|  | //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the SelectionDAG::LegalizeVectors method. | 
|  | // | 
|  | // The vector legalizer looks for vector operations which might need to be | 
|  | // scalarized and legalizes them. This is a separate step from Legalize because | 
|  | // scalarizing can introduce illegal types.  For example, suppose we have an | 
|  | // ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition | 
|  | // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the | 
|  | // operation, which introduces nodes with the illegal type i64 which must be | 
|  | // expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; | 
|  | // the operation must be unrolled, which introduces nodes with the illegal | 
|  | // type i8 which must be promoted. | 
|  | // | 
|  | // This does not legalize vector manipulations like ISD::BUILD_VECTOR, | 
|  | // or operations that happen to take a vector which are custom-lowered; | 
|  | // the legalization for such operations never produces nodes | 
|  | // with illegal types, so it's okay to put off legalizing them until | 
|  | // SelectionDAG::Legalize runs. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/CodeGen/ISDOpcodes.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/CodeGen/SelectionDAGNodes.h" | 
|  | #include "llvm/CodeGen/TargetLowering.h" | 
|  | #include "llvm/CodeGen/ValueTypes.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MachineValueType.h" | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <iterator> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "legalizevectorops" | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class VectorLegalizer { | 
|  | SelectionDAG& DAG; | 
|  | const TargetLowering &TLI; | 
|  | bool Changed = false; // Keep track of whether anything changed | 
|  |  | 
|  | /// For nodes that are of legal width, and that have more than one use, this | 
|  | /// map indicates what regularized operand to use.  This allows us to avoid | 
|  | /// legalizing the same thing more than once. | 
|  | SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes; | 
|  |  | 
|  | /// Adds a node to the translation cache. | 
|  | void AddLegalizedOperand(SDValue From, SDValue To) { | 
|  | LegalizedNodes.insert(std::make_pair(From, To)); | 
|  | // If someone requests legalization of the new node, return itself. | 
|  | if (From != To) | 
|  | LegalizedNodes.insert(std::make_pair(To, To)); | 
|  | } | 
|  |  | 
|  | /// Legalizes the given node. | 
|  | SDValue LegalizeOp(SDValue Op); | 
|  |  | 
|  | /// Assuming the node is legal, "legalize" the results. | 
|  | SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result); | 
|  |  | 
|  | /// Make sure Results are legal and update the translation cache. | 
|  | SDValue RecursivelyLegalizeResults(SDValue Op, | 
|  | MutableArrayRef<SDValue> Results); | 
|  |  | 
|  | /// Wrapper to interface LowerOperation with a vector of Results. | 
|  | /// Returns false if the target wants to use default expansion. Otherwise | 
|  | /// returns true. If return is true and the Results are empty, then the | 
|  | /// target wants to keep the input node as is. | 
|  | bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results); | 
|  |  | 
|  | /// Implements unrolling a VSETCC. | 
|  | SDValue UnrollVSETCC(SDNode *Node); | 
|  |  | 
|  | /// Implement expand-based legalization of vector operations. | 
|  | /// | 
|  | /// This is just a high-level routine to dispatch to specific code paths for | 
|  | /// operations to legalize them. | 
|  | void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results); | 
|  |  | 
|  | /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if | 
|  | /// FP_TO_SINT isn't legal. | 
|  | void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results); | 
|  |  | 
|  | /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if | 
|  | /// SINT_TO_FLOAT and SHR on vectors isn't legal. | 
|  | void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results); | 
|  |  | 
|  | /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA. | 
|  | SDValue ExpandSEXTINREG(SDNode *Node); | 
|  |  | 
|  | /// Implement expansion for ANY_EXTEND_VECTOR_INREG. | 
|  | /// | 
|  | /// Shuffles the low lanes of the operand into place and bitcasts to the proper | 
|  | /// type. The contents of the bits in the extended part of each element are | 
|  | /// undef. | 
|  | SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node); | 
|  |  | 
|  | /// Implement expansion for SIGN_EXTEND_VECTOR_INREG. | 
|  | /// | 
|  | /// Shuffles the low lanes of the operand into place, bitcasts to the proper | 
|  | /// type, then shifts left and arithmetic shifts right to introduce a sign | 
|  | /// extension. | 
|  | SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node); | 
|  |  | 
|  | /// Implement expansion for ZERO_EXTEND_VECTOR_INREG. | 
|  | /// | 
|  | /// Shuffles the low lanes of the operand into place and blends zeros into | 
|  | /// the remaining lanes, finally bitcasting to the proper type. | 
|  | SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node); | 
|  |  | 
|  | /// Expand bswap of vectors into a shuffle if legal. | 
|  | SDValue ExpandBSWAP(SDNode *Node); | 
|  |  | 
|  | /// Implement vselect in terms of XOR, AND, OR when blend is not | 
|  | /// supported by the target. | 
|  | SDValue ExpandVSELECT(SDNode *Node); | 
|  | SDValue ExpandVP_SELECT(SDNode *Node); | 
|  | SDValue ExpandVP_MERGE(SDNode *Node); | 
|  | SDValue ExpandSELECT(SDNode *Node); | 
|  | std::pair<SDValue, SDValue> ExpandLoad(SDNode *N); | 
|  | SDValue ExpandStore(SDNode *N); | 
|  | SDValue ExpandFNEG(SDNode *Node); | 
|  | void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results); | 
|  | void ExpandSETCC(SDNode *Node, SmallVectorImpl<SDValue> &Results); | 
|  | void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl<SDValue> &Results); | 
|  | void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results); | 
|  | void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results); | 
|  | void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results); | 
|  | void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl<SDValue> &Results); | 
|  | void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results); | 
|  | void ExpandREM(SDNode *Node, SmallVectorImpl<SDValue> &Results); | 
|  |  | 
|  | void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results); | 
|  |  | 
|  | /// Implements vector promotion. | 
|  | /// | 
|  | /// This is essentially just bitcasting the operands to a different type and | 
|  | /// bitcasting the result back to the original type. | 
|  | void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results); | 
|  |  | 
|  | /// Implements [SU]INT_TO_FP vector promotion. | 
|  | /// | 
|  | /// This is a [zs]ext of the input operand to a larger integer type. | 
|  | void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results); | 
|  |  | 
|  | /// Implements FP_TO_[SU]INT vector promotion of the result type. | 
|  | /// | 
|  | /// It is promoted to a larger integer type.  The result is then | 
|  | /// truncated back to the original type. | 
|  | void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results); | 
|  |  | 
|  | public: | 
|  | VectorLegalizer(SelectionDAG& dag) : | 
|  | DAG(dag), TLI(dag.getTargetLoweringInfo()) {} | 
|  |  | 
|  | /// Begin legalizer the vector operations in the DAG. | 
|  | bool Run(); | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | bool VectorLegalizer::Run() { | 
|  | // Before we start legalizing vector nodes, check if there are any vectors. | 
|  | bool HasVectors = false; | 
|  | for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), | 
|  | E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) { | 
|  | // Check if the values of the nodes contain vectors. We don't need to check | 
|  | // the operands because we are going to check their values at some point. | 
|  | HasVectors = llvm::any_of(I->values(), [](EVT T) { return T.isVector(); }); | 
|  |  | 
|  | // If we found a vector node we can start the legalization. | 
|  | if (HasVectors) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If this basic block has no vectors then no need to legalize vectors. | 
