| //== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | //  This file defines RangeConstraintManager, a class that tracks simple | 
 | //  equality and inequality constraints on symbolic values of ProgramState. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "clang/Basic/JsonSupport.h" | 
 | #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h" | 
 | #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" | 
 | #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" | 
 | #include "clang/StaticAnalyzer/Core/PathSensitive/RangedConstraintManager.h" | 
 | #include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h" | 
 | #include "llvm/ADT/FoldingSet.h" | 
 | #include "llvm/ADT/ImmutableSet.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include "llvm/ADT/SmallSet.h" | 
 | #include "llvm/ADT/StringExtras.h" | 
 | #include "llvm/Support/Compiler.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include <algorithm> | 
 | #include <iterator> | 
 |  | 
 | using namespace clang; | 
 | using namespace ento; | 
 |  | 
 | // This class can be extended with other tables which will help to reason | 
 | // about ranges more precisely. | 
 | class OperatorRelationsTable { | 
 |   static_assert(BO_LT < BO_GT && BO_GT < BO_LE && BO_LE < BO_GE && | 
 |                     BO_GE < BO_EQ && BO_EQ < BO_NE, | 
 |                 "This class relies on operators order. Rework it otherwise."); | 
 |  | 
 | public: | 
 |   enum TriStateKind { | 
 |     False = 0, | 
 |     True, | 
 |     Unknown, | 
 |   }; | 
 |  | 
 | private: | 
 |   // CmpOpTable holds states which represent the corresponding range for | 
 |   // branching an exploded graph. We can reason about the branch if there is | 
 |   // a previously known fact of the existence of a comparison expression with | 
 |   // operands used in the current expression. | 
 |   // E.g. assuming (x < y) is true that means (x != y) is surely true. | 
 |   // if (x previous_operation y)  // <    | !=      | > | 
 |   //   if (x operation y)         // !=   | >       | < | 
 |   //     tristate                 // True | Unknown | False | 
 |   // | 
 |   // CmpOpTable represents next: | 
 |   // __|< |> |<=|>=|==|!=|UnknownX2| | 
 |   // < |1 |0 |* |0 |0 |* |1        | | 
 |   // > |0 |1 |0 |* |0 |* |1        | | 
 |   // <=|1 |0 |1 |* |1 |* |0        | | 
 |   // >=|0 |1 |* |1 |1 |* |0        | | 
 |   // ==|0 |0 |* |* |1 |0 |1        | | 
 |   // !=|1 |1 |* |* |0 |1 |0        | | 
 |   // | 
 |   // Columns stands for a previous operator. | 
 |   // Rows stands for a current operator. | 
 |   // Each row has exactly two `Unknown` cases. | 
 |   // UnknownX2 means that both `Unknown` previous operators are met in code, | 
 |   // and there is a special column for that, for example: | 
 |   // if (x >= y) | 
 |   //   if (x != y) | 
 |   //     if (x <= y) | 
 |   //       False only | 
 |   static constexpr size_t CmpOpCount = BO_NE - BO_LT + 1; | 
 |   const TriStateKind CmpOpTable[CmpOpCount][CmpOpCount + 1] = { | 
 |       // <      >      <=     >=     ==     !=    UnknownX2 | 
 |       {True, False, Unknown, False, False, Unknown, True}, // < | 
 |       {False, True, False, Unknown, False, Unknown, True}, // > | 
 |       {True, False, True, Unknown, True, Unknown, False},  // <= | 
 |       {False, True, Unknown, True, True, Unknown, False},  // >= | 
 |       {False, False, Unknown, Unknown, True, False, True}, // == | 
 |       {True, True, Unknown, Unknown, False, True, False},  // != | 
 |   }; | 
 |  | 
 |   static size_t getIndexFromOp(BinaryOperatorKind OP) { | 
 |     return static_cast<size_t>(OP - BO_LT); | 
 |   } | 
 |  | 
 | public: | 
 |   constexpr size_t getCmpOpCount() const { return CmpOpCount; } | 
 |  | 
 |   static BinaryOperatorKind getOpFromIndex(size_t Index) { | 
 |     return static_cast<BinaryOperatorKind>(Index + BO_LT); | 
 |   } | 
 |  | 
 |   TriStateKind getCmpOpState(BinaryOperatorKind CurrentOP, | 
 |                              BinaryOperatorKind QueriedOP) const { | 
 |     return CmpOpTable[getIndexFromOp(CurrentOP)][getIndexFromOp(QueriedOP)]; | 
 |   } | 
 |  | 
 |   TriStateKind getCmpOpStateForUnknownX2(BinaryOperatorKind CurrentOP) const { | 
 |     return CmpOpTable[getIndexFromOp(CurrentOP)][CmpOpCount]; | 
 |   } | 
 | }; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                           RangeSet implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | RangeSet::ContainerType RangeSet::Factory::EmptySet{}; | 
 |  | 
 | RangeSet RangeSet::Factory::add(RangeSet LHS, RangeSet RHS) { | 
 |   ContainerType Result; | 
 |   Result.reserve(LHS.size() + RHS.size()); | 
 |   std::merge(LHS.begin(), LHS.end(), RHS.begin(), RHS.end(), | 
 |              std::back_inserter(Result)); | 
 |   return makePersistent(std::move(Result)); | 
 | } | 
 |  | 
 | RangeSet RangeSet::Factory::add(RangeSet Original, Range Element) { | 
 |   ContainerType Result; | 
 |   Result.reserve(Original.size() + 1); | 
 |  | 
 |   const_iterator Lower = llvm::lower_bound(Original, Element); | 
 |   Result.insert(Result.end(), Original.begin(), Lower); | 
 |   Result.push_back(Element); | 
 |   Result.insert(Result.end(), Lower, Original.end()); | 
 |  | 
 |   return makePersistent(std::move(Result)); | 
 | } | 
 |  | 
 | RangeSet RangeSet::Factory::add(RangeSet Original, const llvm::APSInt &Point) { | 
 |   return add(Original, Range(Point)); | 
 | } | 
 |  | 
 | RangeSet RangeSet::Factory::unite(RangeSet LHS, RangeSet RHS) { | 
 |   ContainerType Result = unite(*LHS.Impl, *RHS.Impl); | 
 |   return makePersistent(std::move(Result)); | 
 | } | 
 |  | 
 | RangeSet RangeSet::Factory::unite(RangeSet Original, Range R) { | 
 |   ContainerType Result; | 
 |   Result.push_back(R); | 
 |   Result = unite(*Original.Impl, Result); | 
 |   return makePersistent(std::move(Result)); | 
 | } | 
 |  | 
 | RangeSet RangeSet::Factory::unite(RangeSet Original, llvm::APSInt Point) { | 
 |   return unite(Original, Range(ValueFactory.getValue(Point))); | 
 | } | 
 |  | 
 | RangeSet RangeSet::Factory::unite(RangeSet Original, llvm::APSInt From, | 
 |                                   llvm::APSInt To) { | 
 |   return unite(Original, | 
 |                Range(ValueFactory.getValue(From), ValueFactory.getValue(To))); | 
 | } | 
 |  | 
 | template <typename T> | 
 | void swapIterators(T &First, T &FirstEnd, T &Second, T &SecondEnd) { | 
 |   std::swap(First, Second); | 
 |   std::swap(FirstEnd, SecondEnd); | 
 | } | 
 |  | 
 | RangeSet::ContainerType RangeSet::Factory::unite(const ContainerType &LHS, | 
 |                                                  const ContainerType &RHS) { | 
 |   if (LHS.empty()) | 
 |     return RHS; | 
 |   if (RHS.empty()) | 
 |     return LHS; | 
 |  | 
 |   using llvm::APSInt; | 
 |   using iterator = ContainerType::const_iterator; | 
 |  | 
 |   iterator First = LHS.begin(); | 
 |   iterator FirstEnd = LHS.end(); | 
 |   iterator Second = RHS.begin(); | 
 |   iterator SecondEnd = RHS.end(); | 
 |   APSIntType Ty = APSIntType(First->From()); | 
 |   const APSInt Min = Ty.getMinValue(); | 
 |  | 
 |   // Handle a corner case first when both range sets start from MIN. | 
 |   // This helps to avoid complicated conditions below. Specifically, this | 
 |   // particular check for `MIN` is not needed in the loop below every time | 
 |   // when we do `Second->From() - One` operation. | 
 |   if (Min == First->From() && Min == Second->From()) { | 
 |     if (First->To() > Second->To()) { | 
 |       //    [ First    ]---> | 
 |       //    [ Second ]-----> | 
 |       // MIN^ | 
 |       // The Second range is entirely inside the First one. | 
 |  | 
 |       // Check if Second is the last in its RangeSet. | 
 |       if (++Second == SecondEnd) | 
 |         //    [ First     ]--[ First + 1 ]---> | 
 |         //    [ Second ]---------------------> | 
 |         // MIN^ | 
 |         // The Union is equal to First's RangeSet. | 
 |         return LHS; | 
 |     } else { | 
 |       // case 1: [ First ]-----> | 
 |       // case 2: [ First   ]---> | 
 |       //         [ Second  ]---> | 
 |       //      MIN^ | 
 |       // The First range is entirely inside or equal to the Second one. | 
 |  | 
 |       // Check if First is the last in its RangeSet. | 
 |       if (++First == FirstEnd) | 
 |         //    [ First ]-----------------------> | 
 |         //    [ Second  ]--[ Second + 1 ]----> | 
 |         // MIN^ | 
 |         // The Union is equal to Second's RangeSet. | 
 |         return RHS; | 
 |     } | 
 |   } | 
 |  | 
 |   const APSInt One = Ty.getValue(1); | 
 |   ContainerType Result; | 
 |  | 
 |   // This is called when there are no ranges left in one of the ranges. | 
 |   // Append the rest of the ranges from another range set to the Result | 
 |   // and return with that. | 
 |   const auto AppendTheRest = [&Result](iterator I, iterator E) { | 
 |     Result.append(I, E); | 
 |     return Result; | 
 |   }; | 
 |  | 
 |   while (true) { | 
 |     // We want to keep the following invariant at all times: | 
 |     // ---[ First ------> | 
 |     // -----[ Second ---> | 
 |     if (First->From() > Second->From()) | 
 |       swapIterators(First, FirstEnd, Second, SecondEnd); | 
 |  | 
 |     // The Union definitely starts with First->From(). | 
 |     // ----------[ First ------> | 
 |     // ------------[ Second ---> | 
 |     // ----------[ Union ------> | 
 |     // UnionStart^ | 
 |     const llvm::APSInt &UnionStart = First->From(); | 
 |  | 
 |     // Loop where the invariant holds. | 
 |     while (true) { | 
 |       // Skip all enclosed ranges. | 
 |       // ---[                  First                     ]---> | 
 |       // -----[ Second ]--[ Second + 1 ]--[ Second + N ]-----> | 
 |       while (First->To() >= Second->To()) { | 
 |         // Check if Second is the last in its RangeSet. | 
 |         if (++Second == SecondEnd) { | 
 |           // Append the Union. | 
 |           // ---[ Union      ]---> | 
 |           // -----[ Second ]-----> | 
 |           // --------[ First ]---> | 
 |           //         UnionEnd^ | 
 |           Result.emplace_back(UnionStart, First->To()); | 
 |           // ---[ Union ]-----------------> | 
 |           // --------------[ First + 1]---> | 
 |           // Append all remaining ranges from the First's RangeSet. | 
 |           return AppendTheRest(++First, FirstEnd); | 
 |         } | 
 |       } | 
 |  | 
 |       // Check if First and Second are disjoint. It means that we find | 
 |       // the end of the Union. Exit the loop and append the Union. | 
 |       // ---[ First ]=-------------> | 
 |       // ------------=[ Second ]---> | 
 |       // ----MinusOne^ | 
 |       if (First->To() < Second->From() - One) | 
 |         break; | 
 |  | 
 |       // First is entirely inside the Union. Go next. | 
 |       // ---[ Union -----------> | 
 |       // ---- [ First ]--------> | 
 |       // -------[ Second ]-----> | 
 |       // Check if First is the last in its RangeSet. | 
 |       if (++First == FirstEnd) { | 
 |         // Append the Union. | 
 |         // ---[ Union       ]---> | 
 |         // -----[ First ]-------> | 
 |         // --------[ Second ]---> | 
 |         //          UnionEnd^ | 
 |         Result.emplace_back(UnionStart, Second->To()); | 
 |         // ---[ Union ]------------------> | 
 |         // --------------[ Second + 1]---> | 
 |         // Append all remaining ranges from the Second's RangeSet. | 
 |         return AppendTheRest(++Second, SecondEnd); | 
 |       } | 
 |  | 
 |       // We know that we are at one of the two cases: | 
 |       // case 1: --[ First ]---------> | 
 |       // case 2: ----[ First ]-------> | 
 |       // --------[ Second ]----------> | 
 |       // In both cases First starts after Second->From(). | 
 |       // Make sure that the loop invariant holds. | 
 |       swapIterators(First, FirstEnd, Second, SecondEnd); | 
 |     } | 
 |  | 
 |     // Here First and Second are disjoint. | 
 |     // Append the Union. | 
 |     // ---[ Union    ]---------------> | 
 |     // -----------------[ Second ]---> | 
 |     // ------[ First ]---------------> | 
 |     //       UnionEnd^ | 
 |     Result.emplace_back(UnionStart, First->To()); | 
 |  | 
 |     // Check if First is the last in its RangeSet. | 
 |     if (++First == FirstEnd) | 
 |       // ---[ Union ]---------------> | 
 |       // --------------[ Second ]---> | 
 |       // Append all remaining ranges from the Second's RangeSet. | 
 |       return AppendTheRest(Second, SecondEnd); | 
 |   } | 
 |  | 
 |   llvm_unreachable("Normally, we should not reach here"); | 
 | } | 
 |  | 
 | RangeSet RangeSet::Factory::getRangeSet(Range From) { | 
 |   ContainerType Result; | 
 |   Result.push_back(From); | 
 |   return makePersistent(std::move(Result)); | 
 | } | 
 |  | 
 | RangeSet RangeSet::Factory::makePersistent(ContainerType &&From) { | 
 |   llvm::FoldingSetNodeID ID; | 
 |   void *InsertPos; | 
 |  | 
 |   From.Profile(ID); | 
 |   ContainerType *Result = Cache.FindNodeOrInsertPos(ID, InsertPos); | 
 |  | 
 |   if (!Result) { | 
 |     // It is cheaper to fully construct the resulting range on stack | 
 |     // and move it to the freshly allocated buffer if we don't have | 
 |     // a set like this already. | 
 |     Result = construct(std::move(From)); | 
 |     Cache.InsertNode(Result, InsertPos); | 
 |   } | 
 |  | 
 |   return Result; | 
 | } | 
 |  | 
 | RangeSet::ContainerType *RangeSet::Factory::construct(ContainerType &&From) { | 
 |   void *Buffer = Arena.Allocate(); | 
 |   return new (Buffer) ContainerType(std::move(From)); | 
 | } | 
 |  | 
 | const llvm::APSInt &RangeSet::getMinValue() const { | 
 |   assert(!isEmpty()); | 
 |   return begin()->From(); | 
 | } | 
 |  | 
 | const llvm::APSInt &RangeSet::getMaxValue() const { | 
 |   assert(!isEmpty()); | 
 |   return std::prev(end())->To(); | 
 | } | 
 |  | 
 | bool clang::ento::RangeSet::isUnsigned() const { | 
 |   assert(!isEmpty()); | 
 |   return begin()->From().isUnsigned(); | 
 | } | 
 |  | 
 | uint32_t clang::ento::RangeSet::getBitWidth() const { | 
 |   assert(!isEmpty()); | 
 |   return begin()->From().getBitWidth(); | 
 | } | 
 |  | 
 | APSIntType clang::ento::RangeSet::getAPSIntType() const { | 
 |   assert(!isEmpty()); | 
 |   return APSIntType(begin()->From()); | 
 | } | 
 |  | 
 | bool RangeSet::containsImpl(llvm::APSInt &Point) const { | 
 |   if (isEmpty() || !pin(Point)) | 
 |     return false; | 
 |  | 
 |   Range Dummy(Point); | 
 |   const_iterator It = llvm::upper_bound(*this, Dummy); | 
 |   if (It == begin()) | 
 |     return false; | 
 |  | 
 |   return std::prev(It)->Includes(Point); | 
 | } | 
 |  | 
 | bool RangeSet::pin(llvm::APSInt &Point) const { | 
 |   APSIntType Type(getMinValue()); | 
 |   if (Type.testInRange(Point, true) != APSIntType::RTR_Within) | 
 |     return false; | 
 |  | 
 |   Type.apply(Point); | 
 |   return true; | 
 | } | 
 |  | 
 | bool RangeSet::pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const { | 
 |   // This function has nine cases, the cartesian product of range-testing | 
 |   // both the upper and lower bounds against the symbol's type. | 
 |   // Each case requires a different pinning operation. | 
 |   // The function returns false if the described range is entirely outside | 
 |   // the range of values for the associated symbol. | 
 |   APSIntType Type(getMinValue()); | 
 |   APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower, true); | 
 |   APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper, true); | 
 |  | 
 |   switch (LowerTest) { | 
 |   case APSIntType::RTR_Below: | 
 |     switch (UpperTest) { | 
 |     case APSIntType::RTR_Below: | 
 |       // The entire range is outside the symbol's set of possible values. | 
 |       // If this is a conventionally-ordered range, the state is infeasible. | 
 |       if (Lower <= Upper) | 
 |         return false; | 
 |  | 
 |       // However, if the range wraps around, it spans all possible values. | 
 |       Lower = Type.getMinValue(); | 
 |       Upper = Type.getMaxValue(); | 
 |       break; | 
 |     case APSIntType::RTR_Within: | 
 |       // The range starts below what's possible but ends within it. Pin. | 
 |       Lower = Type.getMinValue(); | 
 |       Type.apply(Upper); | 
 |       break; | 
 |     case APSIntType::RTR_Above: | 
 |       // The range spans all possible values for the symbol. Pin. | 
 |       Lower = Type.getMinValue(); | 
 |       Upper = Type.getMaxValue(); | 
 |       break; | 
 |     } | 
 |     break; | 
 |   case APSIntType::RTR_Within: | 
 |     switch (UpperTest) { | 
 |     case APSIntType::RTR_Below: | 
 |       // The range wraps around, but all lower values are not possible. | 
 |       Type.apply(Lower); | 
 |       Upper = Type.getMaxValue(); | 
 |       break; | 
 |     case APSIntType::RTR_Within: | 
 |       // The range may or may not wrap around, but both limits are valid. | 
 |       Type.apply(Lower); | 
 |       Type.apply(Upper); | 
 |       break; | 
 |     case APSIntType::RTR_Above: | 
 |       // The range starts within what's possible but ends above it. Pin. | 
 |       Type.apply(Lower); | 
 |       Upper = Type.getMaxValue(); | 
 |       break; | 
 |     } | 
 |     break; | 
 |   case APSIntType::RTR_Above: | 
 |     switch (UpperTest) { | 
 |     case APSIntType::RTR_Below: | 
 |       // The range wraps but is outside the symbol's set of possible values. | 
 |       return false; | 
 |     case APSIntType::RTR_Within: | 
 |       // The range starts above what's possible but ends within it (wrap). | 
 |       Lower = Type.getMinValue(); | 
 |       Type.apply(Upper); | 
 |       break; | 
 |     case APSIntType::RTR_Above: | 
 |       // The entire range is outside the symbol's set of possible values. | 
 |       // If this is a conventionally-ordered range, the state is infeasible. | 
 |       if (Lower <= Upper) | 
 |         return false; | 
 |  | 
 |       // However, if the range wraps around, it spans all possible values. | 
 |       Lower = Type.getMinValue(); | 
 |       Upper = Type.getMaxValue(); | 
 |       break; | 
 |     } | 
 |     break; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | RangeSet RangeSet::Factory::intersect(RangeSet What, llvm::APSInt Lower, | 
 |                                       llvm::APSInt Upper) { | 
 |   if (What.isEmpty() || !What.pin(Lower, Upper)) | 
 |     return getEmptySet(); | 
 |  | 
 |   ContainerType DummyContainer; | 
