| //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // The implementation for the loop memory dependence that was originally | 
 | // developed for the loop vectorizer. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/Analysis/LoopAccessAnalysis.h" | 
 | #include "llvm/ADT/APInt.h" | 
 | #include "llvm/ADT/DenseMap.h" | 
 | #include "llvm/ADT/DepthFirstIterator.h" | 
 | #include "llvm/ADT/EquivalenceClasses.h" | 
 | #include "llvm/ADT/PointerIntPair.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include "llvm/ADT/SetVector.h" | 
 | #include "llvm/ADT/SmallPtrSet.h" | 
 | #include "llvm/ADT/SmallSet.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/ADT/iterator_range.h" | 
 | #include "llvm/Analysis/AliasAnalysis.h" | 
 | #include "llvm/Analysis/AliasSetTracker.h" | 
 | #include "llvm/Analysis/LoopAnalysisManager.h" | 
 | #include "llvm/Analysis/LoopInfo.h" | 
 | #include "llvm/Analysis/MemoryLocation.h" | 
 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" | 
 | #include "llvm/Analysis/ScalarEvolution.h" | 
 | #include "llvm/Analysis/ScalarEvolutionExpander.h" | 
 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" | 
 | #include "llvm/Analysis/TargetLibraryInfo.h" | 
 | #include "llvm/Analysis/ValueTracking.h" | 
 | #include "llvm/Analysis/VectorUtils.h" | 
 | #include "llvm/IR/BasicBlock.h" | 
 | #include "llvm/IR/Constants.h" | 
 | #include "llvm/IR/DataLayout.h" | 
 | #include "llvm/IR/DebugLoc.h" | 
 | #include "llvm/IR/DerivedTypes.h" | 
 | #include "llvm/IR/DiagnosticInfo.h" | 
 | #include "llvm/IR/Dominators.h" | 
 | #include "llvm/IR/Function.h" | 
 | #include "llvm/IR/IRBuilder.h" | 
 | #include "llvm/IR/InstrTypes.h" | 
 | #include "llvm/IR/Instruction.h" | 
 | #include "llvm/IR/Instructions.h" | 
 | #include "llvm/IR/Operator.h" | 
 | #include "llvm/IR/PassManager.h" | 
 | #include "llvm/IR/Type.h" | 
 | #include "llvm/IR/Value.h" | 
 | #include "llvm/IR/ValueHandle.h" | 
 | #include "llvm/Pass.h" | 
 | #include "llvm/Support/Casting.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include <algorithm> | 
 | #include <cassert> | 
 | #include <cstdint> | 
 | #include <cstdlib> | 
 | #include <iterator> | 
 | #include <utility> | 
 | #include <vector> | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | #define DEBUG_TYPE "loop-accesses" | 
 |  | 
 | static cl::opt<unsigned, true> | 
 | VectorizationFactor("force-vector-width", cl::Hidden, | 
 |                     cl::desc("Sets the SIMD width. Zero is autoselect."), | 
 |                     cl::location(VectorizerParams::VectorizationFactor)); | 
 | unsigned VectorizerParams::VectorizationFactor; | 
 |  | 
 | static cl::opt<unsigned, true> | 
 | VectorizationInterleave("force-vector-interleave", cl::Hidden, | 
 |                         cl::desc("Sets the vectorization interleave count. " | 
 |                                  "Zero is autoselect."), | 
 |                         cl::location( | 
 |                             VectorizerParams::VectorizationInterleave)); | 
 | unsigned VectorizerParams::VectorizationInterleave; | 
 |  | 
 | static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( | 
 |     "runtime-memory-check-threshold", cl::Hidden, | 
 |     cl::desc("When performing memory disambiguation checks at runtime do not " | 
 |              "generate more than this number of comparisons (default = 8)."), | 
 |     cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); | 
 | unsigned VectorizerParams::RuntimeMemoryCheckThreshold; | 
 |  | 
 | /// The maximum iterations used to merge memory checks | 
 | static cl::opt<unsigned> MemoryCheckMergeThreshold( | 
 |     "memory-check-merge-threshold", cl::Hidden, | 
 |     cl::desc("Maximum number of comparisons done when trying to merge " | 
 |              "runtime memory checks. (default = 100)"), | 
 |     cl::init(100)); | 
 |  | 
 | /// Maximum SIMD width. | 
 | const unsigned VectorizerParams::MaxVectorWidth = 64; | 
 |  | 
 | /// We collect dependences up to this threshold. | 
 | static cl::opt<unsigned> | 
 |     MaxDependences("max-dependences", cl::Hidden, | 
 |                    cl::desc("Maximum number of dependences collected by " | 
 |                             "loop-access analysis (default = 100)"), | 
 |                    cl::init(100)); | 
 |  | 
 | /// This enables versioning on the strides of symbolically striding memory | 
 | /// accesses in code like the following. | 
 | ///   for (i = 0; i < N; ++i) | 
 | ///     A[i * Stride1] += B[i * Stride2] ... | 
 | /// | 
 | /// Will be roughly translated to | 
 | ///    if (Stride1 == 1 && Stride2 == 1) { | 
 | ///      for (i = 0; i < N; i+=4) | 
 | ///       A[i:i+3] += ... | 
 | ///    } else | 
 | ///      ... | 
 | static cl::opt<bool> EnableMemAccessVersioning( | 
 |     "enable-mem-access-versioning", cl::init(true), cl::Hidden, | 
 |     cl::desc("Enable symbolic stride memory access versioning")); | 
 |  | 
 | /// Enable store-to-load forwarding conflict detection. This option can | 
 | /// be disabled for correctness testing. | 
 | static cl::opt<bool> EnableForwardingConflictDetection( | 
 |     "store-to-load-forwarding-conflict-detection", cl::Hidden, | 
 |     cl::desc("Enable conflict detection in loop-access analysis"), | 
 |     cl::init(true)); | 
 |  | 
 | bool VectorizerParams::isInterleaveForced() { | 
 |   return ::VectorizationInterleave.getNumOccurrences() > 0; | 
 | } | 
 |  | 
 | Value *llvm::stripIntegerCast(Value *V) { | 
 |   if (auto *CI = dyn_cast<CastInst>(V)) | 
 |     if (CI->getOperand(0)->getType()->isIntegerTy()) | 
 |       return CI->getOperand(0); | 
 |   return V; | 
 | } | 
 |  | 
 | const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, | 
 |                                             const ValueToValueMap &PtrToStride, | 
 |                                             Value *Ptr, Value *OrigPtr) { | 
 |   const SCEV *OrigSCEV = PSE.getSCEV(Ptr); | 
 |  | 
 |   // If there is an entry in the map return the SCEV of the pointer with the | 
 |   // symbolic stride replaced by one. | 
 |   ValueToValueMap::const_iterator SI = | 
 |       PtrToStride.find(OrigPtr ? OrigPtr : Ptr); | 
 |   if (SI != PtrToStride.end()) { | 
 |     Value *StrideVal = SI->second; | 
 |  | 
 |     // Strip casts. | 
 |     StrideVal = stripIntegerCast(StrideVal); | 
 |  | 
 |     ScalarEvolution *SE = PSE.getSE(); | 
 |     const auto *U = cast<SCEVUnknown>(SE->getSCEV(StrideVal)); | 
 |     const auto *CT = | 
 |         static_cast<const SCEVConstant *>(SE->getOne(StrideVal->getType())); | 
 |  | 
 |     PSE.addPredicate(*SE->getEqualPredicate(U, CT)); | 
 |     auto *Expr = PSE.getSCEV(Ptr); | 
 |  | 
 |     LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV | 
 |                       << " by: " << *Expr << "\n"); | 
 |     return Expr; | 
 |   } | 
 |  | 
 |   // Otherwise, just return the SCEV of the original pointer. | 
 |   return OrigSCEV; | 
 | } | 
 |  | 
 | /// Calculate Start and End points of memory access. | 
 | /// Let's assume A is the first access and B is a memory access on N-th loop | 
 | /// iteration. Then B is calculated as: | 
 | ///   B = A + Step*N . | 
 | /// Step value may be positive or negative. | 
 | /// N is a calculated back-edge taken count: | 
 | ///     N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 | 
 | /// Start and End points are calculated in the following way: | 
 | /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, | 
 | /// where SizeOfElt is the size of single memory access in bytes. | 
 | /// | 
 | /// There is no conflict when the intervals are disjoint: | 
 | /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) | 
 | void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, bool WritePtr, | 
 |                                     unsigned DepSetId, unsigned ASId, | 
 |                                     const ValueToValueMap &Strides, | 
 |                                     PredicatedScalarEvolution &PSE) { | 
 |   // Get the stride replaced scev. | 
 |   const SCEV *Sc = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); | 
 |   ScalarEvolution *SE = PSE.getSE(); | 
 |  | 
 |   const SCEV *ScStart; | 
 |   const SCEV *ScEnd; | 
 |  | 
 |   if (SE->isLoopInvariant(Sc, Lp)) | 
 |     ScStart = ScEnd = Sc; | 
 |   else { | 
 |     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); | 
 |     assert(AR && "Invalid addrec expression"); | 
 |     const SCEV *Ex = PSE.getBackedgeTakenCount(); | 
 |  | 
 |     ScStart = AR->getStart(); | 
 |     ScEnd = AR->evaluateAtIteration(Ex, *SE); | 
 |     const SCEV *Step = AR->getStepRecurrence(*SE); | 
 |  | 
 |     // For expressions with negative step, the upper bound is ScStart and the | 
 |     // lower bound is ScEnd. | 
 |     if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { | 
 |       if (CStep->getValue()->isNegative()) | 
 |         std::swap(ScStart, ScEnd); | 
 |     } else { | 
 |       // Fallback case: the step is not constant, but we can still | 
 |       // get the upper and lower bounds of the interval by using min/max | 
 |       // expressions. | 
 |       ScStart = SE->getUMinExpr(ScStart, ScEnd); | 
 |       ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); | 
 |     } | 
 |     // Add the size of the pointed element to ScEnd. | 
 |     unsigned EltSize = | 
 |       Ptr->getType()->getPointerElementType()->getScalarSizeInBits() / 8; | 
 |     const SCEV *EltSizeSCEV = SE->getConstant(ScEnd->getType(), EltSize); | 
 |     ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); | 
 |   } | 
 |  | 
 |   Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc); | 
 | } | 
 |  | 
 | SmallVector<RuntimePointerChecking::PointerCheck, 4> | 
 | RuntimePointerChecking::generateChecks() const { | 
 |   SmallVector<PointerCheck, 4> Checks; | 
 |  | 
 |   for (unsigned I = 0; I < CheckingGroups.size(); ++I) { | 
 |     for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { | 
 |       const RuntimePointerChecking::CheckingPtrGroup &CGI = CheckingGroups[I]; | 
 |       const RuntimePointerChecking::CheckingPtrGroup &CGJ = CheckingGroups[J]; | 
 |  | 
 |       if (needsChecking(CGI, CGJ)) | 
 |         Checks.push_back(std::make_pair(&CGI, &CGJ)); | 
 |     } | 
 |   } | 
 |   return Checks; | 
 | } | 
 |  | 
 | void RuntimePointerChecking::generateChecks( | 
 |     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { | 
 |   assert(Checks.empty() && "Checks is not empty"); | 
 |   groupChecks(DepCands, UseDependencies); | 
 |   Checks = generateChecks(); | 
 | } | 
 |  | 
 | bool RuntimePointerChecking::needsChecking(const CheckingPtrGroup &M, | 
 |                                            const CheckingPtrGroup &N) const { | 
 |   for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I) | 
 |     for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J) | 
 |       if (needsChecking(M.Members[I], N.Members[J])) | 
 |         return true; | 
 |   return false; | 
 | } | 
 |  | 
 | /// Compare \p I and \p J and return the minimum. | 
 | /// Return nullptr in case we couldn't find an answer. | 
 | static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, | 
 |                                    ScalarEvolution *SE) { | 
 |   const SCEV *Diff = SE->getMinusSCEV(J, I); | 
 |   const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); | 
 |  | 
 |   if (!C) | 
 |     return nullptr; | 
 |   if (C->getValue()->isNegative()) | 
 |     return J; | 
 |   return I; | 
 | } | 
 |  | 
 | bool RuntimePointerChecking::CheckingPtrGroup::addPointer(unsigned Index) { | 
 |   const SCEV *Start = RtCheck.Pointers[Index].Start; | 
 |   const SCEV *End = RtCheck.Pointers[Index].End; | 
 |  | 
 |   // Compare the starts and ends with the known minimum and maximum | 
 |   // of this set. We need to know how we compare against the min/max | 
 |   // of the set in order to be able to emit memchecks. | 
 |   const SCEV *Min0 = getMinFromExprs(Start, Low, RtCheck.SE); | 
 |   if (!Min0) | 
 |     return false; | 
 |  | 
 |   const SCEV *Min1 = getMinFromExprs(End, High, RtCheck.SE); | 
 |   if (!Min1) | 
 |     return false; | 
 |  | 
 |   // Update the low bound  expression if we've found a new min value. | 
 |   if (Min0 == Start) | 
 |     Low = Start; | 
 |  | 
 |   // Update the high bound expression if we've found a new max value. | 
 |   if (Min1 != End) | 
 |     High = End; | 
 |  | 
 |   Members.push_back(Index); | 
 |   return true; | 
 | } | 
 |  | 
 | void RuntimePointerChecking::groupChecks( | 
 |     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { | 
 |   // We build the groups from dependency candidates equivalence classes | 
 |   // because: | 
 |   //    - We know that pointers in the same equivalence class share | 
 |   //      the same underlying object and therefore there is a chance | 
 |   //      that we can compare pointers | 
 |   //    - We wouldn't be able to merge two pointers for which we need | 
 |   //      to emit a memcheck. The classes in DepCands are already | 
 |   //      conveniently built such that no two pointers in the same | 
 |   //      class need checking against each other. | 