|  | if (!HasVectors) | 
|  | return false; | 
|  |  | 
|  | // The legalize process is inherently a bottom-up recursive process (users | 
|  | // legalize their uses before themselves).  Given infinite stack space, we | 
|  | // could just start legalizing on the root and traverse the whole graph.  In | 
|  | // practice however, this causes us to run out of stack space on large basic | 
|  | // blocks.  To avoid this problem, compute an ordering of the nodes where each | 
|  | // node is only legalized after all of its operands are legalized. | 
|  | DAG.AssignTopologicalOrder(); | 
|  | for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), | 
|  | E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) | 
|  | LegalizeOp(SDValue(&*I, 0)); | 
|  |  | 
|  | // Finally, it's possible the root changed.  Get the new root. | 
|  | SDValue OldRoot = DAG.getRoot(); | 
|  | assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); | 
|  | DAG.setRoot(LegalizedNodes[OldRoot]); | 
|  |  | 
|  | LegalizedNodes.clear(); | 
|  |  | 
|  | // Remove dead nodes now. | 
|  | DAG.RemoveDeadNodes(); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) { | 
|  | assert(Op->getNumValues() == Result->getNumValues() && | 
|  | "Unexpected number of results"); | 
|  | // Generic legalization: just pass the operand through. | 
|  | for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i) | 
|  | AddLegalizedOperand(Op.getValue(i), SDValue(Result, i)); | 
|  | return SDValue(Result, Op.getResNo()); | 
|  | } | 
|  |  | 
|  | SDValue | 
|  | VectorLegalizer::RecursivelyLegalizeResults(SDValue Op, | 
|  | MutableArrayRef<SDValue> Results) { | 
|  | assert(Results.size() == Op->getNumValues() && | 
|  | "Unexpected number of results"); | 
|  | // Make sure that the generated code is itself legal. | 
|  | for (unsigned i = 0, e = Results.size(); i != e; ++i) { | 
|  | Results[i] = LegalizeOp(Results[i]); | 
|  | AddLegalizedOperand(Op.getValue(i), Results[i]); | 
|  | } | 
|  |  | 
|  | return Results[Op.getResNo()]; | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::LegalizeOp(SDValue Op) { | 
|  | // Note that LegalizeOp may be reentered even from single-use nodes, which | 
|  | // means that we always must cache transformed nodes. | 
|  | DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); | 
|  | if (I != LegalizedNodes.end()) return I->second; | 
|  |  | 
|  | // Legalize the operands | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | for (const SDValue &Oper : Op->op_values()) | 
|  | Ops.push_back(LegalizeOp(Oper)); | 
|  |  | 
|  | SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops); | 
|  |  | 
|  | bool HasVectorValueOrOp = | 
|  | llvm::any_of(Node->values(), [](EVT T) { return T.isVector(); }) || | 
|  | llvm::any_of(Node->op_values(), | 
|  | [](SDValue O) { return O.getValueType().isVector(); }); | 
|  | if (!HasVectorValueOrOp) | 
|  | return TranslateLegalizeResults(Op, Node); | 
|  |  | 
|  | TargetLowering::LegalizeAction Action = TargetLowering::Legal; | 
|  | EVT ValVT; | 
|  | switch (Op.getOpcode()) { | 
|  | default: | 
|  | return TranslateLegalizeResults(Op, Node); | 
|  | case ISD::LOAD: { | 
|  | LoadSDNode *LD = cast<LoadSDNode>(Node); | 
|  | ISD::LoadExtType ExtType = LD->getExtensionType(); | 
|  | EVT LoadedVT = LD->getMemoryVT(); | 
|  | if (LoadedVT.isVector() && ExtType != ISD::NON_EXTLOAD) | 
|  | Action = TLI.getLoadExtAction(ExtType, LD->getValueType(0), LoadedVT); | 
|  | break; | 
|  | } | 
|  | case ISD::STORE: { | 
|  | StoreSDNode *ST = cast<StoreSDNode>(Node); | 
|  | EVT StVT = ST->getMemoryVT(); | 
|  | MVT ValVT = ST->getValue().getSimpleValueType(); | 
|  | if (StVT.isVector() && ST->isTruncatingStore()) | 
|  | Action = TLI.getTruncStoreAction(ValVT, StVT); | 
|  | break; | 
|  | } | 
|  | case ISD::MERGE_VALUES: | 
|  | Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); | 
|  | // This operation lies about being legal: when it claims to be legal, | 
|  | // it should actually be expanded. | 
|  | if (Action == TargetLowering::Legal) | 
|  | Action = TargetLowering::Expand; | 
|  | break; | 
|  | #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \ | 
|  | case ISD::STRICT_##DAGN: | 
|  | #include "llvm/IR/ConstrainedOps.def" | 
|  | ValVT = Node->getValueType(0); | 
|  | if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP || | 
|  | Op.getOpcode() == ISD::STRICT_UINT_TO_FP) | 
|  | ValVT = Node->getOperand(1).getValueType(); | 
|  | Action = TLI.getOperationAction(Node->getOpcode(), ValVT); | 
|  | // If we're asked to expand a strict vector floating-point operation, | 
|  | // by default we're going to simply unroll it.  That is usually the | 
|  | // best approach, except in the case where the resulting strict (scalar) | 
|  | // operations would themselves use the fallback mutation to non-strict. | 
|  | // In that specific case, just do the fallback on the vector op. | 
|  | if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() && | 
|  | TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) == | 
|  | TargetLowering::Legal) { | 
|  | EVT EltVT = ValVT.getVectorElementType(); | 
|  | if (TLI.getOperationAction(Node->getOpcode(), EltVT) | 
|  | == TargetLowering::Expand && | 
|  | TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT) | 
|  | == TargetLowering::Legal) | 
|  | Action = TargetLowering::Legal; | 
|  | } | 
|  | break; | 
|  | case ISD::ADD: | 
|  | case ISD::SUB: | 
|  | case ISD::MUL: | 
|  | case ISD::MULHS: | 
|  | case ISD::MULHU: | 
|  | case ISD::SDIV: | 
|  | case ISD::UDIV: | 
|  | case ISD::SREM: | 
|  | case ISD::UREM: | 
|  | case ISD::SDIVREM: | 
|  | case ISD::UDIVREM: | 
|  | case ISD::FADD: | 
|  | case ISD::FSUB: | 
|  | case ISD::FMUL: | 
|  | case ISD::FDIV: | 
|  | case ISD::FREM: | 
|  | case ISD::AND: | 
|  | case ISD::OR: | 
|  | case ISD::XOR: | 
|  | case ISD::SHL: | 
|  | case ISD::SRA: | 
|  | case ISD::SRL: | 
|  | case ISD::FSHL: | 
|  | case ISD::FSHR: | 
|  | case ISD::ROTL: | 
|  | case ISD::ROTR: | 
|  | case ISD::ABS: | 
|  | case ISD::BSWAP: | 
|  | case ISD::BITREVERSE: | 
|  | case ISD::CTLZ: | 
|  | case ISD::CTTZ: | 
|  | case ISD::CTLZ_ZERO_UNDEF: | 
|  | case ISD::CTTZ_ZERO_UNDEF: | 
|  | case ISD::CTPOP: | 
|  | case ISD::SELECT: | 
|  | case ISD::VSELECT: | 
|  | case ISD::SELECT_CC: | 
|  | case ISD::ZERO_EXTEND: | 
|  | case ISD::ANY_EXTEND: | 
|  | case ISD::TRUNCATE: | 
|  | case ISD::SIGN_EXTEND: | 
|  | case ISD::FP_TO_SINT: | 
|  | case ISD::FP_TO_UINT: | 
|  | case ISD::FNEG: | 
|  | case ISD::FABS: | 
|  | case ISD::FMINNUM: | 
|  | case ISD::FMAXNUM: | 
|  | case ISD::FMINNUM_IEEE: | 
|  | case ISD::FMAXNUM_IEEE: | 
|  | case ISD::FMINIMUM: | 
|  | case ISD::FMAXIMUM: | 
|  | case ISD::FCOPYSIGN: | 
|  | case ISD::FSQRT: | 
|  | case ISD::FSIN: | 
|  | case ISD::FCOS: | 
|  | case ISD::FPOWI: | 
|  | case ISD::FPOW: | 
|  | case ISD::FLOG: | 
|  | case ISD::FLOG2: | 
|  | case ISD::FLOG10: | 
|  | case ISD::FEXP: | 
|  | case ISD::FEXP2: | 
|  | case ISD::FCEIL: | 
|  | case ISD::FTRUNC: | 
|  | case ISD::FRINT: | 
|  | case ISD::FNEARBYINT: | 
|  | case ISD::FROUND: | 
|  | case ISD::FROUNDEVEN: | 
|  | case ISD::FFLOOR: | 
|  | case ISD::FP_ROUND: | 
|  | case ISD::FP_EXTEND: | 
|  | case ISD::FMA: | 
|  | case ISD::SIGN_EXTEND_INREG: | 
|  | case ISD::ANY_EXTEND_VECTOR_INREG: | 
|  | case ISD::SIGN_EXTEND_VECTOR_INREG: | 
|  | case ISD::ZERO_EXTEND_VECTOR_INREG: | 
|  | case ISD::SMIN: | 
|  | case ISD::SMAX: | 
|  | case ISD::UMIN: | 
|  | case ISD::UMAX: | 
|  | case ISD::SMUL_LOHI: | 
|  | case ISD::UMUL_LOHI: | 
|  | case ISD::SADDO: | 
|  | case ISD::UADDO: | 
|  | case ISD::SSUBO: | 
|  | case ISD::USUBO: | 
|  | case ISD::SMULO: | 
|  | case ISD::UMULO: | 
|  | case ISD::FCANONICALIZE: | 
|  | case ISD::SADDSAT: | 
|  | case ISD::UADDSAT: | 
|  | case ISD::SSUBSAT: | 
|  | case ISD::USUBSAT: | 
|  | case ISD::SSHLSAT: | 
|  | case ISD::USHLSAT: | 
|  | case ISD::FP_TO_SINT_SAT: | 
|  | case ISD::FP_TO_UINT_SAT: | 
|  | case ISD::MGATHER: | 
|  | Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); | 
|  | break; | 
|  | case ISD::SMULFIX: | 
|  | case ISD::SMULFIXSAT: | 
