| //===-- Value.cpp - Implement the Value class -----------------------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements the Value, ValueHandle, and User classes. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/IR/Value.h" | 
 | #include "LLVMContextImpl.h" | 
 | #include "llvm/ADT/DenseMap.h" | 
 | #include "llvm/ADT/SmallString.h" | 
 | #include "llvm/ADT/SetVector.h" | 
 | #include "llvm/IR/Constant.h" | 
 | #include "llvm/IR/Constants.h" | 
 | #include "llvm/IR/DataLayout.h" | 
 | #include "llvm/IR/DerivedTypes.h" | 
 | #include "llvm/IR/DerivedUser.h" | 
 | #include "llvm/IR/GetElementPtrTypeIterator.h" | 
 | #include "llvm/IR/InstrTypes.h" | 
 | #include "llvm/IR/Instructions.h" | 
 | #include "llvm/IR/IntrinsicInst.h" | 
 | #include "llvm/IR/Module.h" | 
 | #include "llvm/IR/Operator.h" | 
 | #include "llvm/IR/Statepoint.h" | 
 | #include "llvm/IR/ValueHandle.h" | 
 | #include "llvm/IR/ValueSymbolTable.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/ManagedStatic.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include <algorithm> | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | static cl::opt<unsigned> NonGlobalValueMaxNameSize( | 
 |     "non-global-value-max-name-size", cl::Hidden, cl::init(1024), | 
 |     cl::desc("Maximum size for the name of non-global values.")); | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                                Value Class | 
 | //===----------------------------------------------------------------------===// | 
 | static inline Type *checkType(Type *Ty) { | 
 |   assert(Ty && "Value defined with a null type: Error!"); | 
 |   return Ty; | 
 | } | 
 |  | 
 | Value::Value(Type *ty, unsigned scid) | 
 |     : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid), | 
 |       HasValueHandle(0), SubclassOptionalData(0), SubclassData(0), | 
 |       NumUserOperands(0), IsUsedByMD(false), HasName(false) { | 
 |   static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)"); | 
 |   // FIXME: Why isn't this in the subclass gunk?? | 
 |   // Note, we cannot call isa<CallInst> before the CallInst has been | 
 |   // constructed. | 
 |   if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke) | 
 |     assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) && | 
 |            "invalid CallInst type!"); | 
 |   else if (SubclassID != BasicBlockVal && | 
 |            (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal)) | 
 |     assert((VTy->isFirstClassType() || VTy->isVoidTy()) && | 
 |            "Cannot create non-first-class values except for constants!"); | 
 |   static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned), | 
 |                 "Value too big"); | 
 | } | 
 |  | 
 | Value::~Value() { | 
 |   // Notify all ValueHandles (if present) that this value is going away. | 
 |   if (HasValueHandle) | 
 |     ValueHandleBase::ValueIsDeleted(this); | 
 |   if (isUsedByMetadata()) | 
 |     ValueAsMetadata::handleDeletion(this); | 
 |  | 
 | #ifndef NDEBUG      // Only in -g mode... | 
 |   // Check to make sure that there are no uses of this value that are still | 
 |   // around when the value is destroyed.  If there are, then we have a dangling | 
 |   // reference and something is wrong.  This code is here to print out where | 
 |   // the value is still being referenced. | 
 |   // | 
 |   if (!use_empty()) { | 
 |     dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n"; | 
 |     for (auto *U : users()) | 
 |       dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n"; | 
 |   } | 
 | #endif | 
 |   assert(use_empty() && "Uses remain when a value is destroyed!"); | 
 |  | 
 |   // If this value is named, destroy the name.  This should not be in a symtab | 
 |   // at this point. | 
 |   destroyValueName(); | 
 | } | 
 |  | 
 | void Value::deleteValue() { | 
 |   switch (getValueID()) { | 
 | #define HANDLE_VALUE(Name)                                                     \ | 
 |   case Value::Name##Val:                                                       \ | 
 |     delete static_cast<Name *>(this);                                          \ | 
 |     break; | 
 | #define HANDLE_MEMORY_VALUE(Name)                                              \ | 
 |   case Value::Name##Val:                                                       \ | 
 |     static_cast<DerivedUser *>(this)->DeleteValue(                             \ | 
 |         static_cast<DerivedUser *>(this));                                     \ | 
 |     break; | 