 |  | 
 |   // We use the following (greedy) algorithm to construct the groups | 
 |   // For every pointer in the equivalence class: | 
 |   //   For each existing group: | 
 |   //   - if the difference between this pointer and the min/max bounds | 
 |   //     of the group is a constant, then make the pointer part of the | 
 |   //     group and update the min/max bounds of that group as required. | 
 |  | 
 |   CheckingGroups.clear(); | 
 |  | 
 |   // If we need to check two pointers to the same underlying object | 
 |   // with a non-constant difference, we shouldn't perform any pointer | 
 |   // grouping with those pointers. This is because we can easily get | 
 |   // into cases where the resulting check would return false, even when | 
 |   // the accesses are safe. | 
 |   // | 
 |   // The following example shows this: | 
 |   // for (i = 0; i < 1000; ++i) | 
 |   //   a[5000 + i * m] = a[i] + a[i + 9000] | 
 |   // | 
 |   // Here grouping gives a check of (5000, 5000 + 1000 * m) against | 
 |   // (0, 10000) which is always false. However, if m is 1, there is no | 
 |   // dependence. Not grouping the checks for a[i] and a[i + 9000] allows | 
 |   // us to perform an accurate check in this case. | 
 |   // | 
 |   // The above case requires that we have an UnknownDependence between | 
 |   // accesses to the same underlying object. This cannot happen unless | 
 |   // FoundNonConstantDistanceDependence is set, and therefore UseDependencies | 
 |   // is also false. In this case we will use the fallback path and create | 
 |   // separate checking groups for all pointers. | 
 |  | 
 |   // If we don't have the dependency partitions, construct a new | 
 |   // checking pointer group for each pointer. This is also required | 
 |   // for correctness, because in this case we can have checking between | 
 |   // pointers to the same underlying object. | 
 |   if (!UseDependencies) { | 
 |     for (unsigned I = 0; I < Pointers.size(); ++I) | 
 |       CheckingGroups.push_back(CheckingPtrGroup(I, *this)); | 
 |     return; | 
 |   } | 
 |  | 
 |   unsigned TotalComparisons = 0; | 
 |  | 
 |   DenseMap<Value *, unsigned> PositionMap; | 
 |   for (unsigned Index = 0; Index < Pointers.size(); ++Index) | 
 |     PositionMap[Pointers[Index].PointerValue] = Index; | 
 |  | 
 |   // We need to keep track of what pointers we've already seen so we | 
 |   // don't process them twice. | 
 |   SmallSet<unsigned, 2> Seen; | 
 |  | 
 |   // Go through all equivalence classes, get the "pointer check groups" | 
 |   // and add them to the overall solution. We use the order in which accesses | 
 |   // appear in 'Pointers' to enforce determinism. | 
 |   for (unsigned I = 0; I < Pointers.size(); ++I) { | 
 |     // We've seen this pointer before, and therefore already processed | 
 |     // its equivalence class. | 
 |     if (Seen.count(I)) | 
 |       continue; | 
 |  | 
 |     MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, | 
 |                                            Pointers[I].IsWritePtr); | 
 |  | 
 |     SmallVector<CheckingPtrGroup, 2> Groups; | 
 |     auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); | 
 |  | 
 |     // Because DepCands is constructed by visiting accesses in the order in | 
 |     // which they appear in alias sets (which is deterministic) and the | 
 |     // iteration order within an equivalence class member is only dependent on | 
 |     // the order in which unions and insertions are performed on the | 
 |     // equivalence class, the iteration order is deterministic. | 
 |     for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); | 
 |          MI != ME; ++MI) { | 
 |       unsigned Pointer = PositionMap[MI->getPointer()]; | 
 |       bool Merged = false; | 
 |       // Mark this pointer as seen. | 
 |       Seen.insert(Pointer); | 
 |  | 
 |       // Go through all the existing sets and see if we can find one | 
 |       // which can include this pointer. | 
 |       for (CheckingPtrGroup &Group : Groups) { | 
 |         // Don't perform more than a certain amount of comparisons. | 
 |         // This should limit the cost of grouping the pointers to something | 
 |         // reasonable.  If we do end up hitting this threshold, the algorithm | 
 |         // will create separate groups for all remaining pointers. | 
 |         if (TotalComparisons > MemoryCheckMergeThreshold) | 
 |           break; | 
 |  | 
 |         TotalComparisons++; | 
 |  | 
 |         if (Group.addPointer(Pointer)) { | 
 |           Merged = true; | 
 |           break; | 
 |         } | 
 |       } | 
 |  | 
 |       if (!Merged) | 
 |         // We couldn't add this pointer to any existing set or the threshold | 
 |         // for the number of comparisons has been reached. Create a new group | 
 |         // to hold the current pointer. | 
 |         Groups.push_back(CheckingPtrGroup(Pointer, *this)); | 
 |     } | 
 |  | 
 |     // We've computed the grouped checks for this partition. | 
 |     // Save the results and continue with the next one. | 
 |     llvm::copy(Groups, std::back_inserter(CheckingGroups)); | 
 |   } | 
 | } | 
 |  | 
 | bool RuntimePointerChecking::arePointersInSamePartition( | 
 |     const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, | 
 |     unsigned PtrIdx2) { | 
 |   return (PtrToPartition[PtrIdx1] != -1 && | 
 |           PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); | 
 | } | 
 |  | 
 | bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { | 
 |   const PointerInfo &PointerI = Pointers[I]; | 
 |   const PointerInfo &PointerJ = Pointers[J]; | 
 |  | 
 |   // No need to check if two readonly pointers intersect. | 
 |   if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) | 
 |     return false; | 
 |  | 
 |   // Only need to check pointers between two different dependency sets. | 
 |   if (PointerI.DependencySetId == PointerJ.DependencySetId) | 
 |     return false; | 
 |  | 
 |   // Only need to check pointers in the same alias set. | 
 |   if (PointerI.AliasSetId != PointerJ.AliasSetId) | 
 |     return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | void RuntimePointerChecking::printChecks( | 
 |     raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks, | 
 |     unsigned Depth) const { | 
 |   unsigned N = 0; | 
 |   for (const auto &Check : Checks) { | 
 |     const auto &First = Check.first->Members, &Second = Check.second->Members; | 
 |  | 
 |     OS.indent(Depth) << "Check " << N++ << ":\n"; | 
 |  | 
 |     OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n"; | 
 |     for (unsigned K = 0; K < First.size(); ++K) | 
 |       OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n"; | 
 |  | 
 |     OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n"; | 
 |     for (unsigned K = 0; K < Second.size(); ++K) | 
 |       OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n"; | 
 |   } | 
 | } | 
 |  | 
 | void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { | 
 |  | 
 |   OS.indent(Depth) << "Run-time memory checks:\n"; | 
 |   printChecks(OS, Checks, Depth); | 
 |  | 
 |   OS.indent(Depth) << "Grouped accesses:\n"; | 
 |   for (unsigned I = 0; I < CheckingGroups.size(); ++I) { | 
 |     const auto &CG = CheckingGroups[I]; | 
 |  | 
 |     OS.indent(Depth + 2) << "Group " << &CG << ":\n"; | 
 |     OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High | 
 |                          << ")\n"; | 
 |     for (unsigned J = 0; J < CG.Members.size(); ++J) { | 
 |       OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr | 
 |                            << "\n"; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | namespace { | 
 |  | 
 | /// Analyses memory accesses in a loop. | 
 | /// | 
 | /// Checks whether run time pointer checks are needed and builds sets for data | 
 | /// dependence checking. | 
 | class AccessAnalysis { | 
 | public: | 
 |   /// Read or write access location. | 
 |   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; | 
 |   typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; | 
 |  | 
 |   AccessAnalysis(const DataLayout &Dl, Loop *TheLoop, AliasAnalysis *AA, | 
 |                  LoopInfo *LI, MemoryDepChecker::DepCandidates &DA, | 
 |                  PredicatedScalarEvolution &PSE) | 
 |       : DL(Dl), TheLoop(TheLoop), AST(*AA), LI(LI), DepCands(DA), | 
 |         IsRTCheckAnalysisNeeded(false), PSE(PSE) {} | 
 |  | 
 |   /// Register a load  and whether it is only read from. | 
 |   void addLoad(MemoryLocation &Loc, bool IsReadOnly) { | 
 |     Value *Ptr = const_cast<Value*>(Loc.Ptr); | 
 |     AST.add(Ptr, LocationSize::unknown(), Loc.AATags); | 
 |     Accesses.insert(MemAccessInfo(Ptr, false)); | 
 |     if (IsReadOnly) | 
 |       ReadOnlyPtr.insert(Ptr); | 
 |   } | 
 |  | 
 |   /// Register a store. | 
 |   void addStore(MemoryLocation &Loc) { | 
 |     Value *Ptr = const_cast<Value*>(Loc.Ptr); | 
 |     AST.add(Ptr, LocationSize::unknown(), Loc.AATags); | 
 |     Accesses.insert(MemAccessInfo(Ptr, true)); | 
 |   } | 
 |  | 
 |   /// Check if we can emit a run-time no-alias check for \p Access. | 
 |   /// | 
 |   /// Returns true if we can emit a run-time no alias check for \p Access. | 
 |   /// If we can check this access, this also adds it to a dependence set and | 
 |   /// adds a run-time to check for it to \p RtCheck. If \p Assume is true, | 
 |   /// we will attempt to use additional run-time checks in order to get | 
 |   /// the bounds of the pointer. | 
 |   bool createCheckForAccess(RuntimePointerChecking &RtCheck, | 
 |                             MemAccessInfo Access, | 
 |                             const ValueToValueMap &Strides, | 
 |                             DenseMap<Value *, unsigned> &DepSetId, | 
 |                             Loop *TheLoop, unsigned &RunningDepId, | 
 |                             unsigned ASId, bool ShouldCheckStride, | 
 |                             bool Assume); | 
 |  | 
 |   /// Check whether we can check the pointers at runtime for | 
 |   /// non-intersection. | 
 |   /// | 
 |   /// Returns true if we need no check or if we do and we can generate them | 
 |   /// (i.e. the pointers have computable bounds). | 
 |   bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, | 
 |                        Loop *TheLoop, const ValueToValueMap &Strides, | 
 |                        bool ShouldCheckWrap = false); | 
 |  | 
 |   /// Goes over all memory accesses, checks whether a RT check is needed | 
 |   /// and builds sets of dependent accesses. | 
 |   void buildDependenceSets() { | 
 |     processMemAccesses(); | 
 |   } | 
 |  | 
 |   /// Initial processing of memory accesses determined that we need to | 
 |   /// perform dependency checking. | 
 |   /// | 
 |   /// Note that this can later be cleared if we retry memcheck analysis without | 
 |   /// dependency checking (i.e. FoundNonConstantDistanceDependence). | 
 |   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } | 
 |  | 
 |   /// We decided that no dependence analysis would be used.  Reset the state. | 
 |   void resetDepChecks(MemoryDepChecker &DepChecker) { | 
 |     CheckDeps.clear(); | 
 |     DepChecker.clearDependences(); | 
 |   } | 
 |  | 
 |   MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; } | 
 |  | 
 | private: | 
 |   typedef SetVector<MemAccessInfo> PtrAccessSet; | 
 |  | 
 |   /// Go over all memory access and check whether runtime pointer checks | 
 |   /// are needed and build sets of dependency check candidates. | 
 |   void processMemAccesses(); | 
 |  | 
 |   /// Set of all accesses. | 
 |   PtrAccessSet Accesses; | 
 |  | 
 |   const DataLayout &DL; | 
 |  | 
 |   /// The loop being checked. | 
 |   const Loop *TheLoop; | 
 |  | 
 |   /// List of accesses that need a further dependence check. | 
 |   MemAccessInfoList CheckDeps; | 
 |  | 
 |   /// Set of pointers that are read only. | 
 |   SmallPtrSet<Value*, 16> ReadOnlyPtr; | 
 |  | 
 |   /// An alias set tracker to partition the access set by underlying object and | 
 |   //intrinsic property (such as TBAA metadata). | 
 |   AliasSetTracker AST; | 
 |  | 
 |   LoopInfo *LI; | 
 |  | 
 |   /// Sets of potentially dependent accesses - members of one set share an | 
 |   /// underlying pointer. The set "CheckDeps" identfies which sets really need a | 
 |   /// dependence check. | 
 |   MemoryDepChecker::DepCandidates &DepCands; | 
 |  | 
 |   /// Initial processing of memory accesses determined that we may need | 
 |   /// to add memchecks.  Perform the analysis to determine the necessary checks. | 
 |   /// | 
 |   /// Note that, this is different from isDependencyCheckNeeded.  When we retry | 
 |   /// memcheck analysis without dependency checking | 
 |   /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is | 
 |   /// cleared while this remains set if we have potentially dependent accesses. | 
 |   bool IsRTCheckAnalysisNeeded; | 
 |  | 
 |   /// The SCEV predicate containing all the SCEV-related assumptions. | 
 |   PredicatedScalarEvolution &PSE; | 
 | }; | 
 |  | 
 | } // end anonymous namespace | 
 |  | 