 |  | 
 |   if (Lower <= Upper) { | 
 |     // [Lower, Upper] is a regular range. | 
 |     // | 
 |     // Shortcut: check that there is even a possibility of the intersection | 
 |     //           by checking the two following situations: | 
 |     // | 
 |     //               <---[  What  ]---[------]------> | 
 |     //                              Lower  Upper | 
 |     //                            -or- | 
 |     //               <----[------]----[  What  ]----> | 
 |     //                  Lower  Upper | 
 |     if (What.getMaxValue() < Lower || Upper < What.getMinValue()) | 
 |       return getEmptySet(); | 
 |  | 
 |     DummyContainer.push_back( | 
 |         Range(ValueFactory.getValue(Lower), ValueFactory.getValue(Upper))); | 
 |   } else { | 
 |     // [Lower, Upper] is an inverted range, i.e. [MIN, Upper] U [Lower, MAX] | 
 |     // | 
 |     // Shortcut: check that there is even a possibility of the intersection | 
 |     //           by checking the following situation: | 
 |     // | 
 |     //               <------]---[  What  ]---[------> | 
 |     //                    Upper             Lower | 
 |     if (What.getMaxValue() < Lower && Upper < What.getMinValue()) | 
 |       return getEmptySet(); | 
 |  | 
 |     DummyContainer.push_back( | 
 |         Range(ValueFactory.getMinValue(Upper), ValueFactory.getValue(Upper))); | 
 |     DummyContainer.push_back( | 
 |         Range(ValueFactory.getValue(Lower), ValueFactory.getMaxValue(Lower))); | 
 |   } | 
 |  | 
 |   return intersect(*What.Impl, DummyContainer); | 
 | } | 
 |  | 
 | RangeSet RangeSet::Factory::intersect(const RangeSet::ContainerType &LHS, | 
 |                                       const RangeSet::ContainerType &RHS) { | 
 |   ContainerType Result; | 
 |   Result.reserve(std::max(LHS.size(), RHS.size())); | 
 |  | 
 |   const_iterator First = LHS.begin(), Second = RHS.begin(), | 
 |                  FirstEnd = LHS.end(), SecondEnd = RHS.end(); | 
 |  | 
 |   // If we ran out of ranges in one set, but not in the other, | 
 |   // it means that those elements are definitely not in the | 
 |   // intersection. | 
 |   while (First != FirstEnd && Second != SecondEnd) { | 
 |     // We want to keep the following invariant at all times: | 
 |     // | 
 |     //    ----[ First ----------------------> | 
 |     //    --------[ Second -----------------> | 
 |     if (Second->From() < First->From()) | 
 |       swapIterators(First, FirstEnd, Second, SecondEnd); | 
 |  | 
 |     // Loop where the invariant holds: | 
 |     do { | 
 |       // Check for the following situation: | 
 |       // | 
 |       //    ----[ First ]---------------------> | 
 |       //    ---------------[ Second ]---------> | 
 |       // | 
 |       // which means that... | 
 |       if (Second->From() > First->To()) { | 
 |         // ...First is not in the intersection. | 
 |         // | 
 |         // We should move on to the next range after First and break out of the | 
 |         // loop because the invariant might not be true. | 
 |         ++First; | 
 |         break; | 
 |       } | 
 |  | 
 |       // We have a guaranteed intersection at this point! | 
 |       // And this is the current situation: | 
 |       // | 
 |       //    ----[   First   ]-----------------> | 
 |       //    -------[ Second ------------------> | 
 |       // | 
 |       // Additionally, it definitely starts with Second->From(). | 
 |       const llvm::APSInt &IntersectionStart = Second->From(); | 
 |  | 
 |       // It is important to know which of the two ranges' ends | 
 |       // is greater.  That "longer" range might have some other | 
 |       // intersections, while the "shorter" range might not. | 
 |       if (Second->To() > First->To()) { | 
 |         // Here we make a decision to keep First as the "longer" | 
 |         // range. | 
 |         swapIterators(First, FirstEnd, Second, SecondEnd); | 
 |       } | 
 |  | 
 |       // At this point, we have the following situation: | 
 |       // | 
 |       //    ---- First      ]--------------------> | 
 |       //    ---- Second ]--[  Second+1 ----------> | 
 |       // | 
 |       // We don't know the relationship between First->From and | 
 |       // Second->From and we don't know whether Second+1 intersects | 
 |       // with First. | 
 |       // | 
 |       // However, we know that [IntersectionStart, Second->To] is | 
 |       // a part of the intersection... | 
 |       Result.push_back(Range(IntersectionStart, Second->To())); | 
 |       ++Second; | 
 |       // ...and that the invariant will hold for a valid Second+1 | 
 |       // because First->From <= Second->To < (Second+1)->From. | 
 |     } while (Second != SecondEnd); | 
 |   } | 
 |  | 
 |   if (Result.empty()) | 
 |     return getEmptySet(); | 
 |  | 
 |   return makePersistent(std::move(Result)); | 
 | } | 
 |  | 
 | RangeSet RangeSet::Factory::intersect(RangeSet LHS, RangeSet RHS) { | 
 |   // Shortcut: let's see if the intersection is even possible. | 
 |   if (LHS.isEmpty() || RHS.isEmpty() || LHS.getMaxValue() < RHS.getMinValue() || | 
 |       RHS.getMaxValue() < LHS.getMinValue()) | 
 |     return getEmptySet(); | 
 |  | 
 |   return intersect(*LHS.Impl, *RHS.Impl); | 
 | } | 
 |  | 
 | RangeSet RangeSet::Factory::intersect(RangeSet LHS, llvm::APSInt Point) { | 
 |   if (LHS.containsImpl(Point)) | 
 |     return getRangeSet(ValueFactory.getValue(Point)); | 
 |  | 
 |   return getEmptySet(); | 
 | } | 
 |  | 
 | RangeSet RangeSet::Factory::negate(RangeSet What) { | 
 |   if (What.isEmpty()) | 
 |     return getEmptySet(); | 
 |  | 
 |   const llvm::APSInt SampleValue = What.getMinValue(); | 
 |   const llvm::APSInt &MIN = ValueFactory.getMinValue(SampleValue); | 
 |   const llvm::APSInt &MAX = ValueFactory.getMaxValue(SampleValue); | 
 |  | 
 |   ContainerType Result; | 
 |   Result.reserve(What.size() + (SampleValue == MIN)); | 
 |  | 
 |   // Handle a special case for MIN value. | 
 |   const_iterator It = What.begin(); | 
 |   const_iterator End = What.end(); | 
 |  | 
 |   const llvm::APSInt &From = It->From(); | 
 |   const llvm::APSInt &To = It->To(); | 
 |  | 
 |   if (From == MIN) { | 
 |     // If the range [From, To] is [MIN, MAX], then result is also [MIN, MAX]. | 
 |     if (To == MAX) { | 
 |       return What; | 
 |     } | 
 |  | 
 |     const_iterator Last = std::prev(End); | 
 |  | 
 |     // Try to find and unite the following ranges: | 
 |     // [MIN, MIN] & [MIN + 1, N] => [MIN, N]. | 
 |     if (Last->To() == MAX) { | 
 |       // It means that in the original range we have ranges | 
 |       //   [MIN, A], ... , [B, MAX] | 
 |       // And the result should be [MIN, -B], ..., [-A, MAX] | 
 |       Result.emplace_back(MIN, ValueFactory.getValue(-Last->From())); | 
 |       // We already negated Last, so we can skip it. | 
 |       End = Last; | 
 |     } else { | 
 |       // Add a separate range for the lowest value. | 
 |       Result.emplace_back(MIN, MIN); | 
 |     } | 
 |  | 
 |     // Skip adding the second range in case when [From, To] are [MIN, MIN]. | 
 |     if (To != MIN) { | 
 |       Result.emplace_back(ValueFactory.getValue(-To), MAX); | 
 |     } | 
 |  | 
 |     // Skip the first range in the loop. | 
 |     ++It; | 
 |   } | 
 |  | 
 |   // Negate all other ranges. | 
 |   for (; It != End; ++It) { | 
 |     // Negate int values. | 
 |     const llvm::APSInt &NewFrom = ValueFactory.getValue(-It->To()); | 
 |     const llvm::APSInt &NewTo = ValueFactory.getValue(-It->From()); | 
 |  | 
 |     // Add a negated range. | 
 |     Result.emplace_back(NewFrom, NewTo); | 
 |   } | 
 |  | 
 |   llvm::sort(Result); | 
 |   return makePersistent(std::move(Result)); | 
 | } | 
 |  | 
 | // Convert range set to the given integral type using truncation and promotion. | 
 | // This works similar to APSIntType::apply function but for the range set. | 
 | RangeSet RangeSet::Factory::castTo(RangeSet What, APSIntType Ty) { | 
 |   // Set is empty or NOOP (aka cast to the same type). | 
 |   if (What.isEmpty() || What.getAPSIntType() == Ty) | 
 |     return What; | 
 |  | 
 |   const bool IsConversion = What.isUnsigned() != Ty.isUnsigned(); | 
 |   const bool IsTruncation = What.getBitWidth() > Ty.getBitWidth(); | 
 |   const bool IsPromotion = What.getBitWidth() < Ty.getBitWidth(); | 
 |  | 
 |   if (IsTruncation) | 
 |     return makePersistent(truncateTo(What, Ty)); | 
 |  | 
 |   // Here we handle 2 cases: | 
 |   // - IsConversion && !IsPromotion. | 
 |   //   In this case we handle changing a sign with same bitwidth: char -> uchar, | 
 |   //   uint -> int. Here we convert negatives to positives and positives which | 
 |   //   is out of range to negatives. We use convertTo function for that. | 
 |   // - IsConversion && IsPromotion && !What.isUnsigned(). | 
 |   //   In this case we handle changing a sign from signeds to unsigneds with | 
 |   //   higher bitwidth: char -> uint, int-> uint64. The point is that we also | 
 |   //   need convert negatives to positives and use convertTo function as well. | 
 |   //   For example, we don't need such a convertion when converting unsigned to | 
 |   //   signed with higher bitwidth, because all the values of unsigned is valid | 
 |   //   for the such signed. | 
 |   if (IsConversion && (!IsPromotion || !What.isUnsigned())) | 
 |     return makePersistent(convertTo(What, Ty)); | 
 |  | 
 |   assert(IsPromotion && "Only promotion operation from unsigneds left."); | 
 |   return makePersistent(promoteTo(What, Ty)); | 
 | } | 
 |  | 
 | RangeSet RangeSet::Factory::castTo(RangeSet What, QualType T) { | 
 |   assert(T->isIntegralOrEnumerationType() && "T shall be an integral type."); | 
 |   return castTo(What, ValueFactory.getAPSIntType(T)); | 
 | } | 
 |  | 
 | RangeSet::ContainerType RangeSet::Factory::truncateTo(RangeSet What, | 
 |                                                       APSIntType Ty) { | 
 |   using llvm::APInt; | 
 |   using llvm::APSInt; | 
 |   ContainerType Result; | 
 |   ContainerType Dummy; | 
 |   // CastRangeSize is an amount of all possible values of cast type. | 
 |   // Example: `char` has 256 values; `short` has 65536 values. | 
 |   // But in fact we use `amount of values` - 1, because | 
 |   // we can't keep `amount of values of UINT64` inside uint64_t. | 
 |   // E.g. 256 is an amount of all possible values of `char` and we can't keep | 
 |   // it inside `char`. | 
 |   // And it's OK, it's enough to do correct calculations. | 
 |   uint64_t CastRangeSize = APInt::getMaxValue(Ty.getBitWidth()).getZExtValue(); | 
 |   for (const Range &R : What) { | 
 |     // Get bounds of the given range. | 
 |     APSInt FromInt = R.From(); | 
 |     APSInt ToInt = R.To(); | 
 |     // CurrentRangeSize is an amount of all possible values of the current | 
 |     // range minus one. | 
 |     uint64_t CurrentRangeSize = (ToInt - FromInt).getZExtValue(); | 
 |     // This is an optimization for a specific case when this Range covers | 
 |     // the whole range of the target type. | 
 |     Dummy.clear(); | 
 |     if (CurrentRangeSize >= CastRangeSize) { | 
 |       Dummy.emplace_back(ValueFactory.getMinValue(Ty), | 
 |                          ValueFactory.getMaxValue(Ty)); | 
 |       Result = std::move(Dummy); | 
 |       break; | 
 |     } | 
 |     // Cast the bounds. | 
 |     Ty.apply(FromInt); | 
 |     Ty.apply(ToInt); | 
 |     const APSInt &PersistentFrom = ValueFactory.getValue(FromInt); | 
 |     const APSInt &PersistentTo = ValueFactory.getValue(ToInt); | 
 |     if (FromInt > ToInt) { | 
 |       Dummy.emplace_back(ValueFactory.getMinValue(Ty), PersistentTo); | 
 |       Dummy.emplace_back(PersistentFrom, ValueFactory.getMaxValue(Ty)); | 
 |     } else | 
 |       Dummy.emplace_back(PersistentFrom, PersistentTo); | 
 |     // Every range retrieved after truncation potentialy has garbage values. | 
 |     // So, we have to unite every next range with the previouses. | 
 |     Result = unite(Result, Dummy); | 
 |   } | 
 |  | 
 |   return Result; | 
 | } | 
 |  | 
 | // Divide the convertion into two phases (presented as loops here). | 
 | // First phase(loop) works when casted values go in ascending order. | 
 | // E.g. char{1,3,5,127} -> uint{1,3,5,127} | 
 | // Interrupt the first phase and go to second one when casted values start | 
 | // go in descending order. That means that we crossed over the middle of | 
 | // the type value set (aka 0 for signeds and MAX/2+1 for unsigneds). | 
 | // For instance: | 
 | // 1: uchar{1,3,5,128,255} -> char{1,3,5,-128,-1} | 
 | //    Here we put {1,3,5} to one array and {-128, -1} to another | 
 | // 2: char{-128,-127,-1,0,1,2} -> uchar{128,129,255,0,1,3} | 
 | //    Here we put {128,129,255} to one array and {0,1,3} to another. | 
 | // After that we unite both arrays. | 
 | // NOTE: We don't just concatenate the arrays, because they may have | 
 | // adjacent ranges, e.g.: | 
 | // 1: char(-128, 127) -> uchar -> arr1(128, 255), arr2(0, 127) -> | 
 | //    unite -> uchar(0, 255) | 
 | // 2: uchar(0, 1)U(254, 255) -> char -> arr1(0, 1), arr2(-2, -1) -> | 
 | //    unite -> uchar(-2, 1) | 
 | RangeSet::ContainerType RangeSet::Factory::convertTo(RangeSet What, | 
 |                                                      APSIntType Ty) { | 
 |   using llvm::APInt; | 
 |   using llvm::APSInt; | 
 |   using Bounds = std::pair<const APSInt &, const APSInt &>; | 
 |   ContainerType AscendArray; | 
 |   ContainerType DescendArray; | 
 |   auto CastRange = [Ty, &VF = ValueFactory](const Range &R) -> Bounds { | 
 |     // Get bounds of the given range. | 
 |     APSInt FromInt = R.From(); | 
 |     APSInt ToInt = R.To(); | 
 |     // Cast the bounds. | 
 |     Ty.apply(FromInt); | 
 |     Ty.apply(ToInt); | 
 |     return {VF.getValue(FromInt), VF.getValue(ToInt)}; | 
 |   }; | 
 |   // Phase 1. Fill the first array. | 
 |   APSInt LastConvertedInt = Ty.getMinValue(); | 
 |   const auto *It = What.begin(); | 
 |   const auto *E = What.end(); | 
 |   while (It != E) { | 
 |     Bounds NewBounds = CastRange(*(It++)); | 
 |     // If values stop going acsending order, go to the second phase(loop). | 
 |     if (NewBounds.first < LastConvertedInt) { | 
 |       DescendArray.emplace_back(NewBounds.first, NewBounds.second); | 
 |       break; | 
 |     } | 
 |     // If the range contains a midpoint, then split the range. | 
 |     // E.g. char(-5, 5) -> uchar(251, 5) | 
 |     // Here we shall add a range (251, 255) to the first array and (0, 5) to the | 
 |     // second one. | 
 |     if (NewBounds.first > NewBounds.second) { | 
 |       DescendArray.emplace_back(ValueFactory.getMinValue(Ty), NewBounds.second); | 
 |       AscendArray.emplace_back(NewBounds.first, ValueFactory.getMaxValue(Ty)); | 
 |     } else | 
 |       // Values are going acsending order. | 
 |       AscendArray.emplace_back(NewBounds.first, NewBounds.second); | 
 |     LastConvertedInt = NewBounds.first; | 
 |   } | 
 |   // Phase 2. Fill the second array. | 
 |   while (It != E) { | 
 |     Bounds NewBounds = CastRange(*(It++)); | 
 |     DescendArray.emplace_back(NewBounds.first, NewBounds.second); | 
 |   } | 
 |   // Unite both arrays. | 
 |   return unite(AscendArray, DescendArray); | 
 | } | 
 |  | 
 | /// Promotion from unsigneds to signeds/unsigneds left. | 
 | RangeSet::ContainerType RangeSet::Factory::promoteTo(RangeSet What, | 
 |                                                      APSIntType Ty) { | 
 |   ContainerType Result; | 
 |   // We definitely know the size of the result set. | 
 |   Result.reserve(What.size()); | 
 |  | 
 |   // Each unsigned value fits every larger type without any changes, | 
 |   // whether the larger type is signed or unsigned. So just promote and push | 
 |   // back each range one by one. | 
 |   for (const Range &R : What) { | 
 |     // Get bounds of the given range. | 
 |     llvm::APSInt FromInt = R.From(); | 
 |     llvm::APSInt ToInt = R.To(); | 
 |     // Cast the bounds. | 
 |     Ty.apply(FromInt); | 
 |     Ty.apply(ToInt); | 
 |     Result.emplace_back(ValueFactory.getValue(FromInt), | 
 |                         ValueFactory.getValue(ToInt)); | 
 |   } | 
 |   return Result; | 
 | } | 
 |  | 
 | RangeSet RangeSet::Factory::deletePoint(RangeSet From, | 
 |                                         const llvm::APSInt &Point) { | 
 |   if (!From.contains(Point)) | 
 |     return From; | 
 |  | 
 |   llvm::APSInt Upper = Point; | 
 |   llvm::APSInt Lower = Point; | 
 |  | 
 |   ++Upper; | 
 |   --Lower; | 
 |  | 
 |   // Notice that the lower bound is greater than the upper bound. | 
 |   return intersect(From, Upper, Lower); | 
 | } | 
 |  | 
 | LLVM_DUMP_METHOD void Range::dump(raw_ostream &OS) const { | 
 |   OS << '[' << toString(From(), 10) << ", " << toString(To(), 10) << ']'; | 
 | } | 
 | LLVM_DUMP_METHOD void Range::dump() const { dump(llvm::errs()); } | 
 |  | 
 | LLVM_DUMP_METHOD void RangeSet::dump(raw_ostream &OS) const { | 
 |   OS << "{ "; | 
 |   llvm::interleaveComma(*this, OS, [&OS](const Range &R) { R.dump(OS); }); | 
 |   OS << " }"; | 
 | } | 
 | LLVM_DUMP_METHOD void RangeSet::dump() const { dump(llvm::errs()); } | 
 |  | 
 | REGISTER_SET_FACTORY_WITH_PROGRAMSTATE(SymbolSet, SymbolRef) | 
 |  | 
 | namespace { | 
 | class EquivalenceClass; | 
 | } // end anonymous namespace | 
 |  | 
 | REGISTER_MAP_WITH_PROGRAMSTATE(ClassMap, SymbolRef, EquivalenceClass) | 
 | REGISTER_MAP_WITH_PROGRAMSTATE(ClassMembers, EquivalenceClass, SymbolSet) | 
 | REGISTER_MAP_WITH_PROGRAMSTATE(ConstraintRange, EquivalenceClass, RangeSet) | 
 |  | 
 | REGISTER_SET_FACTORY_WITH_PROGRAMSTATE(ClassSet, EquivalenceClass) | 
 | REGISTER_MAP_WITH_PROGRAMSTATE(DisequalityMap, EquivalenceClass, ClassSet) | 
 |  | 
 | namespace { | 
 | /// This class encapsulates a set of symbols equal to each other. | 
 | /// | 
 | /// The main idea of the approach requiring such classes is in narrowing | 
 | /// and sharing constraints between symbols within the class.  Also we can | 
 | /// conclude that there is no practical need in storing constraints for | 
 | /// every member of the class separately. | 
 | /// | 
 | /// Main terminology: | 
 | /// | 
 | ///   * "Equivalence class" is an object of this class, which can be efficiently | 
 | ///     compared to other classes.  It represents the whole class without | 
 | ///     storing the actual in it.  The members of the class however can be | 
 | ///     retrieved from the state. | 
 | /// | 