|  | case ISD::UMULFIX: | 
|  | case ISD::UMULFIXSAT: | 
|  | case ISD::SDIVFIX: | 
|  | case ISD::SDIVFIXSAT: | 
|  | case ISD::UDIVFIX: | 
|  | case ISD::UDIVFIXSAT: { | 
|  | unsigned Scale = Node->getConstantOperandVal(2); | 
|  | Action = TLI.getFixedPointOperationAction(Node->getOpcode(), | 
|  | Node->getValueType(0), Scale); | 
|  | break; | 
|  | } | 
|  | case ISD::SINT_TO_FP: | 
|  | case ISD::UINT_TO_FP: | 
|  | case ISD::VECREDUCE_ADD: | 
|  | case ISD::VECREDUCE_MUL: | 
|  | case ISD::VECREDUCE_AND: | 
|  | case ISD::VECREDUCE_OR: | 
|  | case ISD::VECREDUCE_XOR: | 
|  | case ISD::VECREDUCE_SMAX: | 
|  | case ISD::VECREDUCE_SMIN: | 
|  | case ISD::VECREDUCE_UMAX: | 
|  | case ISD::VECREDUCE_UMIN: | 
|  | case ISD::VECREDUCE_FADD: | 
|  | case ISD::VECREDUCE_FMUL: | 
|  | case ISD::VECREDUCE_FMAX: | 
|  | case ISD::VECREDUCE_FMIN: | 
|  | Action = TLI.getOperationAction(Node->getOpcode(), | 
|  | Node->getOperand(0).getValueType()); | 
|  | break; | 
|  | case ISD::VECREDUCE_SEQ_FADD: | 
|  | case ISD::VECREDUCE_SEQ_FMUL: | 
|  | Action = TLI.getOperationAction(Node->getOpcode(), | 
|  | Node->getOperand(1).getValueType()); | 
|  | break; | 
|  | case ISD::SETCC: { | 
|  | MVT OpVT = Node->getOperand(0).getSimpleValueType(); | 
|  | ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); | 
|  | Action = TLI.getCondCodeAction(CCCode, OpVT); | 
|  | if (Action == TargetLowering::Legal) | 
|  | Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | #define BEGIN_REGISTER_VP_SDNODE(VPID, LEGALPOS, ...)                          \ | 
|  | case ISD::VPID: {                                                            \ | 
|  | EVT LegalizeVT = LEGALPOS < 0 ? Node->getValueType(-(1 + LEGALPOS))        \ | 
|  | : Node->getOperand(LEGALPOS).getValueType(); \ | 
|  | if (ISD::VPID == ISD::VP_SETCC) {                                          \ | 
|  | ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); \ | 
|  | Action = TLI.getCondCodeAction(CCCode, LegalizeVT.getSimpleVT());        \ | 
|  | if (Action != TargetLowering::Legal)                                     \ | 
|  | break;                                                                 \ | 
|  | }                                                                          \ | 
|  | Action = TLI.getOperationAction(Node->getOpcode(), LegalizeVT);            \ | 
|  | } break; | 
|  | #include "llvm/IR/VPIntrinsics.def" | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG)); | 
|  |  | 
|  | SmallVector<SDValue, 8> ResultVals; | 
|  | switch (Action) { | 
|  | default: llvm_unreachable("This action is not supported yet!"); | 
|  | case TargetLowering::Promote: | 
|  | assert((Op.getOpcode() != ISD::LOAD && Op.getOpcode() != ISD::STORE) && | 
|  | "This action is not supported yet!"); | 
|  | LLVM_DEBUG(dbgs() << "Promoting\n"); | 
|  | Promote(Node, ResultVals); | 
|  | assert(!ResultVals.empty() && "No results for promotion?"); | 
|  | break; | 
|  | case TargetLowering::Legal: | 
|  | LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n"); | 
|  | break; | 
|  | case TargetLowering::Custom: | 
|  | LLVM_DEBUG(dbgs() << "Trying custom legalization\n"); | 
|  | if (LowerOperationWrapper(Node, ResultVals)) | 
|  | break; | 
|  | LLVM_DEBUG(dbgs() << "Could not custom legalize node\n"); | 
|  | LLVM_FALLTHROUGH; | 
|  | case TargetLowering::Expand: | 
|  | LLVM_DEBUG(dbgs() << "Expanding\n"); | 
|  | Expand(Node, ResultVals); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (ResultVals.empty()) | 
|  | return TranslateLegalizeResults(Op, Node); | 
|  |  | 
|  | Changed = true; | 
|  | return RecursivelyLegalizeResults(Op, ResultVals); | 
|  | } | 
|  |  | 
|  | // FIXME: This is very similar to TargetLowering::LowerOperationWrapper. Can we | 
|  | // merge them somehow? | 
|  | bool VectorLegalizer::LowerOperationWrapper(SDNode *Node, | 
|  | SmallVectorImpl<SDValue> &Results) { | 
|  | SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); | 
|  |  | 
|  | if (!Res.getNode()) | 
|  | return false; | 
|  |  | 
|  | if (Res == SDValue(Node, 0)) | 
|  | return true; | 
|  |  | 
|  | // If the original node has one result, take the return value from | 
|  | // LowerOperation as is. It might not be result number 0. | 
|  | if (Node->getNumValues() == 1) { | 
|  | Results.push_back(Res); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If the original node has multiple results, then the return node should | 
|  | // have the same number of results. | 
|  | assert((Node->getNumValues() == Res->getNumValues()) && | 
|  | "Lowering returned the wrong number of results!"); | 
|  |  | 
|  | // Places new result values base on N result number. | 
|  | for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I) | 
|  | Results.push_back(Res.getValue(I)); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) { | 
|  | // For a few operations there is a specific concept for promotion based on | 
|  | // the operand's type. | 
|  | switch (Node->getOpcode()) { | 
|  | case ISD::SINT_TO_FP: | 
|  | case ISD::UINT_TO_FP: | 
|  | case ISD::STRICT_SINT_TO_FP: | 
|  | case ISD::STRICT_UINT_TO_FP: | 
|  | // "Promote" the operation by extending the operand. | 
|  | PromoteINT_TO_FP(Node, Results); | 
|  | return; | 
|  | case ISD::FP_TO_UINT: | 
|  | case ISD::FP_TO_SINT: | 
|  | case ISD::STRICT_FP_TO_UINT: | 
|  | case ISD::STRICT_FP_TO_SINT: | 
|  | // Promote the operation by extending the operand. | 
|  | PromoteFP_TO_INT(Node, Results); | 
|  | return; | 
|  | case ISD::FP_ROUND: | 
|  | case ISD::FP_EXTEND: | 
|  | // These operations are used to do promotion so they can't be promoted | 
|  | // themselves. | 
|  | llvm_unreachable("Don't know how to promote this operation!"); | 
|  | } | 
|  |  | 
|  | // There are currently two cases of vector promotion: | 
|  | // 1) Bitcasting a vector of integers to a different type to a vector of the | 
|  | //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64. | 
|  | // 2) Extending a vector of floats to a vector of the same number of larger | 
|  | //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32. | 
|  | assert(Node->getNumValues() == 1 && | 
|  | "Can't promote a vector with multiple results!"); | 
|  | MVT VT = Node->getSimpleValueType(0); | 
|  | MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); | 
|  | SDLoc dl(Node); | 
|  | SmallVector<SDValue, 4> Operands(Node->getNumOperands()); | 
|  |  | 
|  | for (unsigned j = 0; j != Node->getNumOperands(); ++j) { | 
|  | if (Node->getOperand(j).getValueType().isVector()) | 
|  | if (Node->getOperand(j) | 
|  | .getValueType() | 
|  | .getVectorElementType() | 
|  | .isFloatingPoint() && | 
|  | NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()) | 
|  | Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j)); | 
|  | else | 
|  | Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j)); | 
|  | else | 
|  | Operands[j] = Node->getOperand(j); | 
|  | } | 
|  |  | 
|  | SDValue Res = | 
|  | DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags()); | 
|  |  | 
|  | if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) || | 
|  | (VT.isVector() && VT.getVectorElementType().isFloatingPoint() && | 
|  | NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())) | 
|  | Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res, DAG.getIntPtrConstant(0, dl)); | 
|  | else | 
|  | Res = DAG.getNode(ISD::BITCAST, dl, VT, Res); | 
|  |  | 
|  | Results.push_back(Res); | 
|  | } | 
|  |  | 
|  | void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node, | 
|  | SmallVectorImpl<SDValue> &Results) { | 
|  | // INT_TO_FP operations may require the input operand be promoted even | 
|  | // when the type is otherwise legal. | 
|  | bool IsStrict = Node->isStrictFPOpcode(); | 
|  | MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType(); | 
|  | MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); | 
|  | assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && | 
|  | "Vectors have different number of elements!"); | 
|  |  | 
|  | SDLoc dl(Node); | 
|  | SmallVector<SDValue, 4> Operands(Node->getNumOperands()); | 
|  |  | 
|  | unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP || | 
