|  | ; NOTE: Assertions have been autogenerated by utils/update_test_checks.py | 
|  | ; RUN: opt < %s -instsimplify -S | FileCheck %s | 
|  |  | 
|  | define i32 @zero_dividend(i32 %A) { | 
|  | ; CHECK-LABEL: @zero_dividend( | 
|  | ; CHECK-NEXT:    ret i32 0 | 
|  | ; | 
|  | %B = urem i32 0, %A | 
|  | ret i32 %B | 
|  | } | 
|  |  | 
|  | define <2 x i32> @zero_dividend_vector(<2 x i32> %A) { | 
|  | ; CHECK-LABEL: @zero_dividend_vector( | 
|  | ; CHECK-NEXT:    ret <2 x i32> zeroinitializer | 
|  | ; | 
|  | %B = srem <2 x i32> zeroinitializer, %A | 
|  | ret <2 x i32> %B | 
|  | } | 
|  |  | 
|  | define <2 x i32> @zero_dividend_vector_undef_elt(<2 x i32> %A) { | 
|  | ; CHECK-LABEL: @zero_dividend_vector_undef_elt( | 
|  | ; CHECK-NEXT:    ret <2 x i32> zeroinitializer | 
|  | ; | 
|  | %B = urem <2 x i32> <i32 undef, i32 0>, %A | 
|  | ret <2 x i32> %B | 
|  | } | 
|  |  | 
|  | ; Division-by-zero is undef. UB in any vector lane means the whole op is undef. | 
|  |  | 
|  | define <2 x i8> @srem_zero_elt_vec_constfold(<2 x i8> %x) { | 
|  | ; CHECK-LABEL: @srem_zero_elt_vec_constfold( | 
|  | ; CHECK-NEXT:    ret <2 x i8> undef | 
|  | ; | 
|  | %rem = srem <2 x i8> <i8 1, i8 2>, <i8 0, i8 -42> | 
|  | ret <2 x i8> %rem | 
|  | } | 
|  |  | 
|  | define <2 x i8> @urem_zero_elt_vec_constfold(<2 x i8> %x) { | 
|  | ; CHECK-LABEL: @urem_zero_elt_vec_constfold( | 
|  | ; CHECK-NEXT:    ret <2 x i8> undef | 
|  | ; | 
|  | %rem = urem <2 x i8> <i8 1, i8 2>, <i8 42, i8 0> | 
|  | ret <2 x i8> %rem | 
|  | } | 
|  |  | 
|  | define <2 x i8> @srem_zero_elt_vec(<2 x i8> %x) { | 
|  | ; CHECK-LABEL: @srem_zero_elt_vec( | 
|  | ; CHECK-NEXT:    ret <2 x i8> undef | 
|  | ; | 
|  | %rem = srem <2 x i8> %x, <i8 -42, i8 0> | 
|  | ret <2 x i8> %rem | 
|  | } | 
|  |  | 
|  | define <2 x i8> @urem_zero_elt_vec(<2 x i8> %x) { | 
|  | ; CHECK-LABEL: @urem_zero_elt_vec( | 
|  | ; CHECK-NEXT:    ret <2 x i8> undef | 
|  | ; | 
|  | %rem = urem <2 x i8> %x, <i8 0, i8 42> | 
|  | ret <2 x i8> %rem | 
|  | } | 
|  |  | 
|  | define <2 x i8> @srem_undef_elt_vec(<2 x i8> %x) { | 
|  | ; CHECK-LABEL: @srem_undef_elt_vec( | 
|  | ; CHECK-NEXT:    ret <2 x i8> undef | 
|  | ; | 
|  | %rem = srem <2 x i8> %x, <i8 -42, i8 undef> | 
|  | ret <2 x i8> %rem | 
|  | } | 
|  |  | 
|  | define <2 x i8> @urem_undef_elt_vec(<2 x i8> %x) { | 
|  | ; CHECK-LABEL: @urem_undef_elt_vec( | 
|  | ; CHECK-NEXT:    ret <2 x i8> undef | 
|  | ; | 
|  | %rem = urem <2 x i8> %x, <i8 undef, i8 42> | 
|  | ret <2 x i8> %rem | 
|  | } | 
|  |  | 
|  | ; Division-by-zero is undef. UB in any vector lane means the whole op is undef. | 
|  | ; Thus, we can simplify this: if any element of 'y' is 0, we can do anything. | 