 | ///   * "Class members" are the symbols corresponding to the class.  This means | 
 | ///     that A == B for every member symbols A and B from the class.  Members of | 
 | ///     each class are stored in the state. | 
 | /// | 
 | ///   * "Trivial class" is a class that has and ever had only one same symbol. | 
 | /// | 
 | ///   * "Merge operation" merges two classes into one.  It is the main operation | 
 | ///     to produce non-trivial classes. | 
 | ///     If, at some point, we can assume that two symbols from two distinct | 
 | ///     classes are equal, we can merge these classes. | 
 | class EquivalenceClass : public llvm::FoldingSetNode { | 
 | public: | 
 |   /// Find equivalence class for the given symbol in the given state. | 
 |   LLVM_NODISCARD static inline EquivalenceClass find(ProgramStateRef State, | 
 |                                                      SymbolRef Sym); | 
 |  | 
 |   /// Merge classes for the given symbols and return a new state. | 
 |   LLVM_NODISCARD static inline ProgramStateRef merge(RangeSet::Factory &F, | 
 |                                                      ProgramStateRef State, | 
 |                                                      SymbolRef First, | 
 |                                                      SymbolRef Second); | 
 |   // Merge this class with the given class and return a new state. | 
 |   LLVM_NODISCARD inline ProgramStateRef | 
 |   merge(RangeSet::Factory &F, ProgramStateRef State, EquivalenceClass Other); | 
 |  | 
 |   /// Return a set of class members for the given state. | 
 |   LLVM_NODISCARD inline SymbolSet getClassMembers(ProgramStateRef State) const; | 
 |  | 
 |   /// Return true if the current class is trivial in the given state. | 
 |   /// A class is trivial if and only if there is not any member relations stored | 
 |   /// to it in State/ClassMembers. | 
 |   /// An equivalence class with one member might seem as it does not hold any | 
 |   /// meaningful information, i.e. that is a tautology. However, during the | 
 |   /// removal of dead symbols we do not remove classes with one member for | 
 |   /// resource and performance reasons. Consequently, a class with one member is | 
 |   /// not necessarily trivial. It could happen that we have a class with two | 
 |   /// members and then during the removal of dead symbols we remove one of its | 
 |   /// members. In this case, the class is still non-trivial (it still has the | 
 |   /// mappings in ClassMembers), even though it has only one member. | 
 |   LLVM_NODISCARD inline bool isTrivial(ProgramStateRef State) const; | 
 |  | 
 |   /// Return true if the current class is trivial and its only member is dead. | 
 |   LLVM_NODISCARD inline bool isTriviallyDead(ProgramStateRef State, | 
 |                                              SymbolReaper &Reaper) const; | 
 |  | 
 |   LLVM_NODISCARD static inline ProgramStateRef | 
 |   markDisequal(RangeSet::Factory &F, ProgramStateRef State, SymbolRef First, | 
 |                SymbolRef Second); | 
 |   LLVM_NODISCARD static inline ProgramStateRef | 
 |   markDisequal(RangeSet::Factory &F, ProgramStateRef State, | 
 |                EquivalenceClass First, EquivalenceClass Second); | 
 |   LLVM_NODISCARD inline ProgramStateRef | 
 |   markDisequal(RangeSet::Factory &F, ProgramStateRef State, | 
 |                EquivalenceClass Other) const; | 
 |   LLVM_NODISCARD static inline ClassSet | 
 |   getDisequalClasses(ProgramStateRef State, SymbolRef Sym); | 
 |   LLVM_NODISCARD inline ClassSet | 
 |   getDisequalClasses(ProgramStateRef State) const; | 
 |   LLVM_NODISCARD inline ClassSet | 
 |   getDisequalClasses(DisequalityMapTy Map, ClassSet::Factory &Factory) const; | 
 |  | 
 |   LLVM_NODISCARD static inline Optional<bool> areEqual(ProgramStateRef State, | 
 |                                                        EquivalenceClass First, | 
 |                                                        EquivalenceClass Second); | 
 |   LLVM_NODISCARD static inline Optional<bool> | 
 |   areEqual(ProgramStateRef State, SymbolRef First, SymbolRef Second); | 
 |  | 
 |   /// Remove one member from the class. | 
 |   LLVM_NODISCARD ProgramStateRef removeMember(ProgramStateRef State, | 
 |                                               const SymbolRef Old); | 
 |  | 
 |   /// Iterate over all symbols and try to simplify them. | 
 |   LLVM_NODISCARD static inline ProgramStateRef simplify(SValBuilder &SVB, | 
 |                                                         RangeSet::Factory &F, | 
 |                                                         ProgramStateRef State, | 
 |                                                         EquivalenceClass Class); | 
 |  | 
 |   void dumpToStream(ProgramStateRef State, raw_ostream &os) const; | 
 |   LLVM_DUMP_METHOD void dump(ProgramStateRef State) const { | 
 |     dumpToStream(State, llvm::errs()); | 
 |   } | 
 |  | 
 |   /// Check equivalence data for consistency. | 
 |   LLVM_NODISCARD LLVM_ATTRIBUTE_UNUSED static bool | 
 |   isClassDataConsistent(ProgramStateRef State); | 
 |  | 
 |   LLVM_NODISCARD QualType getType() const { | 
 |     return getRepresentativeSymbol()->getType(); | 
 |   } | 
 |  | 
 |   EquivalenceClass() = delete; | 
 |   EquivalenceClass(const EquivalenceClass &) = default; | 
 |   EquivalenceClass &operator=(const EquivalenceClass &) = delete; | 
 |   EquivalenceClass(EquivalenceClass &&) = default; | 
 |   EquivalenceClass &operator=(EquivalenceClass &&) = delete; | 
 |  | 
 |   bool operator==(const EquivalenceClass &Other) const { | 
 |     return ID == Other.ID; | 
 |   } | 
 |   bool operator<(const EquivalenceClass &Other) const { return ID < Other.ID; } | 
 |   bool operator!=(const EquivalenceClass &Other) const { | 
 |     return !operator==(Other); | 
 |   } | 
 |  | 
 |   static void Profile(llvm::FoldingSetNodeID &ID, uintptr_t CID) { | 
 |     ID.AddInteger(CID); | 
 |   } | 
 |  | 
 |   void Profile(llvm::FoldingSetNodeID &ID) const { Profile(ID, this->ID); } | 
 |  | 
 | private: | 
 |   /* implicit */ EquivalenceClass(SymbolRef Sym) | 
 |       : ID(reinterpret_cast<uintptr_t>(Sym)) {} | 
 |  | 
 |   /// This function is intended to be used ONLY within the class. | 
 |   /// The fact that ID is a pointer to a symbol is an implementation detail | 
 |   /// and should stay that way. | 
 |   /// In the current implementation, we use it to retrieve the only member | 
 |   /// of the trivial class. | 
 |   SymbolRef getRepresentativeSymbol() const { | 
 |     return reinterpret_cast<SymbolRef>(ID); | 
 |   } | 
 |   static inline SymbolSet::Factory &getMembersFactory(ProgramStateRef State); | 
 |  | 
 |   inline ProgramStateRef mergeImpl(RangeSet::Factory &F, ProgramStateRef State, | 
 |                                    SymbolSet Members, EquivalenceClass Other, | 
 |                                    SymbolSet OtherMembers); | 
 |  | 
 |   static inline bool | 
 |   addToDisequalityInfo(DisequalityMapTy &Info, ConstraintRangeTy &Constraints, | 
 |                        RangeSet::Factory &F, ProgramStateRef State, | 
 |                        EquivalenceClass First, EquivalenceClass Second); | 
 |  | 
 |   /// This is a unique identifier of the class. | 
 |   uintptr_t ID; | 
 | }; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                             Constraint functions | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | LLVM_NODISCARD LLVM_ATTRIBUTE_UNUSED bool | 
 | areFeasible(ConstraintRangeTy Constraints) { | 
 |   return llvm::none_of( | 
 |       Constraints, | 
 |       [](const std::pair<EquivalenceClass, RangeSet> &ClassConstraint) { | 
 |         return ClassConstraint.second.isEmpty(); | 
 |       }); | 
 | } | 
 |  | 
 | LLVM_NODISCARD inline const RangeSet *getConstraint(ProgramStateRef State, | 
 |                                                     EquivalenceClass Class) { | 
 |   return State->get<ConstraintRange>(Class); | 
 | } | 
 |  | 
 | LLVM_NODISCARD inline const RangeSet *getConstraint(ProgramStateRef State, | 
 |                                                     SymbolRef Sym) { | 
 |   return getConstraint(State, EquivalenceClass::find(State, Sym)); | 
 | } | 
 |  | 
 | LLVM_NODISCARD ProgramStateRef setConstraint(ProgramStateRef State, | 
 |                                              EquivalenceClass Class, | 
 |                                              RangeSet Constraint) { | 
 |   return State->set<ConstraintRange>(Class, Constraint); | 
 | } | 
 |  | 
 | LLVM_NODISCARD ProgramStateRef setConstraints(ProgramStateRef State, | 
 |                                               ConstraintRangeTy Constraints) { | 
 |   return State->set<ConstraintRange>(Constraints); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                       Equality/diseqiality abstraction | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// A small helper function for detecting symbolic (dis)equality. | 
 | /// | 
 | /// Equality check can have different forms (like a == b or a - b) and this | 
 | /// class encapsulates those away if the only thing the user wants to check - | 
 | /// whether it's equality/diseqiality or not. | 
 | /// | 
 | /// \returns true if assuming this Sym to be true means equality of operands | 
 | ///          false if it means disequality of operands | 
 | ///          None otherwise | 
 | Optional<bool> meansEquality(const SymSymExpr *Sym) { | 
 |   switch (Sym->getOpcode()) { | 
 |   case BO_Sub: | 
 |     // This case is: A - B != 0 -> disequality check. | 
 |     return false; | 
 |   case BO_EQ: | 
 |     // This case is: A == B != 0 -> equality check. | 
 |     return true; | 
 |   case BO_NE: | 
 |     // This case is: A != B != 0 -> diseqiality check. | 
 |     return false; | 
 |   default: | 
 |     return llvm::None; | 
 |   } | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                            Intersection functions | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | template <class SecondTy, class... RestTy> | 
 | LLVM_NODISCARD inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head, | 
 |                                          SecondTy Second, RestTy... Tail); | 
 |  | 
 | template <class... RangeTy> struct IntersectionTraits; | 
 |  | 
 | template <class... TailTy> struct IntersectionTraits<RangeSet, TailTy...> { | 
 |   // Found RangeSet, no need to check any further | 
 |   using Type = RangeSet; | 
 | }; | 
 |  | 
 | template <> struct IntersectionTraits<> { | 
 |   // We ran out of types, and we didn't find any RangeSet, so the result should | 
 |   // be optional. | 
 |   using Type = Optional<RangeSet>; | 
 | }; | 
 |  | 
 | template <class OptionalOrPointer, class... TailTy> | 
 | struct IntersectionTraits<OptionalOrPointer, TailTy...> { | 
 |   // If current type is Optional or a raw pointer, we should keep looking. | 
 |   using Type = typename IntersectionTraits<TailTy...>::Type; | 
 | }; | 
 |  | 
 | template <class EndTy> | 
 | LLVM_NODISCARD inline EndTy intersect(RangeSet::Factory &F, EndTy End) { | 
 |   // If the list contains only RangeSet or Optional<RangeSet>, simply return | 
 |   // that range set. | 
 |   return End; | 
 | } | 
 |  | 
 | LLVM_NODISCARD LLVM_ATTRIBUTE_UNUSED inline Optional<RangeSet> | 
 | intersect(RangeSet::Factory &F, const RangeSet *End) { | 
 |   // This is an extraneous conversion from a raw pointer into Optional<RangeSet> | 
 |   if (End) { | 
 |     return *End; | 
 |   } | 
 |   return llvm::None; | 
 | } | 
 |  | 
 | template <class... RestTy> | 
 | LLVM_NODISCARD inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head, | 
 |                                          RangeSet Second, RestTy... Tail) { | 
 |   // Here we call either the <RangeSet,RangeSet,...> or <RangeSet,...> version | 
 |   // of the function and can be sure that the result is RangeSet. | 
 |   return intersect(F, F.intersect(Head, Second), Tail...); | 
 | } | 
 |  | 
 | template <class SecondTy, class... RestTy> | 
 | LLVM_NODISCARD inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head, | 
 |                                          SecondTy Second, RestTy... Tail) { | 
 |   if (Second) { | 
 |     // Here we call the <RangeSet,RangeSet,...> version of the function... | 
 |     return intersect(F, Head, *Second, Tail...); | 
 |   } | 
 |   // ...and here it is either <RangeSet,RangeSet,...> or <RangeSet,...>, which | 
 |   // means that the result is definitely RangeSet. | 
 |   return intersect(F, Head, Tail...); | 
 | } | 
 |  | 
 | /// Main generic intersect function. | 
 | /// It intersects all of the given range sets.  If some of the given arguments | 
 | /// don't hold a range set (nullptr or llvm::None), the function will skip them. | 
 | /// | 
 | /// Available representations for the arguments are: | 
 | ///   * RangeSet | 
 | ///   * Optional<RangeSet> | 
 | ///   * RangeSet * | 
 | /// Pointer to a RangeSet is automatically assumed to be nullable and will get | 
 | /// checked as well as the optional version.  If this behaviour is undesired, | 
 | /// please dereference the pointer in the call. | 
 | /// | 
 | /// Return type depends on the arguments' types.  If we can be sure in compile | 
 | /// time that there will be a range set as a result, the returning type is | 
 | /// simply RangeSet, in other cases we have to back off to Optional<RangeSet>. | 
 | /// | 
 | /// Please, prefer optional range sets to raw pointers.  If the last argument is | 
 | /// a raw pointer and all previous arguments are None, it will cost one | 
 | /// additional check to convert RangeSet * into Optional<RangeSet>. | 
 | template <class HeadTy, class SecondTy, class... RestTy> | 
 | LLVM_NODISCARD inline | 
 |     typename IntersectionTraits<HeadTy, SecondTy, RestTy...>::Type | 
 |     intersect(RangeSet::Factory &F, HeadTy Head, SecondTy Second, | 
 |               RestTy... Tail) { | 
 |   if (Head) { | 
 |     return intersect(F, *Head, Second, Tail...); | 
 |   } | 
 |   return intersect(F, Second, Tail...); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                           Symbolic reasoning logic | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// A little component aggregating all of the reasoning we have about | 
 | /// the ranges of symbolic expressions. | 
 | /// | 
 | /// Even when we don't know the exact values of the operands, we still | 
 | /// can get a pretty good estimate of the result's range. | 
 | class SymbolicRangeInferrer | 
 |     : public SymExprVisitor<SymbolicRangeInferrer, RangeSet> { | 
 | public: | 
 |   template <class SourceType> | 
 |   static RangeSet inferRange(RangeSet::Factory &F, ProgramStateRef State, | 
 |                              SourceType Origin) { | 
 |     SymbolicRangeInferrer Inferrer(F, State); | 
 |     return Inferrer.infer(Origin); | 
 |   } | 
 |  | 
 |   RangeSet VisitSymExpr(SymbolRef Sym) { | 
 |     if (Optional<RangeSet> RS = getRangeForNegatedSym(Sym)) | 
 |       return *RS; | 
 |     // If we've reached this line, the actual type of the symbolic | 
 |     // expression is not supported for advanced inference. | 
 |     // In this case, we simply backoff to the default "let's simply | 
 |     // infer the range from the expression's type". | 
 |     return infer(Sym->getType()); | 
 |   } | 
 |  | 
 |   RangeSet VisitUnarySymExpr(const UnarySymExpr *USE) { | 
 |     if (Optional<RangeSet> RS = getRangeForNegatedUnarySym(USE)) | 
 |       return *RS; | 
 |     return infer(USE->getType()); | 
 |   } | 
 |  | 
 |   RangeSet VisitSymIntExpr(const SymIntExpr *Sym) { | 
 |     return VisitBinaryOperator(Sym); | 
 |   } | 
 |  | 
 |   RangeSet VisitIntSymExpr(const IntSymExpr *Sym) { | 
 |     return VisitBinaryOperator(Sym); | 
 |   } | 
 |  | 
 |   RangeSet VisitSymSymExpr(const SymSymExpr *SSE) { | 
 |     return intersect( | 
 |         RangeFactory, | 
 |         // If Sym is a difference of symbols A - B, then maybe we have range | 
 |         // set stored for B - A. | 
 |         // | 
 |         // If we have range set stored for both A - B and B - A then | 
 |         // calculate the effective range set by intersecting the range set | 
 |         // for A - B and the negated range set of B - A. | 
 |         getRangeForNegatedSymSym(SSE), | 
 |         // If Sym is a comparison expression (except <=>), | 
 |         // find any other comparisons with the same operands. | 
 |         // See function description. | 
 |         getRangeForComparisonSymbol(SSE), | 
 |         // If Sym is (dis)equality, we might have some information | 
 |         // on that in our equality classes data structure. | 
 |         getRangeForEqualities(SSE), | 
 |         // And we should always check what we can get from the operands. | 
 |         VisitBinaryOperator(SSE)); | 
 |   } | 
 |  | 
 | private: | 
 |   SymbolicRangeInferrer(RangeSet::Factory &F, ProgramStateRef S) | 
 |       : ValueFactory(F.getValueFactory()), RangeFactory(F), State(S) {} | 
 |  | 
 |   /// Infer range information from the given integer constant. | 
 |   /// | 
 |   /// It's not a real "inference", but is here for operating with | 
 |   /// sub-expressions in a more polymorphic manner. | 
 |   RangeSet inferAs(const llvm::APSInt &Val, QualType) { | 
 |     return {RangeFactory, Val}; | 
 |   } | 
 |  | 
 |   /// Infer range information from symbol in the context of the given type. | 
 |   RangeSet inferAs(SymbolRef Sym, QualType DestType) { | 
 |     QualType ActualType = Sym->getType(); | 
 |     // Check that we can reason about the symbol at all. | 
 |     if (ActualType->isIntegralOrEnumerationType() || | 
 |         Loc::isLocType(ActualType)) { | 
 |       return infer(Sym); | 
 |     } | 
 |     // Otherwise, let's simply infer from the destination type. | 
 |     // We couldn't figure out nothing else about that expression. | 
 |     return infer(DestType); | 
 |   } | 
 |  | 
 |   RangeSet infer(SymbolRef Sym) { | 
 |     return intersect(RangeFactory, | 
 |                      // Of course, we should take the constraint directly | 
 |                      // associated with this symbol into consideration. | 
 |                      getConstraint(State, Sym), | 
 |                      // Apart from the Sym itself, we can infer quite a lot if | 
 |                      // we look into subexpressions of Sym. | 
 |                      Visit(Sym)); | 
 |   } | 
 |  | 
 |   RangeSet infer(EquivalenceClass Class) { | 