 | #define HANDLE_INSTRUCTION(Name)  /* nothing */ | 
 | #include "llvm/IR/Value.def" | 
 |  | 
 | #define HANDLE_INST(N, OPC, CLASS)                                             \ | 
 |   case Value::InstructionVal + Instruction::OPC:                               \ | 
 |     delete static_cast<CLASS *>(this);                                         \ | 
 |     break; | 
 | #define HANDLE_USER_INST(N, OPC, CLASS) | 
 | #include "llvm/IR/Instruction.def" | 
 |  | 
 |   default: | 
 |     llvm_unreachable("attempting to delete unknown value kind"); | 
 |   } | 
 | } | 
 |  | 
 | void Value::destroyValueName() { | 
 |   ValueName *Name = getValueName(); | 
 |   if (Name) | 
 |     Name->Destroy(); | 
 |   setValueName(nullptr); | 
 | } | 
 |  | 
 | bool Value::hasNUses(unsigned N) const { | 
 |   return hasNItems(use_begin(), use_end(), N); | 
 | } | 
 |  | 
 | bool Value::hasNUsesOrMore(unsigned N) const { | 
 |   return hasNItemsOrMore(use_begin(), use_end(), N); | 
 | } | 
 |  | 
 | bool Value::isUsedInBasicBlock(const BasicBlock *BB) const { | 
 |   // This can be computed either by scanning the instructions in BB, or by | 
 |   // scanning the use list of this Value. Both lists can be very long, but | 
 |   // usually one is quite short. | 
 |   // | 
 |   // Scan both lists simultaneously until one is exhausted. This limits the | 
 |   // search to the shorter list. | 
 |   BasicBlock::const_iterator BI = BB->begin(), BE = BB->end(); | 
 |   const_user_iterator UI = user_begin(), UE = user_end(); | 
 |   for (; BI != BE && UI != UE; ++BI, ++UI) { | 
 |     // Scan basic block: Check if this Value is used by the instruction at BI. | 
 |     if (is_contained(BI->operands(), this)) | 
 |       return true; | 
 |     // Scan use list: Check if the use at UI is in BB. | 
 |     const auto *User = dyn_cast<Instruction>(*UI); | 
 |     if (User && User->getParent() == BB) | 
 |       return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | unsigned Value::getNumUses() const { | 
 |   return (unsigned)std::distance(use_begin(), use_end()); | 
 | } | 
 |  | 
 | static bool getSymTab(Value *V, ValueSymbolTable *&ST) { | 
 |   ST = nullptr; | 
 |   if (Instruction *I = dyn_cast<Instruction>(V)) { | 
 |     if (BasicBlock *P = I->getParent()) | 
 |       if (Function *PP = P->getParent()) | 
 |         ST = PP->getValueSymbolTable(); | 
 |   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) { | 
 |     if (Function *P = BB->getParent()) | 
 |       ST = P->getValueSymbolTable(); | 
 |   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { | 
 |     if (Module *P = GV->getParent()) | 
 |       ST = &P->getValueSymbolTable(); | 
 |   } else if (Argument *A = dyn_cast<Argument>(V)) { | 
 |     if (Function *P = A->getParent()) | 
 |       ST = P->getValueSymbolTable(); | 
 |   } else { | 
 |     assert(isa<Constant>(V) && "Unknown value type!"); | 
 |     return true;  // no name is setable for this. | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | ValueName *Value::getValueName() const { | 
 |   if (!HasName) return nullptr; | 
 |  | 
 |   LLVMContext &Ctx = getContext(); | 
 |   auto I = Ctx.pImpl->ValueNames.find(this); | 
 |   assert(I != Ctx.pImpl->ValueNames.end() && | 
 |          "No name entry found!"); | 
 |  | 
 |   return I->second; | 
 | } | 
 |  | 
 | void Value::setValueName(ValueName *VN) { | 
 |   LLVMContext &Ctx = getContext(); | 
 |  | 
 |   assert(HasName == Ctx.pImpl->ValueNames.count(this) && | 
 |          "HasName bit out of sync!"); | 
 |  | 
 |   if (!VN) { | 
 |     if (HasName) | 
 |       Ctx.pImpl->ValueNames.erase(this); | 
 |     HasName = false; | 
 |     return; | 
 |   } | 
 |  | 
 |   HasName = true; | 
 |   Ctx.pImpl->ValueNames[this] = VN; | 
 | } | 
 |  | 
 | StringRef Value::getName() const { | 
 |   // Make sure the empty string is still a C string. For historical reasons, | 
 |   // some clients want to call .data() on the result and expect it to be null | 
 |   // terminated. | 
 |   if (!hasName()) | 
 |     return StringRef("", 0); | 
 |   return getValueName()->getKey(); | 
 | } | 
 |  | 
 | void Value::setNameImpl(const Twine &NewName) { | 
 |   // Fast-path: LLVMContext can be set to strip out non-GlobalValue names | 
 |   if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this)) | 
 |     return; | 
 |  | 
 |   // Fast path for common IRBuilder case of setName("") when there is no name. | 
 |   if (NewName.isTriviallyEmpty() && !hasName()) | 
 |     return; | 
 |  | 
 |   SmallString<256> NameData; | 