 | /// Check whether a pointer can participate in a runtime bounds check. | 
 | /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr | 
 | /// by adding run-time checks (overflow checks) if necessary. | 
 | static bool hasComputableBounds(PredicatedScalarEvolution &PSE, | 
 |                                 const ValueToValueMap &Strides, Value *Ptr, | 
 |                                 Loop *L, bool Assume) { | 
 |   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); | 
 |  | 
 |   // The bounds for loop-invariant pointer is trivial. | 
 |   if (PSE.getSE()->isLoopInvariant(PtrScev, L)) | 
 |     return true; | 
 |  | 
 |   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); | 
 |  | 
 |   if (!AR && Assume) | 
 |     AR = PSE.getAsAddRec(Ptr); | 
 |  | 
 |   if (!AR) | 
 |     return false; | 
 |  | 
 |   return AR->isAffine(); | 
 | } | 
 |  | 
 | /// Check whether a pointer address cannot wrap. | 
 | static bool isNoWrap(PredicatedScalarEvolution &PSE, | 
 |                      const ValueToValueMap &Strides, Value *Ptr, Loop *L) { | 
 |   const SCEV *PtrScev = PSE.getSCEV(Ptr); | 
 |   if (PSE.getSE()->isLoopInvariant(PtrScev, L)) | 
 |     return true; | 
 |  | 
 |   int64_t Stride = getPtrStride(PSE, Ptr, L, Strides); | 
 |   if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) | 
 |     return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck, | 
 |                                           MemAccessInfo Access, | 
 |                                           const ValueToValueMap &StridesMap, | 
 |                                           DenseMap<Value *, unsigned> &DepSetId, | 
 |                                           Loop *TheLoop, unsigned &RunningDepId, | 
 |                                           unsigned ASId, bool ShouldCheckWrap, | 
 |                                           bool Assume) { | 
 |   Value *Ptr = Access.getPointer(); | 
 |  | 
 |   if (!hasComputableBounds(PSE, StridesMap, Ptr, TheLoop, Assume)) | 
 |     return false; | 
 |  | 
 |   // When we run after a failing dependency check we have to make sure | 
 |   // we don't have wrapping pointers. | 
 |   if (ShouldCheckWrap && !isNoWrap(PSE, StridesMap, Ptr, TheLoop)) { | 
 |     auto *Expr = PSE.getSCEV(Ptr); | 
 |     if (!Assume || !isa<SCEVAddRecExpr>(Expr)) | 
 |       return false; | 
 |     PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); | 
 |   } | 
 |  | 
 |   // The id of the dependence set. | 
 |   unsigned DepId; | 
 |  | 
 |   if (isDependencyCheckNeeded()) { | 
 |     Value *Leader = DepCands.getLeaderValue(Access).getPointer(); | 
 |     unsigned &LeaderId = DepSetId[Leader]; | 
 |     if (!LeaderId) | 
 |       LeaderId = RunningDepId++; | 
 |     DepId = LeaderId; | 
 |   } else | 
 |     // Each access has its own dependence set. | 
 |     DepId = RunningDepId++; | 
 |  | 
 |   bool IsWrite = Access.getInt(); | 
 |   RtCheck.insert(TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap, PSE); | 
 |   LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); | 
 |  | 
 |   return true; | 
 |  } | 
 |  | 
 | bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, | 
 |                                      ScalarEvolution *SE, Loop *TheLoop, | 
 |                                      const ValueToValueMap &StridesMap, | 
 |                                      bool ShouldCheckWrap) { | 
 |   // Find pointers with computable bounds. We are going to use this information | 
 |   // to place a runtime bound check. | 
 |   bool CanDoRT = true; | 
 |  | 
 |   bool NeedRTCheck = false; | 
 |   if (!IsRTCheckAnalysisNeeded) return true; | 
 |  | 
 |   bool IsDepCheckNeeded = isDependencyCheckNeeded(); | 
 |  | 
 |   // We assign a consecutive id to access from different alias sets. | 
 |   // Accesses between different groups doesn't need to be checked. | 
 |   unsigned ASId = 1; | 
 |   for (auto &AS : AST) { | 
 |     int NumReadPtrChecks = 0; | 
 |     int NumWritePtrChecks = 0; | 
 |     bool CanDoAliasSetRT = true; | 
 |  | 
 |     // We assign consecutive id to access from different dependence sets. | 
 |     // Accesses within the same set don't need a runtime check. | 
 |     unsigned RunningDepId = 1; | 
 |     DenseMap<Value *, unsigned> DepSetId; | 
 |  | 
 |     SmallVector<MemAccessInfo, 4> Retries; | 
 |  | 
 |     for (auto A : AS) { | 
 |       Value *Ptr = A.getValue(); | 
 |       bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); | 
 |       MemAccessInfo Access(Ptr, IsWrite); | 
 |  | 
 |       if (IsWrite) | 
 |         ++NumWritePtrChecks; | 
 |       else | 
 |         ++NumReadPtrChecks; | 
 |  | 
 |       if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, TheLoop, | 
 |                                 RunningDepId, ASId, ShouldCheckWrap, false)) { | 
 |         LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" << *Ptr << '\n'); | 
 |         Retries.push_back(Access); | 
 |         CanDoAliasSetRT = false; | 
 |       } | 
 |     } | 
 |  | 
 |     // If we have at least two writes or one write and a read then we need to | 
 |     // check them.  But there is no need to checks if there is only one | 
 |     // dependence set for this alias set. | 
 |     // | 
 |     // Note that this function computes CanDoRT and NeedRTCheck independently. | 
 |     // For example CanDoRT=false, NeedRTCheck=false means that we have a pointer | 
 |     // for which we couldn't find the bounds but we don't actually need to emit | 
 |     // any checks so it does not matter. | 
 |     bool NeedsAliasSetRTCheck = false; | 
 |     if (!(IsDepCheckNeeded && CanDoAliasSetRT && RunningDepId == 2)) | 
 |       NeedsAliasSetRTCheck = (NumWritePtrChecks >= 2 || | 
 |                              (NumReadPtrChecks >= 1 && NumWritePtrChecks >= 1)); | 
 |  | 
 |     // We need to perform run-time alias checks, but some pointers had bounds | 
 |     // that couldn't be checked. | 
 |     if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) { | 
 |       // Reset the CanDoSetRt flag and retry all accesses that have failed. | 
 |       // We know that we need these checks, so we can now be more aggressive | 
 |       // and add further checks if required (overflow checks). | 
 |       CanDoAliasSetRT = true; | 
 |       for (auto Access : Retries) | 
 |         if (!createCheckForAccess(RtCheck, Access, StridesMap, DepSetId, | 
 |                                   TheLoop, RunningDepId, ASId, | 
 |                                   ShouldCheckWrap, /*Assume=*/true)) { | 
 |           CanDoAliasSetRT = false; | 
 |           break; | 
 |         } | 
 |     } | 
 |  | 
 |     CanDoRT &= CanDoAliasSetRT; | 
 |     NeedRTCheck |= NeedsAliasSetRTCheck; | 
 |     ++ASId; | 
 |   } | 
 |  | 
 |   // If the pointers that we would use for the bounds comparison have different | 
 |   // address spaces, assume the values aren't directly comparable, so we can't | 
 |   // use them for the runtime check. We also have to assume they could | 
 |   // overlap. In the future there should be metadata for whether address spaces | 
 |   // are disjoint. | 
 |   unsigned NumPointers = RtCheck.Pointers.size(); | 
 |   for (unsigned i = 0; i < NumPointers; ++i) { | 
 |     for (unsigned j = i + 1; j < NumPointers; ++j) { | 
 |       // Only need to check pointers between two different dependency sets. | 
 |       if (RtCheck.Pointers[i].DependencySetId == | 
 |           RtCheck.Pointers[j].DependencySetId) | 
 |        continue; | 
 |       // Only need to check pointers in the same alias set. | 
 |       if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) | 
 |         continue; | 
 |  | 
 |       Value *PtrI = RtCheck.Pointers[i].PointerValue; | 
 |       Value *PtrJ = RtCheck.Pointers[j].PointerValue; | 
 |  | 
 |       unsigned ASi = PtrI->getType()->getPointerAddressSpace(); | 
 |       unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); | 
 |       if (ASi != ASj) { | 
 |         LLVM_DEBUG( | 
 |             dbgs() << "LAA: Runtime check would require comparison between" | 
 |                       " different address spaces\n"); | 
 |         return false; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (NeedRTCheck && CanDoRT) | 
 |     RtCheck.generateChecks(DepCands, IsDepCheckNeeded); | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() | 
 |                     << " pointer comparisons.\n"); | 
 |  | 
 |   RtCheck.Need = NeedRTCheck; | 
 |  | 
 |   bool CanDoRTIfNeeded = !NeedRTCheck || CanDoRT; | 
 |   if (!CanDoRTIfNeeded) | 
 |     RtCheck.reset(); | 
 |   return CanDoRTIfNeeded; | 
 | } | 
 |  | 
 | void AccessAnalysis::processMemAccesses() { | 
 |   // We process the set twice: first we process read-write pointers, last we | 
 |   // process read-only pointers. This allows us to skip dependence tests for | 
 |   // read-only pointers. | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); | 
 |   LLVM_DEBUG(dbgs() << "  AST: "; AST.dump()); | 
 |   LLVM_DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n"); | 
 |   LLVM_DEBUG({ | 
 |     for (auto A : Accesses) | 
 |       dbgs() << "\t" << *A.getPointer() << " (" << | 
 |                 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? | 
 |                                          "read-only" : "read")) << ")\n"; | 
 |   }); | 
 |  | 
 |   // The AliasSetTracker has nicely partitioned our pointers by metadata | 
 |   // compatibility and potential for underlying-object overlap. As a result, we | 
 |   // only need to check for potential pointer dependencies within each alias | 
 |   // set. | 
 |   for (auto &AS : AST) { | 
 |     // Note that both the alias-set tracker and the alias sets themselves used | 
 |     // linked lists internally and so the iteration order here is deterministic | 
 |     // (matching the original instruction order within each set). | 
 |  | 
 |     bool SetHasWrite = false; | 
 |  | 
 |     // Map of pointers to last access encountered. | 
 |     typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; | 
 |     UnderlyingObjToAccessMap ObjToLastAccess; | 
 |  | 
 |     // Set of access to check after all writes have been processed. | 
 |     PtrAccessSet DeferredAccesses; | 
 |  | 
 |     // Iterate over each alias set twice, once to process read/write pointers, | 
 |     // and then to process read-only pointers. | 
 |     for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { | 
 |       bool UseDeferred = SetIteration > 0; | 
 |       PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; | 
 |  | 
 |       for (auto AV : AS) { | 
 |         Value *Ptr = AV.getValue(); | 
 |  | 
 |         // For a single memory access in AliasSetTracker, Accesses may contain | 
 |         // both read and write, and they both need to be handled for CheckDeps. | 
 |         for (auto AC : S) { | 
 |           if (AC.getPointer() != Ptr) | 
 |             continue; | 
 |  | 
 |           bool IsWrite = AC.getInt(); | 
 |  | 
 |           // If we're using the deferred access set, then it contains only | 
 |           // reads. | 
 |           bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; | 
 |           if (UseDeferred && !IsReadOnlyPtr) | 
 |             continue; | 
 |           // Otherwise, the pointer must be in the PtrAccessSet, either as a | 
 |           // read or a write. | 
 |           assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || | 
 |                   S.count(MemAccessInfo(Ptr, false))) && | 
 |                  "Alias-set pointer not in the access set?"); | 
 |  | 
 |           MemAccessInfo Access(Ptr, IsWrite); | 
 |           DepCands.insert(Access); | 
 |  | 
 |           // Memorize read-only pointers for later processing and skip them in | 
 |           // the first round (they need to be checked after we have seen all | 
 |           // write pointers). Note: we also mark pointer that are not | 
 |           // consecutive as "read-only" pointers (so that we check | 
 |           // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". | 
 |           if (!UseDeferred && IsReadOnlyPtr) { | 
 |             DeferredAccesses.insert(Access); | 
 |             continue; | 
 |           } | 
 |  | 
 |           // If this is a write - check other reads and writes for conflicts. If | 
 |           // this is a read only check other writes for conflicts (but only if | 
 |           // there is no other write to the ptr - this is an optimization to | 
 |           // catch "a[i] = a[i] + " without having to do a dependence check). | 
 |           if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { | 
 |             CheckDeps.push_back(Access); | 
 |             IsRTCheckAnalysisNeeded = true; | 
 |           } | 
 |  | 
 |           if (IsWrite) | 
 |             SetHasWrite = true; | 
 |  | 
 |           // Create sets of pointers connected by a shared alias set and | 
 |           // underlying object. | 
 |           typedef SmallVector<Value *, 16> ValueVector; | 
 |           ValueVector TempObjects; | 
 |  | 
 |           GetUnderlyingObjects(Ptr, TempObjects, DL, LI); | 
 |           LLVM_DEBUG(dbgs() | 