|  | Node->getOpcode() == ISD::STRICT_UINT_TO_FP) | 
|  | ? ISD::ZERO_EXTEND | 
|  | : ISD::SIGN_EXTEND; | 
|  | for (unsigned j = 0; j != Node->getNumOperands(); ++j) { | 
|  | if (Node->getOperand(j).getValueType().isVector()) | 
|  | Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j)); | 
|  | else | 
|  | Operands[j] = Node->getOperand(j); | 
|  | } | 
|  |  | 
|  | if (IsStrict) { | 
|  | SDValue Res = DAG.getNode(Node->getOpcode(), dl, | 
|  | {Node->getValueType(0), MVT::Other}, Operands); | 
|  | Results.push_back(Res); | 
|  | Results.push_back(Res.getValue(1)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SDValue Res = | 
|  | DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands); | 
|  | Results.push_back(Res); | 
|  | } | 
|  |  | 
|  | // For FP_TO_INT we promote the result type to a vector type with wider | 
|  | // elements and then truncate the result.  This is different from the default | 
|  | // PromoteVector which uses bitcast to promote thus assumning that the | 
|  | // promoted vector type has the same overall size. | 
|  | void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node, | 
|  | SmallVectorImpl<SDValue> &Results) { | 
|  | MVT VT = Node->getSimpleValueType(0); | 
|  | MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); | 
|  | bool IsStrict = Node->isStrictFPOpcode(); | 
|  | assert(NVT.getVectorNumElements() == VT.getVectorNumElements() && | 
|  | "Vectors have different number of elements!"); | 
|  |  | 
|  | unsigned NewOpc = Node->getOpcode(); | 
|  | // Change FP_TO_UINT to FP_TO_SINT if possible. | 
|  | // TODO: Should we only do this if FP_TO_UINT itself isn't legal? | 
|  | if (NewOpc == ISD::FP_TO_UINT && | 
|  | TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT)) | 
|  | NewOpc = ISD::FP_TO_SINT; | 
|  |  | 
|  | if (NewOpc == ISD::STRICT_FP_TO_UINT && | 
|  | TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT)) | 
|  | NewOpc = ISD::STRICT_FP_TO_SINT; | 
|  |  | 
|  | SDLoc dl(Node); | 
|  | SDValue Promoted, Chain; | 
|  | if (IsStrict) { | 
|  | Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other}, | 
|  | {Node->getOperand(0), Node->getOperand(1)}); | 
|  | Chain = Promoted.getValue(1); | 
|  | } else | 
|  | Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0)); | 
|  |  | 
|  | // Assert that the converted value fits in the original type.  If it doesn't | 
|  | // (eg: because the value being converted is too big), then the result of the | 
|  | // original operation was undefined anyway, so the assert is still correct. | 
|  | if (Node->getOpcode() == ISD::FP_TO_UINT || | 
|  | Node->getOpcode() == ISD::STRICT_FP_TO_UINT) | 
|  | NewOpc = ISD::AssertZext; | 
|  | else | 
|  | NewOpc = ISD::AssertSext; | 
|  |  | 
|  | Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted, | 
|  | DAG.getValueType(VT.getScalarType())); | 
|  | Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted); | 
|  | Results.push_back(Promoted); | 
|  | if (IsStrict) | 
|  | Results.push_back(Chain); | 
|  | } | 
|  |  | 
|  | std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) { | 
|  | LoadSDNode *LD = cast<LoadSDNode>(N); | 
|  | return TLI.scalarizeVectorLoad(LD, DAG); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandStore(SDNode *N) { | 
|  | StoreSDNode *ST = cast<StoreSDNode>(N); | 
|  | SDValue TF = TLI.scalarizeVectorStore(ST, DAG); | 
|  | return TF; | 
|  | } | 
|  |  | 
|  | void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) { | 
|  | switch (Node->getOpcode()) { | 
|  | case ISD::LOAD: { | 
|  | std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node); | 
|  | Results.push_back(Tmp.first); | 
|  | Results.push_back(Tmp.second); | 
|  | return; | 
|  | } | 
|  | case ISD::STORE: | 
|  | Results.push_back(ExpandStore(Node)); | 
|  | return; | 
|  | case ISD::MERGE_VALUES: | 
|  | for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) | 
|  | Results.push_back(Node->getOperand(i)); | 
|  | return; | 
|  | case ISD::SIGN_EXTEND_INREG: | 
|  | Results.push_back(ExpandSEXTINREG(Node)); | 
|  | return; | 
|  | case ISD::ANY_EXTEND_VECTOR_INREG: | 
|  | Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node)); | 
|  | return; | 
|  | case ISD::SIGN_EXTEND_VECTOR_INREG: | 
|  | Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node)); | 
|  | return; | 
|  | case ISD::ZERO_EXTEND_VECTOR_INREG: | 
|  | Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node)); | 
|  | return; | 
|  | case ISD::BSWAP: | 
|  | Results.push_back(ExpandBSWAP(Node)); | 
|  | return; | 
|  | case ISD::VSELECT: | 
|  | Results.push_back(ExpandVSELECT(Node)); | 
|  | return; | 
|  | case ISD::VP_SELECT: | 
|  | Results.push_back(ExpandVP_SELECT(Node)); | 
|  | return; | 
|  | case ISD::SELECT: | 
|  | Results.push_back(ExpandSELECT(Node)); | 
|  | return; | 
|  | case ISD::SELECT_CC: { | 
|  | if (Node->getValueType(0).isScalableVector()) { | 
|  | EVT CondVT = TLI.getSetCCResultType( | 
|  | DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); | 
|  | SDValue SetCC = | 
|  | DAG.getNode(ISD::SETCC, SDLoc(Node), CondVT, Node->getOperand(0), | 
|  | Node->getOperand(1), Node->getOperand(4)); | 
|  | Results.push_back(DAG.getSelect(SDLoc(Node), Node->getValueType(0), SetCC, | 
|  | Node->getOperand(2), | 
|  | Node->getOperand(3))); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::FP_TO_UINT: | 
|  | ExpandFP_TO_UINT(Node, Results); | 
|  | return; | 
|  | case ISD::UINT_TO_FP: | 
|  | ExpandUINT_TO_FLOAT(Node, Results); | 
|  | return; | 
|  | case ISD::FNEG: | 
|  | Results.push_back(ExpandFNEG(Node)); | 
|  | return; | 
|  | case ISD::FSUB: | 
|  | ExpandFSUB(Node, Results); | 
|  | return; | 
|  | case ISD::SETCC: | 
|  | case ISD::VP_SETCC: | 
|  | ExpandSETCC(Node, Results); | 
|  | return; | 
|  | case ISD::ABS: | 
|  | if (SDValue Expanded = TLI.expandABS(Node, DAG)) { | 
|  | Results.push_back(Expanded); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case ISD::BITREVERSE: | 
|  | ExpandBITREVERSE(Node, Results); | 
|  | return; | 
|  | case ISD::CTPOP: | 
|  | if (SDValue Expanded = TLI.expandCTPOP(Node, DAG)) { | 
|  | Results.push_back(Expanded); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case ISD::CTLZ: | 
|  | case ISD::CTLZ_ZERO_UNDEF: | 
|  | if (SDValue Expanded = TLI.expandCTLZ(Node, DAG)) { | 
|  | Results.push_back(Expanded); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case ISD::CTTZ: | 
|  | case ISD::CTTZ_ZERO_UNDEF: | 
|  | if (SDValue Expanded = TLI.expandCTTZ(Node, DAG)) { | 
|  | Results.push_back(Expanded); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case ISD::FSHL: | 
|  | case ISD::FSHR: | 
|  | if (SDValue Expanded = TLI.expandFunnelShift(Node, DAG)) { | 
|  | Results.push_back(Expanded); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case ISD::ROTL: | 
|  | case ISD::ROTR: | 
|  | if (SDValue Expanded = TLI.expandROT(Node, false /*AllowVectorOps*/, DAG)) { | 
|  | Results.push_back(Expanded); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case ISD::FMINNUM: | 
|  | case ISD::FMAXNUM: | 
|  | if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) { | 
|  | Results.push_back(Expanded); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case ISD::SMIN: | 
|  | case ISD::SMAX: | 
|  | case ISD::UMIN: | 
|  | case ISD::UMAX: | 
|  | if (SDValue Expanded = TLI.expandIntMINMAX(Node, DAG)) { | 
|  | Results.push_back(Expanded); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case ISD::UADDO: | 
|  | case ISD::USUBO: | 
|  | ExpandUADDSUBO(Node, Results); | 
|  | return; | 
|  | case ISD::SADDO: | 
|  | case ISD::SSUBO: | 
|  | ExpandSADDSUBO(Node, Results); | 
|  | return; | 
|  | case ISD::UMULO: | 
|  | case ISD::SMULO: | 
|  | ExpandMULO(Node, Results); | 
|  | return; | 
|  | case ISD::USUBSAT: | 
|  | case ISD::SSUBSAT: | 
|  | case ISD::UADDSAT: | 
|  | case ISD::SADDSAT: | 
|  | if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) { | 
|  | Results.push_back(Expanded); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case ISD::FP_TO_SINT_SAT: | 
|  | case ISD::FP_TO_UINT_SAT: | 
|  | // Expand the fpsosisat if it is scalable to prevent it from unrolling below. | 
|  | if (Node->getValueType(0).isScalableVector()) { | 
