|  | //===- Dominators.cpp - Dominator Calculation -----------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements simple dominator construction algorithms for finding | 
|  | // forward dominators.  Postdominators are available in libanalysis, but are not | 
|  | // included in libvmcore, because it's not needed.  Forward dominators are | 
|  | // needed to support the Verifier pass. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/ADT/DepthFirstIterator.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/Config/llvm-config.h" | 
|  | #include "llvm/IR/CFG.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/PassManager.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/GenericDomTreeConstruction.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | using namespace llvm; | 
|  |  | 
|  | bool llvm::VerifyDomInfo = false; | 
|  | static cl::opt<bool, true> | 
|  | VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo), cl::Hidden, | 
|  | cl::desc("Verify dominator info (time consuming)")); | 
|  |  | 
|  | #ifdef EXPENSIVE_CHECKS | 
|  | static constexpr bool ExpensiveChecksEnabled = true; | 
|  | #else | 
|  | static constexpr bool ExpensiveChecksEnabled = false; | 
|  | #endif | 
|  |  | 
|  | bool BasicBlockEdge::isSingleEdge() const { | 
|  | const Instruction *TI = Start->getTerminator(); | 
|  | unsigned NumEdgesToEnd = 0; | 
|  | for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) { | 
|  | if (TI->getSuccessor(i) == End) | 
|  | ++NumEdgesToEnd; | 
|  | if (NumEdgesToEnd >= 2) | 
|  | return false; | 
|  | } | 
|  | assert(NumEdgesToEnd == 1); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  DominatorTree Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Provide public access to DominatorTree information.  Implementation details | 
|  | // can be found in Dominators.h, GenericDomTree.h, and | 
|  | // GenericDomTreeConstruction.h. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | template class llvm::DomTreeNodeBase<BasicBlock>; | 
|  | template class llvm::DominatorTreeBase<BasicBlock, false>; // DomTreeBase | 
|  | template class llvm::DominatorTreeBase<BasicBlock, true>; // PostDomTreeBase | 
|  |  | 
|  | template class llvm::cfg::Update<BasicBlock *>; | 
|  |  | 
|  | template void llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBDomTree>( | 
|  | DomTreeBuilder::BBDomTree &DT); | 
|  | template void | 
|  | llvm::DomTreeBuilder::CalculateWithUpdates<DomTreeBuilder::BBDomTree>( | 
|  | DomTreeBuilder::BBDomTree &DT, BBUpdates U); | 
|  |  | 
|  | template void llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBPostDomTree>( | 
|  | DomTreeBuilder::BBPostDomTree &DT); | 
|  | // No CalculateWithUpdates<PostDomTree> instantiation, unless a usecase arises. | 
|  |  | 
|  | template void llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBDomTree>( | 
|  | DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To); | 
|  | template void llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBPostDomTree>( | 
|  | DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To); | 
|  |  | 
|  | template void llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBDomTree>( | 
|  | DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To); | 
|  | template void llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBPostDomTree>( | 
|  | DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To); | 
|  |  | 
|  | template void llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBDomTree>( | 
|  | DomTreeBuilder::BBDomTree &DT, DomTreeBuilder::BBUpdates); | 
|  | template void llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBPostDomTree>( | 