 |     if (const RangeSet *AssociatedConstraint = getConstraint(State, Class)) | 
 |       return *AssociatedConstraint; | 
 |  | 
 |     return infer(Class.getType()); | 
 |   } | 
 |  | 
 |   /// Infer range information solely from the type. | 
 |   RangeSet infer(QualType T) { | 
 |     // Lazily generate a new RangeSet representing all possible values for the | 
 |     // given symbol type. | 
 |     RangeSet Result(RangeFactory, ValueFactory.getMinValue(T), | 
 |                     ValueFactory.getMaxValue(T)); | 
 |  | 
 |     // References are known to be non-zero. | 
 |     if (T->isReferenceType()) | 
 |       return assumeNonZero(Result, T); | 
 |  | 
 |     return Result; | 
 |   } | 
 |  | 
 |   template <class BinarySymExprTy> | 
 |   RangeSet VisitBinaryOperator(const BinarySymExprTy *Sym) { | 
 |     // TODO #1: VisitBinaryOperator implementation might not make a good | 
 |     // use of the inferred ranges.  In this case, we might be calculating | 
 |     // everything for nothing.  This being said, we should introduce some | 
 |     // sort of laziness mechanism here. | 
 |     // | 
 |     // TODO #2: We didn't go into the nested expressions before, so it | 
 |     // might cause us spending much more time doing the inference. | 
 |     // This can be a problem for deeply nested expressions that are | 
 |     // involved in conditions and get tested continuously.  We definitely | 
 |     // need to address this issue and introduce some sort of caching | 
 |     // in here. | 
 |     QualType ResultType = Sym->getType(); | 
 |     return VisitBinaryOperator(inferAs(Sym->getLHS(), ResultType), | 
 |                                Sym->getOpcode(), | 
 |                                inferAs(Sym->getRHS(), ResultType), ResultType); | 
 |   } | 
 |  | 
 |   RangeSet VisitBinaryOperator(RangeSet LHS, BinaryOperator::Opcode Op, | 
 |                                RangeSet RHS, QualType T) { | 
 |     switch (Op) { | 
 |     case BO_Or: | 
 |       return VisitBinaryOperator<BO_Or>(LHS, RHS, T); | 
 |     case BO_And: | 
 |       return VisitBinaryOperator<BO_And>(LHS, RHS, T); | 
 |     case BO_Rem: | 
 |       return VisitBinaryOperator<BO_Rem>(LHS, RHS, T); | 
 |     default: | 
 |       return infer(T); | 
 |     } | 
 |   } | 
 |  | 
 |   //===----------------------------------------------------------------------===// | 
 |   //                         Ranges and operators | 
 |   //===----------------------------------------------------------------------===// | 
 |  | 
 |   /// Return a rough approximation of the given range set. | 
 |   /// | 
 |   /// For the range set: | 
 |   ///   { [x_0, y_0], [x_1, y_1], ... , [x_N, y_N] } | 
 |   /// it will return the range [x_0, y_N]. | 
 |   static Range fillGaps(RangeSet Origin) { | 
 |     assert(!Origin.isEmpty()); | 
 |     return {Origin.getMinValue(), Origin.getMaxValue()}; | 
 |   } | 
 |  | 
 |   /// Try to convert given range into the given type. | 
 |   /// | 
 |   /// It will return llvm::None only when the trivial conversion is possible. | 
 |   llvm::Optional<Range> convert(const Range &Origin, APSIntType To) { | 
 |     if (To.testInRange(Origin.From(), false) != APSIntType::RTR_Within || | 
 |         To.testInRange(Origin.To(), false) != APSIntType::RTR_Within) { | 
 |       return llvm::None; | 
 |     } | 
 |     return Range(ValueFactory.Convert(To, Origin.From()), | 
 |                  ValueFactory.Convert(To, Origin.To())); | 
 |   } | 
 |  | 
 |   template <BinaryOperator::Opcode Op> | 
 |   RangeSet VisitBinaryOperator(RangeSet LHS, RangeSet RHS, QualType T) { | 
 |     // We should propagate information about unfeasbility of one of the | 
 |     // operands to the resulting range. | 
 |     if (LHS.isEmpty() || RHS.isEmpty()) { | 
 |       return RangeFactory.getEmptySet(); | 
 |     } | 
 |  | 
 |     Range CoarseLHS = fillGaps(LHS); | 
 |     Range CoarseRHS = fillGaps(RHS); | 
 |  | 
 |     APSIntType ResultType = ValueFactory.getAPSIntType(T); | 
 |  | 
 |     // We need to convert ranges to the resulting type, so we can compare values | 
 |     // and combine them in a meaningful (in terms of the given operation) way. | 
 |     auto ConvertedCoarseLHS = convert(CoarseLHS, ResultType); | 
 |     auto ConvertedCoarseRHS = convert(CoarseRHS, ResultType); | 
 |  | 
 |     // It is hard to reason about ranges when conversion changes | 
 |     // borders of the ranges. | 
 |     if (!ConvertedCoarseLHS || !ConvertedCoarseRHS) { | 
 |       return infer(T); | 
 |     } | 
 |  | 
 |     return VisitBinaryOperator<Op>(*ConvertedCoarseLHS, *ConvertedCoarseRHS, T); | 
 |   } | 
 |  | 
 |   template <BinaryOperator::Opcode Op> | 
 |   RangeSet VisitBinaryOperator(Range LHS, Range RHS, QualType T) { | 
 |     return infer(T); | 
 |   } | 
 |  | 
 |   /// Return a symmetrical range for the given range and type. | 
 |   /// | 
 |   /// If T is signed, return the smallest range [-x..x] that covers the original | 
 |   /// range, or [-min(T), max(T)] if the aforementioned symmetric range doesn't | 
 |   /// exist due to original range covering min(T)). | 
 |   /// | 
 |   /// If T is unsigned, return the smallest range [0..x] that covers the | 
 |   /// original range. | 
 |   Range getSymmetricalRange(Range Origin, QualType T) { | 
 |     APSIntType RangeType = ValueFactory.getAPSIntType(T); | 
 |  | 
 |     if (RangeType.isUnsigned()) { | 
 |       return Range(ValueFactory.getMinValue(RangeType), Origin.To()); | 
 |     } | 
 |  | 
 |     if (Origin.From().isMinSignedValue()) { | 
 |       // If mini is a minimal signed value, absolute value of it is greater | 
 |       // than the maximal signed value.  In order to avoid these | 
 |       // complications, we simply return the whole range. | 
 |       return {ValueFactory.getMinValue(RangeType), | 
 |               ValueFactory.getMaxValue(RangeType)}; | 
 |     } | 
 |  | 
 |     // At this point, we are sure that the type is signed and we can safely | 
 |     // use unary - operator. | 
 |     // | 
 |     // While calculating absolute maximum, we can use the following formula | 
 |     // because of these reasons: | 
 |     //   * If From >= 0 then To >= From and To >= -From. | 
 |     //     AbsMax == To == max(To, -From) | 
 |     //   * If To <= 0 then -From >= -To and -From >= From. | 
 |     //     AbsMax == -From == max(-From, To) | 
 |     //   * Otherwise, From <= 0, To >= 0, and | 
 |     //     AbsMax == max(abs(From), abs(To)) | 
 |     llvm::APSInt AbsMax = std::max(-Origin.From(), Origin.To()); | 
 |  | 
 |     // Intersection is guaranteed to be non-empty. | 
 |     return {ValueFactory.getValue(-AbsMax), ValueFactory.getValue(AbsMax)}; | 
 |   } | 
 |  | 
 |   /// Return a range set subtracting zero from \p Domain. | 
 |   RangeSet assumeNonZero(RangeSet Domain, QualType T) { | 
 |     APSIntType IntType = ValueFactory.getAPSIntType(T); | 
 |     return RangeFactory.deletePoint(Domain, IntType.getZeroValue()); | 
 |   } | 
 |  | 
 |   template <typename ProduceNegatedSymFunc> | 
 |   Optional<RangeSet> getRangeForNegatedExpr(ProduceNegatedSymFunc F, | 
 |                                             QualType T) { | 
 |     // Do not negate if the type cannot be meaningfully negated. | 
 |     if (!T->isUnsignedIntegerOrEnumerationType() && | 
 |         !T->isSignedIntegerOrEnumerationType()) | 
 |       return llvm::None; | 
 |  | 
 |     if (SymbolRef NegatedSym = F()) | 
 |       if (const RangeSet *NegatedRange = getConstraint(State, NegatedSym)) | 
 |         return RangeFactory.negate(*NegatedRange); | 
 |  | 
 |     return llvm::None; | 
 |   } | 
 |  | 
 |   Optional<RangeSet> getRangeForNegatedUnarySym(const UnarySymExpr *USE) { | 
 |     // Just get the operand when we negate a symbol that is already negated. | 
 |     // -(-a) == a | 
 |     return getRangeForNegatedExpr( | 
 |         [USE]() -> SymbolRef { | 
 |           if (USE->getOpcode() == UO_Minus) | 
 |             return USE->getOperand(); | 
 |           return nullptr; | 
 |         }, | 
 |         USE->getType()); | 
 |   } | 
 |  | 
 |   Optional<RangeSet> getRangeForNegatedSymSym(const SymSymExpr *SSE) { | 
 |     return getRangeForNegatedExpr( | 
 |         [SSE, State = this->State]() -> SymbolRef { | 
 |           if (SSE->getOpcode() == BO_Sub) | 
 |             return State->getSymbolManager().getSymSymExpr( | 
 |                 SSE->getRHS(), BO_Sub, SSE->getLHS(), SSE->getType()); | 
 |           return nullptr; | 
 |         }, | 
 |         SSE->getType()); | 
 |   } | 
 |  | 
 |   Optional<RangeSet> getRangeForNegatedSym(SymbolRef Sym) { | 
 |     return getRangeForNegatedExpr( | 
 |         [Sym, State = this->State]() { | 
 |           return State->getSymbolManager().getUnarySymExpr(Sym, UO_Minus, | 
 |                                                            Sym->getType()); | 
 |         }, | 
 |         Sym->getType()); | 
 |   } | 
 |  | 
 |   // Returns ranges only for binary comparison operators (except <=>) | 
 |   // when left and right operands are symbolic values. | 
 |   // Finds any other comparisons with the same operands. | 
 |   // Then do logical calculations and refuse impossible branches. | 
 |   // E.g. (x < y) and (x > y) at the same time are impossible. | 
 |   // E.g. (x >= y) and (x != y) at the same time makes (x > y) true only. | 
 |   // E.g. (x == y) and (y == x) are just reversed but the same. | 
 |   // It covers all possible combinations (see CmpOpTable description). | 
 |   // Note that `x` and `y` can also stand for subexpressions, | 
 |   // not only for actual symbols. | 
 |   Optional<RangeSet> getRangeForComparisonSymbol(const SymSymExpr *SSE) { | 
 |     const BinaryOperatorKind CurrentOP = SSE->getOpcode(); | 
 |  | 
 |     // We currently do not support <=> (C++20). | 
 |     if (!BinaryOperator::isComparisonOp(CurrentOP) || (CurrentOP == BO_Cmp)) | 
 |       return llvm::None; | 
 |  | 
 |     static const OperatorRelationsTable CmpOpTable{}; | 
 |  | 
 |     const SymExpr *LHS = SSE->getLHS(); | 
 |     const SymExpr *RHS = SSE->getRHS(); | 
 |     QualType T = SSE->getType(); | 
 |  | 
 |     SymbolManager &SymMgr = State->getSymbolManager(); | 
 |  | 
 |     // We use this variable to store the last queried operator (`QueriedOP`) | 
 |     // for which the `getCmpOpState` returned with `Unknown`. If there are two | 
 |     // different OPs that returned `Unknown` then we have to query the special | 
 |     // `UnknownX2` column. We assume that `getCmpOpState(CurrentOP, CurrentOP)` | 
 |     // never returns `Unknown`, so `CurrentOP` is a good initial value. | 
 |     BinaryOperatorKind LastQueriedOpToUnknown = CurrentOP; | 
 |  | 
 |     // Loop goes through all of the columns exept the last one ('UnknownX2'). | 
 |     // We treat `UnknownX2` column separately at the end of the loop body. | 
 |     for (size_t i = 0; i < CmpOpTable.getCmpOpCount(); ++i) { | 
 |  | 
 |       // Let's find an expression e.g. (x < y). | 
 |       BinaryOperatorKind QueriedOP = OperatorRelationsTable::getOpFromIndex(i); | 
 |       const SymSymExpr *SymSym = SymMgr.getSymSymExpr(LHS, QueriedOP, RHS, T); | 
 |       const RangeSet *QueriedRangeSet = getConstraint(State, SymSym); | 
 |  | 
 |       // If ranges were not previously found, | 
 |       // try to find a reversed expression (y > x). | 
 |       if (!QueriedRangeSet) { | 
 |         const BinaryOperatorKind ROP = | 
 |             BinaryOperator::reverseComparisonOp(QueriedOP); | 
 |         SymSym = SymMgr.getSymSymExpr(RHS, ROP, LHS, T); | 
 |         QueriedRangeSet = getConstraint(State, SymSym); | 
 |       } | 
 |  | 
 |       if (!QueriedRangeSet || QueriedRangeSet->isEmpty()) | 
 |         continue; | 
 |  | 
 |       const llvm::APSInt *ConcreteValue = QueriedRangeSet->getConcreteValue(); | 
 |       const bool isInFalseBranch = | 
 |           ConcreteValue ? (*ConcreteValue == 0) : false; | 
 |  | 
 |       // If it is a false branch, we shall be guided by opposite operator, | 
 |       // because the table is made assuming we are in the true branch. | 
 |       // E.g. when (x <= y) is false, then (x > y) is true. | 
 |       if (isInFalseBranch) | 
 |         QueriedOP = BinaryOperator::negateComparisonOp(QueriedOP); | 
 |  | 
 |       OperatorRelationsTable::TriStateKind BranchState = | 
 |           CmpOpTable.getCmpOpState(CurrentOP, QueriedOP); | 
 |  | 
 |       if (BranchState == OperatorRelationsTable::Unknown) { | 
 |         if (LastQueriedOpToUnknown != CurrentOP && | 
 |             LastQueriedOpToUnknown != QueriedOP) { | 
 |           // If we got the Unknown state for both different operators. | 
 |           // if (x <= y)    // assume true | 
 |           //   if (x != y)  // assume true | 
 |           //     if (x < y) // would be also true | 
 |           // Get a state from `UnknownX2` column. | 
 |           BranchState = CmpOpTable.getCmpOpStateForUnknownX2(CurrentOP); | 
 |         } else { | 
 |           LastQueriedOpToUnknown = QueriedOP; | 
 |           continue; | 
 |         } | 
 |       } | 
 |  | 
 |       return (BranchState == OperatorRelationsTable::True) ? getTrueRange(T) | 
 |                                                            : getFalseRange(T); | 
 |     } | 
 |  | 
 |     return llvm::None; | 
 |   } | 
 |  | 
 |   Optional<RangeSet> getRangeForEqualities(const SymSymExpr *Sym) { | 
 |     Optional<bool> Equality = meansEquality(Sym); | 
 |  | 
 |     if (!Equality) | 
 |       return llvm::None; | 
 |  | 
 |     if (Optional<bool> AreEqual = | 
 |             EquivalenceClass::areEqual(State, Sym->getLHS(), Sym->getRHS())) { | 
 |       // Here we cover two cases at once: | 
 |       //   * if Sym is equality and its operands are known to be equal -> true | 
 |       //   * if Sym is disequality and its operands are disequal -> true | 
 |       if (*AreEqual == *Equality) { | 
 |         return getTrueRange(Sym->getType()); | 
 |       } | 
 |       // Opposite combinations result in false. | 
 |       return getFalseRange(Sym->getType()); | 
 |     } | 
 |  | 
 |     return llvm::None; | 
 |   } | 
 |  | 
 |   RangeSet getTrueRange(QualType T) { | 
 |     RangeSet TypeRange = infer(T); | 
 |     return assumeNonZero(TypeRange, T); | 
 |   } | 
 |  | 
 |   RangeSet getFalseRange(QualType T) { | 
 |     const llvm::APSInt &Zero = ValueFactory.getValue(0, T); | 
 |     return RangeSet(RangeFactory, Zero); | 
 |   } | 
 |  | 
 |   BasicValueFactory &ValueFactory; | 
 |   RangeSet::Factory &RangeFactory; | 
 |   ProgramStateRef State; | 
 | }; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //               Range-based reasoning about symbolic operations | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | template <> | 
 | RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_Or>(Range LHS, Range RHS, | 
 |                                                            QualType T) { | 
 |   APSIntType ResultType = ValueFactory.getAPSIntType(T); | 
 |   llvm::APSInt Zero = ResultType.getZeroValue(); | 
 |  | 
 |   bool IsLHSPositiveOrZero = LHS.From() >= Zero; | 
 |   bool IsRHSPositiveOrZero = RHS.From() >= Zero; | 
 |  | 
 |   bool IsLHSNegative = LHS.To() < Zero; | 
 |   bool IsRHSNegative = RHS.To() < Zero; | 
 |  | 
 |   // Check if both ranges have the same sign. | 
 |   if ((IsLHSPositiveOrZero && IsRHSPositiveOrZero) || | 
 |       (IsLHSNegative && IsRHSNegative)) { | 
 |     // The result is definitely greater or equal than any of the operands. | 
 |     const llvm::APSInt &Min = std::max(LHS.From(), RHS.From()); | 
 |  | 
 |     // We estimate maximal value for positives as the maximal value for the | 
 |     // given type.  For negatives, we estimate it with -1 (e.g. 0x11111111). | 
 |     // | 
 |     // TODO: We basically, limit the resulting range from below, but don't do | 
 |     //       anything with the upper bound. | 
 |     // | 
 |     //       For positive operands, it can be done as follows: for the upper | 
 |     //       bound of LHS and RHS we calculate the most significant bit set. | 
 |     //       Let's call it the N-th bit.  Then we can estimate the maximal | 
 |     //       number to be 2^(N+1)-1, i.e. the number with all the bits up to | 
 |     //       the N-th bit set. | 
 |     const llvm::APSInt &Max = IsLHSNegative | 
 |                                   ? ValueFactory.getValue(--Zero) | 
 |                                   : ValueFactory.getMaxValue(ResultType); | 
 |  | 
 |     return {RangeFactory, ValueFactory.getValue(Min), Max}; | 
 |   } | 
 |  | 
 |   // Otherwise, let's check if at least one of the operands is negative. | 
 |   if (IsLHSNegative || IsRHSNegative) { | 
 |     // This means that the result is definitely negative as well. | 
 |     return {RangeFactory, ValueFactory.getMinValue(ResultType), | 
 |             ValueFactory.getValue(--Zero)}; | 
 |   } | 
 |  | 
 |   RangeSet DefaultRange = infer(T); | 
 |  | 
 |   // It is pretty hard to reason about operands with different signs | 
 |   // (and especially with possibly different signs).  We simply check if it | 
 |   // can be zero.  In order to conclude that the result could not be zero, | 
 |   // at least one of the operands should be definitely not zero itself. | 
 |   if (!LHS.Includes(Zero) || !RHS.Includes(Zero)) { | 
 |     return assumeNonZero(DefaultRange, T); | 
 |   } | 
 |  | 
 |   // Nothing much else to do here. | 
 |   return DefaultRange; | 
 | } | 
 |  | 
 | template <> | 
 | RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_And>(Range LHS, | 
 |                                                             Range RHS, | 
 |                                                             QualType T) { | 
 |   APSIntType ResultType = ValueFactory.getAPSIntType(T); | 
 |   llvm::APSInt Zero = ResultType.getZeroValue(); | 
 |  | 
 |   bool IsLHSPositiveOrZero = LHS.From() >= Zero; | 
 |   bool IsRHSPositiveOrZero = RHS.From() >= Zero; | 
 |  | 
 |   bool IsLHSNegative = LHS.To() < Zero; | 
 |   bool IsRHSNegative = RHS.To() < Zero; | 
 |  | 
 |   // Check if both ranges have the same sign. | 
 |   if ((IsLHSPositiveOrZero && IsRHSPositiveOrZero) || | 
 |       (IsLHSNegative && IsRHSNegative)) { | 
 |     // The result is definitely less or equal than any of the operands. | 
 |     const llvm::APSInt &Max = std::min(LHS.To(), RHS.To()); | 
 |  | 
 |     // We conservatively estimate lower bound to be the smallest positive | 
 |     // or negative value corresponding to the sign of the operands. | 
