|  | //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This family of functions identifies calls to builtin functions that allocate | 
|  | // or free memory. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/MemoryBuiltins.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/None.h" | 
|  | #include "llvm/ADT/Optional.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/Analysis/TargetFolder.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/Analysis/Utils/Local.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/Argument.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GlobalAlias.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <iterator> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "memory-builtins" | 
|  |  | 
|  | enum AllocType : uint8_t { | 
|  | OpNewLike          = 1<<0, // allocates; never returns null | 
|  | MallocLike         = 1<<1 | OpNewLike, // allocates; may return null | 
|  | CallocLike         = 1<<2, // allocates + bzero | 
|  | ReallocLike        = 1<<3, // reallocates | 
|  | StrDupLike         = 1<<4, | 
|  | MallocOrCallocLike = MallocLike | CallocLike, | 
|  | AllocLike          = MallocLike | CallocLike | StrDupLike, | 
|  | AnyAlloc           = AllocLike | ReallocLike | 
|  | }; | 
|  |  | 
|  | struct AllocFnsTy { | 
|  | AllocType AllocTy; | 
|  | unsigned NumParams; | 
|  | // First and Second size parameters (or -1 if unused) | 
|  | int FstParam, SndParam; | 
|  | }; | 
|  |  | 
|  | // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to | 
|  | // know which functions are nounwind, noalias, nocapture parameters, etc. | 
|  | static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = { | 
|  | {LibFunc_malloc,              {MallocLike,  1, 0,  -1}}, | 
|  | {LibFunc_valloc,              {MallocLike,  1, 0,  -1}}, | 
|  | {LibFunc_Znwj,                {OpNewLike,   1, 0,  -1}}, // new(unsigned int) | 
|  | {LibFunc_ZnwjRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new(unsigned int, nothrow) | 
|  | {LibFunc_ZnwjSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new(unsigned int, align_val_t) | 
|  | {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, // new(unsigned int, align_val_t, nothrow) | 
|  | {MallocLike,  3, 0,  -1}}, | 
|  | {LibFunc_Znwm,                {OpNewLike,   1, 0,  -1}}, // new(unsigned long) | 
|  | {LibFunc_ZnwmRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new(unsigned long, nothrow) | 
|  | {LibFunc_ZnwmSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new(unsigned long, align_val_t) | 
|  | {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, // new(unsigned long, align_val_t, nothrow) | 
|  | {MallocLike,  3, 0,  -1}}, | 
|  | {LibFunc_Znaj,                {OpNewLike,   1, 0,  -1}}, // new[](unsigned int) | 
|  | {LibFunc_ZnajRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new[](unsigned int, nothrow) | 
|  | {LibFunc_ZnajSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new[](unsigned int, align_val_t) | 
|  | {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, // new[](unsigned int, align_val_t, nothrow) | 
|  | {MallocLike,  3, 0,  -1}}, | 
|  | {LibFunc_Znam,                {OpNewLike,   1, 0,  -1}}, // new[](unsigned long) | 
|  | {LibFunc_ZnamRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new[](unsigned long, nothrow) | 
|  | {LibFunc_ZnamSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new[](unsigned long, align_val_t) | 
|  | {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, // new[](unsigned long, align_val_t, nothrow) | 
|  | {MallocLike,  3, 0,  -1}}, | 
|  | {LibFunc_msvc_new_int,         {OpNewLike,   1, 0,  -1}}, // new(unsigned int) | 