|  | ; Therefore, assume that all elements of 'y' must be 1. | 
|  |  | 
|  | define <2 x i1> @srem_bool_vec(<2 x i1> %x, <2 x i1> %y) { | 
|  | ; CHECK-LABEL: @srem_bool_vec( | 
|  | ; CHECK-NEXT:    ret <2 x i1> zeroinitializer | 
|  | ; | 
|  | %rem = srem <2 x i1> %x, %y | 
|  | ret <2 x i1> %rem | 
|  | } | 
|  |  | 
|  | define <2 x i1> @urem_bool_vec(<2 x i1> %x, <2 x i1> %y) { | 
|  | ; CHECK-LABEL: @urem_bool_vec( | 
|  | ; CHECK-NEXT:    ret <2 x i1> zeroinitializer | 
|  | ; | 
|  | %rem = urem <2 x i1> %x, %y | 
|  | ret <2 x i1> %rem | 
|  | } | 
|  |  | 
|  | define <2 x i32> @zext_bool_urem_divisor_vec(<2 x i1> %x, <2 x i32> %y) { | 
|  | ; CHECK-LABEL: @zext_bool_urem_divisor_vec( | 
|  | ; CHECK-NEXT:    ret <2 x i32> zeroinitializer | 
|  | ; | 
|  | %ext = zext <2 x i1> %x to <2 x i32> | 
|  | %r = urem <2 x i32> %y, %ext | 
|  | ret <2 x i32> %r | 
|  | } | 
|  |  | 
|  | define i32 @zext_bool_srem_divisor(i1 %x, i32 %y) { | 
|  | ; CHECK-LABEL: @zext_bool_srem_divisor( | 
|  | ; CHECK-NEXT:    ret i32 0 | 
|  | ; | 
|  | %ext = zext i1 %x to i32 | 
|  | %r = srem i32 %y, %ext | 
|  | ret i32 %r | 
|  | } | 
|  |  | 
|  | define i32 @select1(i32 %x, i1 %b) { | 
|  | ; CHECK-LABEL: @select1( | 
|  | ; CHECK-NEXT:    ret i32 0 | 
|  | ; | 
|  | %rhs = select i1 %b, i32 %x, i32 1 | 
|  | %rem = srem i32 %x, %rhs | 
|  | ret i32 %rem | 
|  | } | 
|  |  | 
|  | define i32 @select2(i32 %x, i1 %b) { | 
|  | ; CHECK-LABEL: @select2( | 
|  | ; CHECK-NEXT:    ret i32 0 | 
|  | ; | 
|  | %rhs = select i1 %b, i32 %x, i32 1 | 
|  | %rem = urem i32 %x, %rhs | 
|  | ret i32 %rem | 
|  | } | 
|  |  | 
|  | define i32 @rem1(i32 %x, i32 %n) { | 
|  | ; CHECK-LABEL: @rem1( | 
|  | ; CHECK-NEXT:    [[MOD:%.*]] = srem i32 [[X:%.*]], [[N:%.*]] | 
|  | ; CHECK-NEXT:    ret i32 [[MOD]] | 
|  | ; | 
|  | %mod = srem i32 %x, %n | 
|  | %mod1 = srem i32 %mod, %n | 
|  | ret i32 %mod1 | 
|  | } | 
|  |  | 
|  | define i32 @rem2(i32 %x, i32 %n) { | 
|  | ; CHECK-LABEL: @rem2( | 
|  | ; CHECK-NEXT:    [[MOD:%.*]] = urem i32 [[X:%.*]], [[N:%.*]] | 
|  | ; CHECK-NEXT:    ret i32 [[MOD]] | 
|  | ; | 
|  | %mod = urem i32 %x, %n | 
|  | %mod1 = urem i32 %mod, %n | 
|  | ret i32 %mod1 | 
|  | } | 
|  |  | 
|  | define i32 @rem3(i32 %x, i32 %n) { | 
|  | ; CHECK-LABEL: @rem3( | 
|  | ; CHECK-NEXT:    [[MOD:%.*]] = srem i32 [[X:%.*]], [[N:%.*]] | 
|  | ; CHECK-NEXT:    [[MOD1:%.*]] = urem i32 [[MOD]], [[N]] | 
|  | ; CHECK-NEXT:    ret i32 [[MOD1]] | 
|  | ; | 
|  | %mod = srem i32 %x, %n | 
|  | %mod1 = urem i32 %mod, %n | 
|  | ret i32 %mod1 | 
|  | } | 
|  |  | 
|  | define i32 @urem_dividend_known_smaller_than_constant_divisor(i32 %x) { | 