 |   StringRef NameRef = NewName.toStringRef(NameData); | 
 |   assert(NameRef.find_first_of(0) == StringRef::npos && | 
 |          "Null bytes are not allowed in names"); | 
 |  | 
 |   // Name isn't changing? | 
 |   if (getName() == NameRef) | 
 |     return; | 
 |  | 
 |   // Cap the size of non-GlobalValue names. | 
 |   if (NameRef.size() > NonGlobalValueMaxNameSize && !isa<GlobalValue>(this)) | 
 |     NameRef = | 
 |         NameRef.substr(0, std::max(1u, (unsigned)NonGlobalValueMaxNameSize)); | 
 |  | 
 |   assert(!getType()->isVoidTy() && "Cannot assign a name to void values!"); | 
 |  | 
 |   // Get the symbol table to update for this object. | 
 |   ValueSymbolTable *ST; | 
 |   if (getSymTab(this, ST)) | 
 |     return;  // Cannot set a name on this value (e.g. constant). | 
 |  | 
 |   if (!ST) { // No symbol table to update?  Just do the change. | 
 |     if (NameRef.empty()) { | 
 |       // Free the name for this value. | 
 |       destroyValueName(); | 
 |       return; | 
 |     } | 
 |  | 
 |     // NOTE: Could optimize for the case the name is shrinking to not deallocate | 
 |     // then reallocated. | 
 |     destroyValueName(); | 
 |  | 
 |     // Create the new name. | 
 |     setValueName(ValueName::Create(NameRef)); | 
 |     getValueName()->setValue(this); | 
 |     return; | 
 |   } | 
 |  | 
 |   // NOTE: Could optimize for the case the name is shrinking to not deallocate | 
 |   // then reallocated. | 
 |   if (hasName()) { | 
 |     // Remove old name. | 
 |     ST->removeValueName(getValueName()); | 
 |     destroyValueName(); | 
 |  | 
 |     if (NameRef.empty()) | 
 |       return; | 
 |   } | 
 |  | 
 |   // Name is changing to something new. | 
 |   setValueName(ST->createValueName(NameRef, this)); | 
 | } | 
 |  | 
 | void Value::setName(const Twine &NewName) { | 
 |   setNameImpl(NewName); | 
 |   if (Function *F = dyn_cast<Function>(this)) | 
 |     F->recalculateIntrinsicID(); | 
 | } | 
 |  | 
 | void Value::takeName(Value *V) { | 
 |   ValueSymbolTable *ST = nullptr; | 
 |   // If this value has a name, drop it. | 
 |   if (hasName()) { | 
 |     // Get the symtab this is in. | 
 |     if (getSymTab(this, ST)) { | 
 |       // We can't set a name on this value, but we need to clear V's name if | 
 |       // it has one. | 
 |       if (V->hasName()) V->setName(""); | 
 |       return;  // Cannot set a name on this value (e.g. constant). | 
 |     } | 
 |  | 
 |     // Remove old name. | 
 |     if (ST) | 
 |       ST->removeValueName(getValueName()); | 
 |     destroyValueName(); | 
 |   } | 
 |  | 
 |   // Now we know that this has no name. | 
 |  | 
 |   // If V has no name either, we're done. | 
 |   if (!V->hasName()) return; | 
 |  | 
 |   // Get this's symtab if we didn't before. | 
 |   if (!ST) { | 
 |     if (getSymTab(this, ST)) { | 
 |       // Clear V's name. | 
 |       V->setName(""); | 
 |       return;  // Cannot set a name on this value (e.g. constant). | 
 |     } | 
 |   } | 
 |  | 
 |   // Get V's ST, this should always succed, because V has a name. | 
 |   ValueSymbolTable *VST; | 
 |   bool Failure = getSymTab(V, VST); | 
 |   assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure; | 
 |  | 
 |   // If these values are both in the same symtab, we can do this very fast. | 
 |   // This works even if both values have no symtab yet. | 
 |   if (ST == VST) { | 
 |     // Take the name! | 
 |     setValueName(V->getValueName()); | 
 |     V->setValueName(nullptr); | 
 |     getValueName()->setValue(this); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Otherwise, things are slightly more complex.  Remove V's name from VST and | 
 |   // then reinsert it into ST. | 
 |  | 
 |   if (VST) | 
 |     VST->removeValueName(V->getValueName()); | 
 |   setValueName(V->getValueName()); | 
 |   V->setValueName(nullptr); | 
 |   getValueName()->setValue(this); | 
 |  | 
 |   if (ST) | 
 |     ST->reinsertValue(this); | 
 | } | 
 |  | 
 | void Value::assertModuleIsMaterializedImpl() const { | 
 | #ifndef NDEBUG | 
 |   const GlobalValue *GV = dyn_cast<GlobalValue>(this); | 
 |   if (!GV) | 
 |     return; | 
 |   const Module *M = GV->getParent(); | 
 |   if (!M) | 
 |     return; | 
 |   assert(M->isMaterialized()); | 
 | #endif | 
 | } | 
 |  | 
 | #ifndef NDEBUG | 
 | static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr, | 
 |                      Constant *C) { | 
 |   if (!Cache.insert(Expr).second) | 
 |     return false; | 
 |  | 
 |   for (auto &O : Expr->operands()) { | 
 |     if (O == C) | 