 |     const llvm::APSInt &Min = IsLHSNegative | 
 |                                   ? ValueFactory.getMinValue(ResultType) | 
 |                                   : ValueFactory.getValue(Zero); | 
 |  | 
 |     return {RangeFactory, Min, Max}; | 
 |   } | 
 |  | 
 |   // Otherwise, let's check if at least one of the operands is positive. | 
 |   if (IsLHSPositiveOrZero || IsRHSPositiveOrZero) { | 
 |     // This makes result definitely positive. | 
 |     // | 
 |     // We can also reason about a maximal value by finding the maximal | 
 |     // value of the positive operand. | 
 |     const llvm::APSInt &Max = IsLHSPositiveOrZero ? LHS.To() : RHS.To(); | 
 |  | 
 |     // The minimal value on the other hand is much harder to reason about. | 
 |     // The only thing we know for sure is that the result is positive. | 
 |     return {RangeFactory, ValueFactory.getValue(Zero), | 
 |             ValueFactory.getValue(Max)}; | 
 |   } | 
 |  | 
 |   // Nothing much else to do here. | 
 |   return infer(T); | 
 | } | 
 |  | 
 | template <> | 
 | RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_Rem>(Range LHS, | 
 |                                                             Range RHS, | 
 |                                                             QualType T) { | 
 |   llvm::APSInt Zero = ValueFactory.getAPSIntType(T).getZeroValue(); | 
 |  | 
 |   Range ConservativeRange = getSymmetricalRange(RHS, T); | 
 |  | 
 |   llvm::APSInt Max = ConservativeRange.To(); | 
 |   llvm::APSInt Min = ConservativeRange.From(); | 
 |  | 
 |   if (Max == Zero) { | 
 |     // It's an undefined behaviour to divide by 0 and it seems like we know | 
 |     // for sure that RHS is 0.  Let's say that the resulting range is | 
 |     // simply infeasible for that matter. | 
 |     return RangeFactory.getEmptySet(); | 
 |   } | 
 |  | 
 |   // At this point, our conservative range is closed.  The result, however, | 
 |   // couldn't be greater than the RHS' maximal absolute value.  Because of | 
 |   // this reason, we turn the range into open (or half-open in case of | 
 |   // unsigned integers). | 
 |   // | 
 |   // While we operate on integer values, an open interval (a, b) can be easily | 
 |   // represented by the closed interval [a + 1, b - 1].  And this is exactly | 
 |   // what we do next. | 
 |   // | 
 |   // If we are dealing with unsigned case, we shouldn't move the lower bound. | 
 |   if (Min.isSigned()) { | 
 |     ++Min; | 
 |   } | 
 |   --Max; | 
 |  | 
 |   bool IsLHSPositiveOrZero = LHS.From() >= Zero; | 
 |   bool IsRHSPositiveOrZero = RHS.From() >= Zero; | 
 |  | 
 |   // Remainder operator results with negative operands is implementation | 
 |   // defined.  Positive cases are much easier to reason about though. | 
 |   if (IsLHSPositiveOrZero && IsRHSPositiveOrZero) { | 
 |     // If maximal value of LHS is less than maximal value of RHS, | 
 |     // the result won't get greater than LHS.To(). | 
 |     Max = std::min(LHS.To(), Max); | 
 |     // We want to check if it is a situation similar to the following: | 
 |     // | 
 |     // <------------|---[  LHS  ]--------[  RHS  ]-----> | 
 |     //  -INF        0                              +INF | 
 |     // | 
 |     // In this situation, we can conclude that (LHS / RHS) == 0 and | 
 |     // (LHS % RHS) == LHS. | 
 |     Min = LHS.To() < RHS.From() ? LHS.From() : Zero; | 
 |   } | 
 |  | 
 |   // Nevertheless, the symmetrical range for RHS is a conservative estimate | 
 |   // for any sign of either LHS, or RHS. | 
 |   return {RangeFactory, ValueFactory.getValue(Min), ValueFactory.getValue(Max)}; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                  Constraint manager implementation details | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | class RangeConstraintManager : public RangedConstraintManager { | 
 | public: | 
 |   RangeConstraintManager(ExprEngine *EE, SValBuilder &SVB) | 
 |       : RangedConstraintManager(EE, SVB), F(getBasicVals()) {} | 
 |  | 
 |   //===------------------------------------------------------------------===// | 
 |   // Implementation for interface from ConstraintManager. | 
 |   //===------------------------------------------------------------------===// | 
 |  | 
 |   bool haveEqualConstraints(ProgramStateRef S1, | 
 |                             ProgramStateRef S2) const override { | 
 |     // NOTE: ClassMembers are as simple as back pointers for ClassMap, | 
 |     //       so comparing constraint ranges and class maps should be | 
 |     //       sufficient. | 
 |     return S1->get<ConstraintRange>() == S2->get<ConstraintRange>() && | 
 |            S1->get<ClassMap>() == S2->get<ClassMap>(); | 
 |   } | 
 |  | 
 |   bool canReasonAbout(SVal X) const override; | 
 |  | 
 |   ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym) override; | 
 |  | 
 |   const llvm::APSInt *getSymVal(ProgramStateRef State, | 
 |                                 SymbolRef Sym) const override; | 
 |  | 
 |   ProgramStateRef removeDeadBindings(ProgramStateRef State, | 
 |                                      SymbolReaper &SymReaper) override; | 
 |  | 
 |   void printJson(raw_ostream &Out, ProgramStateRef State, const char *NL = "\n", | 
 |                  unsigned int Space = 0, bool IsDot = false) const override; | 
 |   void printValue(raw_ostream &Out, ProgramStateRef State, | 
 |                   SymbolRef Sym) override; | 
 |   void printConstraints(raw_ostream &Out, ProgramStateRef State, | 
 |                         const char *NL = "\n", unsigned int Space = 0, | 
 |                         bool IsDot = false) const; | 
 |   void printEquivalenceClasses(raw_ostream &Out, ProgramStateRef State, | 
 |                                const char *NL = "\n", unsigned int Space = 0, | 
 |                                bool IsDot = false) const; | 
 |   void printDisequalities(raw_ostream &Out, ProgramStateRef State, | 
 |                           const char *NL = "\n", unsigned int Space = 0, | 
 |                           bool IsDot = false) const; | 
 |  | 
 |   //===------------------------------------------------------------------===// | 
 |   // Implementation for interface from RangedConstraintManager. | 
 |   //===------------------------------------------------------------------===// | 
 |  | 
 |   ProgramStateRef assumeSymNE(ProgramStateRef State, SymbolRef Sym, | 
 |                               const llvm::APSInt &V, | 
 |                               const llvm::APSInt &Adjustment) override; | 
 |  | 
 |   ProgramStateRef assumeSymEQ(ProgramStateRef State, SymbolRef Sym, | 
 |                               const llvm::APSInt &V, | 
 |                               const llvm::APSInt &Adjustment) override; | 
 |  | 
 |   ProgramStateRef assumeSymLT(ProgramStateRef State, SymbolRef Sym, | 
 |                               const llvm::APSInt &V, | 
 |                               const llvm::APSInt &Adjustment) override; | 
 |  | 
 |   ProgramStateRef assumeSymGT(ProgramStateRef State, SymbolRef Sym, | 
 |                               const llvm::APSInt &V, | 
 |                               const llvm::APSInt &Adjustment) override; | 
 |  | 
 |   ProgramStateRef assumeSymLE(ProgramStateRef State, SymbolRef Sym, | 
 |                               const llvm::APSInt &V, | 
 |                               const llvm::APSInt &Adjustment) override; | 
 |  | 
 |   ProgramStateRef assumeSymGE(ProgramStateRef State, SymbolRef Sym, | 
 |                               const llvm::APSInt &V, | 
 |                               const llvm::APSInt &Adjustment) override; | 
 |  | 
 |   ProgramStateRef assumeSymWithinInclusiveRange( | 
 |       ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, | 
 |       const llvm::APSInt &To, const llvm::APSInt &Adjustment) override; | 
 |  | 
 |   ProgramStateRef assumeSymOutsideInclusiveRange( | 
 |       ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, | 
 |       const llvm::APSInt &To, const llvm::APSInt &Adjustment) override; | 
 |  | 
 | private: | 
 |   RangeSet::Factory F; | 
 |  | 
 |   RangeSet getRange(ProgramStateRef State, SymbolRef Sym); | 
 |   RangeSet getRange(ProgramStateRef State, EquivalenceClass Class); | 
 |   ProgramStateRef setRange(ProgramStateRef State, SymbolRef Sym, | 
 |                            RangeSet Range); | 
 |   ProgramStateRef setRange(ProgramStateRef State, EquivalenceClass Class, | 
 |                            RangeSet Range); | 
 |  | 
 |   RangeSet getSymLTRange(ProgramStateRef St, SymbolRef Sym, | 
 |                          const llvm::APSInt &Int, | 
 |                          const llvm::APSInt &Adjustment); | 
 |   RangeSet getSymGTRange(ProgramStateRef St, SymbolRef Sym, | 
 |                          const llvm::APSInt &Int, | 
 |                          const llvm::APSInt &Adjustment); | 
 |   RangeSet getSymLERange(ProgramStateRef St, SymbolRef Sym, | 
 |                          const llvm::APSInt &Int, | 
 |                          const llvm::APSInt &Adjustment); | 
 |   RangeSet getSymLERange(llvm::function_ref<RangeSet()> RS, | 
 |                          const llvm::APSInt &Int, | 
 |                          const llvm::APSInt &Adjustment); | 
 |   RangeSet getSymGERange(ProgramStateRef St, SymbolRef Sym, | 
 |                          const llvm::APSInt &Int, | 
 |                          const llvm::APSInt &Adjustment); | 
 | }; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                         Constraint assignment logic | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// ConstraintAssignorBase is a small utility class that unifies visitor | 
 | /// for ranges with a visitor for constraints (rangeset/range/constant). | 
 | /// | 
 | /// It is designed to have one derived class, but generally it can have more. | 
 | /// Derived class can control which types we handle by defining methods of the | 
 | /// following form: | 
 | /// | 
 | ///   bool handle${SYMBOL}To${CONSTRAINT}(const SYMBOL *Sym, | 
 | ///                                       CONSTRAINT Constraint); | 
 | /// | 
 | /// where SYMBOL is the type of the symbol (e.g. SymSymExpr, SymbolCast, etc.) | 
 | ///       CONSTRAINT is the type of constraint (RangeSet/Range/Const) | 
 | ///       return value signifies whether we should try other handle methods | 
 | ///          (i.e. false would mean to stop right after calling this method) | 
 | template <class Derived> class ConstraintAssignorBase { | 
 | public: | 
 |   using Const = const llvm::APSInt &; | 
 |  | 
 | #define DISPATCH(CLASS) return assign##CLASS##Impl(cast<CLASS>(Sym), Constraint) | 
 |  | 
 | #define ASSIGN(CLASS, TO, SYM, CONSTRAINT)                                     \ | 
 |   if (!static_cast<Derived *>(this)->assign##CLASS##To##TO(SYM, CONSTRAINT))   \ | 
 |   return false | 
 |  | 
 |   void assign(SymbolRef Sym, RangeSet Constraint) { | 
 |     assignImpl(Sym, Constraint); | 
 |   } | 
 |  | 
 |   bool assignImpl(SymbolRef Sym, RangeSet Constraint) { | 
 |     switch (Sym->getKind()) { | 
 | #define SYMBOL(Id, Parent)                                                     \ | 
 |   case SymExpr::Id##Kind:                                                      \ | 
 |     DISPATCH(Id); | 
 | #include "clang/StaticAnalyzer/Core/PathSensitive/Symbols.def" | 
 |     } | 
 |     llvm_unreachable("Unknown SymExpr kind!"); | 
 |   } | 
 |  | 
 | #define DEFAULT_ASSIGN(Id)                                                     \ | 
 |   bool assign##Id##To##RangeSet(const Id *Sym, RangeSet Constraint) {          \ | 
 |     return true;                                                               \ | 
 |   }                                                                            \ | 
 |   bool assign##Id##To##Range(const Id *Sym, Range Constraint) { return true; } \ | 
 |   bool assign##Id##To##Const(const Id *Sym, Const Constraint) { return true; } | 
 |  | 
 |   // When we dispatch for constraint types, we first try to check | 
 |   // if the new constraint is the constant and try the corresponding | 
 |   // assignor methods.  If it didn't interrupt, we can proceed to the | 
 |   // range, and finally to the range set. | 
 | #define CONSTRAINT_DISPATCH(Id)                                                \ | 
 |   if (const llvm::APSInt *Const = Constraint.getConcreteValue()) {             \ | 
 |     ASSIGN(Id, Const, Sym, *Const);                                            \ | 
 |   }                                                                            \ | 
 |   if (Constraint.size() == 1) {                                                \ | 
 |     ASSIGN(Id, Range, Sym, *Constraint.begin());                               \ | 
 |   }                                                                            \ | 
 |   ASSIGN(Id, RangeSet, Sym, Constraint) | 
 |  | 
 |   // Our internal assign method first tries to call assignor methods for all | 
 |   // constraint types that apply.  And if not interrupted, continues with its | 
 |   // parent class. | 
 | #define SYMBOL(Id, Parent)                                                     \ | 
 |   bool assign##Id##Impl(const Id *Sym, RangeSet Constraint) {                  \ | 
 |     CONSTRAINT_DISPATCH(Id);                                                   \ | 
 |     DISPATCH(Parent);                                                          \ | 
 |   }                                                                            \ | 
 |   DEFAULT_ASSIGN(Id) | 
 | #define ABSTRACT_SYMBOL(Id, Parent) SYMBOL(Id, Parent) | 
 | #include "clang/StaticAnalyzer/Core/PathSensitive/Symbols.def" | 
 |  | 
 |   // Default implementations for the top class that doesn't have parents. | 
 |   bool assignSymExprImpl(const SymExpr *Sym, RangeSet Constraint) { | 
 |     CONSTRAINT_DISPATCH(SymExpr); | 
 |     return true; | 
 |   } | 
 |   DEFAULT_ASSIGN(SymExpr); | 
 |  | 
 | #undef DISPATCH | 
 | #undef CONSTRAINT_DISPATCH | 
 | #undef DEFAULT_ASSIGN | 
 | #undef ASSIGN | 
 | }; | 
 |  | 
 | /// A little component aggregating all of the reasoning we have about | 
 | /// assigning new constraints to symbols. | 
 | /// | 
 | /// The main purpose of this class is to associate constraints to symbols, | 
 | /// and impose additional constraints on other symbols, when we can imply | 
 | /// them. | 
 | /// | 
 | /// It has a nice symmetry with SymbolicRangeInferrer.  When the latter | 
 | /// can provide more precise ranges by looking into the operands of the | 
 | /// expression in question, ConstraintAssignor looks into the operands | 
 | /// to see if we can imply more from the new constraint. | 
 | class ConstraintAssignor : public ConstraintAssignorBase<ConstraintAssignor> { | 
 | public: | 
 |   template <class ClassOrSymbol> | 
 |   LLVM_NODISCARD static ProgramStateRef | 
 |   assign(ProgramStateRef State, SValBuilder &Builder, RangeSet::Factory &F, | 
 |          ClassOrSymbol CoS, RangeSet NewConstraint) { | 
 |     if (!State || NewConstraint.isEmpty()) | 
 |       return nullptr; | 
 |  | 
 |     ConstraintAssignor Assignor{State, Builder, F}; | 
 |     return Assignor.assign(CoS, NewConstraint); | 
 |   } | 
 |  | 
 |   /// Handle expressions like: a % b != 0. | 
 |   template <typename SymT> | 
 |   bool handleRemainderOp(const SymT *Sym, RangeSet Constraint) { | 
 |     if (Sym->getOpcode() != BO_Rem) | 
 |       return true; | 
 |     // a % b != 0 implies that a != 0. | 
 |     if (!Constraint.containsZero()) { | 
 |       SVal SymSVal = Builder.makeSymbolVal(Sym->getLHS()); | 
 |       if (auto NonLocSymSVal = SymSVal.getAs<nonloc::SymbolVal>()) { | 
 |         State = State->assume(*NonLocSymSVal, true); | 
 |         if (!State) | 
 |           return false; | 
 |       } | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |   inline bool assignSymExprToConst(const SymExpr *Sym, Const Constraint); | 
 |   inline bool assignSymIntExprToRangeSet(const SymIntExpr *Sym, | 
 |                                          RangeSet Constraint) { | 
 |     return handleRemainderOp(Sym, Constraint); | 
 |   } | 
 |   inline bool assignSymSymExprToRangeSet(const SymSymExpr *Sym, | 
 |                                          RangeSet Constraint); | 
 |  | 
 | private: | 
 |   ConstraintAssignor(ProgramStateRef State, SValBuilder &Builder, | 
 |                      RangeSet::Factory &F) | 
 |       : State(State), Builder(Builder), RangeFactory(F) {} | 
 |   using Base = ConstraintAssignorBase<ConstraintAssignor>; | 
 |  | 
 |   /// Base method for handling new constraints for symbols. | 
 |   LLVM_NODISCARD ProgramStateRef assign(SymbolRef Sym, RangeSet NewConstraint) { | 
 |     // All constraints are actually associated with equivalence classes, and | 
 |     // that's what we are going to do first. | 
 |     State = assign(EquivalenceClass::find(State, Sym), NewConstraint); | 
 |     if (!State) | 
 |       return nullptr; | 
 |  | 
 |     // And after that we can check what other things we can get from this | 
 |     // constraint. | 
 |     Base::assign(Sym, NewConstraint); | 
 |     return State; | 
 |   } | 
 |  | 
 |   /// Base method for handling new constraints for classes. | 
 |   LLVM_NODISCARD ProgramStateRef assign(EquivalenceClass Class, | 
 |                                         RangeSet NewConstraint) { | 
 |     // There is a chance that we might need to update constraints for the | 
 |     // classes that are known to be disequal to Class. | 
 |     // | 
 |     // In order for this to be even possible, the new constraint should | 
 |     // be simply a constant because we can't reason about range disequalities. | 
 |     if (const llvm::APSInt *Point = NewConstraint.getConcreteValue()) { | 
 |  | 
 |       ConstraintRangeTy Constraints = State->get<ConstraintRange>(); | 
 |       ConstraintRangeTy::Factory &CF = State->get_context<ConstraintRange>(); | 
 |  | 
 |       // Add new constraint. | 
 |       Constraints = CF.add(Constraints, Class, NewConstraint); | 
 |  | 
 |       for (EquivalenceClass DisequalClass : Class.getDisequalClasses(State)) { | 
 |         RangeSet UpdatedConstraint = SymbolicRangeInferrer::inferRange( | 
 |             RangeFactory, State, DisequalClass); | 
 |  | 
 |         UpdatedConstraint = RangeFactory.deletePoint(UpdatedConstraint, *Point); | 
 |  | 
 |         // If we end up with at least one of the disequal classes to be | 
 |         // constrained with an empty range-set, the state is infeasible. | 