|  | if (SDValue Expanded = TLI.expandFP_TO_INT_SAT(Node, DAG)) { | 
|  | Results.push_back(Expanded); | 
|  | return; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case ISD::SMULFIX: | 
|  | case ISD::UMULFIX: | 
|  | if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) { | 
|  | Results.push_back(Expanded); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case ISD::SMULFIXSAT: | 
|  | case ISD::UMULFIXSAT: | 
|  | // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly | 
|  | // why. Maybe it results in worse codegen compared to the unroll for some | 
|  | // targets? This should probably be investigated. And if we still prefer to | 
|  | // unroll an explanation could be helpful. | 
|  | break; | 
|  | case ISD::SDIVFIX: | 
|  | case ISD::UDIVFIX: | 
|  | ExpandFixedPointDiv(Node, Results); | 
|  | return; | 
|  | case ISD::SDIVFIXSAT: | 
|  | case ISD::UDIVFIXSAT: | 
|  | break; | 
|  | #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \ | 
|  | case ISD::STRICT_##DAGN: | 
|  | #include "llvm/IR/ConstrainedOps.def" | 
|  | ExpandStrictFPOp(Node, Results); | 
|  | return; | 
|  | case ISD::VECREDUCE_ADD: | 
|  | case ISD::VECREDUCE_MUL: | 
|  | case ISD::VECREDUCE_AND: | 
|  | case ISD::VECREDUCE_OR: | 
|  | case ISD::VECREDUCE_XOR: | 
|  | case ISD::VECREDUCE_SMAX: | 
|  | case ISD::VECREDUCE_SMIN: | 
|  | case ISD::VECREDUCE_UMAX: | 
|  | case ISD::VECREDUCE_UMIN: | 
|  | case ISD::VECREDUCE_FADD: | 
|  | case ISD::VECREDUCE_FMUL: | 
|  | case ISD::VECREDUCE_FMAX: | 
|  | case ISD::VECREDUCE_FMIN: | 
|  | Results.push_back(TLI.expandVecReduce(Node, DAG)); | 
|  | return; | 
|  | case ISD::VECREDUCE_SEQ_FADD: | 
|  | case ISD::VECREDUCE_SEQ_FMUL: | 
|  | Results.push_back(TLI.expandVecReduceSeq(Node, DAG)); | 
|  | return; | 
|  | case ISD::SREM: | 
|  | case ISD::UREM: | 
|  | ExpandREM(Node, Results); | 
|  | return; | 
|  | case ISD::VP_MERGE: | 
|  | Results.push_back(ExpandVP_MERGE(Node)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Results.push_back(DAG.UnrollVectorOp(Node)); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) { | 
|  | // Lower a select instruction where the condition is a scalar and the | 
|  | // operands are vectors. Lower this select to VSELECT and implement it | 
|  | // using XOR AND OR. The selector bit is broadcasted. | 
|  | EVT VT = Node->getValueType(0); | 
|  | SDLoc DL(Node); | 
|  |  | 
|  | SDValue Mask = Node->getOperand(0); | 
|  | SDValue Op1 = Node->getOperand(1); | 
|  | SDValue Op2 = Node->getOperand(2); | 
|  |  | 
|  | assert(VT.isVector() && !Mask.getValueType().isVector() | 
|  | && Op1.getValueType() == Op2.getValueType() && "Invalid type"); | 
|  |  | 
|  | // If we can't even use the basic vector operations of | 
|  | // AND,OR,XOR, we will have to scalarize the op. | 
|  | // Notice that the operation may be 'promoted' which means that it is | 
|  | // 'bitcasted' to another type which is handled. | 
|  | // Also, we need to be able to construct a splat vector using either | 
|  | // BUILD_VECTOR or SPLAT_VECTOR. | 
|  | // FIXME: Should we also permit fixed-length SPLAT_VECTOR as a fallback to | 
|  | // BUILD_VECTOR? | 
|  | if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || | 
|  | TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || | 
|  | TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand || | 
|  | TLI.getOperationAction(VT.isFixedLengthVector() ? ISD::BUILD_VECTOR | 
|  | : ISD::SPLAT_VECTOR, | 
|  | VT) == TargetLowering::Expand) | 
|  | return DAG.UnrollVectorOp(Node); | 
|  |  | 
|  | // Generate a mask operand. | 
|  | EVT MaskTy = VT.changeVectorElementTypeToInteger(); | 
|  |  | 
|  | // What is the size of each element in the vector mask. | 
|  | EVT BitTy = MaskTy.getScalarType(); | 
|  |  | 
|  | Mask = DAG.getSelect(DL, BitTy, Mask, DAG.getAllOnesConstant(DL, BitTy), | 
|  | DAG.getConstant(0, DL, BitTy)); | 
|  |  | 
|  | // Broadcast the mask so that the entire vector is all one or all zero. | 
|  | if (VT.isFixedLengthVector()) | 
|  | Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask); | 
|  | else | 
|  | Mask = DAG.getSplatVector(MaskTy, DL, Mask); | 
|  |  | 
|  | // Bitcast the operands to be the same type as the mask. | 
|  | // This is needed when we select between FP types because | 
|  | // the mask is a vector of integers. | 
|  | Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1); | 
|  | Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2); | 
|  |  | 
|  | SDValue NotMask = DAG.getNOT(DL, Mask, MaskTy); | 
|  |  | 
|  | Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask); | 
|  | Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask); | 
|  | SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2); | 
|  | return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) { | 
|  | EVT VT = Node->getValueType(0); | 
|  |  | 
|  | // Make sure that the SRA and SHL instructions are available. | 
|  | if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand || | 
|  | TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand) | 
|  | return DAG.UnrollVectorOp(Node); | 
|  |  | 
|  | SDLoc DL(Node); | 
|  | EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT(); | 
|  |  | 
|  | unsigned BW = VT.getScalarSizeInBits(); | 
|  | unsigned OrigBW = OrigTy.getScalarSizeInBits(); | 
|  | SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT); | 
|  |  | 
|  | SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz); | 
|  | return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz); | 
|  | } | 
|  |  | 
|  | // Generically expand a vector anyext in register to a shuffle of the relevant | 
|  | // lanes into the appropriate locations, with other lanes left undef. | 
|  | SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) { | 
|  | SDLoc DL(Node); | 
|  | EVT VT = Node->getValueType(0); | 
|  | int NumElements = VT.getVectorNumElements(); | 
|  | SDValue Src = Node->getOperand(0); | 
|  | EVT SrcVT = Src.getValueType(); | 
|  | int NumSrcElements = SrcVT.getVectorNumElements(); | 
|  |  | 
|  | // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector | 
|  | // into a larger vector type. | 
|  | if (SrcVT.bitsLE(VT)) { | 
|  | assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && | 
|  | "ANY_EXTEND_VECTOR_INREG vector size mismatch"); | 
|  | NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); | 
|  | SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), | 
|  | NumSrcElements); | 
|  | Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), | 
|  | Src, DAG.getVectorIdxConstant(0, DL)); | 
|  | } | 
|  |  | 
|  | // Build a base mask of undef shuffles. | 
|  | SmallVector<int, 16> ShuffleMask; | 
|  | ShuffleMask.resize(NumSrcElements, -1); | 
|  |  | 
|  | // Place the extended lanes into the correct locations. | 
|  | int ExtLaneScale = NumSrcElements / NumElements; | 
|  | int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; | 
|  | for (int i = 0; i < NumElements; ++i) | 
|  | ShuffleMask[i * ExtLaneScale + EndianOffset] = i; | 
|  |  | 
|  | return DAG.getNode( | 
|  | ISD::BITCAST, DL, VT, | 
|  | DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask)); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) { | 
|  | SDLoc DL(Node); | 
|  | EVT VT = Node->getValueType(0); | 
|  | SDValue Src = Node->getOperand(0); | 
|  | EVT SrcVT = Src.getValueType(); | 
|  |  | 
|  | // First build an any-extend node which can be legalized above when we | 
|  | // recurse through it. | 
|  | SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src); | 
|  |  | 
|  | // Now we need sign extend. Do this by shifting the elements. Even if these | 
|  | // aren't legal operations, they have a better chance of being legalized | 
|  | // without full scalarization than the sign extension does. | 
|  | unsigned EltWidth = VT.getScalarSizeInBits(); | 
|  | unsigned SrcEltWidth = SrcVT.getScalarSizeInBits(); | 
|  | SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT); | 
|  | return DAG.getNode(ISD::SRA, DL, VT, | 
|  | DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount), | 
|  | ShiftAmount); | 
|  | } | 
|  |  | 
|  | // Generically expand a vector zext in register to a shuffle of the relevant | 