 |       return true; | 
 |     auto *CE = dyn_cast<ConstantExpr>(O); | 
 |     if (!CE) | 
 |       continue; | 
 |     if (contains(Cache, CE, C)) | 
 |       return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | static bool contains(Value *Expr, Value *V) { | 
 |   if (Expr == V) | 
 |     return true; | 
 |  | 
 |   auto *C = dyn_cast<Constant>(V); | 
 |   if (!C) | 
 |     return false; | 
 |  | 
 |   auto *CE = dyn_cast<ConstantExpr>(Expr); | 
 |   if (!CE) | 
 |     return false; | 
 |  | 
 |   SmallPtrSet<ConstantExpr *, 4> Cache; | 
 |   return contains(Cache, CE, C); | 
 | } | 
 | #endif // NDEBUG | 
 |  | 
 | void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) { | 
 |   assert(New && "Value::replaceAllUsesWith(<null>) is invalid!"); | 
 |   assert(!contains(New, this) && | 
 |          "this->replaceAllUsesWith(expr(this)) is NOT valid!"); | 
 |   assert(New->getType() == getType() && | 
 |          "replaceAllUses of value with new value of different type!"); | 
 |  | 
 |   // Notify all ValueHandles (if present) that this value is going away. | 
 |   if (HasValueHandle) | 
 |     ValueHandleBase::ValueIsRAUWd(this, New); | 
 |   if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata()) | 
 |     ValueAsMetadata::handleRAUW(this, New); | 
 |  | 
 |   while (!materialized_use_empty()) { | 
 |     Use &U = *UseList; | 
 |     // Must handle Constants specially, we cannot call replaceUsesOfWith on a | 
 |     // constant because they are uniqued. | 
 |     if (auto *C = dyn_cast<Constant>(U.getUser())) { | 
 |       if (!isa<GlobalValue>(C)) { | 
 |         C->handleOperandChange(this, New); | 
 |         continue; | 
 |       } | 
 |     } | 
 |  | 
 |     U.set(New); | 
 |   } | 
 |  | 
 |   if (BasicBlock *BB = dyn_cast<BasicBlock>(this)) | 
 |     BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New)); | 
 | } | 
 |  | 
 | void Value::replaceAllUsesWith(Value *New) { | 
 |   doRAUW(New, ReplaceMetadataUses::Yes); | 
 | } | 
 |  | 
 | void Value::replaceNonMetadataUsesWith(Value *New) { | 
 |   doRAUW(New, ReplaceMetadataUses::No); | 
 | } | 
 |  | 
 | // Like replaceAllUsesWith except it does not handle constants or basic blocks. | 
 | // This routine leaves uses within BB. | 
 | void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) { | 
 |   assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!"); | 
 |   assert(!contains(New, this) && | 
 |          "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!"); | 
 |   assert(New->getType() == getType() && | 
 |          "replaceUses of value with new value of different type!"); | 
 |   assert(BB && "Basic block that may contain a use of 'New' must be defined\n"); | 
 |  | 
 |   use_iterator UI = use_begin(), E = use_end(); | 
 |   for (; UI != E;) { | 
 |     Use &U = *UI; | 
 |     ++UI; | 
 |     auto *Usr = dyn_cast<Instruction>(U.getUser()); | 
 |     if (Usr && Usr->getParent() == BB) | 
 |       continue; | 
 |     U.set(New); | 
 |   } | 
 | } | 
 |  | 
 | namespace { | 
 | // Various metrics for how much to strip off of pointers. | 
 | enum PointerStripKind { | 
 |   PSK_ZeroIndices, | 
 |   PSK_ZeroIndicesAndAliases, | 
 |   PSK_ZeroIndicesAndAliasesAndInvariantGroups, | 
 |   PSK_InBoundsConstantIndices, | 
 |   PSK_InBounds | 
 | }; | 
 |  | 
 | template <PointerStripKind StripKind> | 
 | static const Value *stripPointerCastsAndOffsets(const Value *V) { | 
 |   if (!V->getType()->isPointerTy()) | 
 |     return V; | 
 |  | 
 |   // Even though we don't look through PHI nodes, we could be called on an | 
 |   // instruction in an unreachable block, which may be on a cycle. | 
 |   SmallPtrSet<const Value *, 4> Visited; | 
 |  | 
 |   Visited.insert(V); | 
 |   do { | 
 |     if (auto *GEP = dyn_cast<GEPOperator>(V)) { | 
 |       switch (StripKind) { | 
 |       case PSK_ZeroIndicesAndAliases: | 
 |       case PSK_ZeroIndicesAndAliasesAndInvariantGroups: | 
 |       case PSK_ZeroIndices: | 
 |         if (!GEP->hasAllZeroIndices()) | 
 |           return V; | 
 |         break; | 
 |       case PSK_InBoundsConstantIndices: | 
 |         if (!GEP->hasAllConstantIndices()) | 
 |           return V; | 
 |         LLVM_FALLTHROUGH; | 
 |       case PSK_InBounds: | 
 |         if (!GEP->isInBounds()) | 
 |           return V; | 
 |         break; | 
 |       } | 
 |       V = GEP->getPointerOperand(); | 
 |     } else if (Operator::getOpcode(V) == Instruction::BitCast || | 
 |                Operator::getOpcode(V) == Instruction::AddrSpaceCast) { | 