|  | ; CHECK-LABEL: @urem_dividend_known_smaller_than_constant_divisor( | 
|  | ; CHECK-NEXT:    [[AND:%.*]] = and i32 [[X:%.*]], 250 | 
|  | ; CHECK-NEXT:    ret i32 [[AND]] | 
|  | ; | 
|  | %and = and i32 %x, 250 | 
|  | %r = urem i32 %and, 251 | 
|  | ret i32 %r | 
|  | } | 
|  |  | 
|  | define i32 @not_urem_dividend_known_smaller_than_constant_divisor(i32 %x) { | 
|  | ; CHECK-LABEL: @not_urem_dividend_known_smaller_than_constant_divisor( | 
|  | ; CHECK-NEXT:    [[AND:%.*]] = and i32 [[X:%.*]], 251 | 
|  | ; CHECK-NEXT:    [[R:%.*]] = urem i32 [[AND]], 251 | 
|  | ; CHECK-NEXT:    ret i32 [[R]] | 
|  | ; | 
|  | %and = and i32 %x, 251 | 
|  | %r = urem i32 %and, 251 | 
|  | ret i32 %r | 
|  | } | 
|  |  | 
|  | define i32 @urem_constant_dividend_known_smaller_than_divisor(i32 %x) { | 
|  | ; CHECK-LABEL: @urem_constant_dividend_known_smaller_than_divisor( | 
|  | ; CHECK-NEXT:    ret i32 250 | 
|  | ; | 
|  | %or = or i32 %x, 251 | 
|  | %r = urem i32 250, %or | 
|  | ret i32 %r | 
|  | } | 
|  |  | 
|  | define i32 @not_urem_constant_dividend_known_smaller_than_divisor(i32 %x) { | 
|  | ; CHECK-LABEL: @not_urem_constant_dividend_known_smaller_than_divisor( | 
|  | ; CHECK-NEXT:    [[OR:%.*]] = or i32 [[X:%.*]], 251 | 
|  | ; CHECK-NEXT:    [[R:%.*]] = urem i32 251, [[OR]] | 
|  | ; CHECK-NEXT:    ret i32 [[R]] | 
|  | ; | 
|  | %or = or i32 %x, 251 | 
|  | %r = urem i32 251, %or | 
|  | ret i32 %r | 
|  | } | 
|  |  | 
|  | ; This would require computing known bits on both x and y. Is it worth doing? | 
|  |  | 
|  | define i32 @urem_dividend_known_smaller_than_divisor(i32 %x, i32 %y) { | 
|  | ; CHECK-LABEL: @urem_dividend_known_smaller_than_divisor( | 
|  | ; CHECK-NEXT:    [[AND:%.*]] = and i32 [[X:%.*]], 250 | 
|  | ; CHECK-NEXT:    [[OR:%.*]] = or i32 [[Y:%.*]], 251 | 
|  | ; CHECK-NEXT:    [[R:%.*]] = urem i32 [[AND]], [[OR]] | 
|  | ; CHECK-NEXT:    ret i32 [[R]] | 
|  | ; | 
|  | %and = and i32 %x, 250 | 
|  | %or = or i32 %y, 251 | 
|  | %r = urem i32 %and, %or | 
|  | ret i32 %r | 
|  | } | 
|  |  | 
|  | define i32 @not_urem_dividend_known_smaller_than_divisor(i32 %x, i32 %y) { | 
|  | ; CHECK-LABEL: @not_urem_dividend_known_smaller_than_divisor( | 
|  | ; CHECK-NEXT:    [[AND:%.*]] = and i32 [[X:%.*]], 251 | 
|  | ; CHECK-NEXT:    [[OR:%.*]] = or i32 [[Y:%.*]], 251 | 
|  | ; CHECK-NEXT:    [[R:%.*]] = urem i32 [[AND]], [[OR]] | 
|  | ; CHECK-NEXT:    ret i32 [[R]] | 
|  | ; | 
|  | %and = and i32 %x, 251 | 
|  | %or = or i32 %y, 251 | 
|  | %r = urem i32 %and, %or | 
|  | ret i32 %r | 
|  | } | 
|  |  | 
|  | declare i32 @external() | 
|  |  | 
|  | define i32 @rem4() { | 
|  | ; CHECK-LABEL: @rem4( | 
|  | ; CHECK-NEXT:    [[CALL:%.*]] = call i32 @external(), !range !0 | 