|  | // lanes into the appropriate locations, a blend of zero into the high bits, | 
|  | // and a bitcast to the wider element type. | 
|  | SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) { | 
|  | SDLoc DL(Node); | 
|  | EVT VT = Node->getValueType(0); | 
|  | int NumElements = VT.getVectorNumElements(); | 
|  | SDValue Src = Node->getOperand(0); | 
|  | EVT SrcVT = Src.getValueType(); | 
|  | int NumSrcElements = SrcVT.getVectorNumElements(); | 
|  |  | 
|  | // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector | 
|  | // into a larger vector type. | 
|  | if (SrcVT.bitsLE(VT)) { | 
|  | assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 && | 
|  | "ZERO_EXTEND_VECTOR_INREG vector size mismatch"); | 
|  | NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits(); | 
|  | SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), | 
|  | NumSrcElements); | 
|  | Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), | 
|  | Src, DAG.getVectorIdxConstant(0, DL)); | 
|  | } | 
|  |  | 
|  | // Build up a zero vector to blend into this one. | 
|  | SDValue Zero = DAG.getConstant(0, DL, SrcVT); | 
|  |  | 
|  | // Shuffle the incoming lanes into the correct position, and pull all other | 
|  | // lanes from the zero vector. | 
|  | auto ShuffleMask = llvm::to_vector<16>(llvm::seq<int>(0, NumSrcElements)); | 
|  |  | 
|  | int ExtLaneScale = NumSrcElements / NumElements; | 
|  | int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0; | 
|  | for (int i = 0; i < NumElements; ++i) | 
|  | ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i; | 
|  |  | 
|  | return DAG.getNode(ISD::BITCAST, DL, VT, | 
|  | DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask)); | 
|  | } | 
|  |  | 
|  | static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) { | 
|  | int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8; | 
|  | for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) | 
|  | for (int J = ScalarSizeInBytes - 1; J >= 0; --J) | 
|  | ShuffleMask.push_back((I * ScalarSizeInBytes) + J); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) { | 
|  | EVT VT = Node->getValueType(0); | 
|  |  | 
|  | // Scalable vectors can't use shuffle expansion. | 
|  | if (VT.isScalableVector()) | 
|  | return TLI.expandBSWAP(Node, DAG); | 
|  |  | 
|  | // Generate a byte wise shuffle mask for the BSWAP. | 
|  | SmallVector<int, 16> ShuffleMask; | 
|  | createBSWAPShuffleMask(VT, ShuffleMask); | 
|  | EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size()); | 
|  |  | 
|  | // Only emit a shuffle if the mask is legal. | 
|  | if (TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) { | 
|  | SDLoc DL(Node); | 
|  | SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0)); | 
|  | Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask); | 
|  | return DAG.getNode(ISD::BITCAST, DL, VT, Op); | 
|  | } | 
|  |  | 
|  | // If we have the appropriate vector bit operations, it is better to use them | 
|  | // than unrolling and expanding each component. | 
|  | if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) && | 
|  | TLI.isOperationLegalOrCustom(ISD::SRL, VT) && | 
|  | TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) && | 
|  | TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) | 
|  | return TLI.expandBSWAP(Node, DAG); | 
|  |  | 
|  | // Otherwise unroll. | 
|  | return DAG.UnrollVectorOp(Node); | 
|  | } | 
|  |  | 
|  | void VectorLegalizer::ExpandBITREVERSE(SDNode *Node, | 
|  | SmallVectorImpl<SDValue> &Results) { | 
|  | EVT VT = Node->getValueType(0); | 
|  |  | 
|  | // We can't unroll or use shuffles for scalable vectors. | 
|  | if (VT.isScalableVector()) { | 
|  | Results.push_back(TLI.expandBITREVERSE(Node, DAG)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If we have the scalar operation, it's probably cheaper to unroll it. | 
|  | if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) { | 
|  | SDValue Tmp = DAG.UnrollVectorOp(Node); | 
|  | Results.push_back(Tmp); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If the vector element width is a whole number of bytes, test if its legal | 
|  | // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte | 
|  | // vector. This greatly reduces the number of bit shifts necessary. | 
|  | unsigned ScalarSizeInBits = VT.getScalarSizeInBits(); | 
|  | if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) { | 
|  | SmallVector<int, 16> BSWAPMask; | 
|  | createBSWAPShuffleMask(VT, BSWAPMask); | 
|  |  | 
|  | EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size()); | 
|  | if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) && | 
|  | (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) || | 
|  | (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) && | 
|  | TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) && | 
|  | TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) && | 
|  | TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) { | 
|  | SDLoc DL(Node); | 
|  | SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0)); | 
|  | Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), | 
|  | BSWAPMask); | 
|  | Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op); | 
|  | Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); | 
|  | Results.push_back(Op); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we have the appropriate vector bit operations, it is better to use them | 
|  | // than unrolling and expanding each component. | 
|  | if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) && | 
|  | TLI.isOperationLegalOrCustom(ISD::SRL, VT) && | 
|  | TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) && | 
|  | TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) { | 
|  | Results.push_back(TLI.expandBITREVERSE(Node, DAG)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise unroll. | 
|  | SDValue Tmp = DAG.UnrollVectorOp(Node); | 
|  | Results.push_back(Tmp); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) { | 
|  | // Implement VSELECT in terms of XOR, AND, OR | 
|  | // on platforms which do not support blend natively. | 
|  | SDLoc DL(Node); | 
|  |  | 
|  | SDValue Mask = Node->getOperand(0); | 
|  | SDValue Op1 = Node->getOperand(1); | 
|  | SDValue Op2 = Node->getOperand(2); | 
|  |  | 
|  | EVT VT = Mask.getValueType(); | 
|  |  | 
|  | // If we can't even use the basic vector operations of | 
|  | // AND,OR,XOR, we will have to scalarize the op. | 
|  | // Notice that the operation may be 'promoted' which means that it is | 
|  | // 'bitcasted' to another type which is handled. | 
|  | if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand || | 
|  | TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand || | 
|  | TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand) | 
|  | return DAG.UnrollVectorOp(Node); | 
|  |  | 
|  | // This operation also isn't safe with AND, OR, XOR when the boolean type is | 
|  | // 0/1 and the select operands aren't also booleans, as we need an all-ones | 
|  | // vector constant to mask with. | 
|  | // FIXME: Sign extend 1 to all ones if that's legal on the target. | 
|  | auto BoolContents = TLI.getBooleanContents(Op1.getValueType()); | 
|  | if (BoolContents != TargetLowering::ZeroOrNegativeOneBooleanContent && | 
|  | !(BoolContents == TargetLowering::ZeroOrOneBooleanContent && | 
|  | Op1.getValueType().getVectorElementType() == MVT::i1)) | 
|  | return DAG.UnrollVectorOp(Node); | 
|  |  | 
|  | // If the mask and the type are different sizes, unroll the vector op. This | 
|  | // can occur when getSetCCResultType returns something that is different in | 
|  | // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8. | 
|  | if (VT.getSizeInBits() != Op1.getValueSizeInBits()) | 
|  | return DAG.UnrollVectorOp(Node); | 
|  |  | 
|  | // Bitcast the operands to be the same type as the mask. | 
|  | // This is needed when we select between FP types because | 
|  | // the mask is a vector of integers. | 
|  | Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); | 
|  | Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); | 
|  |  | 
|  | SDValue NotMask = DAG.getNOT(DL, Mask, VT); | 
|  |  | 
|  | Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); | 
