|  | //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains the implementation of the scalar evolution expander, | 
|  | // which is used to generate the code corresponding to a given scalar evolution | 
|  | // expression. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/ScalarEvolutionExpander.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace PatternMatch; | 
|  |  | 
|  | /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, | 
|  | /// reusing an existing cast if a suitable one exists, moving an existing | 
|  | /// cast if a suitable one exists but isn't in the right place, or | 
|  | /// creating a new one. | 
|  | Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty, | 
|  | Instruction::CastOps Op, | 
|  | BasicBlock::iterator IP) { | 
|  | // This function must be called with the builder having a valid insertion | 
|  | // point. It doesn't need to be the actual IP where the uses of the returned | 
|  | // cast will be added, but it must dominate such IP. | 
|  | // We use this precondition to produce a cast that will dominate all its | 
|  | // uses. In particular, this is crucial for the case where the builder's | 
|  | // insertion point *is* the point where we were asked to put the cast. | 
|  | // Since we don't know the builder's insertion point is actually | 
|  | // where the uses will be added (only that it dominates it), we are | 
|  | // not allowed to move it. | 
|  | BasicBlock::iterator BIP = Builder.GetInsertPoint(); | 
|  |  | 
|  | Instruction *Ret = nullptr; | 
|  |  | 
|  | // Check to see if there is already a cast! | 
|  | for (User *U : V->users()) | 
|  | if (U->getType() == Ty) | 
|  | if (CastInst *CI = dyn_cast<CastInst>(U)) | 
|  | if (CI->getOpcode() == Op) { | 
|  | // If the cast isn't where we want it, create a new cast at IP. | 
|  | // Likewise, do not reuse a cast at BIP because it must dominate | 
|  | // instructions that might be inserted before BIP. | 
|  | if (BasicBlock::iterator(CI) != IP || BIP == IP) { | 
|  | // Create a new cast, and leave the old cast in place in case | 
|  | // it is being used as an insert point. Clear its operand | 
|  | // so that it doesn't hold anything live. | 
|  | Ret = CastInst::Create(Op, V, Ty, "", &*IP); | 
|  | Ret->takeName(CI); | 
|  | CI->replaceAllUsesWith(Ret); | 
|  | CI->setOperand(0, UndefValue::get(V->getType())); | 
|  | break; | 
|  | } | 
|  | Ret = CI; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Create a new cast. | 
|  | if (!Ret) | 
|  | Ret = CastInst::Create(Op, V, Ty, V->getName(), &*IP); | 
|  |  | 
|  | // We assert at the end of the function since IP might point to an | 
|  | // instruction with different dominance properties than a cast | 
|  | // (an invoke for example) and not dominate BIP (but the cast does). | 
|  | assert(SE.DT.dominates(Ret, &*BIP)); | 
|  |  | 
|  | rememberInstruction(Ret); | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | static BasicBlock::iterator findInsertPointAfter(Instruction *I, | 
|  | BasicBlock *MustDominate) { | 
|  | BasicBlock::iterator IP = ++I->getIterator(); | 
|  | if (auto *II = dyn_cast<InvokeInst>(I)) | 
|  | IP = II->getNormalDest()->begin(); | 
|  |  | 
|  | while (isa<PHINode>(IP)) | 
|  | ++IP; | 
|  |  | 
|  | if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) { | 
|  | ++IP; | 
|  | } else if (isa<CatchSwitchInst>(IP)) { | 
|  | IP = MustDominate->getFirstInsertionPt(); | 
|  | } else { | 
|  | assert(!IP->isEHPad() && "unexpected eh pad!"); | 
|  | } | 
|  |  | 
|  | return IP; | 
|  | } | 
|  |  | 
|  | /// InsertNoopCastOfTo - Insert a cast of V to the specified type, | 
|  | /// which must be possible with a noop cast, doing what we can to share | 
|  | /// the casts. | 
|  | Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) { | 
|  | Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); | 
|  | assert((Op == Instruction::BitCast || | 
|  | Op == Instruction::PtrToInt || | 
|  | Op == Instruction::IntToPtr) && | 
|  | "InsertNoopCastOfTo cannot perform non-noop casts!"); | 
|  | assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && | 
|  | "InsertNoopCastOfTo cannot change sizes!"); | 
|  |  | 
|  | // Short-circuit unnecessary bitcasts. | 
|  | if (Op == Instruction::BitCast) { | 
|  | if (V->getType() == Ty) | 
|  | return V; | 
|  | if (CastInst *CI = dyn_cast<CastInst>(V)) { | 
|  | if (CI->getOperand(0)->getType() == Ty) | 
|  | return CI->getOperand(0); | 
|  | } | 
|  | } | 
|  | // Short-circuit unnecessary inttoptr<->ptrtoint casts. | 
|  | if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && | 
|  | SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { | 
|  | if (CastInst *CI = dyn_cast<CastInst>(V)) | 
|  | if ((CI->getOpcode() == Instruction::PtrToInt || | 
|  | CI->getOpcode() == Instruction::IntToPtr) && | 
|  | SE.getTypeSizeInBits(CI->getType()) == | 
|  | SE.getTypeSizeInBits(CI->getOperand(0)->getType())) | 
|  | return CI->getOperand(0); | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) | 
|  | if ((CE->getOpcode() == Instruction::PtrToInt || | 
|  | CE->getOpcode() == Instruction::IntToPtr) && | 
|  | SE.getTypeSizeInBits(CE->getType()) == | 
|  | SE.getTypeSizeInBits(CE->getOperand(0)->getType())) | 
|  | return CE->getOperand(0); | 
|  | } | 
|  |  | 
|  | // Fold a cast of a constant. | 
|  | if (Constant *C = dyn_cast<Constant>(V)) | 
|  | return ConstantExpr::getCast(Op, C, Ty); | 
|  |  | 
|  | // Cast the argument at the beginning of the entry block, after | 
|  | // any bitcasts of other arguments. | 
|  | if (Argument *A = dyn_cast<Argument>(V)) { | 
|  | BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); | 
|  | while ((isa<BitCastInst>(IP) && | 
|  | isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) && | 
|  | cast<BitCastInst>(IP)->getOperand(0) != A) || | 
|  | isa<DbgInfoIntrinsic>(IP)) | 
|  | ++IP; | 
|  | return ReuseOrCreateCast(A, Ty, Op, IP); | 
|  | } | 
|  |  | 
|  | // Cast the instruction immediately after the instruction. | 
|  | Instruction *I = cast<Instruction>(V); | 
|  | BasicBlock::iterator IP = findInsertPointAfter(I, Builder.GetInsertBlock()); | 
|  | return ReuseOrCreateCast(I, Ty, Op, IP); | 
|  | } | 
|  |  | 
|  | /// InsertBinop - Insert the specified binary operator, doing a small amount | 
|  | /// of work to avoid inserting an obviously redundant operation. | 
|  | Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, | 
|  | Value *LHS, Value *RHS) { | 
|  | // Fold a binop with constant operands. | 
|  | if (Constant *CLHS = dyn_cast<Constant>(LHS)) | 
|  | if (Constant *CRHS = dyn_cast<Constant>(RHS)) | 
|  | return ConstantExpr::get(Opcode, CLHS, CRHS); | 
|  |  | 
|  | // Do a quick scan to see if we have this binop nearby.  If so, reuse it. | 
|  | unsigned ScanLimit = 6; | 
|  | BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); | 
|  | // Scanning starts from the last instruction before the insertion point. | 
|  | BasicBlock::iterator IP = Builder.GetInsertPoint(); | 
|  | if (IP != BlockBegin) { | 
|  | --IP; | 
|  | for (; ScanLimit; --IP, --ScanLimit) { | 
|  | // Don't count dbg.value against the ScanLimit, to avoid perturbing the | 
|  | // generated code. | 
|  | if (isa<DbgInfoIntrinsic>(IP)) | 
|  | ScanLimit++; | 
|  |  | 
|  | // Conservatively, do not use any instruction which has any of wrap/exact | 
|  | // flags installed. | 
|  | // TODO: Instead of simply disable poison instructions we can be clever | 
|  | //       here and match SCEV to this instruction. | 
|  | auto canGeneratePoison = [](Instruction *I) { | 
|  | if (isa<OverflowingBinaryOperator>(I) && | 
|  | (I->hasNoSignedWrap() || I->hasNoUnsignedWrap())) | 
|  | return true; | 
|  | if (isa<PossiblyExactOperator>(I) && I->isExact()) | 
|  | return true; | 
|  | return false; | 
|  | }; | 
|  | if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && | 
|  | IP->getOperand(1) == RHS && !canGeneratePoison(&*IP)) | 
|  | return &*IP; | 
|  | if (IP == BlockBegin) break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Save the original insertion point so we can restore it when we're done. | 
|  | DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc(); | 
|  | SCEVInsertPointGuard Guard(Builder, this); | 
|  |  | 
|  | // Move the insertion point out of as many loops as we can. | 
|  | while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { | 
|  | if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break; | 
|  | BasicBlock *Preheader = L->getLoopPreheader(); | 
|  | if (!Preheader) break; | 
|  |  | 
|  | // Ok, move up a level. | 
|  | Builder.SetInsertPoint(Preheader->getTerminator()); | 
|  | } | 
|  |  | 
|  | // If we haven't found this binop, insert it. | 
|  | Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS)); | 
|  | BO->setDebugLoc(Loc); | 
|  | rememberInstruction(BO); | 
|  |  | 
|  | return BO; | 
|  | } | 
|  |  | 
|  | /// FactorOutConstant - Test if S is divisible by Factor, using signed | 
|  | /// division. If so, update S with Factor divided out and return true. | 
|  | /// S need not be evenly divisible if a reasonable remainder can be | 
|  | /// computed. | 
|  | /// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made | 
|  | /// unnecessary; in its place, just signed-divide Ops[i] by the scale and | 
|  | /// check to see if the divide was folded. | 
|  | static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder, | 
|  | const SCEV *Factor, ScalarEvolution &SE, | 
|  | const DataLayout &DL) { | 
|  | // Everything is divisible by one. | 
|  | if (Factor->isOne()) | 
|  | return true; | 
|  |  | 
|  | // x/x == 1. | 
|  | if (S == Factor) { | 
|  | S = SE.getConstant(S->getType(), 1); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // For a Constant, check for a multiple of the given factor. | 
|  | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { | 
|  | // 0/x == 0. | 
|  | if (C->isZero()) | 
|  | return true; | 
|  | // Check for divisibility. | 
|  | if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) { | 
|  | ConstantInt *CI = | 
|  | ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt())); | 
|  | // If the quotient is zero and the remainder is non-zero, reject | 
|  | // the value at this scale. It will be considered for subsequent | 
|  | // smaller scales. | 
|  | if (!CI->isZero()) { | 
|  | const SCEV *Div = SE.getConstant(CI); | 
|  | S = Div; | 
|  | Remainder = SE.getAddExpr( | 
|  | Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt()))); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // In a Mul, check if there is a constant operand which is a multiple | 
|  | // of the given factor. | 
|  | if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { | 
|  | // Size is known, check if there is a constant operand which is a multiple | 
|  | // of the given factor. If so, we can factor it. | 
|  | const SCEVConstant *FC = cast<SCEVConstant>(Factor); | 
|  | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0))) | 
|  | if (!C->getAPInt().srem(FC->getAPInt())) { | 
|  | SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end()); | 
|  | NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt())); | 
|  | S = SE.getMulExpr(NewMulOps); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // In an AddRec, check if both start and step are divisible. | 
|  | if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { | 
|  | const SCEV *Step = A->getStepRecurrence(SE); | 
|  | const SCEV *StepRem = SE.getConstant(Step->getType(), 0); | 
|  | if (!FactorOutConstant(Step, StepRem, Factor, SE, DL)) | 
|  | return false; | 
|  | if (!StepRem->isZero()) | 
|  | return false; | 
|  | const SCEV *Start = A->getStart(); | 
|  | if (!FactorOutConstant(Start, Remainder, Factor, SE, DL)) | 
|  | return false; | 
|  | S = SE.getAddRecExpr(Start, Step, A->getLoop(), | 
|  | A->getNoWrapFlags(SCEV::FlagNW)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs | 
|  | /// is the number of SCEVAddRecExprs present, which are kept at the end of | 
|  | /// the list. | 
|  | /// | 
|  | static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops, | 
|  | Type *Ty, | 
|  | ScalarEvolution &SE) { | 
|  | unsigned NumAddRecs = 0; | 