 |       V = cast<Operator>(V)->getOperand(0); | 
 |     } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { | 
 |       if (StripKind == PSK_ZeroIndices || GA->isInterposable()) | 
 |         return V; | 
 |       V = GA->getAliasee(); | 
 |     } else { | 
 |       if (const auto *Call = dyn_cast<CallBase>(V)) { | 
 |         if (const Value *RV = Call->getReturnedArgOperand()) { | 
 |           V = RV; | 
 |           continue; | 
 |         } | 
 |         // The result of launder.invariant.group must alias it's argument, | 
 |         // but it can't be marked with returned attribute, that's why it needs | 
 |         // special case. | 
 |         if (StripKind == PSK_ZeroIndicesAndAliasesAndInvariantGroups && | 
 |             (Call->getIntrinsicID() == Intrinsic::launder_invariant_group || | 
 |              Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) { | 
 |           V = Call->getArgOperand(0); | 
 |           continue; | 
 |         } | 
 |       } | 
 |       return V; | 
 |     } | 
 |     assert(V->getType()->isPointerTy() && "Unexpected operand type!"); | 
 |   } while (Visited.insert(V).second); | 
 |  | 
 |   return V; | 
 | } | 
 | } // end anonymous namespace | 
 |  | 
 | const Value *Value::stripPointerCasts() const { | 
 |   return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this); | 
 | } | 
 |  | 
 | const Value *Value::stripPointerCastsNoFollowAliases() const { | 
 |   return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this); | 
 | } | 
 |  | 
 | const Value *Value::stripInBoundsConstantOffsets() const { | 
 |   return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this); | 
 | } | 
 |  | 
 | const Value *Value::stripPointerCastsAndInvariantGroups() const { | 
 |   return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliasesAndInvariantGroups>( | 
 |       this); | 
 | } | 
 |  | 
 | const Value * | 
 | Value::stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, | 
 |                                                  APInt &Offset) const { | 
 |   if (!getType()->isPointerTy()) | 
 |     return this; | 
 |  | 
 |   assert(Offset.getBitWidth() == DL.getIndexSizeInBits(cast<PointerType>( | 
 |                                      getType())->getAddressSpace()) && | 
 |          "The offset bit width does not match the DL specification."); | 
 |  | 
 |   // Even though we don't look through PHI nodes, we could be called on an | 
 |   // instruction in an unreachable block, which may be on a cycle. | 
 |   SmallPtrSet<const Value *, 4> Visited; | 
 |   Visited.insert(this); | 
 |   const Value *V = this; | 
 |   do { | 
 |     if (auto *GEP = dyn_cast<GEPOperator>(V)) { | 
 |       if (!GEP->isInBounds()) | 
 |         return V; | 
 |       APInt GEPOffset(Offset); | 
 |       if (!GEP->accumulateConstantOffset(DL, GEPOffset)) | 
 |         return V; | 
 |       Offset = GEPOffset; | 
 |       V = GEP->getPointerOperand(); | 
 |     } else if (Operator::getOpcode(V) == Instruction::BitCast) { | 
 |       V = cast<Operator>(V)->getOperand(0); | 
 |     } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { | 
 |       V = GA->getAliasee(); | 
 |     } else { | 
 |       if (const auto *Call = dyn_cast<CallBase>(V)) | 
 |         if (const Value *RV = Call->getReturnedArgOperand()) { | 
 |           V = RV; | 
 |           continue; | 
 |         } | 
 |  | 
 |       return V; | 
 |     } | 
 |     assert(V->getType()->isPointerTy() && "Unexpected operand type!"); | 
 |   } while (Visited.insert(V).second); | 
 |  | 
 |   return V; | 
 | } | 
 |  | 
 | const Value *Value::stripInBoundsOffsets() const { | 
 |   return stripPointerCastsAndOffsets<PSK_InBounds>(this); | 
 | } | 
 |  | 
 | uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL, | 
 |                                                bool &CanBeNull) const { | 
 |   assert(getType()->isPointerTy() && "must be pointer"); | 
 |  | 
 |   uint64_t DerefBytes = 0; | 
 |   CanBeNull = false; | 
 |   if (const Argument *A = dyn_cast<Argument>(this)) { | 
 |     DerefBytes = A->getDereferenceableBytes(); | 
 |     if (DerefBytes == 0 && (A->hasByValAttr() || A->hasStructRetAttr())) { | 
 |       Type *PT = cast<PointerType>(A->getType())->getElementType(); | 
 |       if (PT->isSized()) | 
 |         DerefBytes = DL.getTypeStoreSize(PT); | 
 |     } | 
 |     if (DerefBytes == 0) { | 
 |       DerefBytes = A->getDereferenceableOrNullBytes(); | 
 |       CanBeNull = true; | 
 |     } | 
 |   } else if (const auto *Call = dyn_cast<CallBase>(this)) { | 