|  | {LibFunc_msvc_new_int_nothrow, {MallocLike,  2, 0,  -1}}, // new(unsigned int, nothrow) | 
|  | {LibFunc_msvc_new_longlong,         {OpNewLike,   1, 0,  -1}}, // new(unsigned long long) | 
|  | {LibFunc_msvc_new_longlong_nothrow, {MallocLike,  2, 0,  -1}}, // new(unsigned long long, nothrow) | 
|  | {LibFunc_msvc_new_array_int,         {OpNewLike,   1, 0,  -1}}, // new[](unsigned int) | 
|  | {LibFunc_msvc_new_array_int_nothrow, {MallocLike,  2, 0,  -1}}, // new[](unsigned int, nothrow) | 
|  | {LibFunc_msvc_new_array_longlong,         {OpNewLike,   1, 0,  -1}}, // new[](unsigned long long) | 
|  | {LibFunc_msvc_new_array_longlong_nothrow, {MallocLike,  2, 0,  -1}}, // new[](unsigned long long, nothrow) | 
|  | {LibFunc_calloc,              {CallocLike,  2, 0,   1}}, | 
|  | {LibFunc_realloc,             {ReallocLike, 2, 1,  -1}}, | 
|  | {LibFunc_reallocf,            {ReallocLike, 2, 1,  -1}}, | 
|  | {LibFunc_strdup,              {StrDupLike,  1, -1, -1}}, | 
|  | {LibFunc_strndup,             {StrDupLike,  2, 1,  -1}} | 
|  | // TODO: Handle "int posix_memalign(void **, size_t, size_t)" | 
|  | }; | 
|  |  | 
|  | static const Function *getCalledFunction(const Value *V, bool LookThroughBitCast, | 
|  | bool &IsNoBuiltin) { | 
|  | // Don't care about intrinsics in this case. | 
|  | if (isa<IntrinsicInst>(V)) | 
|  | return nullptr; | 
|  |  | 
|  | if (LookThroughBitCast) | 
|  | V = V->stripPointerCasts(); | 
|  |  | 
|  | ImmutableCallSite CS(V); | 
|  | if (!CS.getInstruction()) | 
|  | return nullptr; | 
|  |  | 
|  | IsNoBuiltin = CS.isNoBuiltin(); | 
|  |  | 
|  | if (const Function *Callee = CS.getCalledFunction()) | 
|  | return Callee; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Returns the allocation data for the given value if it's either a call to a | 
|  | /// known allocation function, or a call to a function with the allocsize | 
|  | /// attribute. | 
|  | static Optional<AllocFnsTy> | 
|  | getAllocationDataForFunction(const Function *Callee, AllocType AllocTy, | 
|  | const TargetLibraryInfo *TLI) { | 
|  | // Make sure that the function is available. | 
|  | StringRef FnName = Callee->getName(); | 
|  | LibFunc TLIFn; | 
|  | if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn)) | 
|  | return None; | 
|  |  | 
|  | const auto *Iter = find_if( | 
|  | AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) { | 
|  | return P.first == TLIFn; | 
|  | }); | 
|  |  | 
|  | if (Iter == std::end(AllocationFnData)) | 
|  | return None; | 
|  |  | 
|  | const AllocFnsTy *FnData = &Iter->second; | 
|  | if ((FnData->AllocTy & AllocTy) != FnData->AllocTy) | 
|  | return None; | 
|  |  | 
|  | // Check function prototype. | 
|  | int FstParam = FnData->FstParam; | 
|  | int SndParam = FnData->SndParam; | 
|  | FunctionType *FTy = Callee->getFunctionType(); | 
|  |  | 
|  | if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) && | 
|  | FTy->getNumParams() == FnData->NumParams && | 
|  | (FstParam < 0 || | 
|  | (FTy->getParamType(FstParam)->isIntegerTy(32) || | 
|  | FTy->getParamType(FstParam)->isIntegerTy(64))) && | 
|  | (SndParam < 0 || | 
|  | FTy->getParamType(SndParam)->isIntegerTy(32) || | 
|  | FTy->getParamType(SndParam)->isIntegerTy(64))) | 
|  | return *FnData; | 
|  | return None; | 
|  | } | 
|  |  | 
|  | static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy, | 
|  | const TargetLibraryInfo *TLI, | 
|  | bool LookThroughBitCast = false) { | 
|  | bool IsNoBuiltinCall; | 
|  | if (const Function *Callee = | 
|  | getCalledFunction(V, LookThroughBitCast, IsNoBuiltinCall)) | 
|  | if (!IsNoBuiltinCall) | 
|  | return getAllocationDataForFunction(Callee, AllocTy, TLI); | 
|  | return None; | 