|  | DomTreeBuilder::BBPostDomTree &DT, DomTreeBuilder::BBUpdates); | 
|  |  | 
|  | template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBDomTree>( | 
|  | const DomTreeBuilder::BBDomTree &DT, | 
|  | DomTreeBuilder::BBDomTree::VerificationLevel VL); | 
|  | template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBPostDomTree>( | 
|  | const DomTreeBuilder::BBPostDomTree &DT, | 
|  | DomTreeBuilder::BBPostDomTree::VerificationLevel VL); | 
|  |  | 
|  | bool DominatorTree::invalidate(Function &F, const PreservedAnalyses &PA, | 
|  | FunctionAnalysisManager::Invalidator &) { | 
|  | // Check whether the analysis, all analyses on functions, or the function's | 
|  | // CFG have been preserved. | 
|  | auto PAC = PA.getChecker<DominatorTreeAnalysis>(); | 
|  | return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() || | 
|  | PAC.preservedSet<CFGAnalyses>()); | 
|  | } | 
|  |  | 
|  | // dominates - Return true if Def dominates a use in User. This performs | 
|  | // the special checks necessary if Def and User are in the same basic block. | 
|  | // Note that Def doesn't dominate a use in Def itself! | 
|  | bool DominatorTree::dominates(const Instruction *Def, | 
|  | const Instruction *User) const { | 
|  | const BasicBlock *UseBB = User->getParent(); | 
|  | const BasicBlock *DefBB = Def->getParent(); | 
|  |  | 
|  | // Any unreachable use is dominated, even if Def == User. | 
|  | if (!isReachableFromEntry(UseBB)) | 
|  | return true; | 
|  |  | 
|  | // Unreachable definitions don't dominate anything. | 
|  | if (!isReachableFromEntry(DefBB)) | 
|  | return false; | 
|  |  | 
|  | // An instruction doesn't dominate a use in itself. | 
|  | if (Def == User) | 
|  | return false; | 
|  |  | 
|  | // The value defined by an invoke dominates an instruction only if it | 
|  | // dominates every instruction in UseBB. | 
|  | // A PHI is dominated only if the instruction dominates every possible use in | 
|  | // the UseBB. | 
|  | if (isa<InvokeInst>(Def) || isa<PHINode>(User)) | 
|  | return dominates(Def, UseBB); | 
|  |  | 
|  | if (DefBB != UseBB) | 
|  | return dominates(DefBB, UseBB); | 
|  |  | 
|  | // Loop through the basic block until we find Def or User. | 
|  | BasicBlock::const_iterator I = DefBB->begin(); | 
|  | for (; &*I != Def && &*I != User; ++I) | 
|  | /*empty*/; | 
|  |  | 
|  | return &*I == Def; | 
|  | } | 
|  |  | 
|  | // true if Def would dominate a use in any instruction in UseBB. | 
|  | // note that dominates(Def, Def->getParent()) is false. | 
|  | bool DominatorTree::dominates(const Instruction *Def, | 
|  | const BasicBlock *UseBB) const { | 
|  | const BasicBlock *DefBB = Def->getParent(); | 
|  |  | 
|  | // Any unreachable use is dominated, even if DefBB == UseBB. | 
|  | if (!isReachableFromEntry(UseBB)) | 
|  | return true; | 
|  |  | 
|  | // Unreachable definitions don't dominate anything. | 
|  | if (!isReachableFromEntry(DefBB)) | 
|  | return false; | 
|  |  | 
|  | if (DefBB == UseBB) | 
|  | return false; | 
|  |  | 
|  | // Invoke results are only usable in the normal destination, not in the | 
|  | // exceptional destination. | 
|  | if (const auto *II = dyn_cast<InvokeInst>(Def)) { | 
|  | BasicBlock *NormalDest = II->getNormalDest(); | 
|  | BasicBlockEdge E(DefBB, NormalDest); | 
|  | return dominates(E, UseBB); | 
|  | } | 
|  |  | 
|  | return dominates(DefBB, UseBB); | 
|  | } | 
|  |  | 
|  | bool DominatorTree::dominates(const BasicBlockEdge &BBE, | 
|  | const BasicBlock *UseBB) const { | 
|  | // If the BB the edge ends in doesn't dominate the use BB, then the | 
|  | // edge also doesn't. | 
|  | const BasicBlock *Start = BBE.getStart(); | 
|  | const BasicBlock *End = BBE.getEnd(); | 