|  | for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i) | 
|  | ++NumAddRecs; | 
|  | // Group Ops into non-addrecs and addrecs. | 
|  | SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs); | 
|  | SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end()); | 
|  | // Let ScalarEvolution sort and simplify the non-addrecs list. | 
|  | const SCEV *Sum = NoAddRecs.empty() ? | 
|  | SE.getConstant(Ty, 0) : | 
|  | SE.getAddExpr(NoAddRecs); | 
|  | // If it returned an add, use the operands. Otherwise it simplified | 
|  | // the sum into a single value, so just use that. | 
|  | Ops.clear(); | 
|  | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum)) | 
|  | Ops.append(Add->op_begin(), Add->op_end()); | 
|  | else if (!Sum->isZero()) | 
|  | Ops.push_back(Sum); | 
|  | // Then append the addrecs. | 
|  | Ops.append(AddRecs.begin(), AddRecs.end()); | 
|  | } | 
|  |  | 
|  | /// SplitAddRecs - Flatten a list of add operands, moving addrec start values | 
|  | /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}. | 
|  | /// This helps expose more opportunities for folding parts of the expressions | 
|  | /// into GEP indices. | 
|  | /// | 
|  | static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops, | 
|  | Type *Ty, | 
|  | ScalarEvolution &SE) { | 
|  | // Find the addrecs. | 
|  | SmallVector<const SCEV *, 8> AddRecs; | 
|  | for (unsigned i = 0, e = Ops.size(); i != e; ++i) | 
|  | while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) { | 
|  | const SCEV *Start = A->getStart(); | 
|  | if (Start->isZero()) break; | 
|  | const SCEV *Zero = SE.getConstant(Ty, 0); | 
|  | AddRecs.push_back(SE.getAddRecExpr(Zero, | 
|  | A->getStepRecurrence(SE), | 
|  | A->getLoop(), | 
|  | A->getNoWrapFlags(SCEV::FlagNW))); | 
|  | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) { | 
|  | Ops[i] = Zero; | 
|  | Ops.append(Add->op_begin(), Add->op_end()); | 
|  | e += Add->getNumOperands(); | 
|  | } else { | 
|  | Ops[i] = Start; | 
|  | } | 
|  | } | 
|  | if (!AddRecs.empty()) { | 
|  | // Add the addrecs onto the end of the list. | 
|  | Ops.append(AddRecs.begin(), AddRecs.end()); | 
|  | // Resort the operand list, moving any constants to the front. | 
|  | SimplifyAddOperands(Ops, Ty, SE); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// expandAddToGEP - Expand an addition expression with a pointer type into | 
|  | /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps | 
|  | /// BasicAliasAnalysis and other passes analyze the result. See the rules | 
|  | /// for getelementptr vs. inttoptr in | 
|  | /// http://llvm.org/docs/LangRef.html#pointeraliasing | 
|  | /// for details. | 
|  | /// | 
|  | /// Design note: The correctness of using getelementptr here depends on | 
|  | /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as | 
|  | /// they may introduce pointer arithmetic which may not be safely converted | 
|  | /// into getelementptr. | 
|  | /// | 
|  | /// Design note: It might seem desirable for this function to be more | 
|  | /// loop-aware. If some of the indices are loop-invariant while others | 
|  | /// aren't, it might seem desirable to emit multiple GEPs, keeping the | 
|  | /// loop-invariant portions of the overall computation outside the loop. | 
|  | /// However, there are a few reasons this is not done here. Hoisting simple | 
|  | /// arithmetic is a low-level optimization that often isn't very | 
|  | /// important until late in the optimization process. In fact, passes | 
|  | /// like InstructionCombining will combine GEPs, even if it means | 
|  | /// pushing loop-invariant computation down into loops, so even if the | 
|  | /// GEPs were split here, the work would quickly be undone. The | 
|  | /// LoopStrengthReduction pass, which is usually run quite late (and | 
|  | /// after the last InstructionCombining pass), takes care of hoisting | 
|  | /// loop-invariant portions of expressions, after considering what | 
|  | /// can be folded using target addressing modes. | 
|  | /// | 
|  | Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin, | 
|  | const SCEV *const *op_end, | 
|  | PointerType *PTy, | 
|  | Type *Ty, | 
|  | Value *V) { | 
|  | Type *OriginalElTy = PTy->getElementType(); | 
|  | Type *ElTy = OriginalElTy; | 
|  | SmallVector<Value *, 4> GepIndices; | 
|  | SmallVector<const SCEV *, 8> Ops(op_begin, op_end); | 
|  | bool AnyNonZeroIndices = false; | 
|  |  | 
|  | // Split AddRecs up into parts as either of the parts may be usable | 
|  | // without the other. | 
|  | SplitAddRecs(Ops, Ty, SE); | 
|  |  | 
|  | Type *IntPtrTy = DL.getIntPtrType(PTy); | 
|  |  | 
|  | // Descend down the pointer's type and attempt to convert the other | 
|  | // operands into GEP indices, at each level. The first index in a GEP | 
|  | // indexes into the array implied by the pointer operand; the rest of | 
|  | // the indices index into the element or field type selected by the | 
|  | // preceding index. | 
|  | for (;;) { | 
|  | // If the scale size is not 0, attempt to factor out a scale for | 
|  | // array indexing. | 
|  | SmallVector<const SCEV *, 8> ScaledOps; | 
|  | if (ElTy->isSized()) { | 
|  | const SCEV *ElSize = SE.getSizeOfExpr(IntPtrTy, ElTy); | 
|  | if (!ElSize->isZero()) { | 
|  | SmallVector<const SCEV *, 8> NewOps; | 
|  | for (const SCEV *Op : Ops) { | 
|  | const SCEV *Remainder = SE.getConstant(Ty, 0); | 
|  | if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) { | 
|  | // Op now has ElSize factored out. | 
|  | ScaledOps.push_back(Op); | 
|  | if (!Remainder->isZero()) | 
|  | NewOps.push_back(Remainder); | 
|  | AnyNonZeroIndices = true; | 
|  | } else { | 
|  | // The operand was not divisible, so add it to the list of operands | 
|  | // we'll scan next iteration. | 
|  | NewOps.push_back(Op); | 
|  | } | 
|  | } | 
|  | // If we made any changes, update Ops. | 
|  | if (!ScaledOps.empty()) { | 
|  | Ops = NewOps; | 
|  | SimplifyAddOperands(Ops, Ty, SE); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Record the scaled array index for this level of the type. If | 
|  | // we didn't find any operands that could be factored, tentatively | 
|  | // assume that element zero was selected (since the zero offset | 
|  | // would obviously be folded away). | 
|  | Value *Scaled = ScaledOps.empty() ? | 
|  | Constant::getNullValue(Ty) : | 
|  | expandCodeFor(SE.getAddExpr(ScaledOps), Ty); | 
|  | GepIndices.push_back(Scaled); | 
|  |  | 
|  | // Collect struct field index operands. | 
|  | while (StructType *STy = dyn_cast<StructType>(ElTy)) { | 
|  | bool FoundFieldNo = false; | 
|  | // An empty struct has no fields. | 
|  | if (STy->getNumElements() == 0) break; | 
|  | // Field offsets are known. See if a constant offset falls within any of | 
|  | // the struct fields. | 
|  | if (Ops.empty()) | 
|  | break; | 
|  | if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0])) | 
|  | if (SE.getTypeSizeInBits(C->getType()) <= 64) { | 
|  | const StructLayout &SL = *DL.getStructLayout(STy); | 
|  | uint64_t FullOffset = C->getValue()->getZExtValue(); | 
|  | if (FullOffset < SL.getSizeInBytes()) { | 
|  | unsigned ElIdx = SL.getElementContainingOffset(FullOffset); | 
|  | GepIndices.push_back( | 
|  | ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx)); | 
|  | ElTy = STy->getTypeAtIndex(ElIdx); | 
|  | Ops[0] = | 
|  | SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx)); | 
|  | AnyNonZeroIndices = true; | 
|  | FoundFieldNo = true; | 
|  | } | 
|  | } | 
|  | // If no struct field offsets were found, tentatively assume that | 
|  | // field zero was selected (since the zero offset would obviously | 
|  | // be folded away). | 
|  | if (!FoundFieldNo) { | 
|  | ElTy = STy->getTypeAtIndex(0u); | 
|  | GepIndices.push_back( | 
|  | Constant::getNullValue(Type::getInt32Ty(Ty->getContext()))); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy)) | 
|  | ElTy = ATy->getElementType(); | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If none of the operands were convertible to proper GEP indices, cast | 
|  | // the base to i8* and do an ugly getelementptr with that. It's still | 
|  | // better than ptrtoint+arithmetic+inttoptr at least. | 
|  | if (!AnyNonZeroIndices) { | 
|  | // Cast the base to i8*. | 
|  | V = InsertNoopCastOfTo(V, | 
|  | Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace())); | 
|  |  | 
|  | assert(!isa<Instruction>(V) || | 
|  | SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint())); | 
|  |  | 
|  | // Expand the operands for a plain byte offset. | 
|  | Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty); | 
|  |  | 
|  | // Fold a GEP with constant operands. | 
|  | if (Constant *CLHS = dyn_cast<Constant>(V)) | 
|  | if (Constant *CRHS = dyn_cast<Constant>(Idx)) | 
|  | return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()), | 
|  | CLHS, CRHS); | 
|  |  | 
|  | // Do a quick scan to see if we have this GEP nearby.  If so, reuse it. | 
|  | unsigned ScanLimit = 6; | 
|  | BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); | 
|  | // Scanning starts from the last instruction before the insertion point. | 
|  | BasicBlock::iterator IP = Builder.GetInsertPoint(); | 
|  | if (IP != BlockBegin) { | 
|  | --IP; | 
|  | for (; ScanLimit; --IP, --ScanLimit) { | 
|  | // Don't count dbg.value against the ScanLimit, to avoid perturbing the | 
|  | // generated code. | 
|  | if (isa<DbgInfoIntrinsic>(IP)) | 
|  | ScanLimit++; | 
|  | if (IP->getOpcode() == Instruction::GetElementPtr && | 
|  | IP->getOperand(0) == V && IP->getOperand(1) == Idx) | 
|  | return &*IP; | 
|  | if (IP == BlockBegin) break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Save the original insertion point so we can restore it when we're done. | 
|  | SCEVInsertPointGuard Guard(Builder, this); | 
|  |  | 
|  | // Move the insertion point out of as many loops as we can. | 
|  | while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { | 
|  | if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break; | 
|  | BasicBlock *Preheader = L->getLoopPreheader(); | 
|  | if (!Preheader) break; | 
|  |  | 
|  | // Ok, move up a level. | 
|  | Builder.SetInsertPoint(Preheader->getTerminator()); | 
|  | } | 
|  |  | 
|  | // Emit a GEP. | 
|  | Value *GEP = Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep"); | 
|  | rememberInstruction(GEP); | 
|  |  | 
|  | return GEP; | 
|  | } | 
|  |  | 
|  | { | 
|  | SCEVInsertPointGuard Guard(Builder, this); | 
|  |  | 
|  | // Move the insertion point out of as many loops as we can. | 
|  | while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { | 
|  | if (!L->isLoopInvariant(V)) break; | 
|  |  | 
|  | bool AnyIndexNotLoopInvariant = any_of( | 
|  | GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); }); | 
|  |  | 
|  | if (AnyIndexNotLoopInvariant) | 
|  | break; | 
|  |  | 
|  | BasicBlock *Preheader = L->getLoopPreheader(); | 
|  | if (!Preheader) break; | 
|  |  | 
|  | // Ok, move up a level. | 
|  | Builder.SetInsertPoint(Preheader->getTerminator()); | 
|  | } | 
|  |  | 
|  | // Insert a pretty getelementptr. Note that this GEP is not marked inbounds, | 
|  | // because ScalarEvolution may have changed the address arithmetic to | 
|  | // compute a value which is beyond the end of the allocated object. | 
|  | Value *Casted = V; | 
|  | if (V->getType() != PTy) | 
|  | Casted = InsertNoopCastOfTo(Casted, PTy); | 
|  | Value *GEP = Builder.CreateGEP(OriginalElTy, Casted, GepIndices, "scevgep"); | 
|  | Ops.push_back(SE.getUnknown(GEP)); | 
|  | rememberInstruction(GEP); | 
|  | } | 
|  |  | 
|  | return expand(SE.getAddExpr(Ops)); | 
|  | } | 
|  |  | 
|  | Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty, | 
|  | Value *V) { | 
|  | const SCEV *const Ops[1] = {Op}; | 
|  | return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V); | 
|  | } | 
|  |  | 
|  | /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for | 
|  | /// SCEV expansion. If they are nested, this is the most nested. If they are | 
|  | /// neighboring, pick the later. | 
|  | static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, | 
|  | DominatorTree &DT) { | 