|  | } | 
|  |  | 
|  | static Optional<AllocFnsTy> getAllocationSize(const Value *V, | 
|  | const TargetLibraryInfo *TLI) { | 
|  | bool IsNoBuiltinCall; | 
|  | const Function *Callee = | 
|  | getCalledFunction(V, /*LookThroughBitCast=*/false, IsNoBuiltinCall); | 
|  | if (!Callee) | 
|  | return None; | 
|  |  | 
|  | // Prefer to use existing information over allocsize. This will give us an | 
|  | // accurate AllocTy. | 
|  | if (!IsNoBuiltinCall) | 
|  | if (Optional<AllocFnsTy> Data = | 
|  | getAllocationDataForFunction(Callee, AnyAlloc, TLI)) | 
|  | return Data; | 
|  |  | 
|  | Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize); | 
|  | if (Attr == Attribute()) | 
|  | return None; | 
|  |  | 
|  | std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs(); | 
|  |  | 
|  | AllocFnsTy Result; | 
|  | // Because allocsize only tells us how many bytes are allocated, we're not | 
|  | // really allowed to assume anything, so we use MallocLike. | 
|  | Result.AllocTy = MallocLike; | 
|  | Result.NumParams = Callee->getNumOperands(); | 
|  | Result.FstParam = Args.first; | 
|  | Result.SndParam = Args.second.getValueOr(-1); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) { | 
|  | ImmutableCallSite CS(LookThroughBitCast ? V->stripPointerCasts() : V); | 
|  | return CS && CS.hasRetAttr(Attribute::NoAlias); | 
|  | } | 
|  |  | 
|  | /// Tests if a value is a call or invoke to a library function that | 
|  | /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup | 
|  | /// like). | 
|  | bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI, | 
|  | bool LookThroughBitCast) { | 
|  | return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast).hasValue(); | 
|  | } | 
|  |  | 
|  | /// Tests if a value is a call or invoke to a function that returns a | 
|  | /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions). | 
|  | bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI, | 
|  | bool LookThroughBitCast) { | 
|  | // it's safe to consider realloc as noalias since accessing the original | 
|  | // pointer is undefined behavior | 
|  | return isAllocationFn(V, TLI, LookThroughBitCast) || | 
|  | hasNoAliasAttr(V, LookThroughBitCast); | 
|  | } | 
|  |  | 
|  | /// Tests if a value is a call or invoke to a library function that | 
|  | /// allocates uninitialized memory (such as malloc). | 
|  | bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, | 
|  | bool LookThroughBitCast) { | 
|  | return getAllocationData(V, MallocLike, TLI, LookThroughBitCast).hasValue(); | 
|  | } | 
|  |  | 
|  | /// Tests if a value is a call or invoke to a library function that | 
|  | /// allocates zero-filled memory (such as calloc). | 
|  | bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, | 
|  | bool LookThroughBitCast) { | 
|  | return getAllocationData(V, CallocLike, TLI, LookThroughBitCast).hasValue(); | 
|  | } | 
|  |  | 
|  | /// Tests if a value is a call or invoke to a library function that | 
|  | /// allocates memory similar to malloc or calloc. | 
|  | bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, | 
|  | bool LookThroughBitCast) { | 
|  | return getAllocationData(V, MallocOrCallocLike, TLI, | 
|  | LookThroughBitCast).hasValue(); | 
|  | } | 
|  |  | 
|  | /// Tests if a value is a call or invoke to a library function that | 
|  | /// allocates memory (either malloc, calloc, or strdup like). | 
|  | bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI, | 
|  | bool LookThroughBitCast) { | 
|  | return getAllocationData(V, AllocLike, TLI, LookThroughBitCast).hasValue(); | 
|  | } | 
|  |  | 
|  | /// extractMallocCall - Returns the corresponding CallInst if the instruction | 