 |                      << "Underlying objects for pointer " << *Ptr << "\n"); | 
 |           for (Value *UnderlyingObj : TempObjects) { | 
 |             // nullptr never alias, don't join sets for pointer that have "null" | 
 |             // in their UnderlyingObjects list. | 
 |             if (isa<ConstantPointerNull>(UnderlyingObj) && | 
 |                 !NullPointerIsDefined( | 
 |                     TheLoop->getHeader()->getParent(), | 
 |                     UnderlyingObj->getType()->getPointerAddressSpace())) | 
 |               continue; | 
 |  | 
 |             UnderlyingObjToAccessMap::iterator Prev = | 
 |                 ObjToLastAccess.find(UnderlyingObj); | 
 |             if (Prev != ObjToLastAccess.end()) | 
 |               DepCands.unionSets(Access, Prev->second); | 
 |  | 
 |             ObjToLastAccess[UnderlyingObj] = Access; | 
 |             LLVM_DEBUG(dbgs() << "  " << *UnderlyingObj << "\n"); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static bool isInBoundsGep(Value *Ptr) { | 
 |   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) | 
 |     return GEP->isInBounds(); | 
 |   return false; | 
 | } | 
 |  | 
 | /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, | 
 | /// i.e. monotonically increasing/decreasing. | 
 | static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, | 
 |                            PredicatedScalarEvolution &PSE, const Loop *L) { | 
 |   // FIXME: This should probably only return true for NUW. | 
 |   if (AR->getNoWrapFlags(SCEV::NoWrapMask)) | 
 |     return true; | 
 |  | 
 |   // Scalar evolution does not propagate the non-wrapping flags to values that | 
 |   // are derived from a non-wrapping induction variable because non-wrapping | 
 |   // could be flow-sensitive. | 
 |   // | 
 |   // Look through the potentially overflowing instruction to try to prove | 
 |   // non-wrapping for the *specific* value of Ptr. | 
 |  | 
 |   // The arithmetic implied by an inbounds GEP can't overflow. | 
 |   auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); | 
 |   if (!GEP || !GEP->isInBounds()) | 
 |     return false; | 
 |  | 
 |   // Make sure there is only one non-const index and analyze that. | 
 |   Value *NonConstIndex = nullptr; | 
 |   for (Value *Index : make_range(GEP->idx_begin(), GEP->idx_end())) | 
 |     if (!isa<ConstantInt>(Index)) { | 
 |       if (NonConstIndex) | 
 |         return false; | 
 |       NonConstIndex = Index; | 
 |     } | 
 |   if (!NonConstIndex) | 
 |     // The recurrence is on the pointer, ignore for now. | 
 |     return false; | 
 |  | 
 |   // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW | 
 |   // AddRec using a NSW operation. | 
 |   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) | 
 |     if (OBO->hasNoSignedWrap() && | 
 |         // Assume constant for other the operand so that the AddRec can be | 
 |         // easily found. | 
 |         isa<ConstantInt>(OBO->getOperand(1))) { | 
 |       auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); | 
 |  | 
 |       if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) | 
 |         return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); | 
 |     } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// Check whether the access through \p Ptr has a constant stride. | 
 | int64_t llvm::getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, | 
 |                            const Loop *Lp, const ValueToValueMap &StridesMap, | 
 |                            bool Assume, bool ShouldCheckWrap) { | 
 |   Type *Ty = Ptr->getType(); | 
 |   assert(Ty->isPointerTy() && "Unexpected non-ptr"); | 
 |  | 
 |   // Make sure that the pointer does not point to aggregate types. | 
 |   auto *PtrTy = cast<PointerType>(Ty); | 
 |   if (PtrTy->getElementType()->isAggregateType()) { | 
 |     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a pointer to a scalar type" | 
 |                       << *Ptr << "\n"); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); | 
 |  | 
 |   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); | 
 |   if (Assume && !AR) | 
 |     AR = PSE.getAsAddRec(Ptr); | 
 |  | 
 |   if (!AR) { | 
 |     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr | 
 |                       << " SCEV: " << *PtrScev << "\n"); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // The accesss function must stride over the innermost loop. | 
 |   if (Lp != AR->getLoop()) { | 
 |     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " | 
 |                       << *Ptr << " SCEV: " << *AR << "\n"); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // The address calculation must not wrap. Otherwise, a dependence could be | 
 |   // inverted. | 
 |   // An inbounds getelementptr that is a AddRec with a unit stride | 
 |   // cannot wrap per definition. The unit stride requirement is checked later. | 
 |   // An getelementptr without an inbounds attribute and unit stride would have | 
 |   // to access the pointer value "0" which is undefined behavior in address | 
 |   // space 0, therefore we can also vectorize this case. | 
 |   bool IsInBoundsGEP = isInBoundsGep(Ptr); | 
 |   bool IsNoWrapAddRec = !ShouldCheckWrap || | 
 |     PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW) || | 
 |     isNoWrapAddRec(Ptr, AR, PSE, Lp); | 
 |   if (!IsNoWrapAddRec && !IsInBoundsGEP && | 
 |       NullPointerIsDefined(Lp->getHeader()->getParent(), | 
 |                            PtrTy->getAddressSpace())) { | 
 |     if (Assume) { | 
 |       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); | 
 |       IsNoWrapAddRec = true; | 
 |       LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap in the address space:\n" | 
 |                         << "LAA:   Pointer: " << *Ptr << "\n" | 
 |                         << "LAA:   SCEV: " << *AR << "\n" | 
 |                         << "LAA:   Added an overflow assumption\n"); | 
 |     } else { | 
 |       LLVM_DEBUG( | 
 |           dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " | 
 |                  << *Ptr << " SCEV: " << *AR << "\n"); | 
 |       return 0; | 
 |     } | 
 |   } | 
 |  | 
 |   // Check the step is constant. | 
 |   const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); | 
 |  | 
 |   // Calculate the pointer stride and check if it is constant. | 
 |   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); | 
 |   if (!C) { | 
 |     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr | 
 |                       << " SCEV: " << *AR << "\n"); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   auto &DL = Lp->getHeader()->getModule()->getDataLayout(); | 
 |   int64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); | 
 |   const APInt &APStepVal = C->getAPInt(); | 
 |  | 
 |   // Huge step value - give up. | 
 |   if (APStepVal.getBitWidth() > 64) | 
 |     return 0; | 
 |  | 
 |   int64_t StepVal = APStepVal.getSExtValue(); | 
 |  | 
 |   // Strided access. | 
 |   int64_t Stride = StepVal / Size; | 
 |   int64_t Rem = StepVal % Size; | 
 |   if (Rem) | 
 |     return 0; | 
 |  | 
 |   // If the SCEV could wrap but we have an inbounds gep with a unit stride we | 
 |   // know we can't "wrap around the address space". In case of address space | 
 |   // zero we know that this won't happen without triggering undefined behavior. | 
 |   if (!IsNoWrapAddRec && Stride != 1 && Stride != -1 && | 
 |       (IsInBoundsGEP || !NullPointerIsDefined(Lp->getHeader()->getParent(), | 
 |                                               PtrTy->getAddressSpace()))) { | 
 |     if (Assume) { | 
 |       // We can avoid this case by adding a run-time check. | 
 |       LLVM_DEBUG(dbgs() << "LAA: Non unit strided pointer which is not either " | 
 |                         << "inbouds or in address space 0 may wrap:\n" | 
 |                         << "LAA:   Pointer: " << *Ptr << "\n" | 
 |                         << "LAA:   SCEV: " << *AR << "\n" | 
 |                         << "LAA:   Added an overflow assumption\n"); | 
 |       PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); | 
 |     } else | 
 |       return 0; | 
 |   } | 
 |  | 
 |   return Stride; | 
 | } | 
 |  | 
 | bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, const DataLayout &DL, | 
 |                            ScalarEvolution &SE, | 
 |                            SmallVectorImpl<unsigned> &SortedIndices) { | 
 |   assert(llvm::all_of( | 
 |              VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && | 
 |          "Expected list of pointer operands."); | 
 |   SmallVector<std::pair<int64_t, Value *>, 4> OffValPairs; | 
 |   OffValPairs.reserve(VL.size()); | 
 |  | 
 |   // Walk over the pointers, and map each of them to an offset relative to | 
 |   // first pointer in the array. | 
 |   Value *Ptr0 = VL[0]; | 
 |   const SCEV *Scev0 = SE.getSCEV(Ptr0); | 
 |   Value *Obj0 = GetUnderlyingObject(Ptr0, DL); | 
 |  | 
 |   llvm::SmallSet<int64_t, 4> Offsets; | 
 |   for (auto *Ptr : VL) { | 
 |     // TODO: Outline this code as a special, more time consuming, version of | 
 |     // computeConstantDifference() function. | 
 |     if (Ptr->getType()->getPointerAddressSpace() != | 
 |         Ptr0->getType()->getPointerAddressSpace()) | 
 |       return false; | 
 |     // If a pointer refers to a different underlying object, bail - the | 
 |     // pointers are by definition incomparable. | 
 |     Value *CurrObj = GetUnderlyingObject(Ptr, DL); | 
 |     if (CurrObj != Obj0) | 
 |       return false; | 
 |  | 
 |     const SCEV *Scev = SE.getSCEV(Ptr); | 
 |     const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Scev, Scev0)); | 
 |     // The pointers may not have a constant offset from each other, or SCEV | 
 |     // may just not be smart enough to figure out they do. Regardless, | 
 |     // there's nothing we can do. | 
 |     if (!Diff) | 
 |       return false; | 
 |  | 
 |     // Check if the pointer with the same offset is found. | 
 |     int64_t Offset = Diff->getAPInt().getSExtValue(); | 
 |     if (!Offsets.insert(Offset).second) | 
 |       return false; | 
 |     OffValPairs.emplace_back(Offset, Ptr); | 
 |   } | 
 |   SortedIndices.clear(); | 
 |   SortedIndices.resize(VL.size()); | 
 |   std::iota(SortedIndices.begin(), SortedIndices.end(), 0); | 
 |  | 
 |   // Sort the memory accesses and keep the order of their uses in UseOrder. | 
 |   std::stable_sort(SortedIndices.begin(), SortedIndices.end(), | 
 |                    [&OffValPairs](unsigned Left, unsigned Right) { | 
 |                      return OffValPairs[Left].first < OffValPairs[Right].first; | 
 |                    }); | 
 |  | 
 |   // Check if the order is consecutive already. | 
 |   if (llvm::all_of(SortedIndices, [&SortedIndices](const unsigned I) { | 
 |         return I == SortedIndices[I]; | 
 |       })) | 
 |     SortedIndices.clear(); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// Take the address space operand from the Load/Store instruction. | 
 | /// Returns -1 if this is not a valid Load/Store instruction. | 
 | static unsigned getAddressSpaceOperand(Value *I) { | 
 |   if (LoadInst *L = dyn_cast<LoadInst>(I)) | 
 |     return L->getPointerAddressSpace(); | 
 |   if (StoreInst *S = dyn_cast<StoreInst>(I)) | 
 |     return S->getPointerAddressSpace(); | 
 |   return -1; | 
 | } | 
 |  | 
 | /// Returns true if the memory operations \p A and \p B are consecutive. | 
 | bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, | 
 |                                ScalarEvolution &SE, bool CheckType) { | 
 |   Value *PtrA = getLoadStorePointerOperand(A); | 
 |   Value *PtrB = getLoadStorePointerOperand(B); | 
 |   unsigned ASA = getAddressSpaceOperand(A); | 
 |   unsigned ASB = getAddressSpaceOperand(B); | 
 |  | 
 |   // Check that the address spaces match and that the pointers are valid. | 
 |   if (!PtrA || !PtrB || (ASA != ASB)) | 
 |     return false; | 
 |  | 
 |   // Make sure that A and B are different pointers. | 
 |   if (PtrA == PtrB) | 
 |     return false; | 
 |  | 
 |   // Make sure that A and B have the same type if required. | 
 |   if (CheckType && PtrA->getType() != PtrB->getType()) | 
 |     return false; | 
 |  | 
 |   unsigned IdxWidth = DL.getIndexSizeInBits(ASA); | 
 |   Type *Ty = cast<PointerType>(PtrA->getType())->getElementType(); | 
 |   APInt Size(IdxWidth, DL.getTypeStoreSize(Ty)); | 
 |  | 
 |   APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); | 
 |   PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); | 
 |   PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); | 
 |  | 
 |   //  OffsetDelta = OffsetB - OffsetA; | 
 |   const SCEV *OffsetSCEVA = SE.getConstant(OffsetA); | 
 |   const SCEV *OffsetSCEVB = SE.getConstant(OffsetB); | 
 |   const SCEV *OffsetDeltaSCEV = SE.getMinusSCEV(OffsetSCEVB, OffsetSCEVA); | 
 |   const SCEVConstant *OffsetDeltaC = dyn_cast<SCEVConstant>(OffsetDeltaSCEV); | 
 |   const APInt &OffsetDelta = OffsetDeltaC->getAPInt(); | 
 |   // Check if they are based on the same pointer. That makes the offsets | 
 |   // sufficient. | 
 |   if (PtrA == PtrB) | 