|  | if (!A) return B; | 
|  | if (!B) return A; | 
|  | if (A->contains(B)) return B; | 
|  | if (B->contains(A)) return A; | 
|  | if (DT.dominates(A->getHeader(), B->getHeader())) return B; | 
|  | if (DT.dominates(B->getHeader(), A->getHeader())) return A; | 
|  | return A; // Arbitrarily break the tie. | 
|  | } | 
|  |  | 
|  | /// getRelevantLoop - Get the most relevant loop associated with the given | 
|  | /// expression, according to PickMostRelevantLoop. | 
|  | const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) { | 
|  | // Test whether we've already computed the most relevant loop for this SCEV. | 
|  | auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr)); | 
|  | if (!Pair.second) | 
|  | return Pair.first->second; | 
|  |  | 
|  | if (isa<SCEVConstant>(S)) | 
|  | // A constant has no relevant loops. | 
|  | return nullptr; | 
|  | if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { | 
|  | if (const Instruction *I = dyn_cast<Instruction>(U->getValue())) | 
|  | return Pair.first->second = SE.LI.getLoopFor(I->getParent()); | 
|  | // A non-instruction has no relevant loops. | 
|  | return nullptr; | 
|  | } | 
|  | if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) { | 
|  | const Loop *L = nullptr; | 
|  | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) | 
|  | L = AR->getLoop(); | 
|  | for (const SCEV *Op : N->operands()) | 
|  | L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT); | 
|  | return RelevantLoops[N] = L; | 
|  | } | 
|  | if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) { | 
|  | const Loop *Result = getRelevantLoop(C->getOperand()); | 
|  | return RelevantLoops[C] = Result; | 
|  | } | 
|  | if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { | 
|  | const Loop *Result = PickMostRelevantLoop( | 
|  | getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT); | 
|  | return RelevantLoops[D] = Result; | 
|  | } | 
|  | llvm_unreachable("Unexpected SCEV type!"); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// LoopCompare - Compare loops by PickMostRelevantLoop. | 
|  | class LoopCompare { | 
|  | DominatorTree &DT; | 
|  | public: | 
|  | explicit LoopCompare(DominatorTree &dt) : DT(dt) {} | 
|  |  | 
|  | bool operator()(std::pair<const Loop *, const SCEV *> LHS, | 
|  | std::pair<const Loop *, const SCEV *> RHS) const { | 
|  | // Keep pointer operands sorted at the end. | 
|  | if (LHS.second->getType()->isPointerTy() != | 
|  | RHS.second->getType()->isPointerTy()) | 
|  | return LHS.second->getType()->isPointerTy(); | 
|  |  | 
|  | // Compare loops with PickMostRelevantLoop. | 
|  | if (LHS.first != RHS.first) | 
|  | return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; | 
|  |  | 
|  | // If one operand is a non-constant negative and the other is not, | 
|  | // put the non-constant negative on the right so that a sub can | 
|  | // be used instead of a negate and add. | 
|  | if (LHS.second->isNonConstantNegative()) { | 
|  | if (!RHS.second->isNonConstantNegative()) | 
|  | return false; | 
|  | } else if (RHS.second->isNonConstantNegative()) | 
|  | return true; | 
|  |  | 
|  | // Otherwise they are equivalent according to this comparison. | 
|  | return false; | 
|  | } | 
|  | }; | 
|  |  | 
|  | } | 
|  |  | 
|  | Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { | 
|  | Type *Ty = SE.getEffectiveSCEVType(S->getType()); | 
|  |  | 
|  | // Collect all the add operands in a loop, along with their associated loops. | 
|  | // Iterate in reverse so that constants are emitted last, all else equal, and | 
|  | // so that pointer operands are inserted first, which the code below relies on | 
|  | // to form more involved GEPs. | 
|  | SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; | 
|  | for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()), | 
|  | E(S->op_begin()); I != E; ++I) | 
|  | OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I)); | 
|  |  | 
|  | // Sort by loop. Use a stable sort so that constants follow non-constants and | 
|  | // pointer operands precede non-pointer operands. | 
|  | std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(SE.DT)); | 
|  |  | 
|  | // Emit instructions to add all the operands. Hoist as much as possible | 
|  | // out of loops, and form meaningful getelementptrs where possible. | 
|  | Value *Sum = nullptr; | 
|  | for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) { | 
|  | const Loop *CurLoop = I->first; | 
|  | const SCEV *Op = I->second; | 
|  | if (!Sum) { | 
|  | // This is the first operand. Just expand it. | 
|  | Sum = expand(Op); | 
|  | ++I; | 
|  | } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) { | 
|  | // The running sum expression is a pointer. Try to form a getelementptr | 
|  | // at this level with that as the base. | 
|  | SmallVector<const SCEV *, 4> NewOps; | 
|  | for (; I != E && I->first == CurLoop; ++I) { | 
|  | // If the operand is SCEVUnknown and not instructions, peek through | 
|  | // it, to enable more of it to be folded into the GEP. | 
|  | const SCEV *X = I->second; | 
|  | if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X)) | 
|  | if (!isa<Instruction>(U->getValue())) | 
|  | X = SE.getSCEV(U->getValue()); | 
|  | NewOps.push_back(X); | 
|  | } | 
|  | Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum); | 
|  | } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) { | 
|  | // The running sum is an integer, and there's a pointer at this level. | 
|  | // Try to form a getelementptr. If the running sum is instructions, | 
|  | // use a SCEVUnknown to avoid re-analyzing them. | 
|  | SmallVector<const SCEV *, 4> NewOps; | 
|  | NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) : | 
|  | SE.getSCEV(Sum)); | 
|  | for (++I; I != E && I->first == CurLoop; ++I) | 
|  | NewOps.push_back(I->second); | 
|  | Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op)); | 
|  | } else if (Op->isNonConstantNegative()) { | 
|  | // Instead of doing a negate and add, just do a subtract. | 
|  | Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty); | 
|  | Sum = InsertNoopCastOfTo(Sum, Ty); | 
|  | Sum = InsertBinop(Instruction::Sub, Sum, W); | 
|  | ++I; | 
|  | } else { | 
|  | // A simple add. | 
|  | Value *W = expandCodeFor(Op, Ty); | 
|  | Sum = InsertNoopCastOfTo(Sum, Ty); | 
|  | // Canonicalize a constant to the RHS. | 
|  | if (isa<Constant>(Sum)) std::swap(Sum, W); | 
|  | Sum = InsertBinop(Instruction::Add, Sum, W); | 
|  | ++I; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Sum; | 
|  | } | 
|  |  | 
|  | Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { | 
|  | Type *Ty = SE.getEffectiveSCEVType(S->getType()); | 
|  |  | 
|  | // Collect all the mul operands in a loop, along with their associated loops. | 
|  | // Iterate in reverse so that constants are emitted last, all else equal. | 
|  | SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; | 
|  | for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()), | 
|  | E(S->op_begin()); I != E; ++I) | 
|  | OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I)); | 
|  |  | 
|  | // Sort by loop. Use a stable sort so that constants follow non-constants. | 
|  | std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(SE.DT)); | 
|  |  | 
|  | // Emit instructions to mul all the operands. Hoist as much as possible | 
|  | // out of loops. | 
|  | Value *Prod = nullptr; | 
|  | auto I = OpsAndLoops.begin(); | 
|  |  | 
|  | // Expand the calculation of X pow N in the following manner: | 
|  | // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then: | 
|  | // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK). | 
|  | const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() { | 
|  | auto E = I; | 
|  | // Calculate how many times the same operand from the same loop is included | 
|  | // into this power. | 
|  | uint64_t Exponent = 0; | 
|  | const uint64_t MaxExponent = UINT64_MAX >> 1; | 
|  | // No one sane will ever try to calculate such huge exponents, but if we | 
|  | // need this, we stop on UINT64_MAX / 2 because we need to exit the loop | 
|  | // below when the power of 2 exceeds our Exponent, and we want it to be | 
|  | // 1u << 31 at most to not deal with unsigned overflow. | 
|  | while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) { | 
|  | ++Exponent; | 
|  | ++E; | 
|  | } | 
|  | assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?"); | 
|  |  | 
|  | // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them | 
|  | // that are needed into the result. | 
|  | Value *P = expandCodeFor(I->second, Ty); | 
|  | Value *Result = nullptr; | 
|  | if (Exponent & 1) | 
|  | Result = P; | 
|  | for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) { | 
|  | P = InsertBinop(Instruction::Mul, P, P); | 
|  | if (Exponent & BinExp) | 
|  | Result = Result ? InsertBinop(Instruction::Mul, Result, P) : P; | 
|  | } | 
|  |  | 
|  | I = E; | 
|  | assert(Result && "Nothing was expanded?"); | 
|  | return Result; | 
|  | }; | 
|  |  | 
|  | while (I != OpsAndLoops.end()) { | 
|  | if (!Prod) { | 
|  | // This is the first operand. Just expand it. | 
|  | Prod = ExpandOpBinPowN(); | 
|  | } else if (I->second->isAllOnesValue()) { | 
|  | // Instead of doing a multiply by negative one, just do a negate. | 
|  | Prod = InsertNoopCastOfTo(Prod, Ty); | 
|  | Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod); | 
|  | ++I; | 
|  | } else { | 
|  | // A simple mul. | 
|  | Value *W = ExpandOpBinPowN(); | 
|  | Prod = InsertNoopCastOfTo(Prod, Ty); | 
|  | // Canonicalize a constant to the RHS. | 
|  | if (isa<Constant>(Prod)) std::swap(Prod, W); | 
|  | const APInt *RHS; | 
|  | if (match(W, m_Power2(RHS))) { | 
|  | // Canonicalize Prod*(1<<C) to Prod<<C. | 
|  | assert(!Ty->isVectorTy() && "vector types are not SCEVable"); | 
|  | Prod = InsertBinop(Instruction::Shl, Prod, | 
|  | ConstantInt::get(Ty, RHS->logBase2())); | 
|  | } else { | 
|  | Prod = InsertBinop(Instruction::Mul, Prod, W); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return Prod; | 
|  | } | 
|  |  | 
|  | Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { | 
|  | Type *Ty = SE.getEffectiveSCEVType(S->getType()); | 
|  |  | 
|  | Value *LHS = expandCodeFor(S->getLHS(), Ty); | 
|  | if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { | 
|  | const APInt &RHS = SC->getAPInt(); | 
|  | if (RHS.isPowerOf2()) | 
|  | return InsertBinop(Instruction::LShr, LHS, | 
|  | ConstantInt::get(Ty, RHS.logBase2())); | 
|  | } | 
|  |  | 
|  | Value *RHS = expandCodeFor(S->getRHS(), Ty); | 
|  | return InsertBinop(Instruction::UDiv, LHS, RHS); | 
|  | } | 
|  |  | 
|  | /// Move parts of Base into Rest to leave Base with the minimal | 
|  | /// expression that provides a pointer operand suitable for a | 
|  | /// GEP expansion. | 
|  | static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest, | 
|  | ScalarEvolution &SE) { | 
|  | while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) { | 
|  | Base = A->getStart(); | 
|  | Rest = SE.getAddExpr(Rest, | 
|  | SE.getAddRecExpr(SE.getConstant(A->getType(), 0), | 
|  | A->getStepRecurrence(SE), | 
|  | A->getLoop(), | 
|  | A->getNoWrapFlags(SCEV::FlagNW))); | 
|  | } | 
|  | if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) { | 
|  | Base = A->getOperand(A->getNumOperands()-1); | 
|  | SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end()); | 
|  | NewAddOps.back() = Rest; | 
|  | Rest = SE.getAddExpr(NewAddOps); | 
|  | ExposePointerBase(Base, Rest, SE); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Determine if this is a well-behaved chain of instructions leading back to | 
|  | /// the PHI. If so, it may be reused by expanded expressions. | 
|  | bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, | 
|  | const Loop *L) { | 
|  | if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) || | 
|  | (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) | 
|  | return false; | 
|  | // If any of the operands don't dominate the insert position, bail. | 
|  | // Addrec operands are always loop-invariant, so this can only happen | 
|  | // if there are instructions which haven't been hoisted. | 
