 
|  | SDValue HImmOpnd = HBase.getOperand(1); | 
|  | if (HImmOpnd != ImmOpnd) | 
|  | continue; | 
|  |  | 
|  | UpdateHBase = true; | 
|  | } | 
|  | } else { | 
|  | // If we're directly folding the addend from an addi instruction, then: | 
|  | //  1. In general, the offset on the memory access must be zero. | 
|  | //  2. If the addend is a constant, then it can be combined with a | 
|  | //     non-zero offset, but only if the result meets the encoding | 
|  | //     requirements. | 
|  | if (auto *C = dyn_cast<ConstantSDNode>(ImmOpnd)) { | 
|  | Offset += C->getSExtValue(); | 
|  |  | 
|  | if (RequiresMod4Offset && (Offset % 4) != 0) | 
|  | continue; | 
|  |  | 
|  | if (!isInt<16>(Offset)) | 
|  | continue; | 
|  |  | 
|  | ImmOpnd = CurDAG->getTargetConstant(Offset, SDLoc(ImmOpnd), | 
|  | ImmOpnd.getValueType()); | 
|  | } else if (Offset != 0) { | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We found an opportunity.  Reverse the operands from the add | 
|  | // immediate and substitute them into the load or store.  If | 
|  | // needed, update the target flags for the immediate operand to | 
|  | // reflect the necessary relocation information. | 
|  | LLVM_DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase:    "); | 
|  | LLVM_DEBUG(Base->dump(CurDAG)); | 
|  | LLVM_DEBUG(dbgs() << "\nN: "); | 
|  | LLVM_DEBUG(N->dump(CurDAG)); | 
|  | LLVM_DEBUG(dbgs() << "\n"); | 
|  |  | 
|  | // If the relocation information isn't already present on the | 
|  | // immediate operand, add it now. | 
|  | if (ReplaceFlags) { | 
|  | if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) { | 
|  | SDLoc dl(GA); | 
|  | const GlobalValue *GV = GA->getGlobal(); | 
|  | Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout()); | 
|  | // We can't perform this optimization for data whose alignment | 
|  | // is insufficient for the instruction encoding. | 
|  | if (Alignment < 4 && (RequiresMod4Offset || (Offset % 4) != 0)) { | 
|  | LLVM_DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n"); | 
|  | continue; | 
|  | } | 
|  | ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags); | 
|  | } else if (ConstantPoolSDNode *CP = | 
|  | dyn_cast<ConstantPoolSDNode>(ImmOpnd)) { | 
|  | const Constant *C = CP->getConstVal(); | 
|  | ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64, CP->getAlign(), | 
|  | Offset, Flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (FirstOp == 1) // Store | 
|  | (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd, | 
|  | Base.getOperand(0), N->getOperand(3)); | 
|  | else // Load | 
|  | (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0), | 
|  | N->getOperand(2)); | 
|  |  | 
|  | if (UpdateHBase) | 
|  | (void)CurDAG->UpdateNodeOperands(HBase.getNode(), HBase.getOperand(0), | 
|  | ImmOpnd); | 
|  |  | 
|  | // The add-immediate may now be dead, in which case remove it. | 
|  | if (Base.getNode()->use_empty()) | 
|  | CurDAG->RemoveDeadNode(Base.getNode()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// createPPCISelDag - This pass converts a legalized DAG into a | 
|  | /// PowerPC-specific DAG, ready for instruction scheduling. | 
|  | /// | 
|  | FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM, | 
|  | CodeGenOpt::Level OptLevel) { | 
|  | return new PPCDAGToDAGISel(TM, OptLevel); | 
|  | } |