 |     return OffsetDelta == Size; | 
 |  | 
 |   // Compute the necessary base pointer delta to have the necessary final delta | 
 |   // equal to the size. | 
 |   // BaseDelta = Size - OffsetDelta; | 
 |   const SCEV *SizeSCEV = SE.getConstant(Size); | 
 |   const SCEV *BaseDelta = SE.getMinusSCEV(SizeSCEV, OffsetDeltaSCEV); | 
 |  | 
 |   // Otherwise compute the distance with SCEV between the base pointers. | 
 |   const SCEV *PtrSCEVA = SE.getSCEV(PtrA); | 
 |   const SCEV *PtrSCEVB = SE.getSCEV(PtrB); | 
 |   const SCEV *X = SE.getAddExpr(PtrSCEVA, BaseDelta); | 
 |   return X == PtrSCEVB; | 
 | } | 
 |  | 
 | MemoryDepChecker::VectorizationSafetyStatus | 
 | MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { | 
 |   switch (Type) { | 
 |   case NoDep: | 
 |   case Forward: | 
 |   case BackwardVectorizable: | 
 |     return VectorizationSafetyStatus::Safe; | 
 |  | 
 |   case Unknown: | 
 |     return VectorizationSafetyStatus::PossiblySafeWithRtChecks; | 
 |   case ForwardButPreventsForwarding: | 
 |   case Backward: | 
 |   case BackwardVectorizableButPreventsForwarding: | 
 |     return VectorizationSafetyStatus::Unsafe; | 
 |   } | 
 |   llvm_unreachable("unexpected DepType!"); | 
 | } | 
 |  | 
 | bool MemoryDepChecker::Dependence::isBackward() const { | 
 |   switch (Type) { | 
 |   case NoDep: | 
 |   case Forward: | 
 |   case ForwardButPreventsForwarding: | 
 |   case Unknown: | 
 |     return false; | 
 |  | 
 |   case BackwardVectorizable: | 
 |   case Backward: | 
 |   case BackwardVectorizableButPreventsForwarding: | 
 |     return true; | 
 |   } | 
 |   llvm_unreachable("unexpected DepType!"); | 
 | } | 
 |  | 
 | bool MemoryDepChecker::Dependence::isPossiblyBackward() const { | 
 |   return isBackward() || Type == Unknown; | 
 | } | 
 |  | 
 | bool MemoryDepChecker::Dependence::isForward() const { | 
 |   switch (Type) { | 
 |   case Forward: | 
 |   case ForwardButPreventsForwarding: | 
 |     return true; | 
 |  | 
 |   case NoDep: | 
 |   case Unknown: | 
 |   case BackwardVectorizable: | 
 |   case Backward: | 
 |   case BackwardVectorizableButPreventsForwarding: | 
 |     return false; | 
 |   } | 
 |   llvm_unreachable("unexpected DepType!"); | 
 | } | 
 |  | 
 | bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, | 
 |                                                     uint64_t TypeByteSize) { | 
 |   // If loads occur at a distance that is not a multiple of a feasible vector | 
 |   // factor store-load forwarding does not take place. | 
 |   // Positive dependences might cause troubles because vectorizing them might | 
 |   // prevent store-load forwarding making vectorized code run a lot slower. | 
 |   //   a[i] = a[i-3] ^ a[i-8]; | 
 |   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and | 
 |   //   hence on your typical architecture store-load forwarding does not take | 
 |   //   place. Vectorizing in such cases does not make sense. | 
 |   // Store-load forwarding distance. | 
 |  | 
 |   // After this many iterations store-to-load forwarding conflicts should not | 
 |   // cause any slowdowns. | 
 |   const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; | 
 |   // Maximum vector factor. | 
 |   uint64_t MaxVFWithoutSLForwardIssues = std::min( | 
 |       VectorizerParams::MaxVectorWidth * TypeByteSize, MaxSafeDepDistBytes); | 
 |  | 
 |   // Compute the smallest VF at which the store and load would be misaligned. | 
 |   for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; | 
 |        VF *= 2) { | 
 |     // If the number of vector iteration between the store and the load are | 
 |     // small we could incur conflicts. | 
 |     if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { | 
 |       MaxVFWithoutSLForwardIssues = (VF >>= 1); | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { | 
 |     LLVM_DEBUG( | 
 |         dbgs() << "LAA: Distance " << Distance | 
 |                << " that could cause a store-load forwarding conflict\n"); | 
 |     return true; | 
 |   } | 
 |  | 
 |   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && | 
 |       MaxVFWithoutSLForwardIssues != | 
 |           VectorizerParams::MaxVectorWidth * TypeByteSize) | 
 |     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; | 
 |   return false; | 
 | } | 
 |  | 
 | void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) { | 
 |   if (Status < S) | 
 |     Status = S; | 
 | } | 
 |  | 
 | /// Given a non-constant (unknown) dependence-distance \p Dist between two | 
 | /// memory accesses, that have the same stride whose absolute value is given | 
 | /// in \p Stride, and that have the same type size \p TypeByteSize, | 
 | /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is | 
 | /// possible to prove statically that the dependence distance is larger | 
 | /// than the range that the accesses will travel through the execution of | 
 | /// the loop. If so, return true; false otherwise. This is useful for | 
 | /// example in loops such as the following (PR31098): | 
 | ///     for (i = 0; i < D; ++i) { | 
 | ///                = out[i]; | 
 | ///       out[i+D] = | 
 | ///     } | 
 | static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, | 
 |                                      const SCEV &BackedgeTakenCount, | 
 |                                      const SCEV &Dist, uint64_t Stride, | 
 |                                      uint64_t TypeByteSize) { | 
 |  | 
 |   // If we can prove that | 
 |   //      (**) |Dist| > BackedgeTakenCount * Step | 
 |   // where Step is the absolute stride of the memory accesses in bytes, | 
 |   // then there is no dependence. | 
 |   // | 
 |   // Ratioanle: | 
 |   // We basically want to check if the absolute distance (|Dist/Step|) | 
 |   // is >= the loop iteration count (or > BackedgeTakenCount). | 
 |   // This is equivalent to the Strong SIV Test (Practical Dependence Testing, | 
 |   // Section 4.2.1); Note, that for vectorization it is sufficient to prove | 
 |   // that the dependence distance is >= VF; This is checked elsewhere. | 
 |   // But in some cases we can prune unknown dependence distances early, and | 
 |   // even before selecting the VF, and without a runtime test, by comparing | 
 |   // the distance against the loop iteration count. Since the vectorized code | 
 |   // will be executed only if LoopCount >= VF, proving distance >= LoopCount | 
 |   // also guarantees that distance >= VF. | 
 |   // | 
 |   const uint64_t ByteStride = Stride * TypeByteSize; | 
 |   const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride); | 
 |   const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step); | 
 |  | 
 |   const SCEV *CastedDist = &Dist; | 
 |   const SCEV *CastedProduct = Product; | 
 |   uint64_t DistTypeSize = DL.getTypeAllocSize(Dist.getType()); | 
 |   uint64_t ProductTypeSize = DL.getTypeAllocSize(Product->getType()); | 
 |  | 
 |   // The dependence distance can be positive/negative, so we sign extend Dist; | 
 |   // The multiplication of the absolute stride in bytes and the | 
 |   // backdgeTakenCount is non-negative, so we zero extend Product. | 
 |   if (DistTypeSize > ProductTypeSize) | 
 |     CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); | 
 |   else | 
 |     CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); | 
 |  | 
 |   // Is  Dist - (BackedgeTakenCount * Step) > 0 ? | 
 |   // (If so, then we have proven (**) because |Dist| >= Dist) | 
 |   const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); | 
 |   if (SE.isKnownPositive(Minus)) | 
 |     return true; | 
 |  | 
 |   // Second try: Is  -Dist - (BackedgeTakenCount * Step) > 0 ? | 
 |   // (If so, then we have proven (**) because |Dist| >= -1*Dist) | 
 |   const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); | 
 |   Minus = SE.getMinusSCEV(NegDist, CastedProduct); | 
 |   if (SE.isKnownPositive(Minus)) | 
 |     return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// Check the dependence for two accesses with the same stride \p Stride. | 
 | /// \p Distance is the positive distance and \p TypeByteSize is type size in | 
 | /// bytes. | 
 | /// | 
 | /// \returns true if they are independent. | 
 | static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, | 
 |                                           uint64_t TypeByteSize) { | 
 |   assert(Stride > 1 && "The stride must be greater than 1"); | 
 |   assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); | 
 |   assert(Distance > 0 && "The distance must be non-zero"); | 
 |  | 
 |   // Skip if the distance is not multiple of type byte size. | 
 |   if (Distance % TypeByteSize) | 
 |     return false; | 
 |  | 
 |   uint64_t ScaledDist = Distance / TypeByteSize; | 
 |  | 
 |   // No dependence if the scaled distance is not multiple of the stride. | 
 |   // E.g. | 
 |   //      for (i = 0; i < 1024 ; i += 4) | 
 |   //        A[i+2] = A[i] + 1; | 
 |   // | 
 |   // Two accesses in memory (scaled distance is 2, stride is 4): | 
 |   //     | A[0] |      |      |      | A[4] |      |      |      | | 
 |   //     |      |      | A[2] |      |      |      | A[6] |      | | 
 |   // | 
 |   // E.g. | 
 |   //      for (i = 0; i < 1024 ; i += 3) | 
 |   //        A[i+4] = A[i] + 1; | 
 |   // | 
 |   // Two accesses in memory (scaled distance is 4, stride is 3): | 
 |   //     | A[0] |      |      | A[3] |      |      | A[6] |      |      | | 
 |   //     |      |      |      |      | A[4] |      |      | A[7] |      | | 
 |   return ScaledDist % Stride; | 
 | } | 
 |  | 
 | MemoryDepChecker::Dependence::DepType | 
 | MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, | 
 |                               const MemAccessInfo &B, unsigned BIdx, | 
 |                               const ValueToValueMap &Strides) { | 
 |   assert (AIdx < BIdx && "Must pass arguments in program order"); | 
 |  | 
 |   Value *APtr = A.getPointer(); | 
 |   Value *BPtr = B.getPointer(); | 
 |   bool AIsWrite = A.getInt(); | 
 |   bool BIsWrite = B.getInt(); | 
 |  | 
 |   // Two reads are independent. | 
 |   if (!AIsWrite && !BIsWrite) | 
 |     return Dependence::NoDep; | 
 |  | 
 |   // We cannot check pointers in different address spaces. | 
 |   if (APtr->getType()->getPointerAddressSpace() != | 
 |       BPtr->getType()->getPointerAddressSpace()) | 
 |     return Dependence::Unknown; | 
 |  | 
 |   int64_t StrideAPtr = getPtrStride(PSE, APtr, InnermostLoop, Strides, true); | 
 |   int64_t StrideBPtr = getPtrStride(PSE, BPtr, InnermostLoop, Strides, true); | 
 |  | 
 |   const SCEV *Src = PSE.getSCEV(APtr); | 
 |   const SCEV *Sink = PSE.getSCEV(BPtr); | 
 |  | 
 |   // If the induction step is negative we have to invert source and sink of the | 
 |   // dependence. | 
 |   if (StrideAPtr < 0) { | 
 |     std::swap(APtr, BPtr); | 
 |     std::swap(Src, Sink); | 
 |     std::swap(AIsWrite, BIsWrite); | 
 |     std::swap(AIdx, BIdx); | 
 |     std::swap(StrideAPtr, StrideBPtr); | 
 |   } | 
 |  | 
 |   const SCEV *Dist = PSE.getSE()->getMinusSCEV(Sink, Src); | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink | 
 |                     << "(Induction step: " << StrideAPtr << ")\n"); | 
 |   LLVM_DEBUG(dbgs() << "LAA: Distance for " << *InstMap[AIdx] << " to " | 
 |                     << *InstMap[BIdx] << ": " << *Dist << "\n"); | 
 |  | 
 |   // Need accesses with constant stride. We don't want to vectorize | 
 |   // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in | 
 |   // the address space. | 
 |   if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ | 
 |     LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n"); | 
 |     return Dependence::Unknown; | 
 |   } | 
 |  | 
 |   Type *ATy = APtr->getType()->getPointerElementType(); | 
 |   Type *BTy = BPtr->getType()->getPointerElementType(); | 
 |   auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout(); | 
 |   uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); | 
 |   uint64_t Stride = std::abs(StrideAPtr); | 
 |   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); | 
 |   if (!C) { | 
 |     if (TypeByteSize == DL.getTypeAllocSize(BTy) && | 
 |         isSafeDependenceDistance(DL, *(PSE.getSE()), | 
 |                                  *(PSE.getBackedgeTakenCount()), *Dist, Stride, | 
 |                                  TypeByteSize)) | 
 |       return Dependence::NoDep; | 
 |  | 
 |     LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n"); | 
 |     FoundNonConstantDistanceDependence = true; | 
 |     return Dependence::Unknown; | 
 |   } | 
 |  | 
 |   const APInt &Val = C->getAPInt(); | 
 |   int64_t Distance = Val.getSExtValue(); | 
 |  | 
 |   // Attempt to prove strided accesses independent. | 
 |   if (std::abs(Distance) > 0 && Stride > 1 && ATy == BTy && | 
 |       areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) { | 
 |     LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); | 
 |     return Dependence::NoDep; | 
 |   } | 
 |  | 
 |   // Negative distances are not plausible dependencies. | 
 |   if (Val.isNegative()) { | 
 |     bool IsTrueDataDependence = (AIsWrite && !BIsWrite); | 