|  | if (L == IVIncInsertLoop) { | 
|  | for (User::op_iterator OI = IncV->op_begin()+1, | 
|  | OE = IncV->op_end(); OI != OE; ++OI) | 
|  | if (Instruction *OInst = dyn_cast<Instruction>(OI)) | 
|  | if (!SE.DT.dominates(OInst, IVIncInsertPos)) | 
|  | return false; | 
|  | } | 
|  | // Advance to the next instruction. | 
|  | IncV = dyn_cast<Instruction>(IncV->getOperand(0)); | 
|  | if (!IncV) | 
|  | return false; | 
|  |  | 
|  | if (IncV->mayHaveSideEffects()) | 
|  | return false; | 
|  |  | 
|  | if (IncV == PN) | 
|  | return true; | 
|  |  | 
|  | return isNormalAddRecExprPHI(PN, IncV, L); | 
|  | } | 
|  |  | 
|  | /// getIVIncOperand returns an induction variable increment's induction | 
|  | /// variable operand. | 
|  | /// | 
|  | /// If allowScale is set, any type of GEP is allowed as long as the nonIV | 
|  | /// operands dominate InsertPos. | 
|  | /// | 
|  | /// If allowScale is not set, ensure that a GEP increment conforms to one of the | 
|  | /// simple patterns generated by getAddRecExprPHILiterally and | 
|  | /// expandAddtoGEP. If the pattern isn't recognized, return NULL. | 
|  | Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV, | 
|  | Instruction *InsertPos, | 
|  | bool allowScale) { | 
|  | if (IncV == InsertPos) | 
|  | return nullptr; | 
|  |  | 
|  | switch (IncV->getOpcode()) { | 
|  | default: | 
|  | return nullptr; | 
|  | // Check for a simple Add/Sub or GEP of a loop invariant step. | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: { | 
|  | Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1)); | 
|  | if (!OInst || SE.DT.dominates(OInst, InsertPos)) | 
|  | return dyn_cast<Instruction>(IncV->getOperand(0)); | 
|  | return nullptr; | 
|  | } | 
|  | case Instruction::BitCast: | 
|  | return dyn_cast<Instruction>(IncV->getOperand(0)); | 
|  | case Instruction::GetElementPtr: | 
|  | for (auto I = IncV->op_begin() + 1, E = IncV->op_end(); I != E; ++I) { | 
|  | if (isa<Constant>(*I)) | 
|  | continue; | 
|  | if (Instruction *OInst = dyn_cast<Instruction>(*I)) { | 
|  | if (!SE.DT.dominates(OInst, InsertPos)) | 
|  | return nullptr; | 
|  | } | 
|  | if (allowScale) { | 
|  | // allow any kind of GEP as long as it can be hoisted. | 
|  | continue; | 
|  | } | 
|  | // This must be a pointer addition of constants (pretty), which is already | 
|  | // handled, or some number of address-size elements (ugly). Ugly geps | 
|  | // have 2 operands. i1* is used by the expander to represent an | 
|  | // address-size element. | 
|  | if (IncV->getNumOperands() != 2) | 
|  | return nullptr; | 
|  | unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace(); | 
|  | if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS) | 
|  | && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS)) | 
|  | return nullptr; | 
|  | break; | 
|  | } | 
|  | return dyn_cast<Instruction>(IncV->getOperand(0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// If the insert point of the current builder or any of the builders on the | 
|  | /// stack of saved builders has 'I' as its insert point, update it to point to | 
|  | /// the instruction after 'I'.  This is intended to be used when the instruction | 
|  | /// 'I' is being moved.  If this fixup is not done and 'I' is moved to a | 
|  | /// different block, the inconsistent insert point (with a mismatched | 
|  | /// Instruction and Block) can lead to an instruction being inserted in a block | 
|  | /// other than its parent. | 
|  | void SCEVExpander::fixupInsertPoints(Instruction *I) { | 
|  | BasicBlock::iterator It(*I); | 
|  | BasicBlock::iterator NewInsertPt = std::next(It); | 
|  | if (Builder.GetInsertPoint() == It) | 
|  | Builder.SetInsertPoint(&*NewInsertPt); | 
|  | for (auto *InsertPtGuard : InsertPointGuards) | 
|  | if (InsertPtGuard->GetInsertPoint() == It) | 
|  | InsertPtGuard->SetInsertPoint(NewInsertPt); | 
|  | } | 
|  |  | 
|  | /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make | 
|  | /// it available to other uses in this loop. Recursively hoist any operands, | 
|  | /// until we reach a value that dominates InsertPos. | 
|  | bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) { | 
|  | if (SE.DT.dominates(IncV, InsertPos)) | 
|  | return true; | 
|  |  | 
|  | // InsertPos must itself dominate IncV so that IncV's new position satisfies | 
|  | // its existing users. | 
|  | if (isa<PHINode>(InsertPos) || | 
|  | !SE.DT.dominates(InsertPos->getParent(), IncV->getParent())) | 
|  | return false; | 
|  |  | 
|  | if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos)) | 
|  | return false; | 
|  |  | 
|  | // Check that the chain of IV operands leading back to Phi can be hoisted. | 
|  | SmallVector<Instruction*, 4> IVIncs; | 
|  | for(;;) { | 
|  | Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true); | 
|  | if (!Oper) | 
|  | return false; | 
|  | // IncV is safe to hoist. | 
|  | IVIncs.push_back(IncV); | 
|  | IncV = Oper; | 
|  | if (SE.DT.dominates(IncV, InsertPos)) | 
|  | break; | 
|  | } | 
|  | for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) { | 
|  | fixupInsertPoints(*I); | 
|  | (*I)->moveBefore(InsertPos); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Determine if this cyclic phi is in a form that would have been generated by | 
|  | /// LSR. We don't care if the phi was actually expanded in this pass, as long | 
|  | /// as it is in a low-cost form, for example, no implied multiplication. This | 
|  | /// should match any patterns generated by getAddRecExprPHILiterally and | 
|  | /// expandAddtoGEP. | 
|  | bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, | 
|  | const Loop *L) { | 
|  | for(Instruction *IVOper = IncV; | 
|  | (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(), | 
|  | /*allowScale=*/false));) { | 
|  | if (IVOper == PN) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// expandIVInc - Expand an IV increment at Builder's current InsertPos. | 
|  | /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may | 
|  | /// need to materialize IV increments elsewhere to handle difficult situations. | 
|  | Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L, | 
|  | Type *ExpandTy, Type *IntTy, | 
|  | bool useSubtract) { | 
|  | Value *IncV; | 
|  | // If the PHI is a pointer, use a GEP, otherwise use an add or sub. | 
|  | if (ExpandTy->isPointerTy()) { | 
|  | PointerType *GEPPtrTy = cast<PointerType>(ExpandTy); | 
|  | // If the step isn't constant, don't use an implicitly scaled GEP, because | 
|  | // that would require a multiply inside the loop. | 
|  | if (!isa<ConstantInt>(StepV)) | 
|  | GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()), | 
|  | GEPPtrTy->getAddressSpace()); | 
|  | IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN); | 
|  | if (IncV->getType() != PN->getType()) { | 
|  | IncV = Builder.CreateBitCast(IncV, PN->getType()); | 
|  | rememberInstruction(IncV); | 
|  | } | 
|  | } else { | 
|  | IncV = useSubtract ? | 
|  | Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") : | 
|  | Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next"); | 
|  | rememberInstruction(IncV); | 
|  | } | 
|  | return IncV; | 
|  | } | 
|  |  | 
|  | /// Hoist the addrec instruction chain rooted in the loop phi above the | 
|  | /// position. This routine assumes that this is possible (has been checked). | 
|  | void SCEVExpander::hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist, | 
|  | Instruction *Pos, PHINode *LoopPhi) { | 
|  | do { | 
|  | if (DT->dominates(InstToHoist, Pos)) | 
|  | break; | 
|  | // Make sure the increment is where we want it. But don't move it | 
|  | // down past a potential existing post-inc user. | 
|  | fixupInsertPoints(InstToHoist); | 
|  | InstToHoist->moveBefore(Pos); | 
|  | Pos = InstToHoist; | 
|  | InstToHoist = cast<Instruction>(InstToHoist->getOperand(0)); | 
|  | } while (InstToHoist != LoopPhi); | 
|  | } | 
|  |  | 
|  | /// Check whether we can cheaply express the requested SCEV in terms of | 
|  | /// the available PHI SCEV by truncation and/or inversion of the step. | 
|  | static bool canBeCheaplyTransformed(ScalarEvolution &SE, | 
|  | const SCEVAddRecExpr *Phi, | 
|  | const SCEVAddRecExpr *Requested, | 
|  | bool &InvertStep) { | 
|  | Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType()); | 
|  | Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType()); | 
|  |  | 
|  | if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth()) | 
|  | return false; | 
|  |  | 
|  | // Try truncate it if necessary. | 
|  | Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy)); | 
|  | if (!Phi) | 
|  | return false; | 
|  |  | 
|  | // Check whether truncation will help. | 
|  | if (Phi == Requested) { | 
|  | InvertStep = false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check whether inverting will help: {R,+,-1} == R - {0,+,1}. | 
|  | if (SE.getAddExpr(Requested->getStart(), | 
|  | SE.getNegativeSCEV(Requested)) == Phi) { | 
|  | InvertStep = true; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { | 
|  | if (!isa<IntegerType>(AR->getType())) | 
|  | return false; | 
|  |  | 
|  | unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); | 
|  | Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); | 
|  | const SCEV *Step = AR->getStepRecurrence(SE); | 
|  | const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy), | 
|  | SE.getSignExtendExpr(AR, WideTy)); | 
|  | const SCEV *ExtendAfterOp = | 
|  | SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy); | 
|  | return ExtendAfterOp == OpAfterExtend; | 
|  | } | 
|  |  | 
|  | static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { | 
|  | if (!isa<IntegerType>(AR->getType())) | 
|  | return false; | 
|  |  | 
|  | unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); | 
|  | Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); | 
|  | const SCEV *Step = AR->getStepRecurrence(SE); | 
|  | const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy), | 
|  | SE.getZeroExtendExpr(AR, WideTy)); | 
|  | const SCEV *ExtendAfterOp = | 
|  | SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy); | 
|  | return ExtendAfterOp == OpAfterExtend; | 
|  | } | 
|  |  | 
|  | /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand | 
|  | /// the base addrec, which is the addrec without any non-loop-dominating | 
|  | /// values, and return the PHI. | 
|  | PHINode * | 
|  | SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, | 
|  | const Loop *L, | 
|  | Type *ExpandTy, | 
|  | Type *IntTy, | 
|  | Type *&TruncTy, | 
|  | bool &InvertStep) { | 
|  | assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position"); | 
|  |  | 
|  | // Reuse a previously-inserted PHI, if present. | 
|  | BasicBlock *LatchBlock = L->getLoopLatch(); | 
|  | if (LatchBlock) { | 
|  | PHINode *AddRecPhiMatch = nullptr; | 
|  | Instruction *IncV = nullptr; | 
|  | TruncTy = nullptr; | 
|  | InvertStep = false; | 
|  |  | 
|  | // Only try partially matching scevs that need truncation and/or | 
|  | // step-inversion if we know this loop is outside the current loop. | 
|  | bool TryNonMatchingSCEV = | 
|  | IVIncInsertLoop && | 
|  | SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader()); | 
|  |  | 
|  | for (PHINode &PN : L->getHeader()->phis()) { | 
|  | if (!SE.isSCEVable(PN.getType())) | 
|  | continue; | 
|  |  | 
|  | const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN)); | 
|  | if (!PhiSCEV) | 
|  | continue; | 
|  |  | 
|  | bool IsMatchingSCEV = PhiSCEV == Normalized; | 
|  | // We only handle truncation and inversion of phi recurrences for the | 
|  | // expanded expression if the expanded expression's loop dominates the | 
|  | // loop we insert to. Check now, so we can bail out early. | 
|  | if (!IsMatchingSCEV && !TryNonMatchingSCEV) | 
|  | continue; | 
|  |  | 
|  | // TODO: this possibly can be reworked to avoid this cast at all. | 
|  | Instruction *TempIncV = | 
|  | dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock)); | 
|  | if (!TempIncV) | 
|  | continue; | 
|  |  | 
|  | // Check whether we can reuse this PHI node. | 
|  | if (LSRMode) { | 
|  | if (!isExpandedAddRecExprPHI(&PN, TempIncV, L)) | 