|  | if (!dominates(End, UseBB)) | 
|  | return false; | 
|  |  | 
|  | // Simple case: if the end BB has a single predecessor, the fact that it | 
|  | // dominates the use block implies that the edge also does. | 
|  | if (End->getSinglePredecessor()) | 
|  | return true; | 
|  |  | 
|  | // The normal edge from the invoke is critical. Conceptually, what we would | 
|  | // like to do is split it and check if the new block dominates the use. | 
|  | // With X being the new block, the graph would look like: | 
|  | // | 
|  | //        DefBB | 
|  | //          /\      .  . | 
|  | //         /  \     .  . | 
|  | //        /    \    .  . | 
|  | //       /      \   |  | | 
|  | //      A        X  B  C | 
|  | //      |         \ | / | 
|  | //      .          \|/ | 
|  | //      .      NormalDest | 
|  | //      . | 
|  | // | 
|  | // Given the definition of dominance, NormalDest is dominated by X iff X | 
|  | // dominates all of NormalDest's predecessors (X, B, C in the example). X | 
|  | // trivially dominates itself, so we only have to find if it dominates the | 
|  | // other predecessors. Since the only way out of X is via NormalDest, X can | 
|  | // only properly dominate a node if NormalDest dominates that node too. | 
|  | int IsDuplicateEdge = 0; | 
|  | for (const_pred_iterator PI = pred_begin(End), E = pred_end(End); | 
|  | PI != E; ++PI) { | 
|  | const BasicBlock *BB = *PI; | 
|  | if (BB == Start) { | 
|  | // If there are multiple edges between Start and End, by definition they | 
|  | // can't dominate anything. | 
|  | if (IsDuplicateEdge++) | 
|  | return false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!dominates(End, BB)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const { | 
|  | Instruction *UserInst = cast<Instruction>(U.getUser()); | 
|  | // A PHI in the end of the edge is dominated by it. | 
|  | PHINode *PN = dyn_cast<PHINode>(UserInst); | 
|  | if (PN && PN->getParent() == BBE.getEnd() && | 
|  | PN->getIncomingBlock(U) == BBE.getStart()) | 
|  | return true; | 
|  |  | 
|  | // Otherwise use the edge-dominates-block query, which | 
|  | // handles the crazy critical edge cases properly. | 
|  | const BasicBlock *UseBB; | 
|  | if (PN) | 
|  | UseBB = PN->getIncomingBlock(U); | 
|  | else | 
|  | UseBB = UserInst->getParent(); | 
|  | return dominates(BBE, UseBB); | 
|  | } | 
|  |  | 
|  | bool DominatorTree::dominates(const Instruction *Def, const Use &U) const { | 
|  | Instruction *UserInst = cast<Instruction>(U.getUser()); | 
|  | const BasicBlock *DefBB = Def->getParent(); | 
|  |  | 
|  | // Determine the block in which the use happens. PHI nodes use | 
|  | // their operands on edges; simulate this by thinking of the use | 
|  | // happening at the end of the predecessor block. | 
|  | const BasicBlock *UseBB; | 
|  | if (PHINode *PN = dyn_cast<PHINode>(UserInst)) | 
|  | UseBB = PN->getIncomingBlock(U); | 
|  | else | 
|  | UseBB = UserInst->getParent(); | 
|  |  | 
|  | // Any unreachable use is dominated, even if Def == User. | 
|  | if (!isReachableFromEntry(UseBB)) | 
|  | return true; | 
|  |  | 
|  | // Unreachable definitions don't dominate anything. | 
|  | if (!isReachableFromEntry(DefBB)) | 
|  | return false; | 
|  |  | 
|  | // Invoke instructions define their return values on the edges to their normal | 
|  | // successors, so we have to handle them specially. | 
|  | // Among other things, this means they don't dominate anything in | 
|  | // their own block, except possibly a phi, so we don't need to | 
|  | // walk the block in any case. | 
|  | if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) { | 
|  | BasicBlock *NormalDest = II->getNormalDest(); | 