 |     if (IsTrueDataDependence && EnableForwardingConflictDetection && | 
 |         (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || | 
 |          ATy != BTy)) { | 
 |       LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); | 
 |       return Dependence::ForwardButPreventsForwarding; | 
 |     } | 
 |  | 
 |     LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n"); | 
 |     return Dependence::Forward; | 
 |   } | 
 |  | 
 |   // Write to the same location with the same size. | 
 |   // Could be improved to assert type sizes are the same (i32 == float, etc). | 
 |   if (Val == 0) { | 
 |     if (ATy == BTy) | 
 |       return Dependence::Forward; | 
 |     LLVM_DEBUG( | 
 |         dbgs() << "LAA: Zero dependence difference but different types\n"); | 
 |     return Dependence::Unknown; | 
 |   } | 
 |  | 
 |   assert(Val.isStrictlyPositive() && "Expect a positive value"); | 
 |  | 
 |   if (ATy != BTy) { | 
 |     LLVM_DEBUG( | 
 |         dbgs() | 
 |         << "LAA: ReadWrite-Write positive dependency with different types\n"); | 
 |     return Dependence::Unknown; | 
 |   } | 
 |  | 
 |   // Bail out early if passed-in parameters make vectorization not feasible. | 
 |   unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? | 
 |                            VectorizerParams::VectorizationFactor : 1); | 
 |   unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? | 
 |                            VectorizerParams::VectorizationInterleave : 1); | 
 |   // The minimum number of iterations for a vectorized/unrolled version. | 
 |   unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); | 
 |  | 
 |   // It's not vectorizable if the distance is smaller than the minimum distance | 
 |   // needed for a vectroized/unrolled version. Vectorizing one iteration in | 
 |   // front needs TypeByteSize * Stride. Vectorizing the last iteration needs | 
 |   // TypeByteSize (No need to plus the last gap distance). | 
 |   // | 
 |   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. | 
 |   //      foo(int *A) { | 
 |   //        int *B = (int *)((char *)A + 14); | 
 |   //        for (i = 0 ; i < 1024 ; i += 2) | 
 |   //          B[i] = A[i] + 1; | 
 |   //      } | 
 |   // | 
 |   // Two accesses in memory (stride is 2): | 
 |   //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      | | 
 |   //                              | B[0] |      | B[2] |      | B[4] | | 
 |   // | 
 |   // Distance needs for vectorizing iterations except the last iteration: | 
 |   // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4. | 
 |   // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. | 
 |   // | 
 |   // If MinNumIter is 2, it is vectorizable as the minimum distance needed is | 
 |   // 12, which is less than distance. | 
 |   // | 
 |   // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), | 
 |   // the minimum distance needed is 28, which is greater than distance. It is | 
 |   // not safe to do vectorization. | 
 |   uint64_t MinDistanceNeeded = | 
 |       TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize; | 
 |   if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) { | 
 |     LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance " | 
 |                       << Distance << '\n'); | 
 |     return Dependence::Backward; | 
 |   } | 
 |  | 
 |   // Unsafe if the minimum distance needed is greater than max safe distance. | 
 |   if (MinDistanceNeeded > MaxSafeDepDistBytes) { | 
 |     LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least " | 
 |                       << MinDistanceNeeded << " size in bytes"); | 
 |     return Dependence::Backward; | 
 |   } | 
 |  | 
 |   // Positive distance bigger than max vectorization factor. | 
 |   // FIXME: Should use max factor instead of max distance in bytes, which could | 
 |   // not handle different types. | 
 |   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. | 
 |   //      void foo (int *A, char *B) { | 
 |   //        for (unsigned i = 0; i < 1024; i++) { | 
 |   //          A[i+2] = A[i] + 1; | 
 |   //          B[i+2] = B[i] + 1; | 
 |   //        } | 
 |   //      } | 
 |   // | 
 |   // This case is currently unsafe according to the max safe distance. If we | 
 |   // analyze the two accesses on array B, the max safe dependence distance | 
 |   // is 2. Then we analyze the accesses on array A, the minimum distance needed | 
 |   // is 8, which is less than 2 and forbidden vectorization, But actually | 
 |   // both A and B could be vectorized by 2 iterations. | 
 |   MaxSafeDepDistBytes = | 
 |       std::min(static_cast<uint64_t>(Distance), MaxSafeDepDistBytes); | 
 |  | 
 |   bool IsTrueDataDependence = (!AIsWrite && BIsWrite); | 
 |   if (IsTrueDataDependence && EnableForwardingConflictDetection && | 
 |       couldPreventStoreLoadForward(Distance, TypeByteSize)) | 
 |     return Dependence::BackwardVectorizableButPreventsForwarding; | 
 |  | 
 |   uint64_t MaxVF = MaxSafeDepDistBytes / (TypeByteSize * Stride); | 
 |   LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue() | 
 |                     << " with max VF = " << MaxVF << '\n'); | 
 |   uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8; | 
 |   MaxSafeRegisterWidth = std::min(MaxSafeRegisterWidth, MaxVFInBits); | 
 |   return Dependence::BackwardVectorizable; | 
 | } | 
 |  | 
 | bool MemoryDepChecker::areDepsSafe(DepCandidates &AccessSets, | 
 |                                    MemAccessInfoList &CheckDeps, | 
 |                                    const ValueToValueMap &Strides) { | 
 |  | 
 |   MaxSafeDepDistBytes = -1; | 
 |   SmallPtrSet<MemAccessInfo, 8> Visited; | 
 |   for (MemAccessInfo CurAccess : CheckDeps) { | 
 |     if (Visited.count(CurAccess)) | 
 |       continue; | 
 |  | 
 |     // Get the relevant memory access set. | 
 |     EquivalenceClasses<MemAccessInfo>::iterator I = | 
 |       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); | 
 |  | 
 |     // Check accesses within this set. | 
 |     EquivalenceClasses<MemAccessInfo>::member_iterator AI = | 
 |         AccessSets.member_begin(I); | 
 |     EquivalenceClasses<MemAccessInfo>::member_iterator AE = | 
 |         AccessSets.member_end(); | 
 |  | 
 |     // Check every access pair. | 
 |     while (AI != AE) { | 
 |       Visited.insert(*AI); | 
 |       EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); | 
 |       while (OI != AE) { | 
 |         // Check every accessing instruction pair in program order. | 
 |         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), | 
 |              I1E = Accesses[*AI].end(); I1 != I1E; ++I1) | 
 |           for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), | 
 |                I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { | 
 |             auto A = std::make_pair(&*AI, *I1); | 
 |             auto B = std::make_pair(&*OI, *I2); | 
 |  | 
 |             assert(*I1 != *I2); | 
 |             if (*I1 > *I2) | 
 |               std::swap(A, B); | 
 |  | 
 |             Dependence::DepType Type = | 
 |                 isDependent(*A.first, A.second, *B.first, B.second, Strides); | 
 |             mergeInStatus(Dependence::isSafeForVectorization(Type)); | 
 |  | 
 |             // Gather dependences unless we accumulated MaxDependences | 
 |             // dependences.  In that case return as soon as we find the first | 
 |             // unsafe dependence.  This puts a limit on this quadratic | 
 |             // algorithm. | 
 |             if (RecordDependences) { | 
 |               if (Type != Dependence::NoDep) | 
 |                 Dependences.push_back(Dependence(A.second, B.second, Type)); | 
 |  | 
 |               if (Dependences.size() >= MaxDependences) { | 
 |                 RecordDependences = false; | 
 |                 Dependences.clear(); | 
 |                 LLVM_DEBUG(dbgs() | 
 |                            << "Too many dependences, stopped recording\n"); | 
 |               } | 
 |             } | 
 |             if (!RecordDependences && !isSafeForVectorization()) | 
 |               return false; | 
 |           } | 
 |         ++OI; | 
 |       } | 
 |       AI++; | 
 |     } | 
 |   } | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); | 
 |   return isSafeForVectorization(); | 
 | } | 
 |  | 
 | SmallVector<Instruction *, 4> | 
 | MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const { | 
 |   MemAccessInfo Access(Ptr, isWrite); | 
 |   auto &IndexVector = Accesses.find(Access)->second; | 
 |  | 
 |   SmallVector<Instruction *, 4> Insts; | 
 |   transform(IndexVector, | 
 |                  std::back_inserter(Insts), | 
 |                  [&](unsigned Idx) { return this->InstMap[Idx]; }); | 
 |   return Insts; | 
 | } | 
 |  | 
 | const char *MemoryDepChecker::Dependence::DepName[] = { | 
 |     "NoDep", "Unknown", "Forward", "ForwardButPreventsForwarding", "Backward", | 
 |     "BackwardVectorizable", "BackwardVectorizableButPreventsForwarding"}; | 
 |  | 
 | void MemoryDepChecker::Dependence::print( | 
 |     raw_ostream &OS, unsigned Depth, | 
 |     const SmallVectorImpl<Instruction *> &Instrs) const { | 
 |   OS.indent(Depth) << DepName[Type] << ":\n"; | 
 |   OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; | 
 |   OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; | 
 | } | 
 |  | 
 | bool LoopAccessInfo::canAnalyzeLoop() { | 
 |   // We need to have a loop header. | 
 |   LLVM_DEBUG(dbgs() << "LAA: Found a loop in " | 
 |                     << TheLoop->getHeader()->getParent()->getName() << ": " | 
 |                     << TheLoop->getHeader()->getName() << '\n'); | 
 |  | 
 |   // We can only analyze innermost loops. | 
 |   if (!TheLoop->empty()) { | 
 |     LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); | 
 |     recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; | 
 |     return false; | 
 |   } | 
 |  | 
 |   // We must have a single backedge. | 
 |   if (TheLoop->getNumBackEdges() != 1) { | 
 |     LLVM_DEBUG( | 
 |         dbgs() << "LAA: loop control flow is not understood by analyzer\n"); | 
 |     recordAnalysis("CFGNotUnderstood") | 
 |         << "loop control flow is not understood by analyzer"; | 
 |     return false; | 
 |   } | 
 |  | 
 |   // We must have a single exiting block. | 
 |   if (!TheLoop->getExitingBlock()) { | 
 |     LLVM_DEBUG( | 
 |         dbgs() << "LAA: loop control flow is not understood by analyzer\n"); | 
 |     recordAnalysis("CFGNotUnderstood") | 
 |         << "loop control flow is not understood by analyzer"; | 
 |     return false; | 
 |   } | 
 |  | 
 |   // We only handle bottom-tested loops, i.e. loop in which the condition is | 
 |   // checked at the end of each iteration. With that we can assume that all | 
 |   // instructions in the loop are executed the same number of times. | 
 |   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { | 
 |     LLVM_DEBUG( | 
 |         dbgs() << "LAA: loop control flow is not understood by analyzer\n"); | 
 |     recordAnalysis("CFGNotUnderstood") | 
 |         << "loop control flow is not understood by analyzer"; | 
 |     return false; | 
 |   } | 
 |  | 
 |   // ScalarEvolution needs to be able to find the exit count. | 
 |   const SCEV *ExitCount = PSE->getBackedgeTakenCount(); | 
 |   if (ExitCount == PSE->getSE()->getCouldNotCompute()) { | 
 |     recordAnalysis("CantComputeNumberOfIterations") | 
 |         << "could not determine number of loop iterations"; | 
 |     LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); | 
 |     return false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | void LoopAccessInfo::analyzeLoop(AliasAnalysis *AA, LoopInfo *LI, | 
 |                                  const TargetLibraryInfo *TLI, | 
 |                                  DominatorTree *DT) { | 
 |   typedef SmallPtrSet<Value*, 16> ValueSet; | 
 |  | 
 |   // Holds the Load and Store instructions. | 
 |   SmallVector<LoadInst *, 16> Loads; | 
 |   SmallVector<StoreInst *, 16> Stores; | 
 |  | 
 |   // Holds all the different accesses in the loop. | 
 |   unsigned NumReads = 0; | 
 |   unsigned NumReadWrites = 0; | 
 |  | 
 |   PtrRtChecking->Pointers.clear(); | 
 |   PtrRtChecking->Need = false; | 
 |  | 
 |   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); | 
 |  | 
 |   // For each block. | 
 |   for (BasicBlock *BB : TheLoop->blocks()) { | 
 |     // Scan the BB and collect legal loads and stores. | 
 |     for (Instruction &I : *BB) { | 
 |       // If this is a load, save it. If this instruction can read from memory | 
 |       // but is not a load, then we quit. Notice that we don't handle function | 
 |       // calls that read or write. | 
 |       if (I.mayReadFromMemory()) { | 
 |         // Many math library functions read the rounding mode. We will only | 
 |         // vectorize a loop if it contains known function calls that don't set | 
 |         // the flag. Therefore, it is safe to ignore this read from memory. | 
 |         auto *Call = dyn_cast<CallInst>(&I); | 
 |         if (Call && getVectorIntrinsicIDForCall(Call, TLI)) | 
 |           continue; | 
 |  | 