 |         if (UpdatedConstraint.isEmpty()) | 
 |           return nullptr; | 
 |  | 
 |         Constraints = CF.add(Constraints, DisequalClass, UpdatedConstraint); | 
 |       } | 
 |       assert(areFeasible(Constraints) && "Constraint manager shouldn't produce " | 
 |                                          "a state with infeasible constraints"); | 
 |  | 
 |       return setConstraints(State, Constraints); | 
 |     } | 
 |  | 
 |     return setConstraint(State, Class, NewConstraint); | 
 |   } | 
 |  | 
 |   ProgramStateRef trackDisequality(ProgramStateRef State, SymbolRef LHS, | 
 |                                    SymbolRef RHS) { | 
 |     return EquivalenceClass::markDisequal(RangeFactory, State, LHS, RHS); | 
 |   } | 
 |  | 
 |   ProgramStateRef trackEquality(ProgramStateRef State, SymbolRef LHS, | 
 |                                 SymbolRef RHS) { | 
 |     return EquivalenceClass::merge(RangeFactory, State, LHS, RHS); | 
 |   } | 
 |  | 
 |   LLVM_NODISCARD Optional<bool> interpreteAsBool(RangeSet Constraint) { | 
 |     assert(!Constraint.isEmpty() && "Empty ranges shouldn't get here"); | 
 |  | 
 |     if (Constraint.getConcreteValue()) | 
 |       return !Constraint.getConcreteValue()->isZero(); | 
 |  | 
 |     if (!Constraint.containsZero()) | 
 |       return true; | 
 |  | 
 |     return llvm::None; | 
 |   } | 
 |  | 
 |   ProgramStateRef State; | 
 |   SValBuilder &Builder; | 
 |   RangeSet::Factory &RangeFactory; | 
 | }; | 
 |  | 
 |  | 
 | bool ConstraintAssignor::assignSymExprToConst(const SymExpr *Sym, | 
 |                                               const llvm::APSInt &Constraint) { | 
 |   llvm::SmallSet<EquivalenceClass, 4> SimplifiedClasses; | 
 |   // Iterate over all equivalence classes and try to simplify them. | 
 |   ClassMembersTy Members = State->get<ClassMembers>(); | 
 |   for (std::pair<EquivalenceClass, SymbolSet> ClassToSymbolSet : Members) { | 
 |     EquivalenceClass Class = ClassToSymbolSet.first; | 
 |     State = EquivalenceClass::simplify(Builder, RangeFactory, State, Class); | 
 |     if (!State) | 
 |       return false; | 
 |     SimplifiedClasses.insert(Class); | 
 |   } | 
 |  | 
 |   // Trivial equivalence classes (those that have only one symbol member) are | 
 |   // not stored in the State. Thus, we must skim through the constraints as | 
 |   // well. And we try to simplify symbols in the constraints. | 
 |   ConstraintRangeTy Constraints = State->get<ConstraintRange>(); | 
 |   for (std::pair<EquivalenceClass, RangeSet> ClassConstraint : Constraints) { | 
 |     EquivalenceClass Class = ClassConstraint.first; | 
 |     if (SimplifiedClasses.count(Class)) // Already simplified. | 
 |       continue; | 
 |     State = EquivalenceClass::simplify(Builder, RangeFactory, State, Class); | 
 |     if (!State) | 
 |       return false; | 
 |   } | 
 |  | 
 |   // We may have trivial equivalence classes in the disequality info as | 
 |   // well, and we need to simplify them. | 
 |   DisequalityMapTy DisequalityInfo = State->get<DisequalityMap>(); | 
 |   for (std::pair<EquivalenceClass, ClassSet> DisequalityEntry : | 
 |        DisequalityInfo) { | 
 |     EquivalenceClass Class = DisequalityEntry.first; | 
 |     ClassSet DisequalClasses = DisequalityEntry.second; | 
 |     State = EquivalenceClass::simplify(Builder, RangeFactory, State, Class); | 
 |     if (!State) | 
 |       return false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool ConstraintAssignor::assignSymSymExprToRangeSet(const SymSymExpr *Sym, | 
 |                                                     RangeSet Constraint) { | 
 |   if (!handleRemainderOp(Sym, Constraint)) | 
 |     return false; | 
 |  | 
 |   Optional<bool> ConstraintAsBool = interpreteAsBool(Constraint); | 
 |  | 
 |   if (!ConstraintAsBool) | 
 |     return true; | 
 |  | 
 |   if (Optional<bool> Equality = meansEquality(Sym)) { | 
 |     // Here we cover two cases: | 
 |     //   * if Sym is equality and the new constraint is true -> Sym's operands | 
 |     //     should be marked as equal | 
 |     //   * if Sym is disequality and the new constraint is false -> Sym's | 
 |     //     operands should be also marked as equal | 
 |     if (*Equality == *ConstraintAsBool) { | 
 |       State = trackEquality(State, Sym->getLHS(), Sym->getRHS()); | 
 |     } else { | 
 |       // Other combinations leave as with disequal operands. | 
 |       State = trackDisequality(State, Sym->getLHS(), Sym->getRHS()); | 
 |     } | 
 |  | 
 |     if (!State) | 
 |       return false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | } // end anonymous namespace | 
 |  | 
 | std::unique_ptr<ConstraintManager> | 
 | ento::CreateRangeConstraintManager(ProgramStateManager &StMgr, | 
 |                                    ExprEngine *Eng) { | 
 |   return std::make_unique<RangeConstraintManager>(Eng, StMgr.getSValBuilder()); | 
 | } | 
 |  | 
 | ConstraintMap ento::getConstraintMap(ProgramStateRef State) { | 
 |   ConstraintMap::Factory &F = State->get_context<ConstraintMap>(); | 
 |   ConstraintMap Result = F.getEmptyMap(); | 
 |  | 
 |   ConstraintRangeTy Constraints = State->get<ConstraintRange>(); | 
 |   for (std::pair<EquivalenceClass, RangeSet> ClassConstraint : Constraints) { | 
 |     EquivalenceClass Class = ClassConstraint.first; | 
 |     SymbolSet ClassMembers = Class.getClassMembers(State); | 
 |     assert(!ClassMembers.isEmpty() && | 
 |            "Class must always have at least one member!"); | 
 |  | 
 |     SymbolRef Representative = *ClassMembers.begin(); | 
 |     Result = F.add(Result, Representative, ClassConstraint.second); | 
 |   } | 
 |  | 
 |   return Result; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                     EqualityClass implementation details | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | LLVM_DUMP_METHOD void EquivalenceClass::dumpToStream(ProgramStateRef State, | 
 |                                                      raw_ostream &os) const { | 
 |   SymbolSet ClassMembers = getClassMembers(State); | 
 |   for (const SymbolRef &MemberSym : ClassMembers) { | 
 |     MemberSym->dump(); | 
 |     os << "\n"; | 
 |   } | 
 | } | 
 |  | 
 | inline EquivalenceClass EquivalenceClass::find(ProgramStateRef State, | 
 |                                                SymbolRef Sym) { | 
 |   assert(State && "State should not be null"); | 
 |   assert(Sym && "Symbol should not be null"); | 
 |   // We store far from all Symbol -> Class mappings | 
 |   if (const EquivalenceClass *NontrivialClass = State->get<ClassMap>(Sym)) | 
 |     return *NontrivialClass; | 
 |  | 
 |   // This is a trivial class of Sym. | 
 |   return Sym; | 
 | } | 
 |  | 
 | inline ProgramStateRef EquivalenceClass::merge(RangeSet::Factory &F, | 
 |                                                ProgramStateRef State, | 
 |                                                SymbolRef First, | 
 |                                                SymbolRef Second) { | 
 |   EquivalenceClass FirstClass = find(State, First); | 
 |   EquivalenceClass SecondClass = find(State, Second); | 
 |  | 
 |   return FirstClass.merge(F, State, SecondClass); | 
 | } | 
 |  | 
 | inline ProgramStateRef EquivalenceClass::merge(RangeSet::Factory &F, | 
 |                                                ProgramStateRef State, | 
 |                                                EquivalenceClass Other) { | 
 |   // It is already the same class. | 
 |   if (*this == Other) | 
 |     return State; | 
 |  | 
 |   // FIXME: As of now, we support only equivalence classes of the same type. | 
 |   //        This limitation is connected to the lack of explicit casts in | 
 |   //        our symbolic expression model. | 
 |   // | 
 |   //        That means that for `int x` and `char y` we don't distinguish | 
 |   //        between these two very different cases: | 
 |   //          * `x == y` | 
 |   //          * `(char)x == y` | 
 |   // | 
 |   //        The moment we introduce symbolic casts, this restriction can be | 
 |   //        lifted. | 
 |   if (getType() != Other.getType()) | 
 |     return State; | 
 |  | 
 |   SymbolSet Members = getClassMembers(State); | 
 |   SymbolSet OtherMembers = Other.getClassMembers(State); | 
 |  | 
 |   // We estimate the size of the class by the height of tree containing | 
 |   // its members.  Merging is not a trivial operation, so it's easier to | 
 |   // merge the smaller class into the bigger one. | 
 |   if (Members.getHeight() >= OtherMembers.getHeight()) { | 
 |     return mergeImpl(F, State, Members, Other, OtherMembers); | 
 |   } else { | 
 |     return Other.mergeImpl(F, State, OtherMembers, *this, Members); | 
 |   } | 
 | } | 
 |  | 
 | inline ProgramStateRef | 
 | EquivalenceClass::mergeImpl(RangeSet::Factory &RangeFactory, | 
 |                             ProgramStateRef State, SymbolSet MyMembers, | 
 |                             EquivalenceClass Other, SymbolSet OtherMembers) { | 
 |   // Essentially what we try to recreate here is some kind of union-find | 
 |   // data structure.  It does have certain limitations due to persistence | 
 |   // and the need to remove elements from classes. | 
 |   // | 
 |   // In this setting, EquialityClass object is the representative of the class | 
 |   // or the parent element.  ClassMap is a mapping of class members to their | 
 |   // parent. Unlike the union-find structure, they all point directly to the | 
 |   // class representative because we don't have an opportunity to actually do | 
 |   // path compression when dealing with immutability.  This means that we | 
 |   // compress paths every time we do merges.  It also means that we lose | 
 |   // the main amortized complexity benefit from the original data structure. | 
 |   ConstraintRangeTy Constraints = State->get<ConstraintRange>(); | 
 |   ConstraintRangeTy::Factory &CRF = State->get_context<ConstraintRange>(); | 
 |  | 
 |   // 1. If the merged classes have any constraints associated with them, we | 
 |   //    need to transfer them to the class we have left. | 
 |   // | 
 |   // Intersection here makes perfect sense because both of these constraints | 
 |   // must hold for the whole new class. | 
 |   if (Optional<RangeSet> NewClassConstraint = | 
 |           intersect(RangeFactory, getConstraint(State, *this), | 
 |                     getConstraint(State, Other))) { | 
 |     // NOTE: Essentially, NewClassConstraint should NEVER be infeasible because | 
 |     //       range inferrer shouldn't generate ranges incompatible with | 
 |     //       equivalence classes. However, at the moment, due to imperfections | 
 |     //       in the solver, it is possible and the merge function can also | 
 |     //       return infeasible states aka null states. | 
 |     if (NewClassConstraint->isEmpty()) | 
 |       // Infeasible state | 
 |       return nullptr; | 
 |  | 
 |     // No need in tracking constraints of a now-dissolved class. | 
 |     Constraints = CRF.remove(Constraints, Other); | 
 |     // Assign new constraints for this class. | 
 |     Constraints = CRF.add(Constraints, *this, *NewClassConstraint); | 
 |  | 
 |     assert(areFeasible(Constraints) && "Constraint manager shouldn't produce " | 
 |                                        "a state with infeasible constraints"); | 
 |  | 
 |     State = State->set<ConstraintRange>(Constraints); | 
 |   } | 
 |  | 
 |   // 2. Get ALL equivalence-related maps | 
 |   ClassMapTy Classes = State->get<ClassMap>(); | 
 |   ClassMapTy::Factory &CMF = State->get_context<ClassMap>(); | 
 |  | 
 |   ClassMembersTy Members = State->get<ClassMembers>(); | 
 |   ClassMembersTy::Factory &MF = State->get_context<ClassMembers>(); | 
 |  | 
 |   DisequalityMapTy DisequalityInfo = State->get<DisequalityMap>(); | 
 |   DisequalityMapTy::Factory &DF = State->get_context<DisequalityMap>(); | 
 |  | 
 |   ClassSet::Factory &CF = State->get_context<ClassSet>(); | 
 |   SymbolSet::Factory &F = getMembersFactory(State); | 
 |  | 
 |   // 2. Merge members of the Other class into the current class. | 
 |   SymbolSet NewClassMembers = MyMembers; | 
 |   for (SymbolRef Sym : OtherMembers) { | 
 |     NewClassMembers = F.add(NewClassMembers, Sym); | 
 |     // *this is now the class for all these new symbols. | 
 |     Classes = CMF.add(Classes, Sym, *this); | 
 |   } | 
 |  | 
 |   // 3. Adjust member mapping. | 
 |   // | 
 |   // No need in tracking members of a now-dissolved class. | 
 |   Members = MF.remove(Members, Other); | 
 |   // Now only the current class is mapped to all the symbols. | 
 |   Members = MF.add(Members, *this, NewClassMembers); | 
 |  | 
 |   // 4. Update disequality relations | 
 |   ClassSet DisequalToOther = Other.getDisequalClasses(DisequalityInfo, CF); | 
 |   // We are about to merge two classes but they are already known to be | 
 |   // non-equal. This is a contradiction. | 
 |   if (DisequalToOther.contains(*this)) | 
 |     return nullptr; | 
 |  | 
 |   if (!DisequalToOther.isEmpty()) { | 
 |     ClassSet DisequalToThis = getDisequalClasses(DisequalityInfo, CF); | 
 |     DisequalityInfo = DF.remove(DisequalityInfo, Other); | 
 |  | 
 |     for (EquivalenceClass DisequalClass : DisequalToOther) { | 
 |       DisequalToThis = CF.add(DisequalToThis, DisequalClass); | 
 |  | 
 |       // Disequality is a symmetric relation meaning that if | 
 |       // DisequalToOther not null then the set for DisequalClass is not | 
 |       // empty and has at least Other. | 
 |       ClassSet OriginalSetLinkedToOther = | 
 |           *DisequalityInfo.lookup(DisequalClass); | 
 |  | 
 |       // Other will be eliminated and we should replace it with the bigger | 
 |       // united class. | 
 |       ClassSet NewSet = CF.remove(OriginalSetLinkedToOther, Other); | 
 |       NewSet = CF.add(NewSet, *this); | 
 |  | 
 |       DisequalityInfo = DF.add(DisequalityInfo, DisequalClass, NewSet); | 
 |     } | 
 |  | 
 |     DisequalityInfo = DF.add(DisequalityInfo, *this, DisequalToThis); | 
 |     State = State->set<DisequalityMap>(DisequalityInfo); | 
 |   } | 
 |  | 
 |   // 5. Update the state | 
 |   State = State->set<ClassMap>(Classes); | 
 |   State = State->set<ClassMembers>(Members); | 
 |  | 
 |   return State; | 
 | } | 
 |  | 
 | inline SymbolSet::Factory & | 
 | EquivalenceClass::getMembersFactory(ProgramStateRef State) { | 
 |   return State->get_context<SymbolSet>(); | 
 | } | 
 |  | 
 | SymbolSet EquivalenceClass::getClassMembers(ProgramStateRef State) const { | 
 |   if (const SymbolSet *Members = State->get<ClassMembers>(*this)) | 
 |     return *Members; | 
 |  | 
 |   // This class is trivial, so we need to construct a set | 
 |   // with just that one symbol from the class. | 
 |   SymbolSet::Factory &F = getMembersFactory(State); | 
 |   return F.add(F.getEmptySet(), getRepresentativeSymbol()); | 
 | } | 
 |  | 
 | bool EquivalenceClass::isTrivial(ProgramStateRef State) const { | 
 |   return State->get<ClassMembers>(*this) == nullptr; | 
 | } | 
 |  | 
 | bool EquivalenceClass::isTriviallyDead(ProgramStateRef State, | 
 |                                        SymbolReaper &Reaper) const { | 
 |   return isTrivial(State) && Reaper.isDead(getRepresentativeSymbol()); | 
 | } | 
 |  | 
 | inline ProgramStateRef EquivalenceClass::markDisequal(RangeSet::Factory &RF, | 
 |                                                       ProgramStateRef State, | 
 |                                                       SymbolRef First, | 
 |                                                       SymbolRef Second) { | 
 |   return markDisequal(RF, State, find(State, First), find(State, Second)); | 
 | } | 
 |  | 
 | inline ProgramStateRef EquivalenceClass::markDisequal(RangeSet::Factory &RF, | 
 |                                                       ProgramStateRef State, | 
 |                                                       EquivalenceClass First, | 
 |                                                       EquivalenceClass Second) { | 
 |   return First.markDisequal(RF, State, Second); | 
 | } | 
 |  | 
 | inline ProgramStateRef | 
 | EquivalenceClass::markDisequal(RangeSet::Factory &RF, ProgramStateRef State, | 
 |                                EquivalenceClass Other) const { | 
 |   // If we know that two classes are equal, we can only produce an infeasible | 
 |   // state. | 
 |   if (*this == Other) { | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   DisequalityMapTy DisequalityInfo = State->get<DisequalityMap>(); | 
 |   ConstraintRangeTy Constraints = State->get<ConstraintRange>(); | 
 |  | 
 |   // Disequality is a symmetric relation, so if we mark A as disequal to B, | 
 |   // we should also mark B as disequalt to A. | 
 |   if (!addToDisequalityInfo(DisequalityInfo, Constraints, RF, State, *this, | 
 |                             Other) || | 
 |       !addToDisequalityInfo(DisequalityInfo, Constraints, RF, State, Other, | 
 |                             *this)) | 
 |     return nullptr; | 
 |  | 
 |   assert(areFeasible(Constraints) && "Constraint manager shouldn't produce " | 
 |                                      "a state with infeasible constraints"); | 
 |  | 
 |   State = State->set<DisequalityMap>(DisequalityInfo); | 
 |   State = State->set<ConstraintRange>(Constraints); | 
 |  | 
 |   return State; | 
 | } | 
 |  | 
 | inline bool EquivalenceClass::addToDisequalityInfo( | 
 |     DisequalityMapTy &Info, ConstraintRangeTy &Constraints, | 
 |     RangeSet::Factory &RF, ProgramStateRef State, EquivalenceClass First, | 
 |     EquivalenceClass Second) { | 
 |  | 
 |   // 1. Get all of the required factories. | 
 |   DisequalityMapTy::Factory &F = State->get_context<DisequalityMap>(); | 
 |   ClassSet::Factory &CF = State->get_context<ClassSet>(); | 
 |   ConstraintRangeTy::Factory &CRF = State->get_context<ConstraintRange>(); | 
 |  | 
 |   // 2. Add Second to the set of classes disequal to First. | 
 |   const ClassSet *CurrentSet = Info.lookup(First); | 
 |   ClassSet NewSet = CurrentSet ? *CurrentSet : CF.getEmptySet(); | 
 |   NewSet = CF.add(NewSet, Second); | 
 |  | 
 |   Info = F.add(Info, First, NewSet); | 
 |  | 
 |   // 3. If Second is known to be a constant, we can delete this point | 
 |   //    from the constraint asociated with First. | 
 |   // | 
 |   //    So, if Second == 10, it means that First != 10. | 
 |   //    At the same time, the same logic does not apply to ranges. | 
 |   if (const RangeSet *SecondConstraint = Constraints.lookup(Second)) | 