|  | ; CHECK-NEXT:    ret i32 [[CALL]] | 
|  | ; | 
|  | %call = call i32 @external(), !range !0 | 
|  | %urem = urem i32 %call, 3 | 
|  | ret i32 %urem | 
|  | } | 
|  |  | 
|  | !0 = !{i32 0, i32 3} | 
|  |  | 
|  | define i32 @rem5(i32 %x, i32 %y) { | 
|  | ; CHECK-LABEL: @rem5( | 
|  | ; CHECK-NEXT:    ret i32 0 | 
|  | ; | 
|  | %shl = shl nsw i32 %x, %y | 
|  | %mod = srem i32 %shl, %x | 
|  | ret i32 %mod | 
|  | } | 
|  |  | 
|  | define <2 x i32> @rem6(<2 x i32> %x, <2 x i32> %y) { | 
|  | ; CHECK-LABEL: @rem6( | 
|  | ; CHECK-NEXT:    ret <2 x i32> zeroinitializer | 
|  | ; | 
|  | %shl = shl nsw <2 x i32> %x, %y | 
|  | %mod = srem <2 x i32> %shl, %x | 
|  | ret <2 x i32> %mod | 
|  | } | 
|  |  | 
|  | ; make sure the previous fold doesn't take place for wrapped shifts | 
|  |  | 
|  | define i32 @rem7(i32 %x, i32 %y) { | 
|  | ; CHECK-LABEL: @rem7( | 
|  | ; CHECK-NEXT:    [[SHL:%.*]] = shl i32 [[X:%.*]], [[Y:%.*]] | 
|  | ; CHECK-NEXT:    [[MOD:%.*]] = srem i32 [[SHL]], [[X]] | 
|  | ; CHECK-NEXT:    ret i32 [[MOD]] | 
|  | ; | 
|  | %shl = shl i32 %x, %y | 
|  | %mod = srem i32 %shl, %x | 
|  | ret i32 %mod | 
|  | } | 
|  |  | 
|  | define i32 @rem8(i32 %x, i32 %y) { | 
|  | ; CHECK-LABEL: @rem8( | 
|  | ; CHECK-NEXT:    ret i32 0 | 
|  | ; | 
|  | %shl = shl nuw i32 %x, %y | 
|  | %mod = urem i32 %shl, %x | 
|  | ret i32 %mod | 
|  | } | 
|  |  | 
|  | define <2 x i32> @rem9(<2 x i32> %x, <2 x i32> %y) { | 
|  | ; CHECK-LABEL: @rem9( | 
|  | ; CHECK-NEXT:    ret <2 x i32> zeroinitializer | 
|  | ; | 
|  | %shl = shl nuw <2 x i32> %x, %y | 
|  | %mod = urem <2 x i32> %shl, %x | 
|  | ret <2 x i32> %mod | 
|  | } | 
|  |  | 
|  | ; make sure the previous fold doesn't take place for wrapped shifts | 
|  |  | 
|  | define i32 @rem10(i32 %x, i32 %y) { | 
|  | ; CHECK-LABEL: @rem10( | 
|  | ; CHECK-NEXT:    [[SHL:%.*]] = shl i32 [[X:%.*]], [[Y:%.*]] | 
|  | ; CHECK-NEXT:    [[MOD:%.*]] = urem i32 [[SHL]], [[X]] | 
|  | ; CHECK-NEXT:    ret i32 [[MOD]] | 
|  | ; | 
|  | %shl = shl i32 %x, %y | 
|  | %mod = urem i32 %shl, %x | 
|  | ret i32 %mod | 
|  | } | 
|  |  | 
|  | define i32 @srem_with_sext_bool_divisor(i1 %x, i32 %y) { | 
|  | ; CHECK-LABEL: @srem_with_sext_bool_divisor( | 
|  | ; CHECK-NEXT:    ret i32 0 | 
|  | ; | 
|  | %s = sext i1 %x to i32 | 
|  | %r = srem i32 %y, %s | 
|  | ret i32 %r | 
|  | } | 
|  |  | 
|  | define <2 x i32> @srem_with_sext_bool_divisor_vec(<2 x i1> %x, <2 x i32> %y) { | 
|  | ; CHECK-LABEL: @srem_with_sext_bool_divisor_vec( | 
|  | ; CHECK-NEXT:    ret <2 x i32> zeroinitializer | 
|  | ; | 
|  | %s = sext <2 x i1> %x to <2 x i32> | 
|  | %r = srem <2 x i32> %y, %s | 
|  | ret <2 x i32> %r | 
|  | } | 
|  |  |