 |     DerefBytes = Call->getDereferenceableBytes(AttributeList::ReturnIndex); | 
 |     if (DerefBytes == 0) { | 
 |       DerefBytes = | 
 |           Call->getDereferenceableOrNullBytes(AttributeList::ReturnIndex); | 
 |       CanBeNull = true; | 
 |     } | 
 |   } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { | 
 |     if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) { | 
 |       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); | 
 |       DerefBytes = CI->getLimitedValue(); | 
 |     } | 
 |     if (DerefBytes == 0) { | 
 |       if (MDNode *MD = | 
 |               LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { | 
 |         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); | 
 |         DerefBytes = CI->getLimitedValue(); | 
 |       } | 
 |       CanBeNull = true; | 
 |     } | 
 |   } else if (auto *AI = dyn_cast<AllocaInst>(this)) { | 
 |     if (!AI->isArrayAllocation()) { | 
 |       DerefBytes = DL.getTypeStoreSize(AI->getAllocatedType()); | 
 |       CanBeNull = false; | 
 |     } | 
 |   } else if (auto *GV = dyn_cast<GlobalVariable>(this)) { | 
 |     if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) { | 
 |       // TODO: Don't outright reject hasExternalWeakLinkage but set the | 
 |       // CanBeNull flag. | 
 |       DerefBytes = DL.getTypeStoreSize(GV->getValueType()); | 
 |       CanBeNull = false; | 
 |     } | 
 |   } | 
 |   return DerefBytes; | 
 | } | 
 |  | 
 | unsigned Value::getPointerAlignment(const DataLayout &DL) const { | 
 |   assert(getType()->isPointerTy() && "must be pointer"); | 
 |  | 
 |   unsigned Align = 0; | 
 |   if (auto *GO = dyn_cast<GlobalObject>(this)) { | 
 |     // Don't make any assumptions about function pointer alignment. Some | 
 |     // targets use the LSBs to store additional information. | 
 |     if (isa<Function>(GO)) | 
 |       return 0; | 
 |     Align = GO->getAlignment(); | 
 |     if (Align == 0) { | 
 |       if (auto *GVar = dyn_cast<GlobalVariable>(GO)) { | 
 |         Type *ObjectType = GVar->getValueType(); | 
 |         if (ObjectType->isSized()) { | 
 |           // If the object is defined in the current Module, we'll be giving | 
 |           // it the preferred alignment. Otherwise, we have to assume that it | 
 |           // may only have the minimum ABI alignment. | 
 |           if (GVar->isStrongDefinitionForLinker()) | 
 |             Align = DL.getPreferredAlignment(GVar); | 
 |           else | 
 |             Align = DL.getABITypeAlignment(ObjectType); | 
 |         } | 
 |       } | 
 |     } | 
 |   } else if (const Argument *A = dyn_cast<Argument>(this)) { | 
 |     Align = A->getParamAlignment(); | 
 |  | 
 |     if (!Align && A->hasStructRetAttr()) { | 
 |       // An sret parameter has at least the ABI alignment of the return type. | 
 |       Type *EltTy = cast<PointerType>(A->getType())->getElementType(); | 
 |       if (EltTy->isSized()) | 
 |         Align = DL.getABITypeAlignment(EltTy); | 
 |     } | 
 |   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) { | 
 |     Align = AI->getAlignment(); | 
 |     if (Align == 0) { | 
 |       Type *AllocatedType = AI->getAllocatedType(); | 
 |       if (AllocatedType->isSized()) | 
 |         Align = DL.getPrefTypeAlignment(AllocatedType); | 
 |     } | 
 |   } else if (const auto *Call = dyn_cast<CallBase>(this)) | 
 |     Align = Call->getAttributes().getRetAlignment(); | 
 |   else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) | 
 |     if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) { | 
 |       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); | 
 |       Align = CI->getLimitedValue(); | 
 |     } | 
 |  | 
 |   return Align; | 
 | } | 
 |  | 
 | const Value *Value::DoPHITranslation(const BasicBlock *CurBB, | 
 |                                      const BasicBlock *PredBB) const { | 
 |   auto *PN = dyn_cast<PHINode>(this); | 
 |   if (PN && PN->getParent() == CurBB) | 
 |     return PN->getIncomingValueForBlock(PredBB); | 
 |   return this; | 
 | } | 
 |  | 
 | LLVMContext &Value::getContext() const { return VTy->getContext(); } | 
 |  | 
 | void Value::reverseUseList() { | 
 |   if (!UseList || !UseList->Next) | 
 |     // No need to reverse 0 or 1 uses. | 
 |     return; | 
 |  | 
 |   Use *Head = UseList; | 
 |   Use *Current = UseList->Next; | 
 |   Head->Next = nullptr; | 
 |   while (Current) { | 
 |     Use *Next = Current->Next; | 
 |     Current->Next = Head; | 
 |     Head->setPrev(&Current->Next); | 
 |     Head = Current; | 