 |     if (const llvm::APSInt *Point = SecondConstraint->getConcreteValue()) { | 
 |  | 
 |       RangeSet FirstConstraint = SymbolicRangeInferrer::inferRange( | 
 |           RF, State, First.getRepresentativeSymbol()); | 
 |  | 
 |       FirstConstraint = RF.deletePoint(FirstConstraint, *Point); | 
 |  | 
 |       // If the First class is about to be constrained with an empty | 
 |       // range-set, the state is infeasible. | 
 |       if (FirstConstraint.isEmpty()) | 
 |         return false; | 
 |  | 
 |       Constraints = CRF.add(Constraints, First, FirstConstraint); | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | inline Optional<bool> EquivalenceClass::areEqual(ProgramStateRef State, | 
 |                                                  SymbolRef FirstSym, | 
 |                                                  SymbolRef SecondSym) { | 
 |   return EquivalenceClass::areEqual(State, find(State, FirstSym), | 
 |                                     find(State, SecondSym)); | 
 | } | 
 |  | 
 | inline Optional<bool> EquivalenceClass::areEqual(ProgramStateRef State, | 
 |                                                  EquivalenceClass First, | 
 |                                                  EquivalenceClass Second) { | 
 |   // The same equivalence class => symbols are equal. | 
 |   if (First == Second) | 
 |     return true; | 
 |  | 
 |   // Let's check if we know anything about these two classes being not equal to | 
 |   // each other. | 
 |   ClassSet DisequalToFirst = First.getDisequalClasses(State); | 
 |   if (DisequalToFirst.contains(Second)) | 
 |     return false; | 
 |  | 
 |   // It is not clear. | 
 |   return llvm::None; | 
 | } | 
 |  | 
 | LLVM_NODISCARD ProgramStateRef | 
 | EquivalenceClass::removeMember(ProgramStateRef State, const SymbolRef Old) { | 
 |  | 
 |   SymbolSet ClsMembers = getClassMembers(State); | 
 |   assert(ClsMembers.contains(Old)); | 
 |  | 
 |   // Remove `Old`'s Class->Sym relation. | 
 |   SymbolSet::Factory &F = getMembersFactory(State); | 
 |   ClassMembersTy::Factory &EMFactory = State->get_context<ClassMembers>(); | 
 |   ClsMembers = F.remove(ClsMembers, Old); | 
 |   // Ensure another precondition of the removeMember function (we can check | 
 |   // this only with isEmpty, thus we have to do the remove first). | 
 |   assert(!ClsMembers.isEmpty() && | 
 |          "Class should have had at least two members before member removal"); | 
 |   // Overwrite the existing members assigned to this class. | 
 |   ClassMembersTy ClassMembersMap = State->get<ClassMembers>(); | 
 |   ClassMembersMap = EMFactory.add(ClassMembersMap, *this, ClsMembers); | 
 |   State = State->set<ClassMembers>(ClassMembersMap); | 
 |  | 
 |   // Remove `Old`'s Sym->Class relation. | 
 |   ClassMapTy Classes = State->get<ClassMap>(); | 
 |   ClassMapTy::Factory &CMF = State->get_context<ClassMap>(); | 
 |   Classes = CMF.remove(Classes, Old); | 
 |   State = State->set<ClassMap>(Classes); | 
 |  | 
 |   return State; | 
 | } | 
 |  | 
 | // Re-evaluate an SVal with top-level `State->assume` logic. | 
 | LLVM_NODISCARD ProgramStateRef reAssume(ProgramStateRef State, | 
 |                                         const RangeSet *Constraint, | 
 |                                         SVal TheValue) { | 
 |   if (!Constraint) | 
 |     return State; | 
 |  | 
 |   const auto DefinedVal = TheValue.castAs<DefinedSVal>(); | 
 |  | 
 |   // If the SVal is 0, we can simply interpret that as `false`. | 
 |   if (Constraint->encodesFalseRange()) | 
 |     return State->assume(DefinedVal, false); | 
 |  | 
 |   // If the constraint does not encode 0 then we can interpret that as `true` | 
 |   // AND as a Range(Set). | 
 |   if (Constraint->encodesTrueRange()) { | 
 |     State = State->assume(DefinedVal, true); | 
 |     if (!State) | 
 |       return nullptr; | 
 |     // Fall through, re-assume based on the range values as well. | 
 |   } | 
 |   // Overestimate the individual Ranges with the RangeSet' lowest and | 
 |   // highest values. | 
 |   return State->assumeInclusiveRange(DefinedVal, Constraint->getMinValue(), | 
 |                                      Constraint->getMaxValue(), true); | 
 | } | 
 |  | 
 | // Iterate over all symbols and try to simplify them. Once a symbol is | 
 | // simplified then we check if we can merge the simplified symbol's equivalence | 
 | // class to this class. This way, we simplify not just the symbols but the | 
 | // classes as well: we strive to keep the number of the classes to be the | 
 | // absolute minimum. | 
 | LLVM_NODISCARD ProgramStateRef | 
 | EquivalenceClass::simplify(SValBuilder &SVB, RangeSet::Factory &F, | 
 |                            ProgramStateRef State, EquivalenceClass Class) { | 
 |   SymbolSet ClassMembers = Class.getClassMembers(State); | 
 |   for (const SymbolRef &MemberSym : ClassMembers) { | 
 |  | 
 |     const SVal SimplifiedMemberVal = simplifyToSVal(State, MemberSym); | 
 |     const SymbolRef SimplifiedMemberSym = SimplifiedMemberVal.getAsSymbol(); | 
 |  | 
 |     // The symbol is collapsed to a constant, check if the current State is | 
 |     // still feasible. | 
 |     if (const auto CI = SimplifiedMemberVal.getAs<nonloc::ConcreteInt>()) { | 
 |       const llvm::APSInt &SV = CI->getValue(); | 
 |       const RangeSet *ClassConstraint = getConstraint(State, Class); | 
 |       // We have found a contradiction. | 
 |       if (ClassConstraint && !ClassConstraint->contains(SV)) | 
 |         return nullptr; | 
 |     } | 
 |  | 
 |     if (SimplifiedMemberSym && MemberSym != SimplifiedMemberSym) { | 
 |       // The simplified symbol should be the member of the original Class, | 
 |       // however, it might be in another existing class at the moment. We | 
 |       // have to merge these classes. | 
 |       ProgramStateRef OldState = State; | 
 |       State = merge(F, State, MemberSym, SimplifiedMemberSym); | 
 |       if (!State) | 
 |         return nullptr; | 
 |       // No state change, no merge happened actually. | 
 |       if (OldState == State) | 
 |         continue; | 
 |  | 
 |       assert(find(State, MemberSym) == find(State, SimplifiedMemberSym)); | 
 |       // Remove the old and more complex symbol. | 
 |       State = find(State, MemberSym).removeMember(State, MemberSym); | 
 |  | 
 |       // Query the class constraint again b/c that may have changed during the | 
 |       // merge above. | 
 |       const RangeSet *ClassConstraint = getConstraint(State, Class); | 
 |  | 
 |       // Re-evaluate an SVal with top-level `State->assume`, this ignites | 
 |       // a RECURSIVE algorithm that will reach a FIXPOINT. | 
 |       // | 
 |       // About performance and complexity: Let us assume that in a State we | 
 |       // have N non-trivial equivalence classes and that all constraints and | 
 |       // disequality info is related to non-trivial classes. In the worst case, | 
 |       // we can simplify only one symbol of one class in each iteration. The | 
 |       // number of symbols in one class cannot grow b/c we replace the old | 
 |       // symbol with the simplified one. Also, the number of the equivalence | 
 |       // classes can decrease only, b/c the algorithm does a merge operation | 
 |       // optionally. We need N iterations in this case to reach the fixpoint. | 
 |       // Thus, the steps needed to be done in the worst case is proportional to | 
 |       // N*N. | 
 |       // | 
 |       // This worst case scenario can be extended to that case when we have | 
 |       // trivial classes in the constraints and in the disequality map. This | 
 |       // case can be reduced to the case with a State where there are only | 
 |       // non-trivial classes. This is because a merge operation on two trivial | 
 |       // classes results in one non-trivial class. | 
 |       State = reAssume(State, ClassConstraint, SimplifiedMemberVal); | 
 |       if (!State) | 
 |         return nullptr; | 
 |     } | 
 |   } | 
 |   return State; | 
 | } | 
 |  | 
 | inline ClassSet EquivalenceClass::getDisequalClasses(ProgramStateRef State, | 
 |                                                      SymbolRef Sym) { | 
 |   return find(State, Sym).getDisequalClasses(State); | 
 | } | 
 |  | 
 | inline ClassSet | 
 | EquivalenceClass::getDisequalClasses(ProgramStateRef State) const { | 
 |   return getDisequalClasses(State->get<DisequalityMap>(), | 
 |                             State->get_context<ClassSet>()); | 
 | } | 
 |  | 
 | inline ClassSet | 
 | EquivalenceClass::getDisequalClasses(DisequalityMapTy Map, | 
 |                                      ClassSet::Factory &Factory) const { | 
 |   if (const ClassSet *DisequalClasses = Map.lookup(*this)) | 
 |     return *DisequalClasses; | 
 |  | 
 |   return Factory.getEmptySet(); | 
 | } | 
 |  | 
 | bool EquivalenceClass::isClassDataConsistent(ProgramStateRef State) { | 
 |   ClassMembersTy Members = State->get<ClassMembers>(); | 
 |  | 
 |   for (std::pair<EquivalenceClass, SymbolSet> ClassMembersPair : Members) { | 
 |     for (SymbolRef Member : ClassMembersPair.second) { | 
 |       // Every member of the class should have a mapping back to the class. | 
 |       if (find(State, Member) == ClassMembersPair.first) { | 
 |         continue; | 
 |       } | 
 |  | 
 |       return false; | 
 |     } | 
 |   } | 
 |  | 
 |   DisequalityMapTy Disequalities = State->get<DisequalityMap>(); | 
 |   for (std::pair<EquivalenceClass, ClassSet> DisequalityInfo : Disequalities) { | 
 |     EquivalenceClass Class = DisequalityInfo.first; | 
 |     ClassSet DisequalClasses = DisequalityInfo.second; | 
 |  | 
 |     // There is no use in keeping empty sets in the map. | 
 |     if (DisequalClasses.isEmpty()) | 
 |       return false; | 
 |  | 
 |     // Disequality is symmetrical, i.e. for every Class A and B that A != B, | 
 |     // B != A should also be true. | 
 |     for (EquivalenceClass DisequalClass : DisequalClasses) { | 
 |       const ClassSet *DisequalToDisequalClasses = | 
 |           Disequalities.lookup(DisequalClass); | 
 |  | 
 |       // It should be a set of at least one element: Class | 
 |       if (!DisequalToDisequalClasses || | 
 |           !DisequalToDisequalClasses->contains(Class)) | 
 |         return false; | 
 |     } | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                    RangeConstraintManager implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | bool RangeConstraintManager::canReasonAbout(SVal X) const { | 
 |   Optional<nonloc::SymbolVal> SymVal = X.getAs<nonloc::SymbolVal>(); | 
 |   if (SymVal && SymVal->isExpression()) { | 
 |     const SymExpr *SE = SymVal->getSymbol(); | 
 |  | 
 |     if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) { | 
 |       switch (SIE->getOpcode()) { | 
 |       // We don't reason yet about bitwise-constraints on symbolic values. | 
 |       case BO_And: | 
 |       case BO_Or: | 
 |       case BO_Xor: | 
 |         return false; | 
 |       // We don't reason yet about these arithmetic constraints on | 
 |       // symbolic values. | 
 |       case BO_Mul: | 
 |       case BO_Div: | 
 |       case BO_Rem: | 
 |       case BO_Shl: | 
 |       case BO_Shr: | 
 |         return false; | 
 |       // All other cases. | 
 |       default: | 
 |         return true; | 
 |       } | 
 |     } | 
 |  | 
 |     if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(SE)) { | 
 |       // FIXME: Handle <=> here. | 
 |       if (BinaryOperator::isEqualityOp(SSE->getOpcode()) || | 
 |           BinaryOperator::isRelationalOp(SSE->getOpcode())) { | 
 |         // We handle Loc <> Loc comparisons, but not (yet) NonLoc <> NonLoc. | 
 |         // We've recently started producing Loc <> NonLoc comparisons (that | 
 |         // result from casts of one of the operands between eg. intptr_t and | 
 |         // void *), but we can't reason about them yet. | 
 |         if (Loc::isLocType(SSE->getLHS()->getType())) { | 
 |           return Loc::isLocType(SSE->getRHS()->getType()); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     return false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State, | 
 |                                                     SymbolRef Sym) { | 
 |   const RangeSet *Ranges = getConstraint(State, Sym); | 
 |  | 
 |   // If we don't have any information about this symbol, it's underconstrained. | 
 |   if (!Ranges) | 
 |     return ConditionTruthVal(); | 
 |  | 
 |   // If we have a concrete value, see if it's zero. | 
 |   if (const llvm::APSInt *Value = Ranges->getConcreteValue()) | 
 |     return *Value == 0; | 
 |  | 
 |   BasicValueFactory &BV = getBasicVals(); | 
 |   APSIntType IntType = BV.getAPSIntType(Sym->getType()); | 
 |   llvm::APSInt Zero = IntType.getZeroValue(); | 
 |  | 
 |   // Check if zero is in the set of possible values. | 
 |   if (!Ranges->contains(Zero)) | 
 |     return false; | 
 |  | 
 |   // Zero is a possible value, but it is not the /only/ possible value. | 
 |   return ConditionTruthVal(); | 
 | } | 
 |  | 
 | const llvm::APSInt *RangeConstraintManager::getSymVal(ProgramStateRef St, | 
 |                                                       SymbolRef Sym) const { | 
 |   const RangeSet *T = getConstraint(St, Sym); | 
 |   return T ? T->getConcreteValue() : nullptr; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                Remove dead symbols from existing constraints | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// Scan all symbols referenced by the constraints. If the symbol is not alive | 
 | /// as marked in LSymbols, mark it as dead in DSymbols. | 
 | ProgramStateRef | 
 | RangeConstraintManager::removeDeadBindings(ProgramStateRef State, | 
 |                                            SymbolReaper &SymReaper) { | 
 |   ClassMembersTy ClassMembersMap = State->get<ClassMembers>(); | 
 |   ClassMembersTy NewClassMembersMap = ClassMembersMap; | 
 |   ClassMembersTy::Factory &EMFactory = State->get_context<ClassMembers>(); | 
 |   SymbolSet::Factory &SetFactory = State->get_context<SymbolSet>(); | 
 |  | 
 |   ConstraintRangeTy Constraints = State->get<ConstraintRange>(); | 
 |   ConstraintRangeTy NewConstraints = Constraints; | 
 |   ConstraintRangeTy::Factory &ConstraintFactory = | 
 |       State->get_context<ConstraintRange>(); | 
 |  | 
 |   ClassMapTy Map = State->get<ClassMap>(); | 
 |   ClassMapTy NewMap = Map; | 
 |   ClassMapTy::Factory &ClassFactory = State->get_context<ClassMap>(); | 
 |  | 
 |   DisequalityMapTy Disequalities = State->get<DisequalityMap>(); | 
 |   DisequalityMapTy::Factory &DisequalityFactory = | 
 |       State->get_context<DisequalityMap>(); | 
 |   ClassSet::Factory &ClassSetFactory = State->get_context<ClassSet>(); | 
 |  | 
 |   bool ClassMapChanged = false; | 
 |   bool MembersMapChanged = false; | 
 |   bool ConstraintMapChanged = false; | 
 |   bool DisequalitiesChanged = false; | 
 |  | 
 |   auto removeDeadClass = [&](EquivalenceClass Class) { | 
 |     // Remove associated constraint ranges. | 
 |     Constraints = ConstraintFactory.remove(Constraints, Class); | 
 |     ConstraintMapChanged = true; | 
 |  | 
 |     // Update disequality information to not hold any information on the | 
 |     // removed class. | 
 |     ClassSet DisequalClasses = | 
 |         Class.getDisequalClasses(Disequalities, ClassSetFactory); | 
 |     if (!DisequalClasses.isEmpty()) { | 
 |       for (EquivalenceClass DisequalClass : DisequalClasses) { | 
 |         ClassSet DisequalToDisequalSet = | 
 |             DisequalClass.getDisequalClasses(Disequalities, ClassSetFactory); | 
 |         // DisequalToDisequalSet is guaranteed to be non-empty for consistent | 
 |         // disequality info. | 
 |         assert(!DisequalToDisequalSet.isEmpty()); | 
 |         ClassSet NewSet = ClassSetFactory.remove(DisequalToDisequalSet, Class); | 
 |  | 
 |         // No need in keeping an empty set. | 
 |         if (NewSet.isEmpty()) { | 
 |           Disequalities = | 
 |               DisequalityFactory.remove(Disequalities, DisequalClass); | 
 |         } else { | 
 |           Disequalities = | 
 |               DisequalityFactory.add(Disequalities, DisequalClass, NewSet); | 
 |         } | 
 |       } | 
 |       // Remove the data for the class | 
 |       Disequalities = DisequalityFactory.remove(Disequalities, Class); | 
 |       DisequalitiesChanged = true; | 
 |     } | 
 |   }; | 
 |  | 
 |   // 1. Let's see if dead symbols are trivial and have associated constraints. | 
 |   for (std::pair<EquivalenceClass, RangeSet> ClassConstraintPair : | 
 |        Constraints) { | 
 |     EquivalenceClass Class = ClassConstraintPair.first; | 
 |     if (Class.isTriviallyDead(State, SymReaper)) { | 
 |       // If this class is trivial, we can remove its constraints right away. | 
 |       removeDeadClass(Class); | 
 |     } | 
 |   } | 
 |  | 
 |   // 2. We don't need to track classes for dead symbols. | 
 |   for (std::pair<SymbolRef, EquivalenceClass> SymbolClassPair : Map) { | 
 |     SymbolRef Sym = SymbolClassPair.first; | 
 |  | 
 |     if (SymReaper.isDead(Sym)) { | 
 |       ClassMapChanged = true; | 
 |       NewMap = ClassFactory.remove(NewMap, Sym); | 
 |     } | 
 |   } | 
 |  | 
 |   // 3. Remove dead members from classes and remove dead non-trivial classes | 
 |   //    and their constraints. | 
 |   for (std::pair<EquivalenceClass, SymbolSet> ClassMembersPair : | 
 |        ClassMembersMap) { | 
 |     EquivalenceClass Class = ClassMembersPair.first; | 
 |     SymbolSet LiveMembers = ClassMembersPair.second; | 
 |     bool MembersChanged = false; | 
 |  | 
 |     for (SymbolRef Member : ClassMembersPair.second) { | 
 |       if (SymReaper.isDead(Member)) { | 
 |         MembersChanged = true; | 
 |         LiveMembers = SetFactory.remove(LiveMembers, Member); | 
 |       } | 
 |     } | 
 |  | 
 |     // Check if the class changed. | 
 |     if (!MembersChanged) | 
 |       continue; | 
 |  | 
 |     MembersMapChanged = true; | 
 |  | 
 |     if (LiveMembers.isEmpty()) { | 
 |       // The class is dead now, we need to wipe it out of the members map... | 
 |       NewClassMembersMap = EMFactory.remove(NewClassMembersMap, Class); | 
 |  | 
 |       // ...and remove all of its constraints. | 
 |       removeDeadClass(Class); | 
 |     } else { | 
 |       // We need to change the members associated with the class. | 
 |       NewClassMembersMap = | 
 |           EMFactory.add(NewClassMembersMap, Class, LiveMembers); | 