|  | continue; | 
|  | if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos)) | 
|  | continue; | 
|  | } else { | 
|  | if (!isNormalAddRecExprPHI(&PN, TempIncV, L)) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Stop if we have found an exact match SCEV. | 
|  | if (IsMatchingSCEV) { | 
|  | IncV = TempIncV; | 
|  | TruncTy = nullptr; | 
|  | InvertStep = false; | 
|  | AddRecPhiMatch = &PN; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Try whether the phi can be translated into the requested form | 
|  | // (truncated and/or offset by a constant). | 
|  | if ((!TruncTy || InvertStep) && | 
|  | canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) { | 
|  | // Record the phi node. But don't stop we might find an exact match | 
|  | // later. | 
|  | AddRecPhiMatch = &PN; | 
|  | IncV = TempIncV; | 
|  | TruncTy = SE.getEffectiveSCEVType(Normalized->getType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (AddRecPhiMatch) { | 
|  | // Potentially, move the increment. We have made sure in | 
|  | // isExpandedAddRecExprPHI or hoistIVInc that this is possible. | 
|  | if (L == IVIncInsertLoop) | 
|  | hoistBeforePos(&SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch); | 
|  |  | 
|  | // Ok, the add recurrence looks usable. | 
|  | // Remember this PHI, even in post-inc mode. | 
|  | InsertedValues.insert(AddRecPhiMatch); | 
|  | // Remember the increment. | 
|  | rememberInstruction(IncV); | 
|  | return AddRecPhiMatch; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Save the original insertion point so we can restore it when we're done. | 
|  | SCEVInsertPointGuard Guard(Builder, this); | 
|  |  | 
|  | // Another AddRec may need to be recursively expanded below. For example, if | 
|  | // this AddRec is quadratic, the StepV may itself be an AddRec in this | 
|  | // loop. Remove this loop from the PostIncLoops set before expanding such | 
|  | // AddRecs. Otherwise, we cannot find a valid position for the step | 
|  | // (i.e. StepV can never dominate its loop header).  Ideally, we could do | 
|  | // SavedIncLoops.swap(PostIncLoops), but we generally have a single element, | 
|  | // so it's not worth implementing SmallPtrSet::swap. | 
|  | PostIncLoopSet SavedPostIncLoops = PostIncLoops; | 
|  | PostIncLoops.clear(); | 
|  |  | 
|  | // Expand code for the start value into the loop preheader. | 
|  | assert(L->getLoopPreheader() && | 
|  | "Can't expand add recurrences without a loop preheader!"); | 
|  | Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy, | 
|  | L->getLoopPreheader()->getTerminator()); | 
|  |  | 
|  | // StartV must have been be inserted into L's preheader to dominate the new | 
|  | // phi. | 
|  | assert(!isa<Instruction>(StartV) || | 
|  | SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(), | 
|  | L->getHeader())); | 
|  |  | 
|  | // Expand code for the step value. Do this before creating the PHI so that PHI | 
|  | // reuse code doesn't see an incomplete PHI. | 
|  | const SCEV *Step = Normalized->getStepRecurrence(SE); | 
|  | // If the stride is negative, insert a sub instead of an add for the increment | 
|  | // (unless it's a constant, because subtracts of constants are canonicalized | 
|  | // to adds). | 
|  | bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); | 
|  | if (useSubtract) | 
|  | Step = SE.getNegativeSCEV(Step); | 
|  | // Expand the step somewhere that dominates the loop header. | 
|  | Value *StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front()); | 
|  |  | 
|  | // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if | 
|  | // we actually do emit an addition.  It does not apply if we emit a | 
|  | // subtraction. | 
|  | bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized); | 
|  | bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized); | 
|  |  | 
|  | // Create the PHI. | 
|  | BasicBlock *Header = L->getHeader(); | 
|  | Builder.SetInsertPoint(Header, Header->begin()); | 
|  | pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); | 
|  | PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE), | 
|  | Twine(IVName) + ".iv"); | 
|  | rememberInstruction(PN); | 
|  |  | 
|  | // Create the step instructions and populate the PHI. | 
|  | for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { | 
|  | BasicBlock *Pred = *HPI; | 
|  |  | 
|  | // Add a start value. | 
|  | if (!L->contains(Pred)) { | 
|  | PN->addIncoming(StartV, Pred); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Create a step value and add it to the PHI. | 
|  | // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the | 
|  | // instructions at IVIncInsertPos. | 
|  | Instruction *InsertPos = L == IVIncInsertLoop ? | 
|  | IVIncInsertPos : Pred->getTerminator(); | 
|  | Builder.SetInsertPoint(InsertPos); | 
|  | Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); | 
|  |  | 
|  | if (isa<OverflowingBinaryOperator>(IncV)) { | 
|  | if (IncrementIsNUW) | 
|  | cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap(); | 
|  | if (IncrementIsNSW) | 
|  | cast<BinaryOperator>(IncV)->setHasNoSignedWrap(); | 
|  | } | 
|  | PN->addIncoming(IncV, Pred); | 
|  | } | 
|  |  | 
|  | // After expanding subexpressions, restore the PostIncLoops set so the caller | 
|  | // can ensure that IVIncrement dominates the current uses. | 
|  | PostIncLoops = SavedPostIncLoops; | 
|  |  | 
|  | // Remember this PHI, even in post-inc mode. | 
|  | InsertedValues.insert(PN); | 
|  |  | 
|  | return PN; | 
|  | } | 
|  |  | 
|  | Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { | 
|  | Type *STy = S->getType(); | 
|  | Type *IntTy = SE.getEffectiveSCEVType(STy); | 
|  | const Loop *L = S->getLoop(); | 
|  |  | 
|  | // Determine a normalized form of this expression, which is the expression | 
|  | // before any post-inc adjustment is made. | 
|  | const SCEVAddRecExpr *Normalized = S; | 
|  | if (PostIncLoops.count(L)) { | 
|  | PostIncLoopSet Loops; | 
|  | Loops.insert(L); | 
|  | Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE)); | 
|  | } | 
|  |  | 
|  | // Strip off any non-loop-dominating component from the addrec start. | 
|  | const SCEV *Start = Normalized->getStart(); | 
|  | const SCEV *PostLoopOffset = nullptr; | 
|  | if (!SE.properlyDominates(Start, L->getHeader())) { | 
|  | PostLoopOffset = Start; | 
|  | Start = SE.getConstant(Normalized->getType(), 0); | 
|  | Normalized = cast<SCEVAddRecExpr>( | 
|  | SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE), | 
|  | Normalized->getLoop(), | 
|  | Normalized->getNoWrapFlags(SCEV::FlagNW))); | 
|  | } | 
|  |  | 
|  | // Strip off any non-loop-dominating component from the addrec step. | 
|  | const SCEV *Step = Normalized->getStepRecurrence(SE); | 
|  | const SCEV *PostLoopScale = nullptr; | 
|  | if (!SE.dominates(Step, L->getHeader())) { | 
|  | PostLoopScale = Step; | 
|  | Step = SE.getConstant(Normalized->getType(), 1); | 
|  | if (!Start->isZero()) { | 
|  | // The normalization below assumes that Start is constant zero, so if | 
|  | // it isn't re-associate Start to PostLoopOffset. | 
|  | assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?"); | 
|  | PostLoopOffset = Start; | 
|  | Start = SE.getConstant(Normalized->getType(), 0); | 
|  | } | 
|  | Normalized = | 
|  | cast<SCEVAddRecExpr>(SE.getAddRecExpr( | 
|  | Start, Step, Normalized->getLoop(), | 
|  | Normalized->getNoWrapFlags(SCEV::FlagNW))); | 
|  | } | 
|  |  | 
|  | // Expand the core addrec. If we need post-loop scaling, force it to | 
|  | // expand to an integer type to avoid the need for additional casting. | 
|  | Type *ExpandTy = PostLoopScale ? IntTy : STy; | 
|  | // We can't use a pointer type for the addrec if the pointer type is | 
|  | // non-integral. | 
|  | Type *AddRecPHIExpandTy = | 
|  | DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy; | 
|  |  | 
|  | // In some cases, we decide to reuse an existing phi node but need to truncate | 
|  | // it and/or invert the step. | 
|  | Type *TruncTy = nullptr; | 
|  | bool InvertStep = false; | 
|  | PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy, | 
|  | IntTy, TruncTy, InvertStep); | 
|  |  | 
|  | // Accommodate post-inc mode, if necessary. | 
|  | Value *Result; | 
|  | if (!PostIncLoops.count(L)) | 
|  | Result = PN; | 
|  | else { | 
|  | // In PostInc mode, use the post-incremented value. | 
|  | BasicBlock *LatchBlock = L->getLoopLatch(); | 
|  | assert(LatchBlock && "PostInc mode requires a unique loop latch!"); | 
|  | Result = PN->getIncomingValueForBlock(LatchBlock); | 
|  |  | 
|  | // For an expansion to use the postinc form, the client must call | 
|  | // expandCodeFor with an InsertPoint that is either outside the PostIncLoop | 
|  | // or dominated by IVIncInsertPos. | 
|  | if (isa<Instruction>(Result) && | 
|  | !SE.DT.dominates(cast<Instruction>(Result), | 
|  | &*Builder.GetInsertPoint())) { | 
|  | // The induction variable's postinc expansion does not dominate this use. | 
|  | // IVUsers tries to prevent this case, so it is rare. However, it can | 
|  | // happen when an IVUser outside the loop is not dominated by the latch | 
|  | // block. Adjusting IVIncInsertPos before expansion begins cannot handle | 
|  | // all cases. Consider a phi outside whose operand is replaced during | 
|  | // expansion with the value of the postinc user. Without fundamentally | 
|  | // changing the way postinc users are tracked, the only remedy is | 
|  | // inserting an extra IV increment. StepV might fold into PostLoopOffset, | 
|  | // but hopefully expandCodeFor handles that. | 
|  | bool useSubtract = | 
|  | !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); | 
|  | if (useSubtract) | 
|  | Step = SE.getNegativeSCEV(Step); | 
|  | Value *StepV; | 
|  | { | 
|  | // Expand the step somewhere that dominates the loop header. | 
|  | SCEVInsertPointGuard Guard(Builder, this); | 
|  | StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front()); | 
|  | } | 
|  | Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We have decided to reuse an induction variable of a dominating loop. Apply | 
|  | // truncation and/or inversion of the step. | 
|  | if (TruncTy) { | 
|  | Type *ResTy = Result->getType(); | 
|  | // Normalize the result type. | 
|  | if (ResTy != SE.getEffectiveSCEVType(ResTy)) | 
|  | Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy)); | 
|  | // Truncate the result. | 
|  | if (TruncTy != Result->getType()) { | 
|  | Result = Builder.CreateTrunc(Result, TruncTy); | 
|  | rememberInstruction(Result); | 
|  | } | 
|  | // Invert the result. | 
|  | if (InvertStep) { | 
|  | Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy), | 
|  | Result); | 
|  | rememberInstruction(Result); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Re-apply any non-loop-dominating scale. | 
|  | if (PostLoopScale) { | 
|  | assert(S->isAffine() && "Can't linearly scale non-affine recurrences."); | 
|  | Result = InsertNoopCastOfTo(Result, IntTy); | 
|  | Result = Builder.CreateMul(Result, | 
|  | expandCodeFor(PostLoopScale, IntTy)); | 
|  | rememberInstruction(Result); | 
|  | } | 
|  |  | 
|  | // Re-apply any non-loop-dominating offset. | 
|  | if (PostLoopOffset) { | 
|  | if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) { | 
|  | if (Result->getType()->isIntegerTy()) { | 
|  | Value *Base = expandCodeFor(PostLoopOffset, ExpandTy); | 
|  | Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base); | 
|  | } else { | 
|  | Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result); | 
|  | } | 
|  | } else { | 
|  | Result = InsertNoopCastOfTo(Result, IntTy); | 
|  | Result = Builder.CreateAdd(Result, | 
|  | expandCodeFor(PostLoopOffset, IntTy)); | 
|  | rememberInstruction(Result); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { | 
|  | if (!CanonicalMode) return expandAddRecExprLiterally(S); | 
|  |  | 
|  | Type *Ty = SE.getEffectiveSCEVType(S->getType()); | 
|  | const Loop *L = S->getLoop(); | 
|  |  | 
|  | // First check for an existing canonical IV in a suitable type. | 
|  | PHINode *CanonicalIV = nullptr; | 
|  | if (PHINode *PN = L->getCanonicalInductionVariable()) | 