 |         // If the function has an explicit vectorized counterpart, we can safely | 
 |         // assume that it can be vectorized. | 
 |         if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && | 
 |             TLI->isFunctionVectorizable(Call->getCalledFunction()->getName())) | 
 |           continue; | 
 |  | 
 |         auto *Ld = dyn_cast<LoadInst>(&I); | 
 |         if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { | 
 |           recordAnalysis("NonSimpleLoad", Ld) | 
 |               << "read with atomic ordering or volatile read"; | 
 |           LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); | 
 |           CanVecMem = false; | 
 |           return; | 
 |         } | 
 |         NumLoads++; | 
 |         Loads.push_back(Ld); | 
 |         DepChecker->addAccess(Ld); | 
 |         if (EnableMemAccessVersioning) | 
 |           collectStridedAccess(Ld); | 
 |         continue; | 
 |       } | 
 |  | 
 |       // Save 'store' instructions. Abort if other instructions write to memory. | 
 |       if (I.mayWriteToMemory()) { | 
 |         auto *St = dyn_cast<StoreInst>(&I); | 
 |         if (!St) { | 
 |           recordAnalysis("CantVectorizeInstruction", St) | 
 |               << "instruction cannot be vectorized"; | 
 |           CanVecMem = false; | 
 |           return; | 
 |         } | 
 |         if (!St->isSimple() && !IsAnnotatedParallel) { | 
 |           recordAnalysis("NonSimpleStore", St) | 
 |               << "write with atomic ordering or volatile write"; | 
 |           LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); | 
 |           CanVecMem = false; | 
 |           return; | 
 |         } | 
 |         NumStores++; | 
 |         Stores.push_back(St); | 
 |         DepChecker->addAccess(St); | 
 |         if (EnableMemAccessVersioning) | 
 |           collectStridedAccess(St); | 
 |       } | 
 |     } // Next instr. | 
 |   } // Next block. | 
 |  | 
 |   // Now we have two lists that hold the loads and the stores. | 
 |   // Next, we find the pointers that they use. | 
 |  | 
 |   // Check if we see any stores. If there are no stores, then we don't | 
 |   // care if the pointers are *restrict*. | 
 |   if (!Stores.size()) { | 
 |     LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); | 
 |     CanVecMem = true; | 
 |     return; | 
 |   } | 
 |  | 
 |   MemoryDepChecker::DepCandidates DependentAccesses; | 
 |   AccessAnalysis Accesses(TheLoop->getHeader()->getModule()->getDataLayout(), | 
 |                           TheLoop, AA, LI, DependentAccesses, *PSE); | 
 |  | 
 |   // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects | 
 |   // multiple times on the same object. If the ptr is accessed twice, once | 
 |   // for read and once for write, it will only appear once (on the write | 
 |   // list). This is okay, since we are going to check for conflicts between | 
 |   // writes and between reads and writes, but not between reads and reads. | 
 |   ValueSet Seen; | 
 |  | 
 |   // Record uniform store addresses to identify if we have multiple stores | 
 |   // to the same address. | 
 |   ValueSet UniformStores; | 
 |  | 
 |   for (StoreInst *ST : Stores) { | 
 |     Value *Ptr = ST->getPointerOperand(); | 
 |  | 
 |     if (isUniform(Ptr)) | 
 |       HasDependenceInvolvingLoopInvariantAddress |= | 
 |           !UniformStores.insert(Ptr).second; | 
 |  | 
 |     // If we did *not* see this pointer before, insert it to  the read-write | 
 |     // list. At this phase it is only a 'write' list. | 
 |     if (Seen.insert(Ptr).second) { | 
 |       ++NumReadWrites; | 
 |  | 
 |       MemoryLocation Loc = MemoryLocation::get(ST); | 
 |       // The TBAA metadata could have a control dependency on the predication | 
 |       // condition, so we cannot rely on it when determining whether or not we | 
 |       // need runtime pointer checks. | 
 |       if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) | 
 |         Loc.AATags.TBAA = nullptr; | 
 |  | 
 |       Accesses.addStore(Loc); | 
 |     } | 
 |   } | 
 |  | 
 |   if (IsAnnotatedParallel) { | 
 |     LLVM_DEBUG( | 
 |         dbgs() << "LAA: A loop annotated parallel, ignore memory dependency " | 
 |                << "checks.\n"); | 
 |     CanVecMem = true; | 
 |     return; | 
 |   } | 
 |  | 
 |   for (LoadInst *LD : Loads) { | 
 |     Value *Ptr = LD->getPointerOperand(); | 
 |     // If we did *not* see this pointer before, insert it to the | 
 |     // read list. If we *did* see it before, then it is already in | 
 |     // the read-write list. This allows us to vectorize expressions | 
 |     // such as A[i] += x;  Because the address of A[i] is a read-write | 
 |     // pointer. This only works if the index of A[i] is consecutive. | 
 |     // If the address of i is unknown (for example A[B[i]]) then we may | 
 |     // read a few words, modify, and write a few words, and some of the | 
 |     // words may be written to the same address. | 
 |     bool IsReadOnlyPtr = false; | 
 |     if (Seen.insert(Ptr).second || | 
 |         !getPtrStride(*PSE, Ptr, TheLoop, SymbolicStrides)) { | 
 |       ++NumReads; | 
 |       IsReadOnlyPtr = true; | 
 |     } | 
 |  | 
 |     // See if there is an unsafe dependency between a load to a uniform address and | 
 |     // store to the same uniform address. | 
 |     if (UniformStores.count(Ptr)) { | 
 |       LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform " | 
 |                            "load and uniform store to the same address!\n"); | 
 |       HasDependenceInvolvingLoopInvariantAddress = true; | 
 |     } | 
 |  | 
 |     MemoryLocation Loc = MemoryLocation::get(LD); | 
 |     // The TBAA metadata could have a control dependency on the predication | 
 |     // condition, so we cannot rely on it when determining whether or not we | 
 |     // need runtime pointer checks. | 
 |     if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) | 
 |       Loc.AATags.TBAA = nullptr; | 
 |  | 
 |     Accesses.addLoad(Loc, IsReadOnlyPtr); | 
 |   } | 
 |  | 
 |   // If we write (or read-write) to a single destination and there are no | 
 |   // other reads in this loop then is it safe to vectorize. | 
 |   if (NumReadWrites == 1 && NumReads == 0) { | 
 |     LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); | 
 |     CanVecMem = true; | 
 |     return; | 
 |   } | 
 |  | 
 |   // Build dependence sets and check whether we need a runtime pointer bounds | 
 |   // check. | 
 |   Accesses.buildDependenceSets(); | 
 |  | 
 |   // Find pointers with computable bounds. We are going to use this information | 
 |   // to place a runtime bound check. | 
 |   bool CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), | 
 |                                                   TheLoop, SymbolicStrides); | 
 |   if (!CanDoRTIfNeeded) { | 
 |     recordAnalysis("CantIdentifyArrayBounds") << "cannot identify array bounds"; | 
 |     LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " | 
 |                       << "the array bounds.\n"); | 
 |     CanVecMem = false; | 
 |     return; | 
 |   } | 
 |  | 
 |   LLVM_DEBUG( | 
 |       dbgs() << "LAA: We can perform a memory runtime check if needed.\n"); | 
 |  | 
 |   CanVecMem = true; | 
 |   if (Accesses.isDependencyCheckNeeded()) { | 
 |     LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); | 
 |     CanVecMem = DepChecker->areDepsSafe( | 
 |         DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides); | 
 |     MaxSafeDepDistBytes = DepChecker->getMaxSafeDepDistBytes(); | 
 |  | 
 |     if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) { | 
 |       LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); | 
 |  | 
 |       // Clear the dependency checks. We assume they are not needed. | 
 |       Accesses.resetDepChecks(*DepChecker); | 
 |  | 
 |       PtrRtChecking->reset(); | 
 |       PtrRtChecking->Need = true; | 
 |  | 
 |       auto *SE = PSE->getSE(); | 
 |       CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(*PtrRtChecking, SE, TheLoop, | 
 |                                                  SymbolicStrides, true); | 
 |  | 
 |       // Check that we found the bounds for the pointer. | 
 |       if (!CanDoRTIfNeeded) { | 
 |         recordAnalysis("CantCheckMemDepsAtRunTime") | 
 |             << "cannot check memory dependencies at runtime"; | 
 |         LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); | 
 |         CanVecMem = false; | 
 |         return; | 
 |       } | 
 |  | 
 |       CanVecMem = true; | 
 |     } | 
 |   } | 
 |  | 
 |   if (CanVecMem) | 
 |     LLVM_DEBUG( | 
 |         dbgs() << "LAA: No unsafe dependent memory operations in loop.  We" | 
 |                << (PtrRtChecking->Need ? "" : " don't") | 
 |                << " need runtime memory checks.\n"); | 
 |   else { | 
 |     recordAnalysis("UnsafeMemDep") | 
 |         << "unsafe dependent memory operations in loop. Use " | 
 |            "#pragma loop distribute(enable) to allow loop distribution " | 
 |            "to attempt to isolate the offending operations into a separate " | 
 |            "loop"; | 
 |     LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); | 
 |   } | 
 | } | 
 |  | 
 | bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, | 
 |                                            DominatorTree *DT)  { | 
 |   assert(TheLoop->contains(BB) && "Unknown block used"); | 
 |  | 
 |   // Blocks that do not dominate the latch need predication. | 
 |   BasicBlock* Latch = TheLoop->getLoopLatch(); | 
 |   return !DT->dominates(BB, Latch); | 
 | } | 
 |  | 
 | OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, | 
 |                                                            Instruction *I) { | 
 |   assert(!Report && "Multiple reports generated"); | 
 |  | 
 |   Value *CodeRegion = TheLoop->getHeader(); | 
 |   DebugLoc DL = TheLoop->getStartLoc(); | 
 |  | 
 |   if (I) { | 
 |     CodeRegion = I->getParent(); | 
 |     // If there is no debug location attached to the instruction, revert back to | 
 |     // using the loop's. | 
 |     if (I->getDebugLoc()) | 
 |       DL = I->getDebugLoc(); | 
 |   } | 
 |  | 
 |   Report = make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, | 
 |                                                    CodeRegion); | 
 |   return *Report; | 
 | } | 
 |  | 
 | bool LoopAccessInfo::isUniform(Value *V) const { | 
 |   auto *SE = PSE->getSE(); | 
 |   // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is | 
 |   // never considered uniform. | 
 |   // TODO: Is this really what we want? Even without FP SCEV, we may want some | 
 |   // trivially loop-invariant FP values to be considered uniform. | 
 |   if (!SE->isSCEVable(V->getType())) | 
 |     return false; | 
 |   return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); | 
 | } | 
 |  | 
 | // FIXME: this function is currently a duplicate of the one in | 
 | // LoopVectorize.cpp. | 
 | static Instruction *getFirstInst(Instruction *FirstInst, Value *V, | 
 |                                  Instruction *Loc) { | 
 |   if (FirstInst) | 
 |     return FirstInst; | 
 |   if (Instruction *I = dyn_cast<Instruction>(V)) | 
 |     return I->getParent() == Loc->getParent() ? I : nullptr; | 
 |   return nullptr; | 
 | } | 
 |  | 
 | namespace { | 
 |  | 
 | /// IR Values for the lower and upper bounds of a pointer evolution.  We | 
 | /// need to use value-handles because SCEV expansion can invalidate previously | 
 | /// expanded values.  Thus expansion of a pointer can invalidate the bounds for | 
 | /// a previous one. | 
 | struct PointerBounds { | 
 |   TrackingVH<Value> Start; | 
 |   TrackingVH<Value> End; | 
 | }; | 
 |  | 
 | } // end anonymous namespace | 
 |  | 
 | /// Expand code for the lower and upper bound of the pointer group \p CG | 
 | /// in \p TheLoop.  \return the values for the bounds. | 
 | static PointerBounds | 
 | expandBounds(const RuntimePointerChecking::CheckingPtrGroup *CG, Loop *TheLoop, | 
 |              Instruction *Loc, SCEVExpander &Exp, ScalarEvolution *SE, | 
 |              const RuntimePointerChecking &PtrRtChecking) { | 
 |   Value *Ptr = PtrRtChecking.Pointers[CG->Members[0]].PointerValue; | 
 |   const SCEV *Sc = SE->getSCEV(Ptr); | 
 |  | 
 |   unsigned AS = Ptr->getType()->getPointerAddressSpace(); | 
 |   LLVMContext &Ctx = Loc->getContext(); | 
 |  | 
 |   // Use this type for pointer arithmetic. | 
 |   Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); | 
 |  | 
 |   if (SE->isLoopInvariant(Sc, TheLoop)) { | 
 |     LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:" | 
 |                       << *Ptr << "\n"); | 
 |     // Ptr could be in the loop body. If so, expand a new one at the correct | 
 |     // location. | 
 |     Instruction *Inst = dyn_cast<Instruction>(Ptr); | 
 |     Value *NewPtr = (Inst && TheLoop->contains(Inst)) | 
 |                         ? Exp.expandCodeFor(Sc, PtrArithTy, Loc) | 
 |                         : Ptr; | 
 |     // We must return a half-open range, which means incrementing Sc. | 
 |     const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy)); | 