 |     } | 
 |   } | 
 |  | 
 |   // 4. Update the state with new maps. | 
 |   // | 
 |   // Here we try to be humble and update a map only if it really changed. | 
 |   if (ClassMapChanged) | 
 |     State = State->set<ClassMap>(NewMap); | 
 |  | 
 |   if (MembersMapChanged) | 
 |     State = State->set<ClassMembers>(NewClassMembersMap); | 
 |  | 
 |   if (ConstraintMapChanged) | 
 |     State = State->set<ConstraintRange>(Constraints); | 
 |  | 
 |   if (DisequalitiesChanged) | 
 |     State = State->set<DisequalityMap>(Disequalities); | 
 |  | 
 |   assert(EquivalenceClass::isClassDataConsistent(State)); | 
 |  | 
 |   return State; | 
 | } | 
 |  | 
 | RangeSet RangeConstraintManager::getRange(ProgramStateRef State, | 
 |                                           SymbolRef Sym) { | 
 |   return SymbolicRangeInferrer::inferRange(F, State, Sym); | 
 | } | 
 |  | 
 | ProgramStateRef RangeConstraintManager::setRange(ProgramStateRef State, | 
 |                                                  SymbolRef Sym, | 
 |                                                  RangeSet Range) { | 
 |   return ConstraintAssignor::assign(State, getSValBuilder(), F, Sym, Range); | 
 | } | 
 |  | 
 | //===------------------------------------------------------------------------=== | 
 | // assumeSymX methods: protected interface for RangeConstraintManager. | 
 | //===------------------------------------------------------------------------===/ | 
 |  | 
 | // The syntax for ranges below is mathematical, using [x, y] for closed ranges | 
 | // and (x, y) for open ranges. These ranges are modular, corresponding with | 
 | // a common treatment of C integer overflow. This means that these methods | 
 | // do not have to worry about overflow; RangeSet::Intersect can handle such a | 
 | // "wraparound" range. | 
 | // As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1, | 
 | // UINT_MAX, 0, 1, and 2. | 
 |  | 
 | ProgramStateRef | 
 | RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym, | 
 |                                     const llvm::APSInt &Int, | 
 |                                     const llvm::APSInt &Adjustment) { | 
 |   // Before we do any real work, see if the value can even show up. | 
 |   APSIntType AdjustmentType(Adjustment); | 
 |   if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within) | 
 |     return St; | 
 |  | 
 |   llvm::APSInt Point = AdjustmentType.convert(Int) - Adjustment; | 
 |   RangeSet New = getRange(St, Sym); | 
 |   New = F.deletePoint(New, Point); | 
 |  | 
 |   return setRange(St, Sym, New); | 
 | } | 
 |  | 
 | ProgramStateRef | 
 | RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym, | 
 |                                     const llvm::APSInt &Int, | 
 |                                     const llvm::APSInt &Adjustment) { | 
 |   // Before we do any real work, see if the value can even show up. | 
 |   APSIntType AdjustmentType(Adjustment); | 
 |   if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within) | 
 |     return nullptr; | 
 |  | 
 |   // [Int-Adjustment, Int-Adjustment] | 
 |   llvm::APSInt AdjInt = AdjustmentType.convert(Int) - Adjustment; | 
 |   RangeSet New = getRange(St, Sym); | 
 |   New = F.intersect(New, AdjInt); | 
 |  | 
 |   return setRange(St, Sym, New); | 
 | } | 
 |  | 
 | RangeSet RangeConstraintManager::getSymLTRange(ProgramStateRef St, | 
 |                                                SymbolRef Sym, | 
 |                                                const llvm::APSInt &Int, | 
 |                                                const llvm::APSInt &Adjustment) { | 
 |   // Before we do any real work, see if the value can even show up. | 
 |   APSIntType AdjustmentType(Adjustment); | 
 |   switch (AdjustmentType.testInRange(Int, true)) { | 
 |   case APSIntType::RTR_Below: | 
 |     return F.getEmptySet(); | 
 |   case APSIntType::RTR_Within: | 
 |     break; | 
 |   case APSIntType::RTR_Above: | 
 |     return getRange(St, Sym); | 
 |   } | 
 |  | 
 |   // Special case for Int == Min. This is always false. | 
 |   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); | 
 |   llvm::APSInt Min = AdjustmentType.getMinValue(); | 
 |   if (ComparisonVal == Min) | 
 |     return F.getEmptySet(); | 
 |  | 
 |   llvm::APSInt Lower = Min - Adjustment; | 
 |   llvm::APSInt Upper = ComparisonVal - Adjustment; | 
 |   --Upper; | 
 |  | 
 |   RangeSet Result = getRange(St, Sym); | 
 |   return F.intersect(Result, Lower, Upper); | 
 | } | 
 |  | 
 | ProgramStateRef | 
 | RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym, | 
 |                                     const llvm::APSInt &Int, | 
 |                                     const llvm::APSInt &Adjustment) { | 
 |   RangeSet New = getSymLTRange(St, Sym, Int, Adjustment); | 
 |   return setRange(St, Sym, New); | 
 | } | 
 |  | 
 | RangeSet RangeConstraintManager::getSymGTRange(ProgramStateRef St, | 
 |                                                SymbolRef Sym, | 
 |                                                const llvm::APSInt &Int, | 
 |                                                const llvm::APSInt &Adjustment) { | 
 |   // Before we do any real work, see if the value can even show up. | 
 |   APSIntType AdjustmentType(Adjustment); | 
 |   switch (AdjustmentType.testInRange(Int, true)) { | 
 |   case APSIntType::RTR_Below: | 
 |     return getRange(St, Sym); | 
 |   case APSIntType::RTR_Within: | 
 |     break; | 
 |   case APSIntType::RTR_Above: | 
 |     return F.getEmptySet(); | 
 |   } | 
 |  | 
 |   // Special case for Int == Max. This is always false. | 
 |   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); | 
 |   llvm::APSInt Max = AdjustmentType.getMaxValue(); | 
 |   if (ComparisonVal == Max) | 
 |     return F.getEmptySet(); | 
 |  | 
 |   llvm::APSInt Lower = ComparisonVal - Adjustment; | 
 |   llvm::APSInt Upper = Max - Adjustment; | 
 |   ++Lower; | 
 |  | 
 |   RangeSet SymRange = getRange(St, Sym); | 
 |   return F.intersect(SymRange, Lower, Upper); | 
 | } | 
 |  | 
 | ProgramStateRef | 
 | RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym, | 
 |                                     const llvm::APSInt &Int, | 
 |                                     const llvm::APSInt &Adjustment) { | 
 |   RangeSet New = getSymGTRange(St, Sym, Int, Adjustment); | 
 |   return setRange(St, Sym, New); | 
 | } | 
 |  | 
 | RangeSet RangeConstraintManager::getSymGERange(ProgramStateRef St, | 
 |                                                SymbolRef Sym, | 
 |                                                const llvm::APSInt &Int, | 
 |                                                const llvm::APSInt &Adjustment) { | 
 |   // Before we do any real work, see if the value can even show up. | 
 |   APSIntType AdjustmentType(Adjustment); | 
 |   switch (AdjustmentType.testInRange(Int, true)) { | 
 |   case APSIntType::RTR_Below: | 
 |     return getRange(St, Sym); | 
 |   case APSIntType::RTR_Within: | 
 |     break; | 
 |   case APSIntType::RTR_Above: | 
 |     return F.getEmptySet(); | 
 |   } | 
 |  | 
 |   // Special case for Int == Min. This is always feasible. | 
 |   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); | 
 |   llvm::APSInt Min = AdjustmentType.getMinValue(); | 
 |   if (ComparisonVal == Min) | 
 |     return getRange(St, Sym); | 
 |  | 
 |   llvm::APSInt Max = AdjustmentType.getMaxValue(); | 
 |   llvm::APSInt Lower = ComparisonVal - Adjustment; | 
 |   llvm::APSInt Upper = Max - Adjustment; | 
 |  | 
 |   RangeSet SymRange = getRange(St, Sym); | 
 |   return F.intersect(SymRange, Lower, Upper); | 
 | } | 
 |  | 
 | ProgramStateRef | 
 | RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym, | 
 |                                     const llvm::APSInt &Int, | 
 |                                     const llvm::APSInt &Adjustment) { | 
 |   RangeSet New = getSymGERange(St, Sym, Int, Adjustment); | 
 |   return setRange(St, Sym, New); | 
 | } | 
 |  | 
 | RangeSet | 
 | RangeConstraintManager::getSymLERange(llvm::function_ref<RangeSet()> RS, | 
 |                                       const llvm::APSInt &Int, | 
 |                                       const llvm::APSInt &Adjustment) { | 
 |   // Before we do any real work, see if the value can even show up. | 
 |   APSIntType AdjustmentType(Adjustment); | 
 |   switch (AdjustmentType.testInRange(Int, true)) { | 
 |   case APSIntType::RTR_Below: | 
 |     return F.getEmptySet(); | 
 |   case APSIntType::RTR_Within: | 
 |     break; | 
 |   case APSIntType::RTR_Above: | 
 |     return RS(); | 
 |   } | 
 |  | 
 |   // Special case for Int == Max. This is always feasible. | 
 |   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int); | 
 |   llvm::APSInt Max = AdjustmentType.getMaxValue(); | 
 |   if (ComparisonVal == Max) | 
 |     return RS(); | 
 |  | 
 |   llvm::APSInt Min = AdjustmentType.getMinValue(); | 
 |   llvm::APSInt Lower = Min - Adjustment; | 
 |   llvm::APSInt Upper = ComparisonVal - Adjustment; | 
 |  | 
 |   RangeSet Default = RS(); | 
 |   return F.intersect(Default, Lower, Upper); | 
 | } | 
 |  | 
 | RangeSet RangeConstraintManager::getSymLERange(ProgramStateRef St, | 
 |                                                SymbolRef Sym, | 
 |                                                const llvm::APSInt &Int, | 
 |                                                const llvm::APSInt &Adjustment) { | 
 |   return getSymLERange([&] { return getRange(St, Sym); }, Int, Adjustment); | 
 | } | 
 |  | 
 | ProgramStateRef | 
 | RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym, | 
 |                                     const llvm::APSInt &Int, | 
 |                                     const llvm::APSInt &Adjustment) { | 
 |   RangeSet New = getSymLERange(St, Sym, Int, Adjustment); | 
 |   return setRange(St, Sym, New); | 
 | } | 
 |  | 
 | ProgramStateRef RangeConstraintManager::assumeSymWithinInclusiveRange( | 
 |     ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, | 
 |     const llvm::APSInt &To, const llvm::APSInt &Adjustment) { | 
 |   RangeSet New = getSymGERange(State, Sym, From, Adjustment); | 
 |   if (New.isEmpty()) | 
 |     return nullptr; | 
 |   RangeSet Out = getSymLERange([&] { return New; }, To, Adjustment); | 
 |   return setRange(State, Sym, Out); | 
 | } | 
 |  | 
 | ProgramStateRef RangeConstraintManager::assumeSymOutsideInclusiveRange( | 
 |     ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, | 
 |     const llvm::APSInt &To, const llvm::APSInt &Adjustment) { | 
 |   RangeSet RangeLT = getSymLTRange(State, Sym, From, Adjustment); | 
 |   RangeSet RangeGT = getSymGTRange(State, Sym, To, Adjustment); | 
 |   RangeSet New(F.add(RangeLT, RangeGT)); | 
 |   return setRange(State, Sym, New); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Pretty-printing. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | void RangeConstraintManager::printJson(raw_ostream &Out, ProgramStateRef State, | 
 |                                        const char *NL, unsigned int Space, | 
 |                                        bool IsDot) const { | 
 |   printConstraints(Out, State, NL, Space, IsDot); | 
 |   printEquivalenceClasses(Out, State, NL, Space, IsDot); | 
 |   printDisequalities(Out, State, NL, Space, IsDot); | 
 | } | 
 |  | 
 | void RangeConstraintManager::printValue(raw_ostream &Out, ProgramStateRef State, | 
 |                                         SymbolRef Sym) { | 
 |   const RangeSet RS = getRange(State, Sym); | 
 |   Out << RS.getBitWidth() << (RS.isUnsigned() ? "u:" : "s:"); | 
 |   RS.dump(Out); | 
 | } | 
 |  | 
 | static std::string toString(const SymbolRef &Sym) { | 
 |   std::string S; | 
 |   llvm::raw_string_ostream O(S); | 
 |   Sym->dumpToStream(O); | 
 |   return O.str(); | 
 | } | 
 |  | 
 | void RangeConstraintManager::printConstraints(raw_ostream &Out, | 
 |                                               ProgramStateRef State, | 
 |                                               const char *NL, | 
 |                                               unsigned int Space, | 
 |                                               bool IsDot) const { | 
 |   ConstraintRangeTy Constraints = State->get<ConstraintRange>(); | 
 |  | 
 |   Indent(Out, Space, IsDot) << "\"constraints\": "; | 
 |   if (Constraints.isEmpty()) { | 
 |     Out << "null," << NL; | 
 |     return; | 
 |   } | 
 |  | 
 |   std::map<std::string, RangeSet> OrderedConstraints; | 
 |   for (std::pair<EquivalenceClass, RangeSet> P : Constraints) { | 
 |     SymbolSet ClassMembers = P.first.getClassMembers(State); | 
 |     for (const SymbolRef &ClassMember : ClassMembers) { | 
 |       bool insertion_took_place; | 
 |       std::tie(std::ignore, insertion_took_place) = | 
 |           OrderedConstraints.insert({toString(ClassMember), P.second}); | 
 |       assert(insertion_took_place && | 
 |              "two symbols should not have the same dump"); | 
 |     } | 
 |   } | 
 |  | 
 |   ++Space; | 
 |   Out << '[' << NL; | 
 |   bool First = true; | 
 |   for (std::pair<std::string, RangeSet> P : OrderedConstraints) { | 
 |     if (First) { | 
 |       First = false; | 
 |     } else { | 
 |       Out << ','; | 
 |       Out << NL; | 
 |     } | 
 |     Indent(Out, Space, IsDot) | 
 |         << "{ \"symbol\": \"" << P.first << "\", \"range\": \""; | 
 |     P.second.dump(Out); | 
 |     Out << "\" }"; | 
 |   } | 
 |   Out << NL; | 
 |  | 
 |   --Space; | 
 |   Indent(Out, Space, IsDot) << "]," << NL; | 
 | } | 
 |  | 
 | static std::string toString(ProgramStateRef State, EquivalenceClass Class) { | 
 |   SymbolSet ClassMembers = Class.getClassMembers(State); | 
 |   llvm::SmallVector<SymbolRef, 8> ClassMembersSorted(ClassMembers.begin(), | 
 |                                                      ClassMembers.end()); | 
 |   llvm::sort(ClassMembersSorted, | 
 |              [](const SymbolRef &LHS, const SymbolRef &RHS) { | 
 |                return toString(LHS) < toString(RHS); | 
 |              }); | 
 |  | 
 |   bool FirstMember = true; | 
 |  | 
 |   std::string Str; | 
 |   llvm::raw_string_ostream Out(Str); | 
 |   Out << "[ "; | 
 |   for (SymbolRef ClassMember : ClassMembersSorted) { | 
 |     if (FirstMember) | 
 |       FirstMember = false; | 
 |     else | 
 |       Out << ", "; | 
 |     Out << "\"" << ClassMember << "\""; | 
 |   } | 
 |   Out << " ]"; | 
 |   return Out.str(); | 
 | } | 
 |  | 
 | void RangeConstraintManager::printEquivalenceClasses(raw_ostream &Out, | 
 |                                                      ProgramStateRef State, | 
 |                                                      const char *NL, | 
 |                                                      unsigned int Space, | 
 |                                                      bool IsDot) const { | 
 |   ClassMembersTy Members = State->get<ClassMembers>(); | 
 |  | 
 |   Indent(Out, Space, IsDot) << "\"equivalence_classes\": "; | 
 |   if (Members.isEmpty()) { | 
 |     Out << "null," << NL; | 
 |     return; | 
 |   } | 
 |  | 
 |   std::set<std::string> MembersStr; | 
 |   for (std::pair<EquivalenceClass, SymbolSet> ClassToSymbolSet : Members) | 
 |     MembersStr.insert(toString(State, ClassToSymbolSet.first)); | 
 |  | 
 |   ++Space; | 
 |   Out << '[' << NL; | 
 |   bool FirstClass = true; | 
 |   for (const std::string &Str : MembersStr) { | 
 |     if (FirstClass) { | 
 |       FirstClass = false; | 
 |     } else { | 
 |       Out << ','; | 
 |       Out << NL; | 
 |     } | 
 |     Indent(Out, Space, IsDot); | 
 |     Out << Str; | 
 |   } | 
 |   Out << NL; | 
 |  | 
 |   --Space; | 
 |   Indent(Out, Space, IsDot) << "]," << NL; | 
 | } | 
 |  | 
 | void RangeConstraintManager::printDisequalities(raw_ostream &Out, | 
 |                                                 ProgramStateRef State, | 
 |                                                 const char *NL, | 
 |                                                 unsigned int Space, | 
 |                                                 bool IsDot) const { | 
 |   DisequalityMapTy Disequalities = State->get<DisequalityMap>(); | 
 |  | 
 |   Indent(Out, Space, IsDot) << "\"disequality_info\": "; | 
 |   if (Disequalities.isEmpty()) { | 
 |     Out << "null," << NL; | 
 |     return; | 
 |   } | 
 |  | 
 |   // Transform the disequality info to an ordered map of | 
 |   // [string -> (ordered set of strings)] | 
 |   using EqClassesStrTy = std::set<std::string>; | 
 |   using DisequalityInfoStrTy = std::map<std::string, EqClassesStrTy>; | 
 |   DisequalityInfoStrTy DisequalityInfoStr; | 
 |   for (std::pair<EquivalenceClass, ClassSet> ClassToDisEqSet : Disequalities) { | 
 |     EquivalenceClass Class = ClassToDisEqSet.first; | 
 |     ClassSet DisequalClasses = ClassToDisEqSet.second; | 
 |     EqClassesStrTy MembersStr; | 
 |     for (EquivalenceClass DisEqClass : DisequalClasses) | 
 |       MembersStr.insert(toString(State, DisEqClass)); | 
 |     DisequalityInfoStr.insert({toString(State, Class), MembersStr}); | 
 |   } | 
 |  | 
 |   ++Space; | 
 |   Out << '[' << NL; | 
 |   bool FirstClass = true; | 
 |   for (std::pair<std::string, EqClassesStrTy> ClassToDisEqSet : | 
 |        DisequalityInfoStr) { | 
 |     const std::string &Class = ClassToDisEqSet.first; | 
 |     if (FirstClass) { | 
 |       FirstClass = false; | 
 |     } else { | 
 |       Out << ','; | 
 |       Out << NL; | 
 |     } | 
 |     Indent(Out, Space, IsDot) << "{" << NL; | 
 |     unsigned int DisEqSpace = Space + 1; | 
 |     Indent(Out, DisEqSpace, IsDot) << "\"class\": "; | 
 |     Out << Class; | 
 |     const EqClassesStrTy &DisequalClasses = ClassToDisEqSet.second; | 
 |     if (!DisequalClasses.empty()) { | 
 |       Out << "," << NL; | 
 |       Indent(Out, DisEqSpace, IsDot) << "\"disequal_to\": [" << NL; | 
 |       unsigned int DisEqClassSpace = DisEqSpace + 1; | 
 |       Indent(Out, DisEqClassSpace, IsDot); | 
 |       bool FirstDisEqClass = true; | 
 |       for (const std::string &DisEqClass : DisequalClasses) { | 
 |         if (FirstDisEqClass) { | 
 |           FirstDisEqClass = false; | 
 |         } else { | 
 |           Out << ',' << NL; | 
 |           Indent(Out, DisEqClassSpace, IsDot); | 
 |         } | 
 |         Out << DisEqClass; | 
 |       } | 
 |       Out << "]" << NL; | 
 |     } | 
 |     Indent(Out, Space, IsDot) << "}"; | 
 |   } | 
 |   Out << NL; | 
 |  | 
 |   --Space; | 
 |   Indent(Out, Space, IsDot) << "]," << NL; | 
 | } |