 |     Current = Next; | 
 |   } | 
 |   UseList = Head; | 
 |   Head->setPrev(&UseList); | 
 | } | 
 |  | 
 | bool Value::isSwiftError() const { | 
 |   auto *Arg = dyn_cast<Argument>(this); | 
 |   if (Arg) | 
 |     return Arg->hasSwiftErrorAttr(); | 
 |   auto *Alloca = dyn_cast<AllocaInst>(this); | 
 |   if (!Alloca) | 
 |     return false; | 
 |   return Alloca->isSwiftError(); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                             ValueHandleBase Class | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) { | 
 |   assert(List && "Handle list is null?"); | 
 |  | 
 |   // Splice ourselves into the list. | 
 |   Next = *List; | 
 |   *List = this; | 
 |   setPrevPtr(List); | 
 |   if (Next) { | 
 |     Next->setPrevPtr(&Next); | 
 |     assert(getValPtr() == Next->getValPtr() && "Added to wrong list?"); | 
 |   } | 
 | } | 
 |  | 
 | void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) { | 
 |   assert(List && "Must insert after existing node"); | 
 |  | 
 |   Next = List->Next; | 
 |   setPrevPtr(&List->Next); | 
 |   List->Next = this; | 
 |   if (Next) | 
 |     Next->setPrevPtr(&Next); | 
 | } | 
 |  | 
 | void ValueHandleBase::AddToUseList() { | 
 |   assert(getValPtr() && "Null pointer doesn't have a use list!"); | 
 |  | 
 |   LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; | 
 |  | 
 |   if (getValPtr()->HasValueHandle) { | 
 |     // If this value already has a ValueHandle, then it must be in the | 
 |     // ValueHandles map already. | 
 |     ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()]; | 
 |     assert(Entry && "Value doesn't have any handles?"); | 
 |     AddToExistingUseList(&Entry); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Ok, it doesn't have any handles yet, so we must insert it into the | 
 |   // DenseMap.  However, doing this insertion could cause the DenseMap to | 
 |   // reallocate itself, which would invalidate all of the PrevP pointers that | 
 |   // point into the old table.  Handle this by checking for reallocation and | 
 |   // updating the stale pointers only if needed. | 
 |   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; | 
 |   const void *OldBucketPtr = Handles.getPointerIntoBucketsArray(); | 
 |  | 
 |   ValueHandleBase *&Entry = Handles[getValPtr()]; | 
 |   assert(!Entry && "Value really did already have handles?"); | 
 |   AddToExistingUseList(&Entry); | 
 |   getValPtr()->HasValueHandle = true; | 
 |  | 
 |   // If reallocation didn't happen or if this was the first insertion, don't | 
 |   // walk the table. | 
 |   if (Handles.isPointerIntoBucketsArray(OldBucketPtr) || | 
 |       Handles.size() == 1) { | 
 |     return; | 
 |   } | 
 |  | 
 |   // Okay, reallocation did happen.  Fix the Prev Pointers. | 
 |   for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(), | 
 |        E = Handles.end(); I != E; ++I) { | 
 |     assert(I->second && I->first == I->second->getValPtr() && | 
 |            "List invariant broken!"); | 
 |     I->second->setPrevPtr(&I->second); | 
 |   } | 
 | } | 
 |  | 
 | void ValueHandleBase::RemoveFromUseList() { | 
 |   assert(getValPtr() && getValPtr()->HasValueHandle && | 
 |          "Pointer doesn't have a use list!"); | 
 |  | 
 |   // Unlink this from its use list. | 
 |   ValueHandleBase **PrevPtr = getPrevPtr(); | 
 |   assert(*PrevPtr == this && "List invariant broken"); | 
 |  | 
 |   *PrevPtr = Next; | 
 |   if (Next) { | 
 |     assert(Next->getPrevPtr() == &Next && "List invariant broken"); | 
 |     Next->setPrevPtr(PrevPtr); | 
 |     return; | 
 |   } | 
 |  | 
 |   // If the Next pointer was null, then it is possible that this was the last | 
 |   // ValueHandle watching VP.  If so, delete its entry from the ValueHandles | 
 |   // map. | 
 |   LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; | 
 |   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; | 
 |   if (Handles.isPointerIntoBucketsArray(PrevPtr)) { | 
 |     Handles.erase(getValPtr()); | 
 |     getValPtr()->HasValueHandle = false; | 
 |   } | 
 | } | 
 |  | 
 | void ValueHandleBase::ValueIsDeleted(Value *V) { | 
 |   assert(V->HasValueHandle && "Should only be called if ValueHandles present"); | 
 |  | 
 |   // Get the linked list base, which is guaranteed to exist since the | 
 |   // HasValueHandle flag is set. | 
 |   LLVMContextImpl *pImpl = V->getContext().pImpl; | 
 |   ValueHandleBase *Entry = pImpl->ValueHandles[V]; | 
 |   assert(Entry && "Value bit set but no entries exist"); | 
 |  | 