|  | Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); | 
|  | SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2); | 
|  | return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandVP_SELECT(SDNode *Node) { | 
|  | // Implement VP_SELECT in terms of VP_XOR, VP_AND and VP_OR on platforms which | 
|  | // do not support it natively. | 
|  | SDLoc DL(Node); | 
|  |  | 
|  | SDValue Mask = Node->getOperand(0); | 
|  | SDValue Op1 = Node->getOperand(1); | 
|  | SDValue Op2 = Node->getOperand(2); | 
|  | SDValue EVL = Node->getOperand(3); | 
|  |  | 
|  | EVT VT = Mask.getValueType(); | 
|  |  | 
|  | // If we can't even use the basic vector operations of | 
|  | // VP_AND,VP_OR,VP_XOR, we will have to scalarize the op. | 
|  | if (TLI.getOperationAction(ISD::VP_AND, VT) == TargetLowering::Expand || | 
|  | TLI.getOperationAction(ISD::VP_XOR, VT) == TargetLowering::Expand || | 
|  | TLI.getOperationAction(ISD::VP_OR, VT) == TargetLowering::Expand) | 
|  | return DAG.UnrollVectorOp(Node); | 
|  |  | 
|  | // This operation also isn't safe when the operands aren't also booleans. | 
|  | if (Op1.getValueType().getVectorElementType() != MVT::i1) | 
|  | return DAG.UnrollVectorOp(Node); | 
|  |  | 
|  | SDValue Ones = DAG.getAllOnesConstant(DL, VT); | 
|  | SDValue NotMask = DAG.getNode(ISD::VP_XOR, DL, VT, Mask, Ones, Mask, EVL); | 
|  |  | 
|  | Op1 = DAG.getNode(ISD::VP_AND, DL, VT, Op1, Mask, Mask, EVL); | 
|  | Op2 = DAG.getNode(ISD::VP_AND, DL, VT, Op2, NotMask, Mask, EVL); | 
|  | return DAG.getNode(ISD::VP_OR, DL, VT, Op1, Op2, Mask, EVL); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandVP_MERGE(SDNode *Node) { | 
|  | // Implement VP_MERGE in terms of VSELECT. Construct a mask where vector | 
|  | // indices less than the EVL/pivot are true. Combine that with the original | 
|  | // mask for a full-length mask. Use a full-length VSELECT to select between | 
|  | // the true and false values. | 
|  | SDLoc DL(Node); | 
|  |  | 
|  | SDValue Mask = Node->getOperand(0); | 
|  | SDValue Op1 = Node->getOperand(1); | 
|  | SDValue Op2 = Node->getOperand(2); | 
|  | SDValue EVL = Node->getOperand(3); | 
|  |  | 
|  | EVT MaskVT = Mask.getValueType(); | 
|  | bool IsFixedLen = MaskVT.isFixedLengthVector(); | 
|  |  | 
|  | EVT EVLVecVT = EVT::getVectorVT(*DAG.getContext(), EVL.getValueType(), | 
|  | MaskVT.getVectorElementCount()); | 
|  |  | 
|  | // If we can't construct the EVL mask efficiently, it's better to unroll. | 
|  | if ((IsFixedLen && | 
|  | !TLI.isOperationLegalOrCustom(ISD::BUILD_VECTOR, EVLVecVT)) || | 
|  | (!IsFixedLen && | 
|  | (!TLI.isOperationLegalOrCustom(ISD::STEP_VECTOR, EVLVecVT) || | 
|  | !TLI.isOperationLegalOrCustom(ISD::SPLAT_VECTOR, EVLVecVT)))) | 
|  | return DAG.UnrollVectorOp(Node); | 
|  |  | 
|  | // If using a SETCC would result in a different type than the mask type, | 
|  | // unroll. | 
|  | if (TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), | 
|  | EVLVecVT) != MaskVT) | 
|  | return DAG.UnrollVectorOp(Node); | 
|  |  | 
|  | SDValue StepVec = DAG.getStepVector(DL, EVLVecVT); | 
|  | SDValue SplatEVL = IsFixedLen ? DAG.getSplatBuildVector(EVLVecVT, DL, EVL) | 
|  | : DAG.getSplatVector(EVLVecVT, DL, EVL); | 
|  | SDValue EVLMask = | 
|  | DAG.getSetCC(DL, MaskVT, StepVec, SplatEVL, ISD::CondCode::SETULT); | 
|  |  | 
|  | SDValue FullMask = DAG.getNode(ISD::AND, DL, MaskVT, Mask, EVLMask); | 
|  | return DAG.getSelect(DL, Node->getValueType(0), FullMask, Op1, Op2); | 
|  | } | 
|  |  | 
|  | void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node, | 
|  | SmallVectorImpl<SDValue> &Results) { | 
|  | // Attempt to expand using TargetLowering. | 
|  | SDValue Result, Chain; | 
|  | if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) { | 
|  | Results.push_back(Result); | 
|  | if (Node->isStrictFPOpcode()) | 
|  | Results.push_back(Chain); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise go ahead and unroll. | 
|  | if (Node->isStrictFPOpcode()) { | 
|  | UnrollStrictFPOp(Node, Results); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Results.push_back(DAG.UnrollVectorOp(Node)); | 
|  | } | 
|  |  | 
|  | void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node, | 
|  | SmallVectorImpl<SDValue> &Results) { | 
|  | bool IsStrict = Node->isStrictFPOpcode(); | 
|  | unsigned OpNo = IsStrict ? 1 : 0; | 
|  | SDValue Src = Node->getOperand(OpNo); | 
|  | EVT VT = Src.getValueType(); | 
|  | SDLoc DL(Node); | 
|  |  | 
|  | // Attempt to expand using TargetLowering. | 
|  | SDValue Result; | 
|  | SDValue Chain; | 
|  | if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) { | 
|  | Results.push_back(Result); | 
|  | if (IsStrict) | 
|  | Results.push_back(Chain); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Make sure that the SINT_TO_FP and SRL instructions are available. | 
|  | if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) == | 
|  | TargetLowering::Expand) || | 
|  | (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) == | 
|  | TargetLowering::Expand)) || | 
|  | TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) { | 
|  | if (IsStrict) { | 
|  | UnrollStrictFPOp(Node, Results); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Results.push_back(DAG.UnrollVectorOp(Node)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned BW = VT.getScalarSizeInBits(); | 
|  | assert((BW == 64 || BW == 32) && | 
|  | "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); | 
|  |  | 
|  | SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT); | 
|  |  | 
|  | // Constants to clear the upper part of the word. | 
|  | // Notice that we can also use SHL+SHR, but using a constant is slightly | 
|  | // faster on x86. | 
|  | uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF; | 
|  | SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT); | 
|  |  | 
|  | // Two to the power of half-word-size. | 
|  | SDValue TWOHW = | 
|  | DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0)); | 
|  |  | 
|  | // Clear upper part of LO, lower HI | 
|  | SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord); | 
|  | SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask); | 
|  |  | 
|  | if (IsStrict) { | 
|  | // Convert hi and lo to floats | 
|  | // Convert the hi part back to the upper values | 
|  | // TODO: Can any fast-math-flags be set on these nodes? | 
|  | SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, | 
|  | {Node->getValueType(0), MVT::Other}, | 
|  | {Node->getOperand(0), HI}); | 
|  | fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other}, | 
|  | {fHI.getValue(1), fHI, TWOHW}); | 
|  | SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, | 
|  | {Node->getValueType(0), MVT::Other}, | 
|  | {Node->getOperand(0), LO}); | 
|  |  | 
|  | SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1), | 
|  | fLO.getValue(1)); | 
|  |  | 
|  | // Add the two halves | 
|  | SDValue Result = | 
|  | DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other}, | 
|  | {TF, fHI, fLO}); | 
|  |  | 
|  | Results.push_back(Result); | 
|  | Results.push_back(Result.getValue(1)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Convert hi and lo to floats | 
|  | // Convert the hi part back to the upper values | 
|  | // TODO: Can any fast-math-flags be set on these nodes? | 
|  | SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI); | 
|  | fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW); | 
|  | SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO); | 
|  |  | 
|  | // Add the two halves | 
|  | Results.push_back( | 
|  | DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO)); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) { | 
|  | if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) { | 
|  | SDLoc DL(Node); | 
|  | SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0)); | 
|  | // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB. | 
|  | return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero, | 
|  | Node->getOperand(0)); | 
|  | } | 
|  | return DAG.UnrollVectorOp(Node); | 
|  | } | 
|  |  | 
|  | void VectorLegalizer::ExpandFSUB(SDNode *Node, | 
|  | SmallVectorImpl<SDValue> &Results) { | 