|  | if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) | 
|  | CanonicalIV = PN; | 
|  |  | 
|  | // Rewrite an AddRec in terms of the canonical induction variable, if | 
|  | // its type is more narrow. | 
|  | if (CanonicalIV && | 
|  | SE.getTypeSizeInBits(CanonicalIV->getType()) > | 
|  | SE.getTypeSizeInBits(Ty)) { | 
|  | SmallVector<const SCEV *, 4> NewOps(S->getNumOperands()); | 
|  | for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) | 
|  | NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType()); | 
|  | Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(), | 
|  | S->getNoWrapFlags(SCEV::FlagNW))); | 
|  | BasicBlock::iterator NewInsertPt = | 
|  | findInsertPointAfter(cast<Instruction>(V), Builder.GetInsertBlock()); | 
|  | V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr, | 
|  | &*NewInsertPt); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | // {X,+,F} --> X + {0,+,F} | 
|  | if (!S->getStart()->isZero()) { | 
|  | SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end()); | 
|  | NewOps[0] = SE.getConstant(Ty, 0); | 
|  | const SCEV *Rest = SE.getAddRecExpr(NewOps, L, | 
|  | S->getNoWrapFlags(SCEV::FlagNW)); | 
|  |  | 
|  | // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the | 
|  | // comments on expandAddToGEP for details. | 
|  | const SCEV *Base = S->getStart(); | 
|  | // Dig into the expression to find the pointer base for a GEP. | 
|  | const SCEV *ExposedRest = Rest; | 
|  | ExposePointerBase(Base, ExposedRest, SE); | 
|  | // If we found a pointer, expand the AddRec with a GEP. | 
|  | if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) { | 
|  | // Make sure the Base isn't something exotic, such as a multiplied | 
|  | // or divided pointer value. In those cases, the result type isn't | 
|  | // actually a pointer type. | 
|  | if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) { | 
|  | Value *StartV = expand(Base); | 
|  | assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!"); | 
|  | return expandAddToGEP(ExposedRest, PTy, Ty, StartV); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Just do a normal add. Pre-expand the operands to suppress folding. | 
|  | // | 
|  | // The LHS and RHS values are factored out of the expand call to make the | 
|  | // output independent of the argument evaluation order. | 
|  | const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart())); | 
|  | const SCEV *AddExprRHS = SE.getUnknown(expand(Rest)); | 
|  | return expand(SE.getAddExpr(AddExprLHS, AddExprRHS)); | 
|  | } | 
|  |  | 
|  | // If we don't yet have a canonical IV, create one. | 
|  | if (!CanonicalIV) { | 
|  | // Create and insert the PHI node for the induction variable in the | 
|  | // specified loop. | 
|  | BasicBlock *Header = L->getHeader(); | 
|  | pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); | 
|  | CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar", | 
|  | &Header->front()); | 
|  | rememberInstruction(CanonicalIV); | 
|  |  | 
|  | SmallSet<BasicBlock *, 4> PredSeen; | 
|  | Constant *One = ConstantInt::get(Ty, 1); | 
|  | for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { | 
|  | BasicBlock *HP = *HPI; | 
|  | if (!PredSeen.insert(HP).second) { | 
|  | // There must be an incoming value for each predecessor, even the | 
|  | // duplicates! | 
|  | CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (L->contains(HP)) { | 
|  | // Insert a unit add instruction right before the terminator | 
|  | // corresponding to the back-edge. | 
|  | Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One, | 
|  | "indvar.next", | 
|  | HP->getTerminator()); | 
|  | Add->setDebugLoc(HP->getTerminator()->getDebugLoc()); | 
|  | rememberInstruction(Add); | 
|  | CanonicalIV->addIncoming(Add, HP); | 
|  | } else { | 
|  | CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // {0,+,1} --> Insert a canonical induction variable into the loop! | 
|  | if (S->isAffine() && S->getOperand(1)->isOne()) { | 
|  | assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && | 
|  | "IVs with types different from the canonical IV should " | 
|  | "already have been handled!"); | 
|  | return CanonicalIV; | 
|  | } | 
|  |  | 
|  | // {0,+,F} --> {0,+,1} * F | 
|  |  | 
|  | // If this is a simple linear addrec, emit it now as a special case. | 
|  | if (S->isAffine())    // {0,+,F} --> i*F | 
|  | return | 
|  | expand(SE.getTruncateOrNoop( | 
|  | SE.getMulExpr(SE.getUnknown(CanonicalIV), | 
|  | SE.getNoopOrAnyExtend(S->getOperand(1), | 
|  | CanonicalIV->getType())), | 
|  | Ty)); | 
|  |  | 
|  | // If this is a chain of recurrences, turn it into a closed form, using the | 
|  | // folders, then expandCodeFor the closed form.  This allows the folders to | 
|  | // simplify the expression without having to build a bunch of special code | 
|  | // into this folder. | 
|  | const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV. | 
|  |  | 
|  | // Promote S up to the canonical IV type, if the cast is foldable. | 
|  | const SCEV *NewS = S; | 
|  | const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); | 
|  | if (isa<SCEVAddRecExpr>(Ext)) | 
|  | NewS = Ext; | 
|  |  | 
|  | const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE); | 
|  | //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n"; | 
|  |  | 
|  | // Truncate the result down to the original type, if needed. | 
|  | const SCEV *T = SE.getTruncateOrNoop(V, Ty); | 
|  | return expand(T); | 
|  | } | 
|  |  | 
|  | Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { | 
|  | Type *Ty = SE.getEffectiveSCEVType(S->getType()); | 
|  | Value *V = expandCodeFor(S->getOperand(), | 
|  | SE.getEffectiveSCEVType(S->getOperand()->getType())); | 
|  | Value *I = Builder.CreateTrunc(V, Ty); | 
|  | rememberInstruction(I); | 
|  | return I; | 
|  | } | 
|  |  | 
|  | Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { | 
|  | Type *Ty = SE.getEffectiveSCEVType(S->getType()); | 
|  | Value *V = expandCodeFor(S->getOperand(), | 
|  | SE.getEffectiveSCEVType(S->getOperand()->getType())); | 
|  | Value *I = Builder.CreateZExt(V, Ty); | 
|  | rememberInstruction(I); | 
|  | return I; | 
|  | } | 
|  |  | 
|  | Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { | 
|  | Type *Ty = SE.getEffectiveSCEVType(S->getType()); | 
|  | Value *V = expandCodeFor(S->getOperand(), | 
|  | SE.getEffectiveSCEVType(S->getOperand()->getType())); | 
|  | Value *I = Builder.CreateSExt(V, Ty); | 
|  | rememberInstruction(I); | 
|  | return I; | 
|  | } | 
|  |  | 
|  | Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { | 
|  | Value *LHS = expand(S->getOperand(S->getNumOperands()-1)); | 
|  | Type *Ty = LHS->getType(); | 
|  | for (int i = S->getNumOperands()-2; i >= 0; --i) { | 
|  | // In the case of mixed integer and pointer types, do the | 
|  | // rest of the comparisons as integer. | 
|  | if (S->getOperand(i)->getType() != Ty) { | 
|  | Ty = SE.getEffectiveSCEVType(Ty); | 
|  | LHS = InsertNoopCastOfTo(LHS, Ty); | 
|  | } | 
|  | Value *RHS = expandCodeFor(S->getOperand(i), Ty); | 
|  | Value *ICmp = Builder.CreateICmpSGT(LHS, RHS); | 
|  | rememberInstruction(ICmp); | 
|  | Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax"); | 
|  | rememberInstruction(Sel); | 
|  | LHS = Sel; | 
|  | } | 
|  | // In the case of mixed integer and pointer types, cast the | 
|  | // final result back to the pointer type. | 
|  | if (LHS->getType() != S->getType()) | 
|  | LHS = InsertNoopCastOfTo(LHS, S->getType()); | 
|  | return LHS; | 
|  | } | 
|  |  | 
|  | Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { | 
|  | Value *LHS = expand(S->getOperand(S->getNumOperands()-1)); | 
|  | Type *Ty = LHS->getType(); | 
|  | for (int i = S->getNumOperands()-2; i >= 0; --i) { | 
|  | // In the case of mixed integer and pointer types, do the | 
|  | // rest of the comparisons as integer. | 
|  | if (S->getOperand(i)->getType() != Ty) { | 
|  | Ty = SE.getEffectiveSCEVType(Ty); | 
|  | LHS = InsertNoopCastOfTo(LHS, Ty); | 
|  | } | 
|  | Value *RHS = expandCodeFor(S->getOperand(i), Ty); | 
|  | Value *ICmp = Builder.CreateICmpUGT(LHS, RHS); | 
|  | rememberInstruction(ICmp); | 
|  | Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax"); | 
|  | rememberInstruction(Sel); | 
|  | LHS = Sel; | 
|  | } | 
|  | // In the case of mixed integer and pointer types, cast the | 
|  | // final result back to the pointer type. | 
|  | if (LHS->getType() != S->getType()) | 
|  | LHS = InsertNoopCastOfTo(LHS, S->getType()); | 
|  | return LHS; | 
|  | } | 
|  |  | 
|  | Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty, | 
|  | Instruction *IP) { | 
|  | setInsertPoint(IP); | 
|  | return expandCodeFor(SH, Ty); | 
|  | } | 
|  |  | 
|  | Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) { | 
|  | // Expand the code for this SCEV. | 
|  | Value *V = expand(SH); | 
|  | if (Ty) { | 
|  | assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && | 
|  | "non-trivial casts should be done with the SCEVs directly!"); | 
|  | V = InsertNoopCastOfTo(V, Ty); | 
|  | } | 
|  | return V; | 
|  | } | 
|  |  | 
|  | ScalarEvolution::ValueOffsetPair | 
|  | SCEVExpander::FindValueInExprValueMap(const SCEV *S, | 
|  | const Instruction *InsertPt) { | 
|  | SetVector<ScalarEvolution::ValueOffsetPair> *Set = SE.getSCEVValues(S); | 
|  | // If the expansion is not in CanonicalMode, and the SCEV contains any | 
|  | // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally. | 
|  | if (CanonicalMode || !SE.containsAddRecurrence(S)) { | 
|  | // If S is scConstant, it may be worse to reuse an existing Value. | 
|  | if (S->getSCEVType() != scConstant && Set) { | 
|  | // Choose a Value from the set which dominates the insertPt. | 
|  | // insertPt should be inside the Value's parent loop so as not to break | 
|  | // the LCSSA form. | 
|  | for (auto const &VOPair : *Set) { | 
|  | Value *V = VOPair.first; | 
|  | ConstantInt *Offset = VOPair.second; | 
|  | Instruction *EntInst = nullptr; | 
|  | if (V && isa<Instruction>(V) && (EntInst = cast<Instruction>(V)) && | 
|  | S->getType() == V->getType() && | 
|  | EntInst->getFunction() == InsertPt->getFunction() && | 
|  | SE.DT.dominates(EntInst, InsertPt) && | 
|  | (SE.LI.getLoopFor(EntInst->getParent()) == nullptr || | 
|  | SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) | 
|  | return {V, Offset}; | 
|  | } | 
|  | } | 
|  | } | 
|  | return {nullptr, nullptr}; | 
|  | } | 
|  |  | 
|  | // The expansion of SCEV will either reuse a previous Value in ExprValueMap, | 
|  | // or expand the SCEV literally. Specifically, if the expansion is in LSRMode, | 
|  | // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded | 
|  | // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise, | 
|  | // the expansion will try to reuse Value from ExprValueMap, and only when it | 
|  | // fails, expand the SCEV literally. | 
|  | Value *SCEVExpander::expand(const SCEV *S) { | 
|  | // Compute an insertion point for this SCEV object. Hoist the instructions | 
|  | // as far out in the loop nest as possible. | 
|  | Instruction *InsertPt = &*Builder.GetInsertPoint(); | 
|  | for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());; | 
|  | L = L->getParentLoop()) | 
|  | if (SE.isLoopInvariant(S, L)) { | 
|  | if (!L) break; | 
|  | if (BasicBlock *Preheader = L->getLoopPreheader()) | 
|  | InsertPt = Preheader->getTerminator(); | 
|  | else { | 
|  | // LSR sets the insertion point for AddRec start/step values to the | 
|  | // block start to simplify value reuse, even though it's an invalid | 
|  | // position. SCEVExpander must correct for this in all cases. | 
|  | InsertPt = &*L->getHeader()->getFirstInsertionPt(); | 
|  | } | 
|  | } else { | 
|  | // We can move insertion point only if there is no div or rem operations | 
|  | // otherwise we are risky to move it over the check for zero denominator. | 
|  | auto SafeToHoist = [](const SCEV *S) { | 
|  | return !SCEVExprContains(S, [](const SCEV *S) { | 
|  | if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) { | 
|  | if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS())) | 
|  | // Division by non-zero constants can be hoisted. | 