|  | BasicBlockEdge E(DefBB, NormalDest); | 
|  | return dominates(E, U); | 
|  | } | 
|  |  | 
|  | // If the def and use are in different blocks, do a simple CFG dominator | 
|  | // tree query. | 
|  | if (DefBB != UseBB) | 
|  | return dominates(DefBB, UseBB); | 
|  |  | 
|  | // Ok, def and use are in the same block. If the def is an invoke, it | 
|  | // doesn't dominate anything in the block. If it's a PHI, it dominates | 
|  | // everything in the block. | 
|  | if (isa<PHINode>(UserInst)) | 
|  | return true; | 
|  |  | 
|  | // Otherwise, just loop through the basic block until we find Def or User. | 
|  | BasicBlock::const_iterator I = DefBB->begin(); | 
|  | for (; &*I != Def && &*I != UserInst; ++I) | 
|  | /*empty*/; | 
|  |  | 
|  | return &*I != UserInst; | 
|  | } | 
|  |  | 
|  | bool DominatorTree::isReachableFromEntry(const Use &U) const { | 
|  | Instruction *I = dyn_cast<Instruction>(U.getUser()); | 
|  |  | 
|  | // ConstantExprs aren't really reachable from the entry block, but they | 
|  | // don't need to be treated like unreachable code either. | 
|  | if (!I) return true; | 
|  |  | 
|  | // PHI nodes use their operands on their incoming edges. | 
|  | if (PHINode *PN = dyn_cast<PHINode>(I)) | 
|  | return isReachableFromEntry(PN->getIncomingBlock(U)); | 
|  |  | 
|  | // Everything else uses their operands in their own block. | 
|  | return isReachableFromEntry(I->getParent()); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  DominatorTreeAnalysis and related pass implementations | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This implements the DominatorTreeAnalysis which is used with the new pass | 
|  | // manager. It also implements some methods from utility passes. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | DominatorTree DominatorTreeAnalysis::run(Function &F, | 
|  | FunctionAnalysisManager &) { | 
|  | DominatorTree DT; | 
|  | DT.recalculate(F); | 
|  | return DT; | 
|  | } | 
|  |  | 
|  | AnalysisKey DominatorTreeAnalysis::Key; | 
|  |  | 
|  | DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {} | 
|  |  | 
|  | PreservedAnalyses DominatorTreePrinterPass::run(Function &F, | 
|  | FunctionAnalysisManager &AM) { | 
|  | OS << "DominatorTree for function: " << F.getName() << "\n"; | 
|  | AM.getResult<DominatorTreeAnalysis>(F).print(OS); | 
|  |  | 
|  | return PreservedAnalyses::all(); | 
|  | } | 
|  |  | 
|  | PreservedAnalyses DominatorTreeVerifierPass::run(Function &F, | 
|  | FunctionAnalysisManager &AM) { | 
|  | auto &DT = AM.getResult<DominatorTreeAnalysis>(F); | 
|  | assert(DT.verify()); | 
|  | (void)DT; | 
|  | return PreservedAnalyses::all(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  DominatorTreeWrapperPass Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // The implementation details of the wrapper pass that holds a DominatorTree | 
|  | // suitable for use with the legacy pass manager. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | char DominatorTreeWrapperPass::ID = 0; | 
|  | INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree", | 
|  | "Dominator Tree Construction", true, true) | 
|  |  | 
|  | bool DominatorTreeWrapperPass::runOnFunction(Function &F) { | 
|  | DT.recalculate(F); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void DominatorTreeWrapperPass::verifyAnalysis() const { | 
|  | if (VerifyDomInfo) | 
|  | assert(DT.verify(DominatorTree::VerificationLevel::Full)); | 
|  | else if (ExpensiveChecksEnabled) | 
|  | assert(DT.verify(DominatorTree::VerificationLevel::Basic)); | 
|  | } | 
|  |  | 
|  | void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const { | 
|  | DT.print(OS); | 
|  | } | 
|  |  |