 |     Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc); | 
 |     return {NewPtr, NewPtrPlusOne}; | 
 |   } else { | 
 |     Value *Start = nullptr, *End = nullptr; | 
 |     LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n"); | 
 |     Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc); | 
 |     End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc); | 
 |     LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High | 
 |                       << "\n"); | 
 |     return {Start, End}; | 
 |   } | 
 | } | 
 |  | 
 | /// Turns a collection of checks into a collection of expanded upper and | 
 | /// lower bounds for both pointers in the check. | 
 | static SmallVector<std::pair<PointerBounds, PointerBounds>, 4> expandBounds( | 
 |     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks, | 
 |     Loop *L, Instruction *Loc, ScalarEvolution *SE, SCEVExpander &Exp, | 
 |     const RuntimePointerChecking &PtrRtChecking) { | 
 |   SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds; | 
 |  | 
 |   // Here we're relying on the SCEV Expander's cache to only emit code for the | 
 |   // same bounds once. | 
 |   transform( | 
 |       PointerChecks, std::back_inserter(ChecksWithBounds), | 
 |       [&](const RuntimePointerChecking::PointerCheck &Check) { | 
 |         PointerBounds | 
 |           First = expandBounds(Check.first, L, Loc, Exp, SE, PtrRtChecking), | 
 |           Second = expandBounds(Check.second, L, Loc, Exp, SE, PtrRtChecking); | 
 |         return std::make_pair(First, Second); | 
 |       }); | 
 |  | 
 |   return ChecksWithBounds; | 
 | } | 
 |  | 
 | std::pair<Instruction *, Instruction *> LoopAccessInfo::addRuntimeChecks( | 
 |     Instruction *Loc, | 
 |     const SmallVectorImpl<RuntimePointerChecking::PointerCheck> &PointerChecks) | 
 |     const { | 
 |   const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); | 
 |   auto *SE = PSE->getSE(); | 
 |   SCEVExpander Exp(*SE, DL, "induction"); | 
 |   auto ExpandedChecks = | 
 |       expandBounds(PointerChecks, TheLoop, Loc, SE, Exp, *PtrRtChecking); | 
 |  | 
 |   LLVMContext &Ctx = Loc->getContext(); | 
 |   Instruction *FirstInst = nullptr; | 
 |   IRBuilder<> ChkBuilder(Loc); | 
 |   // Our instructions might fold to a constant. | 
 |   Value *MemoryRuntimeCheck = nullptr; | 
 |  | 
 |   for (const auto &Check : ExpandedChecks) { | 
 |     const PointerBounds &A = Check.first, &B = Check.second; | 
 |     // Check if two pointers (A and B) conflict where conflict is computed as: | 
 |     // start(A) <= end(B) && start(B) <= end(A) | 
 |     unsigned AS0 = A.Start->getType()->getPointerAddressSpace(); | 
 |     unsigned AS1 = B.Start->getType()->getPointerAddressSpace(); | 
 |  | 
 |     assert((AS0 == B.End->getType()->getPointerAddressSpace()) && | 
 |            (AS1 == A.End->getType()->getPointerAddressSpace()) && | 
 |            "Trying to bounds check pointers with different address spaces"); | 
 |  | 
 |     Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); | 
 |     Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); | 
 |  | 
 |     Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc"); | 
 |     Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc"); | 
 |     Value *End0 =   ChkBuilder.CreateBitCast(A.End,   PtrArithTy1, "bc"); | 
 |     Value *End1 =   ChkBuilder.CreateBitCast(B.End,   PtrArithTy0, "bc"); | 
 |  | 
 |     // [A|B].Start points to the first accessed byte under base [A|B]. | 
 |     // [A|B].End points to the last accessed byte, plus one. | 
 |     // There is no conflict when the intervals are disjoint: | 
 |     // NoConflict = (B.Start >= A.End) || (A.Start >= B.End) | 
 |     // | 
 |     // bound0 = (B.Start < A.End) | 
 |     // bound1 = (A.Start < B.End) | 
 |     //  IsConflict = bound0 & bound1 | 
 |     Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0"); | 
 |     FirstInst = getFirstInst(FirstInst, Cmp0, Loc); | 
 |     Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1"); | 
 |     FirstInst = getFirstInst(FirstInst, Cmp1, Loc); | 
 |     Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); | 
 |     FirstInst = getFirstInst(FirstInst, IsConflict, Loc); | 
 |     if (MemoryRuntimeCheck) { | 
 |       IsConflict = | 
 |           ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx"); | 
 |       FirstInst = getFirstInst(FirstInst, IsConflict, Loc); | 
 |     } | 
 |     MemoryRuntimeCheck = IsConflict; | 
 |   } | 
 |  | 
 |   if (!MemoryRuntimeCheck) | 
 |     return std::make_pair(nullptr, nullptr); | 
 |  | 
 |   // We have to do this trickery because the IRBuilder might fold the check to a | 
 |   // constant expression in which case there is no Instruction anchored in a | 
 |   // the block. | 
 |   Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, | 
 |                                                  ConstantInt::getTrue(Ctx)); | 
 |   ChkBuilder.Insert(Check, "memcheck.conflict"); | 
 |   FirstInst = getFirstInst(FirstInst, Check, Loc); | 
 |   return std::make_pair(FirstInst, Check); | 
 | } | 
 |  | 
 | std::pair<Instruction *, Instruction *> | 
 | LoopAccessInfo::addRuntimeChecks(Instruction *Loc) const { | 
 |   if (!PtrRtChecking->Need) | 
 |     return std::make_pair(nullptr, nullptr); | 
 |  | 
 |   return addRuntimeChecks(Loc, PtrRtChecking->getChecks()); | 
 | } | 
 |  | 
 | void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { | 
 |   Value *Ptr = nullptr; | 
 |   if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) | 
 |     Ptr = LI->getPointerOperand(); | 
 |   else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) | 
 |     Ptr = SI->getPointerOperand(); | 
 |   else | 
 |     return; | 
 |  | 
 |   Value *Stride = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); | 
 |   if (!Stride) | 
 |     return; | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for " | 
 |                        "versioning:"); | 
 |   LLVM_DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); | 
 |  | 
 |   // Avoid adding the "Stride == 1" predicate when we know that | 
 |   // Stride >= Trip-Count. Such a predicate will effectively optimize a single | 
 |   // or zero iteration loop, as Trip-Count <= Stride == 1. | 
 |   // | 
 |   // TODO: We are currently not making a very informed decision on when it is | 
 |   // beneficial to apply stride versioning. It might make more sense that the | 
 |   // users of this analysis (such as the vectorizer) will trigger it, based on | 
 |   // their specific cost considerations; For example, in cases where stride | 
 |   // versioning does  not help resolving memory accesses/dependences, the | 
 |   // vectorizer should evaluate the cost of the runtime test, and the benefit | 
 |   // of various possible stride specializations, considering the alternatives | 
 |   // of using gather/scatters (if available). | 
 |  | 
 |   const SCEV *StrideExpr = PSE->getSCEV(Stride); | 
 |   const SCEV *BETakenCount = PSE->getBackedgeTakenCount(); | 
 |  | 
 |   // Match the types so we can compare the stride and the BETakenCount. | 
 |   // The Stride can be positive/negative, so we sign extend Stride; | 
 |   // The backdgeTakenCount is non-negative, so we zero extend BETakenCount. | 
 |   const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout(); | 
 |   uint64_t StrideTypeSize = DL.getTypeAllocSize(StrideExpr->getType()); | 
 |   uint64_t BETypeSize = DL.getTypeAllocSize(BETakenCount->getType()); | 
 |   const SCEV *CastedStride = StrideExpr; | 
 |   const SCEV *CastedBECount = BETakenCount; | 
 |   ScalarEvolution *SE = PSE->getSE(); | 
 |   if (BETypeSize >= StrideTypeSize) | 
 |     CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType()); | 
 |   else | 
 |     CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType()); | 
 |   const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount); | 
 |   // Since TripCount == BackEdgeTakenCount + 1, checking: | 
 |   // "Stride >= TripCount" is equivalent to checking: | 
 |   // Stride - BETakenCount > 0 | 
 |   if (SE->isKnownPositive(StrideMinusBETaken)) { | 
 |     LLVM_DEBUG( | 
 |         dbgs() << "LAA: Stride>=TripCount; No point in versioning as the " | 
 |                   "Stride==1 predicate will imply that the loop executes " | 
 |                   "at most once.\n"); | 
 |     return; | 
 |   } | 
 |   LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version."); | 
 |  | 
 |   SymbolicStrides[Ptr] = Stride; | 
 |   StrideSet.insert(Stride); | 
 | } | 
 |  | 
 | LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, | 
 |                                const TargetLibraryInfo *TLI, AliasAnalysis *AA, | 
 |                                DominatorTree *DT, LoopInfo *LI) | 
 |     : PSE(llvm::make_unique<PredicatedScalarEvolution>(*SE, *L)), | 
 |       PtrRtChecking(llvm::make_unique<RuntimePointerChecking>(SE)), | 
 |       DepChecker(llvm::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L), | 
 |       NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1), CanVecMem(false), | 
 |       HasDependenceInvolvingLoopInvariantAddress(false) { | 
 |   if (canAnalyzeLoop()) | 
 |     analyzeLoop(AA, LI, TLI, DT); | 
 | } | 
 |  | 
 | void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { | 
 |   if (CanVecMem) { | 
 |     OS.indent(Depth) << "Memory dependences are safe"; | 
 |     if (MaxSafeDepDistBytes != -1ULL) | 
 |       OS << " with a maximum dependence distance of " << MaxSafeDepDistBytes | 
 |          << " bytes"; | 
 |     if (PtrRtChecking->Need) | 
 |       OS << " with run-time checks"; | 
 |     OS << "\n"; | 
 |   } | 
 |  | 
 |   if (Report) | 
 |     OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; | 
 |  | 
 |   if (auto *Dependences = DepChecker->getDependences()) { | 
 |     OS.indent(Depth) << "Dependences:\n"; | 
 |     for (auto &Dep : *Dependences) { | 
 |       Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); | 
 |       OS << "\n"; | 
 |     } | 
 |   } else | 
 |     OS.indent(Depth) << "Too many dependences, not recorded\n"; | 
 |  | 
 |   // List the pair of accesses need run-time checks to prove independence. | 
 |   PtrRtChecking->print(OS, Depth); | 
 |   OS << "\n"; | 
 |  | 
 |   OS.indent(Depth) << "Non vectorizable stores to invariant address were " | 
 |                    << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ") | 
 |                    << "found in loop.\n"; | 
 |  | 
 |   OS.indent(Depth) << "SCEV assumptions:\n"; | 
 |   PSE->getUnionPredicate().print(OS, Depth); | 
 |  | 
 |   OS << "\n"; | 
 |  | 
 |   OS.indent(Depth) << "Expressions re-written:\n"; | 
 |   PSE->print(OS, Depth); | 
 | } | 
 |  | 
 | const LoopAccessInfo &LoopAccessLegacyAnalysis::getInfo(Loop *L) { | 
 |   auto &LAI = LoopAccessInfoMap[L]; | 
 |  | 
 |   if (!LAI) | 
 |     LAI = llvm::make_unique<LoopAccessInfo>(L, SE, TLI, AA, DT, LI); | 
 |  | 
 |   return *LAI.get(); | 
 | } | 
 |  | 
 | void LoopAccessLegacyAnalysis::print(raw_ostream &OS, const Module *M) const { | 
 |   LoopAccessLegacyAnalysis &LAA = *const_cast<LoopAccessLegacyAnalysis *>(this); | 
 |  | 
 |   for (Loop *TopLevelLoop : *LI) | 
 |     for (Loop *L : depth_first(TopLevelLoop)) { | 
 |       OS.indent(2) << L->getHeader()->getName() << ":\n"; | 
 |       auto &LAI = LAA.getInfo(L); | 
 |       LAI.print(OS, 4); | 
 |     } | 
 | } | 
 |  | 
 | bool LoopAccessLegacyAnalysis::runOnFunction(Function &F) { | 
 |   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); | 
 |   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); | 
 |   TLI = TLIP ? &TLIP->getTLI() : nullptr; | 
 |   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); | 
 |   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | 
 |   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | void LoopAccessLegacyAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { | 
 |     AU.addRequired<ScalarEvolutionWrapperPass>(); | 
 |     AU.addRequired<AAResultsWrapperPass>(); | 
 |     AU.addRequired<DominatorTreeWrapperPass>(); | 
 |     AU.addRequired<LoopInfoWrapperPass>(); | 
 |  | 
 |     AU.setPreservesAll(); | 
 | } | 
 |  | 
 | char LoopAccessLegacyAnalysis::ID = 0; | 
 | static const char laa_name[] = "Loop Access Analysis"; | 
 | #define LAA_NAME "loop-accesses" | 
 |  | 
 | INITIALIZE_PASS_BEGIN(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) | 
 | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) | 
 | INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) | 
 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) | 
 | INITIALIZE_PASS_END(LoopAccessLegacyAnalysis, LAA_NAME, laa_name, false, true) | 
 |  | 
 | AnalysisKey LoopAccessAnalysis::Key; | 
 |  | 
 | LoopAccessInfo LoopAccessAnalysis::run(Loop &L, LoopAnalysisManager &AM, | 
 |                                        LoopStandardAnalysisResults &AR) { | 
 |   return LoopAccessInfo(&L, &AR.SE, &AR.TLI, &AR.AA, &AR.DT, &AR.LI); | 
 | } | 
 |  | 
 | namespace llvm { | 
 |  | 
 |   Pass *createLAAPass() { | 
 |     return new LoopAccessLegacyAnalysis(); | 
 |   } | 
 |  | 
 | } // end namespace llvm |