|  | return SC->getValue()->isZero(); | 
|  | // All other divisions should not be moved as they may be | 
|  | // divisions by zero and should be kept within the | 
|  | // conditions of the surrounding loops that guard their | 
|  | // execution (see PR35406). | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | }); | 
|  | }; | 
|  | // If the SCEV is computable at this level, insert it into the header | 
|  | // after the PHIs (and after any other instructions that we've inserted | 
|  | // there) so that it is guaranteed to dominate any user inside the loop. | 
|  | if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L) && | 
|  | SafeToHoist(S)) | 
|  | InsertPt = &*L->getHeader()->getFirstInsertionPt(); | 
|  | while (InsertPt->getIterator() != Builder.GetInsertPoint() && | 
|  | (isInsertedInstruction(InsertPt) || | 
|  | isa<DbgInfoIntrinsic>(InsertPt))) { | 
|  | InsertPt = &*std::next(InsertPt->getIterator()); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Check to see if we already expanded this here. | 
|  | auto I = InsertedExpressions.find(std::make_pair(S, InsertPt)); | 
|  | if (I != InsertedExpressions.end()) | 
|  | return I->second; | 
|  |  | 
|  | SCEVInsertPointGuard Guard(Builder, this); | 
|  | Builder.SetInsertPoint(InsertPt); | 
|  |  | 
|  | // Expand the expression into instructions. | 
|  | ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, InsertPt); | 
|  | Value *V = VO.first; | 
|  |  | 
|  | if (!V) | 
|  | V = visit(S); | 
|  | else if (VO.second) { | 
|  | if (PointerType *Vty = dyn_cast<PointerType>(V->getType())) { | 
|  | Type *Ety = Vty->getPointerElementType(); | 
|  | int64_t Offset = VO.second->getSExtValue(); | 
|  | int64_t ESize = SE.getTypeSizeInBits(Ety); | 
|  | if ((Offset * 8) % ESize == 0) { | 
|  | ConstantInt *Idx = | 
|  | ConstantInt::getSigned(VO.second->getType(), -(Offset * 8) / ESize); | 
|  | V = Builder.CreateGEP(Ety, V, Idx, "scevgep"); | 
|  | } else { | 
|  | ConstantInt *Idx = | 
|  | ConstantInt::getSigned(VO.second->getType(), -Offset); | 
|  | unsigned AS = Vty->getAddressSpace(); | 
|  | V = Builder.CreateBitCast(V, Type::getInt8PtrTy(SE.getContext(), AS)); | 
|  | V = Builder.CreateGEP(Type::getInt8Ty(SE.getContext()), V, Idx, | 
|  | "uglygep"); | 
|  | V = Builder.CreateBitCast(V, Vty); | 
|  | } | 
|  | } else { | 
|  | V = Builder.CreateSub(V, VO.second); | 
|  | } | 
|  | } | 
|  | // Remember the expanded value for this SCEV at this location. | 
|  | // | 
|  | // This is independent of PostIncLoops. The mapped value simply materializes | 
|  | // the expression at this insertion point. If the mapped value happened to be | 
|  | // a postinc expansion, it could be reused by a non-postinc user, but only if | 
|  | // its insertion point was already at the head of the loop. | 
|  | InsertedExpressions[std::make_pair(S, InsertPt)] = V; | 
|  | return V; | 
|  | } | 
|  |  | 
|  | void SCEVExpander::rememberInstruction(Value *I) { | 
|  | if (!PostIncLoops.empty()) | 
|  | InsertedPostIncValues.insert(I); | 
|  | else | 
|  | InsertedValues.insert(I); | 
|  | } | 
|  |  | 
|  | /// getOrInsertCanonicalInductionVariable - This method returns the | 
|  | /// canonical induction variable of the specified type for the specified | 
|  | /// loop (inserting one if there is none).  A canonical induction variable | 
|  | /// starts at zero and steps by one on each iteration. | 
|  | PHINode * | 
|  | SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L, | 
|  | Type *Ty) { | 
|  | assert(Ty->isIntegerTy() && "Can only insert integer induction variables!"); | 
|  |  | 
|  | // Build a SCEV for {0,+,1}<L>. | 
|  | // Conservatively use FlagAnyWrap for now. | 
|  | const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0), | 
|  | SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap); | 
|  |  | 
|  | // Emit code for it. | 
|  | SCEVInsertPointGuard Guard(Builder, this); | 
|  | PHINode *V = | 
|  | cast<PHINode>(expandCodeFor(H, nullptr, &L->getHeader()->front())); | 
|  |  | 
|  | return V; | 
|  | } | 
|  |  | 
|  | /// replaceCongruentIVs - Check for congruent phis in this loop header and | 
|  | /// replace them with their most canonical representative. Return the number of | 
|  | /// phis eliminated. | 
|  | /// | 
|  | /// This does not depend on any SCEVExpander state but should be used in | 
|  | /// the same context that SCEVExpander is used. | 
|  | unsigned | 
|  | SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT, | 
|  | SmallVectorImpl<WeakTrackingVH> &DeadInsts, | 
|  | const TargetTransformInfo *TTI) { | 
|  | // Find integer phis in order of increasing width. | 
|  | SmallVector<PHINode*, 8> Phis; | 
|  | for (PHINode &PN : L->getHeader()->phis()) | 
|  | Phis.push_back(&PN); | 
|  |  | 
|  | if (TTI) | 
|  | llvm::sort(Phis, [](Value *LHS, Value *RHS) { | 
|  | // Put pointers at the back and make sure pointer < pointer = false. | 
|  | if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) | 
|  | return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy(); | 
|  | return RHS->getType()->getPrimitiveSizeInBits() < | 
|  | LHS->getType()->getPrimitiveSizeInBits(); | 
|  | }); | 
|  |  | 
|  | unsigned NumElim = 0; | 
|  | DenseMap<const SCEV *, PHINode *> ExprToIVMap; | 
|  | // Process phis from wide to narrow. Map wide phis to their truncation | 
|  | // so narrow phis can reuse them. | 
|  | for (PHINode *Phi : Phis) { | 
|  | auto SimplifyPHINode = [&](PHINode *PN) -> Value * { | 
|  | if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC})) | 
|  | return V; | 
|  | if (!SE.isSCEVable(PN->getType())) | 
|  | return nullptr; | 
|  | auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN)); | 
|  | if (!Const) | 
|  | return nullptr; | 
|  | return Const->getValue(); | 
|  | }; | 
|  |  | 
|  | // Fold constant phis. They may be congruent to other constant phis and | 
|  | // would confuse the logic below that expects proper IVs. | 
|  | if (Value *V = SimplifyPHINode(Phi)) { | 
|  | if (V->getType() != Phi->getType()) | 
|  | continue; | 
|  | Phi->replaceAllUsesWith(V); | 
|  | DeadInsts.emplace_back(Phi); | 
|  | ++NumElim; | 
|  | DEBUG_WITH_TYPE(DebugType, dbgs() | 
|  | << "INDVARS: Eliminated constant iv: " << *Phi << '\n'); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!SE.isSCEVable(Phi->getType())) | 
|  | continue; | 
|  |  | 
|  | PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)]; | 
|  | if (!OrigPhiRef) { | 
|  | OrigPhiRef = Phi; | 
|  | if (Phi->getType()->isIntegerTy() && TTI && | 
|  | TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) { | 
|  | // This phi can be freely truncated to the narrowest phi type. Map the | 
|  | // truncated expression to it so it will be reused for narrow types. | 
|  | const SCEV *TruncExpr = | 
|  | SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType()); | 
|  | ExprToIVMap[TruncExpr] = Phi; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Replacing a pointer phi with an integer phi or vice-versa doesn't make | 
|  | // sense. | 
|  | if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy()) | 
|  | continue; | 
|  |  | 
|  | if (BasicBlock *LatchBlock = L->getLoopLatch()) { | 
|  | Instruction *OrigInc = dyn_cast<Instruction>( | 
|  | OrigPhiRef->getIncomingValueForBlock(LatchBlock)); | 
|  | Instruction *IsomorphicInc = | 
|  | dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock)); | 
|  |  | 
|  | if (OrigInc && IsomorphicInc) { | 
|  | // If this phi has the same width but is more canonical, replace the | 
|  | // original with it. As part of the "more canonical" determination, | 
|  | // respect a prior decision to use an IV chain. | 
|  | if (OrigPhiRef->getType() == Phi->getType() && | 
|  | !(ChainedPhis.count(Phi) || | 
|  | isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) && | 
|  | (ChainedPhis.count(Phi) || | 
|  | isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) { | 
|  | std::swap(OrigPhiRef, Phi); | 
|  | std::swap(OrigInc, IsomorphicInc); | 
|  | } | 
|  | // Replacing the congruent phi is sufficient because acyclic | 
|  | // redundancy elimination, CSE/GVN, should handle the | 
|  | // rest. However, once SCEV proves that a phi is congruent, | 
|  | // it's often the head of an IV user cycle that is isomorphic | 
|  | // with the original phi. It's worth eagerly cleaning up the | 
|  | // common case of a single IV increment so that DeleteDeadPHIs | 
|  | // can remove cycles that had postinc uses. | 
|  | const SCEV *TruncExpr = | 
|  | SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType()); | 
|  | if (OrigInc != IsomorphicInc && | 
|  | TruncExpr == SE.getSCEV(IsomorphicInc) && | 
|  | SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) && | 
|  | hoistIVInc(OrigInc, IsomorphicInc)) { | 
|  | DEBUG_WITH_TYPE(DebugType, | 
|  | dbgs() << "INDVARS: Eliminated congruent iv.inc: " | 
|  | << *IsomorphicInc << '\n'); | 
|  | Value *NewInc = OrigInc; | 
|  | if (OrigInc->getType() != IsomorphicInc->getType()) { | 
|  | Instruction *IP = nullptr; | 
|  | if (PHINode *PN = dyn_cast<PHINode>(OrigInc)) | 
|  | IP = &*PN->getParent()->getFirstInsertionPt(); | 
|  | else | 
|  | IP = OrigInc->getNextNode(); | 
|  |  | 
|  | IRBuilder<> Builder(IP); | 
|  | Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc()); | 
|  | NewInc = Builder.CreateTruncOrBitCast( | 
|  | OrigInc, IsomorphicInc->getType(), IVName); | 
|  | } | 
|  | IsomorphicInc->replaceAllUsesWith(NewInc); | 
|  | DeadInsts.emplace_back(IsomorphicInc); | 
|  | } | 
|  | } | 
|  | } | 
|  | DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Eliminated congruent iv: " | 
|  | << *Phi << '\n'); | 
|  | ++NumElim; | 
|  | Value *NewIV = OrigPhiRef; | 
|  | if (OrigPhiRef->getType() != Phi->getType()) { | 
|  | IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt()); | 
|  | Builder.SetCurrentDebugLocation(Phi->getDebugLoc()); | 
|  | NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName); | 
|  | } | 
|  | Phi->replaceAllUsesWith(NewIV); | 
|  | DeadInsts.emplace_back(Phi); | 
|  | } | 
|  | return NumElim; | 
|  | } | 
|  |  | 
|  | Value *SCEVExpander::getExactExistingExpansion(const SCEV *S, | 
|  | const Instruction *At, Loop *L) { | 
|  | Optional<ScalarEvolution::ValueOffsetPair> VO = | 
|  | getRelatedExistingExpansion(S, At, L); | 
|  | if (VO && VO.getValue().second == nullptr) | 
|  | return VO.getValue().first; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Optional<ScalarEvolution::ValueOffsetPair> | 
|  | SCEVExpander::getRelatedExistingExpansion(const SCEV *S, const Instruction *At, | 
|  | Loop *L) { | 
|  | using namespace llvm::PatternMatch; | 
|  |  | 
|  | SmallVector<BasicBlock *, 4> ExitingBlocks; | 
|  | L->getExitingBlocks(ExitingBlocks); | 
|  |  | 
|  | // Look for suitable value in simple conditions at the loop exits. | 
|  | for (BasicBlock *BB : ExitingBlocks) { | 
|  | ICmpInst::Predicate Pred; | 
|  | Instruction *LHS, *RHS; | 
|  | BasicBlock *TrueBB, *FalseBB; | 
|  |  | 
|  | if (!match(BB->getTerminator(), | 
|  | m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)), | 
|  | TrueBB, FalseBB))) | 
|  | continue; | 
|  |  | 
|  | if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At)) | 
|  | return ScalarEvolution::ValueOffsetPair(LHS, nullptr); | 
|  |  | 
|  | if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At)) | 
|  | return ScalarEvolution::ValueOffsetPair(RHS, nullptr); | 
|  | } | 
|  |  | 
|  | // Use expand's logic which is used for reusing a previous Value in | 
|  | // ExprValueMap. | 
|  | ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, At); | 
|  | if (VO.first) | 
|  | return VO; | 
|  |  | 
|  | // There is potential to make this significantly smarter, but this simple | 
|  | // heuristic already gets some interesting cases. | 
|  |  | 
|  | // Can not find suitable value. | 
|  | return None; | 
|  | } | 
|  |  | 
|  | bool SCEVExpander::isHighCostExpansionHelper( | 
|  | const SCEV *S, Loop *L, const Instruction *At, | 
|  | SmallPtrSetImpl<const SCEV *> &Processed) { | 
|  |  | 
|  | // If we can find an existing value for this scev available at the point "At" | 