 |   // We use a local ValueHandleBase as an iterator so that ValueHandles can add | 
 |   // and remove themselves from the list without breaking our iteration.  This | 
 |   // is not really an AssertingVH; we just have to give ValueHandleBase a kind. | 
 |   // Note that we deliberately do not the support the case when dropping a value | 
 |   // handle results in a new value handle being permanently added to the list | 
 |   // (as might occur in theory for CallbackVH's): the new value handle will not | 
 |   // be processed and the checking code will mete out righteous punishment if | 
 |   // the handle is still present once we have finished processing all the other | 
 |   // value handles (it is fine to momentarily add then remove a value handle). | 
 |   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { | 
 |     Iterator.RemoveFromUseList(); | 
 |     Iterator.AddToExistingUseListAfter(Entry); | 
 |     assert(Entry->Next == &Iterator && "Loop invariant broken."); | 
 |  | 
 |     switch (Entry->getKind()) { | 
 |     case Assert: | 
 |       break; | 
 |     case Weak: | 
 |     case WeakTracking: | 
 |       // WeakTracking and Weak just go to null, which unlinks them | 
 |       // from the list. | 
 |       Entry->operator=(nullptr); | 
 |       break; | 
 |     case Callback: | 
 |       // Forward to the subclass's implementation. | 
 |       static_cast<CallbackVH*>(Entry)->deleted(); | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   // All callbacks, weak references, and assertingVHs should be dropped by now. | 
 |   if (V->HasValueHandle) { | 
 | #ifndef NDEBUG      // Only in +Asserts mode... | 
 |     dbgs() << "While deleting: " << *V->getType() << " %" << V->getName() | 
 |            << "\n"; | 
 |     if (pImpl->ValueHandles[V]->getKind() == Assert) | 
 |       llvm_unreachable("An asserting value handle still pointed to this" | 
 |                        " value!"); | 
 |  | 
 | #endif | 
 |     llvm_unreachable("All references to V were not removed?"); | 
 |   } | 
 | } | 
 |  | 
 | void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) { | 
 |   assert(Old->HasValueHandle &&"Should only be called if ValueHandles present"); | 
 |   assert(Old != New && "Changing value into itself!"); | 
 |   assert(Old->getType() == New->getType() && | 
 |          "replaceAllUses of value with new value of different type!"); | 
 |  | 
 |   // Get the linked list base, which is guaranteed to exist since the | 
 |   // HasValueHandle flag is set. | 
 |   LLVMContextImpl *pImpl = Old->getContext().pImpl; | 
 |   ValueHandleBase *Entry = pImpl->ValueHandles[Old]; | 
 |  | 
 |   assert(Entry && "Value bit set but no entries exist"); | 
 |  | 
 |   // We use a local ValueHandleBase as an iterator so that | 
 |   // ValueHandles can add and remove themselves from the list without | 
 |   // breaking our iteration.  This is not really an AssertingVH; we | 
 |   // just have to give ValueHandleBase some kind. | 
 |   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { | 
 |     Iterator.RemoveFromUseList(); | 
 |     Iterator.AddToExistingUseListAfter(Entry); | 
 |     assert(Entry->Next == &Iterator && "Loop invariant broken."); | 
 |  | 
 |     switch (Entry->getKind()) { | 
 |     case Assert: | 
 |     case Weak: | 
 |       // Asserting and Weak handles do not follow RAUW implicitly. | 
 |       break; | 
 |     case WeakTracking: | 
 |       // Weak goes to the new value, which will unlink it from Old's list. | 
 |       Entry->operator=(New); | 
 |       break; | 
 |     case Callback: | 
 |       // Forward to the subclass's implementation. | 
 |       static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New); | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 | #ifndef NDEBUG | 
 |   // If any new weak value handles were added while processing the | 
 |   // list, then complain about it now. | 
 |   if (Old->HasValueHandle) | 
 |     for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next) | 
 |       switch (Entry->getKind()) { | 
 |       case WeakTracking: | 
 |         dbgs() << "After RAUW from " << *Old->getType() << " %" | 
 |                << Old->getName() << " to " << *New->getType() << " %" | 
 |                << New->getName() << "\n"; | 
 |         llvm_unreachable( | 
 |             "A weak tracking value handle still pointed to the  old value!\n"); | 
 |       default: | 
 |         break; | 
 |       } | 
 | #endif | 
 | } | 
 |  | 
 | // Pin the vtable to this file. | 
 | void CallbackVH::anchor() {} |