|  | // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal, | 
|  | // we can defer this to operation legalization where it will be lowered as | 
|  | // a+(-b). | 
|  | EVT VT = Node->getValueType(0); | 
|  | if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) && | 
|  | TLI.isOperationLegalOrCustom(ISD::FADD, VT)) | 
|  | return; // Defer to LegalizeDAG | 
|  |  | 
|  | SDValue Tmp = DAG.UnrollVectorOp(Node); | 
|  | Results.push_back(Tmp); | 
|  | } | 
|  |  | 
|  | void VectorLegalizer::ExpandSETCC(SDNode *Node, | 
|  | SmallVectorImpl<SDValue> &Results) { | 
|  | bool NeedInvert = false; | 
|  | bool IsVP = Node->getOpcode() == ISD::VP_SETCC; | 
|  | SDLoc dl(Node); | 
|  | MVT OpVT = Node->getOperand(0).getSimpleValueType(); | 
|  | ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); | 
|  |  | 
|  | if (TLI.getCondCodeAction(CCCode, OpVT) != TargetLowering::Expand) { | 
|  | Results.push_back(UnrollVSETCC(Node)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SDValue Chain; | 
|  | SDValue LHS = Node->getOperand(0); | 
|  | SDValue RHS = Node->getOperand(1); | 
|  | SDValue CC = Node->getOperand(2); | 
|  | SDValue Mask, EVL; | 
|  | if (IsVP) { | 
|  | Mask = Node->getOperand(3); | 
|  | EVL = Node->getOperand(4); | 
|  | } | 
|  |  | 
|  | bool Legalized = | 
|  | TLI.LegalizeSetCCCondCode(DAG, Node->getValueType(0), LHS, RHS, CC, Mask, | 
|  | EVL, NeedInvert, dl, Chain); | 
|  |  | 
|  | if (Legalized) { | 
|  | // If we expanded the SETCC by swapping LHS and RHS, or by inverting the | 
|  | // condition code, create a new SETCC node. | 
|  | if (CC.getNode()) { | 
|  | if (!IsVP) | 
|  | LHS = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), LHS, RHS, CC, | 
|  | Node->getFlags()); | 
|  | else | 
|  | LHS = DAG.getNode(ISD::VP_SETCC, dl, Node->getValueType(0), | 
|  | {LHS, RHS, CC, Mask, EVL}, Node->getFlags()); | 
|  | } | 
|  |  | 
|  | // If we expanded the SETCC by inverting the condition code, then wrap | 
|  | // the existing SETCC in a NOT to restore the intended condition. | 
|  | if (NeedInvert) { | 
|  | if (!IsVP) | 
|  | LHS = DAG.getLogicalNOT(dl, LHS, LHS->getValueType(0)); | 
|  | else | 
|  | LHS = DAG.getVPLogicalNOT(dl, LHS, Mask, EVL, LHS->getValueType(0)); | 
|  | } | 
|  | } else { | 
|  | // Otherwise, SETCC for the given comparison type must be completely | 
|  | // illegal; expand it into a SELECT_CC. | 
|  | EVT VT = Node->getValueType(0); | 
|  | LHS = | 
|  | DAG.getNode(ISD::SELECT_CC, dl, VT, LHS, RHS, | 
|  | DAG.getBoolConstant(true, dl, VT, LHS.getValueType()), | 
|  | DAG.getBoolConstant(false, dl, VT, LHS.getValueType()), CC); | 
|  | LHS->setFlags(Node->getFlags()); | 
|  | } | 
|  |  | 
|  | Results.push_back(LHS); | 
|  | } | 
|  |  | 
|  | void VectorLegalizer::ExpandUADDSUBO(SDNode *Node, | 
|  | SmallVectorImpl<SDValue> &Results) { | 
|  | SDValue Result, Overflow; | 
|  | TLI.expandUADDSUBO(Node, Result, Overflow, DAG); | 
|  | Results.push_back(Result); | 
|  | Results.push_back(Overflow); | 
|  | } | 
|  |  | 
|  | void VectorLegalizer::ExpandSADDSUBO(SDNode *Node, | 
|  | SmallVectorImpl<SDValue> &Results) { | 
|  | SDValue Result, Overflow; | 
|  | TLI.expandSADDSUBO(Node, Result, Overflow, DAG); | 
|  | Results.push_back(Result); | 
|  | Results.push_back(Overflow); | 
|  | } | 
|  |  | 
|  | void VectorLegalizer::ExpandMULO(SDNode *Node, | 
|  | SmallVectorImpl<SDValue> &Results) { | 
|  | SDValue Result, Overflow; | 
|  | if (!TLI.expandMULO(Node, Result, Overflow, DAG)) | 
|  | std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node); | 
|  |  | 
|  | Results.push_back(Result); | 
|  | Results.push_back(Overflow); | 
|  | } | 
|  |  | 
|  | void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node, | 
|  | SmallVectorImpl<SDValue> &Results) { | 
|  | SDNode *N = Node; | 
|  | if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N), | 
|  | N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG)) | 
|  | Results.push_back(Expanded); | 
|  | } | 
|  |  | 
|  | void VectorLegalizer::ExpandStrictFPOp(SDNode *Node, | 
|  | SmallVectorImpl<SDValue> &Results) { | 
|  | if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) { | 
|  | ExpandUINT_TO_FLOAT(Node, Results); | 
|  | return; | 
|  | } | 
|  | if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) { | 
|  | ExpandFP_TO_UINT(Node, Results); | 
|  | return; | 
|  | } | 
|  |  | 
|  | UnrollStrictFPOp(Node, Results); | 
|  | } | 
|  |  | 
|  | void VectorLegalizer::ExpandREM(SDNode *Node, | 
|  | SmallVectorImpl<SDValue> &Results) { | 
|  | assert((Node->getOpcode() == ISD::SREM || Node->getOpcode() == ISD::UREM) && | 
|  | "Expected REM node"); | 
|  |  | 
|  | SDValue Result; | 
|  | if (!TLI.expandREM(Node, Result, DAG)) | 
|  | Result = DAG.UnrollVectorOp(Node); | 
|  | Results.push_back(Result); | 
|  | } | 
|  |  | 
|  | void VectorLegalizer::UnrollStrictFPOp(SDNode *Node, | 
|  | SmallVectorImpl<SDValue> &Results) { | 
|  | EVT VT = Node->getValueType(0); | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | unsigned NumOpers = Node->getNumOperands(); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  |  | 
|  | EVT TmpEltVT = EltVT; | 
|  | if (Node->getOpcode() == ISD::STRICT_FSETCC || | 
|  | Node->getOpcode() == ISD::STRICT_FSETCCS) | 
|  | TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(), | 
|  | *DAG.getContext(), TmpEltVT); | 
|  |  | 
|  | EVT ValueVTs[] = {TmpEltVT, MVT::Other}; | 
|  | SDValue Chain = Node->getOperand(0); | 
|  | SDLoc dl(Node); | 
|  |  | 
|  | SmallVector<SDValue, 32> OpValues; | 
|  | SmallVector<SDValue, 32> OpChains; | 
|  | for (unsigned i = 0; i < NumElems; ++i) { | 
|  | SmallVector<SDValue, 4> Opers; | 
|  | SDValue Idx = DAG.getVectorIdxConstant(i, dl); | 
|  |  | 
|  | // The Chain is the first operand. | 
|  | Opers.push_back(Chain); | 
|  |  | 
|  | // Now process the remaining operands. | 
|  | for (unsigned j = 1; j < NumOpers; ++j) { | 
|  | SDValue Oper = Node->getOperand(j); | 
|  | EVT OperVT = Oper.getValueType(); | 
|  |  | 
|  | if (OperVT.isVector()) | 
|  | Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, | 
|  | OperVT.getVectorElementType(), Oper, Idx); | 
|  |  | 
|  | Opers.push_back(Oper); | 
|  | } | 
|  |  | 
|  | SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers); | 
|  | SDValue ScalarResult = ScalarOp.getValue(0); | 
|  | SDValue ScalarChain = ScalarOp.getValue(1); | 
|  |  | 
|  | if (Node->getOpcode() == ISD::STRICT_FSETCC || | 
|  | Node->getOpcode() == ISD::STRICT_FSETCCS) | 
|  | ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult, | 
|  | DAG.getAllOnesConstant(dl, EltVT), | 
|  | DAG.getConstant(0, dl, EltVT)); | 
|  |  | 
|  | OpValues.push_back(ScalarResult); | 
|  | OpChains.push_back(ScalarChain); | 
|  | } | 
|  |  | 
|  | SDValue Result = DAG.getBuildVector(VT, dl, OpValues); | 
|  | SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains); | 
|  |  | 
|  | Results.push_back(Result); | 
|  | Results.push_back(NewChain); | 
|  | } | 
|  |  | 
|  | SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) { | 
|  | EVT VT = Node->getValueType(0); | 
|  | unsigned NumElems = VT.getVectorNumElements(); | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  | SDValue LHS = Node->getOperand(0); | 
|  | SDValue RHS = Node->getOperand(1); | 
|  | SDValue CC = Node->getOperand(2); | 
|  | EVT TmpEltVT = LHS.getValueType().getVectorElementType(); | 
|  | SDLoc dl(Node); | 
|  | SmallVector<SDValue, 8> Ops(NumElems); | 
|  | for (unsigned i = 0; i < NumElems; ++i) { | 
|  | SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, | 
|  | DAG.getVectorIdxConstant(i, dl)); | 
|  | SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, | 
|  | DAG.getVectorIdxConstant(i, dl)); | 
|  | Ops[i] = DAG.getNode(ISD::SETCC, dl, | 
|  | TLI.getSetCCResultType(DAG.getDataLayout(), | 
|  | *DAG.getContext(), TmpEltVT), | 
|  | LHSElem, RHSElem, CC); | 
|  | Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], DAG.getAllOnesConstant(dl, EltVT), | 
|  | DAG.getConstant(0, dl, EltVT)); | 
|  | } | 
|  | return DAG.getBuildVector(VT, dl, Ops); | 
|  | } | 
|  |  | 
|  | bool SelectionDAG::LegalizeVectors() { | 
|  | return VectorLegalizer(*this).Run(); | 
|  | } |