|  | // then consider the expression cheap. | 
|  | if (At && getRelatedExistingExpansion(S, At, L)) | 
|  | return false; | 
|  |  | 
|  | // Zero/One operand expressions | 
|  | switch (S->getSCEVType()) { | 
|  | case scUnknown: | 
|  | case scConstant: | 
|  | return false; | 
|  | case scTruncate: | 
|  | return isHighCostExpansionHelper(cast<SCEVTruncateExpr>(S)->getOperand(), | 
|  | L, At, Processed); | 
|  | case scZeroExtend: | 
|  | return isHighCostExpansionHelper(cast<SCEVZeroExtendExpr>(S)->getOperand(), | 
|  | L, At, Processed); | 
|  | case scSignExtend: | 
|  | return isHighCostExpansionHelper(cast<SCEVSignExtendExpr>(S)->getOperand(), | 
|  | L, At, Processed); | 
|  | } | 
|  |  | 
|  | if (!Processed.insert(S).second) | 
|  | return false; | 
|  |  | 
|  | if (auto *UDivExpr = dyn_cast<SCEVUDivExpr>(S)) { | 
|  | // If the divisor is a power of two and the SCEV type fits in a native | 
|  | // integer, consider the division cheap irrespective of whether it occurs in | 
|  | // the user code since it can be lowered into a right shift. | 
|  | if (auto *SC = dyn_cast<SCEVConstant>(UDivExpr->getRHS())) | 
|  | if (SC->getAPInt().isPowerOf2()) { | 
|  | const DataLayout &DL = | 
|  | L->getHeader()->getParent()->getParent()->getDataLayout(); | 
|  | unsigned Width = cast<IntegerType>(UDivExpr->getType())->getBitWidth(); | 
|  | return DL.isIllegalInteger(Width); | 
|  | } | 
|  |  | 
|  | // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or | 
|  | // HowManyLessThans produced to compute a precise expression, rather than a | 
|  | // UDiv from the user's code. If we can't find a UDiv in the code with some | 
|  | // simple searching, assume the former consider UDivExpr expensive to | 
|  | // compute. | 
|  | BasicBlock *ExitingBB = L->getExitingBlock(); | 
|  | if (!ExitingBB) | 
|  | return true; | 
|  |  | 
|  | // At the beginning of this function we already tried to find existing value | 
|  | // for plain 'S'. Now try to lookup 'S + 1' since it is common pattern | 
|  | // involving division. This is just a simple search heuristic. | 
|  | if (!At) | 
|  | At = &ExitingBB->back(); | 
|  | if (!getRelatedExistingExpansion( | 
|  | SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), At, L)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // HowManyLessThans uses a Max expression whenever the loop is not guarded by | 
|  | // the exit condition. | 
|  | if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S)) | 
|  | return true; | 
|  |  | 
|  | // Recurse past nary expressions, which commonly occur in the | 
|  | // BackedgeTakenCount. They may already exist in program code, and if not, | 
|  | // they are not too expensive rematerialize. | 
|  | if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(S)) { | 
|  | for (auto *Op : NAry->operands()) | 
|  | if (isHighCostExpansionHelper(Op, L, At, Processed)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If we haven't recognized an expensive SCEV pattern, assume it's an | 
|  | // expression produced by program code. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred, | 
|  | Instruction *IP) { | 
|  | assert(IP); | 
|  | switch (Pred->getKind()) { | 
|  | case SCEVPredicate::P_Union: | 
|  | return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP); | 
|  | case SCEVPredicate::P_Equal: | 
|  | return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP); | 
|  | case SCEVPredicate::P_Wrap: { | 
|  | auto *AddRecPred = cast<SCEVWrapPredicate>(Pred); | 
|  | return expandWrapPredicate(AddRecPred, IP); | 
|  | } | 
|  | } | 
|  | llvm_unreachable("Unknown SCEV predicate type"); | 
|  | } | 
|  |  | 
|  | Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred, | 
|  | Instruction *IP) { | 
|  | Value *Expr0 = expandCodeFor(Pred->getLHS(), Pred->getLHS()->getType(), IP); | 
|  | Value *Expr1 = expandCodeFor(Pred->getRHS(), Pred->getRHS()->getType(), IP); | 
|  |  | 
|  | Builder.SetInsertPoint(IP); | 
|  | auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check"); | 
|  | return I; | 
|  | } | 
|  |  | 
|  | Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR, | 
|  | Instruction *Loc, bool Signed) { | 
|  | assert(AR->isAffine() && "Cannot generate RT check for " | 
|  | "non-affine expression"); | 
|  |  | 
|  | SCEVUnionPredicate Pred; | 
|  | const SCEV *ExitCount = | 
|  | SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred); | 
|  |  | 
|  | assert(ExitCount != SE.getCouldNotCompute() && "Invalid loop count"); | 
|  |  | 
|  | const SCEV *Step = AR->getStepRecurrence(SE); | 
|  | const SCEV *Start = AR->getStart(); | 
|  |  | 
|  | Type *ARTy = AR->getType(); | 
|  | unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType()); | 
|  | unsigned DstBits = SE.getTypeSizeInBits(ARTy); | 
|  |  | 
|  | // The expression {Start,+,Step} has nusw/nssw if | 
|  | //   Step < 0, Start - |Step| * Backedge <= Start | 
|  | //   Step >= 0, Start + |Step| * Backedge > Start | 
|  | // and |Step| * Backedge doesn't unsigned overflow. | 
|  |  | 
|  | IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits); | 
|  | Builder.SetInsertPoint(Loc); | 
|  | Value *TripCountVal = expandCodeFor(ExitCount, CountTy, Loc); | 
|  |  | 
|  | IntegerType *Ty = | 
|  | IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy)); | 
|  | Type *ARExpandTy = DL.isNonIntegralPointerType(ARTy) ? ARTy : Ty; | 
|  |  | 
|  | Value *StepValue = expandCodeFor(Step, Ty, Loc); | 
|  | Value *NegStepValue = expandCodeFor(SE.getNegativeSCEV(Step), Ty, Loc); | 
|  | Value *StartValue = expandCodeFor(Start, ARExpandTy, Loc); | 
|  |  | 
|  | ConstantInt *Zero = | 
|  | ConstantInt::get(Loc->getContext(), APInt::getNullValue(DstBits)); | 
|  |  | 
|  | Builder.SetInsertPoint(Loc); | 
|  | // Compute |Step| | 
|  | Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero); | 
|  | Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue); | 
|  |  | 
|  | // Get the backedge taken count and truncate or extended to the AR type. | 
|  | Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty); | 
|  | auto *MulF = Intrinsic::getDeclaration(Loc->getModule(), | 
|  | Intrinsic::umul_with_overflow, Ty); | 
|  |  | 
|  | // Compute |Step| * Backedge | 
|  | CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul"); | 
|  | Value *MulV = Builder.CreateExtractValue(Mul, 0, "mul.result"); | 
|  | Value *OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow"); | 
|  |  | 
|  | // Compute: | 
|  | //   Start + |Step| * Backedge < Start | 
|  | //   Start - |Step| * Backedge > Start | 
|  | Value *Add = nullptr, *Sub = nullptr; | 
|  | if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARExpandTy)) { | 
|  | const SCEV *MulS = SE.getSCEV(MulV); | 
|  | const SCEV *NegMulS = SE.getNegativeSCEV(MulS); | 
|  | Add = Builder.CreateBitCast(expandAddToGEP(MulS, ARPtrTy, Ty, StartValue), | 
|  | ARPtrTy); | 
|  | Sub = Builder.CreateBitCast( | 
|  | expandAddToGEP(NegMulS, ARPtrTy, Ty, StartValue), ARPtrTy); | 
|  | } else { | 
|  | Add = Builder.CreateAdd(StartValue, MulV); | 
|  | Sub = Builder.CreateSub(StartValue, MulV); | 
|  | } | 
|  |  | 
|  | Value *EndCompareGT = Builder.CreateICmp( | 
|  | Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue); | 
|  |  | 
|  | Value *EndCompareLT = Builder.CreateICmp( | 
|  | Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue); | 
|  |  | 
|  | // Select the answer based on the sign of Step. | 
|  | Value *EndCheck = | 
|  | Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT); | 
|  |  | 
|  | // If the backedge taken count type is larger than the AR type, | 
|  | // check that we don't drop any bits by truncating it. If we are | 
|  | // dropping bits, then we have overflow (unless the step is zero). | 
|  | if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) { | 
|  | auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits); | 
|  | auto *BackedgeCheck = | 
|  | Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal, | 
|  | ConstantInt::get(Loc->getContext(), MaxVal)); | 
|  | BackedgeCheck = Builder.CreateAnd( | 
|  | BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero)); | 
|  |  | 
|  | EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck); | 
|  | } | 
|  |  | 
|  | EndCheck = Builder.CreateOr(EndCheck, OfMul); | 
|  | return EndCheck; | 
|  | } | 
|  |  | 
|  | Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred, | 
|  | Instruction *IP) { | 
|  | const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr()); | 
|  | Value *NSSWCheck = nullptr, *NUSWCheck = nullptr; | 
|  |  | 
|  | // Add a check for NUSW | 
|  | if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW) | 
|  | NUSWCheck = generateOverflowCheck(A, IP, false); | 
|  |  | 
|  | // Add a check for NSSW | 
|  | if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW) | 
|  | NSSWCheck = generateOverflowCheck(A, IP, true); | 
|  |  | 
|  | if (NUSWCheck && NSSWCheck) | 
|  | return Builder.CreateOr(NUSWCheck, NSSWCheck); | 
|  |  | 
|  | if (NUSWCheck) | 
|  | return NUSWCheck; | 
|  |  | 
|  | if (NSSWCheck) | 
|  | return NSSWCheck; | 
|  |  | 
|  | return ConstantInt::getFalse(IP->getContext()); | 
|  | } | 
|  |  | 
|  | Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union, | 
|  | Instruction *IP) { | 
|  | auto *BoolType = IntegerType::get(IP->getContext(), 1); | 
|  | Value *Check = ConstantInt::getNullValue(BoolType); | 
|  |  | 
|  | // Loop over all checks in this set. | 
|  | for (auto Pred : Union->getPredicates()) { | 
|  | auto *NextCheck = expandCodeForPredicate(Pred, IP); | 
|  | Builder.SetInsertPoint(IP); | 
|  | Check = Builder.CreateOr(Check, NextCheck); | 
|  | } | 
|  |  | 
|  | return Check; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | // Search for a SCEV subexpression that is not safe to expand.  Any expression | 
|  | // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely | 
|  | // UDiv expressions. We don't know if the UDiv is derived from an IR divide | 
|  | // instruction, but the important thing is that we prove the denominator is | 
|  | // nonzero before expansion. | 
|  | // | 
|  | // IVUsers already checks that IV-derived expressions are safe. So this check is | 
|  | // only needed when the expression includes some subexpression that is not IV | 
|  | // derived. | 
|  | // | 
|  | // Currently, we only allow division by a nonzero constant here. If this is | 
|  | // inadequate, we could easily allow division by SCEVUnknown by using | 
|  | // ValueTracking to check isKnownNonZero(). | 
|  | // | 
|  | // We cannot generally expand recurrences unless the step dominates the loop | 
|  | // header. The expander handles the special case of affine recurrences by | 
|  | // scaling the recurrence outside the loop, but this technique isn't generally | 
|  | // applicable. Expanding a nested recurrence outside a loop requires computing | 
|  | // binomial coefficients. This could be done, but the recurrence has to be in a | 
|  | // perfectly reduced form, which can't be guaranteed. | 
|  | struct SCEVFindUnsafe { | 
|  | ScalarEvolution &SE; | 
|  | bool IsUnsafe; | 
|  |  | 
|  | SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {} | 
|  |  | 
|  | bool follow(const SCEV *S) { | 
|  | if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { | 
|  | const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS()); | 
|  | if (!SC || SC->getValue()->isZero()) { | 
|  | IsUnsafe = true; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { | 
|  | const SCEV *Step = AR->getStepRecurrence(SE); | 
|  | if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) { | 
|  | IsUnsafe = true; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  | bool isDone() const { return IsUnsafe; } | 
|  | }; | 
|  | } | 
|  |  | 
|  | namespace llvm { | 
|  | bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) { | 
|  | SCEVFindUnsafe Search(SE); | 
|  | visitAll(S, Search); | 
|  | return !Search.IsUnsafe; | 
|  | } | 
|  |  | 
|  | bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint, | 
|  | ScalarEvolution &SE) { | 
|  | return isSafeToExpand(S, SE) && SE.dominates(S, InsertionPoint->getParent()); | 
|  | } | 
|  | } |