|  | /// is a malloc call.  Since CallInst::CreateMalloc() only creates calls, we | 
|  | /// ignore InvokeInst here. | 
|  | const CallInst *llvm::extractMallocCall(const Value *I, | 
|  | const TargetLibraryInfo *TLI) { | 
|  | return isMallocLikeFn(I, TLI) ? dyn_cast<CallInst>(I) : nullptr; | 
|  | } | 
|  |  | 
|  | static Value *computeArraySize(const CallInst *CI, const DataLayout &DL, | 
|  | const TargetLibraryInfo *TLI, | 
|  | bool LookThroughSExt = false) { | 
|  | if (!CI) | 
|  | return nullptr; | 
|  |  | 
|  | // The size of the malloc's result type must be known to determine array size. | 
|  | Type *T = getMallocAllocatedType(CI, TLI); | 
|  | if (!T || !T->isSized()) | 
|  | return nullptr; | 
|  |  | 
|  | unsigned ElementSize = DL.getTypeAllocSize(T); | 
|  | if (StructType *ST = dyn_cast<StructType>(T)) | 
|  | ElementSize = DL.getStructLayout(ST)->getSizeInBytes(); | 
|  |  | 
|  | // If malloc call's arg can be determined to be a multiple of ElementSize, | 
|  | // return the multiple.  Otherwise, return NULL. | 
|  | Value *MallocArg = CI->getArgOperand(0); | 
|  | Value *Multiple = nullptr; | 
|  | if (ComputeMultiple(MallocArg, ElementSize, Multiple, LookThroughSExt)) | 
|  | return Multiple; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// getMallocType - Returns the PointerType resulting from the malloc call. | 
|  | /// The PointerType depends on the number of bitcast uses of the malloc call: | 
|  | ///   0: PointerType is the calls' return type. | 
|  | ///   1: PointerType is the bitcast's result type. | 
|  | ///  >1: Unique PointerType cannot be determined, return NULL. | 
|  | PointerType *llvm::getMallocType(const CallInst *CI, | 
|  | const TargetLibraryInfo *TLI) { | 
|  | assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call"); | 
|  |  | 
|  | PointerType *MallocType = nullptr; | 
|  | unsigned NumOfBitCastUses = 0; | 
|  |  | 
|  | // Determine if CallInst has a bitcast use. | 
|  | for (Value::const_user_iterator UI = CI->user_begin(), E = CI->user_end(); | 
|  | UI != E;) | 
|  | if (const BitCastInst *BCI = dyn_cast<BitCastInst>(*UI++)) { | 
|  | MallocType = cast<PointerType>(BCI->getDestTy()); | 
|  | NumOfBitCastUses++; | 
|  | } | 
|  |  | 
|  | // Malloc call has 1 bitcast use, so type is the bitcast's destination type. | 
|  | if (NumOfBitCastUses == 1) | 
|  | return MallocType; | 
|  |  | 
|  | // Malloc call was not bitcast, so type is the malloc function's return type. | 
|  | if (NumOfBitCastUses == 0) | 
|  | return cast<PointerType>(CI->getType()); | 
|  |  | 
|  | // Type could not be determined. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// getMallocAllocatedType - Returns the Type allocated by malloc call. | 
|  | /// The Type depends on the number of bitcast uses of the malloc call: | 
|  | ///   0: PointerType is the malloc calls' return type. | 
|  | ///   1: PointerType is the bitcast's result type. | 
|  | ///  >1: Unique PointerType cannot be determined, return NULL. | 
|  | Type *llvm::getMallocAllocatedType(const CallInst *CI, | 
|  | const TargetLibraryInfo *TLI) { | 
|  | PointerType *PT = getMallocType(CI, TLI); | 
|  | return PT ? PT->getElementType() : nullptr; | 
|  | } | 
|  |  | 
|  | /// getMallocArraySize - Returns the array size of a malloc call.  If the | 
|  | /// argument passed to malloc is a multiple of the size of the malloced type, | 
|  | /// then return that multiple.  For non-array mallocs, the multiple is | 
|  | /// constant 1.  Otherwise, return NULL for mallocs whose array size cannot be | 
|  | /// determined. | 
|  | Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout &DL, | 
|  | const TargetLibraryInfo *TLI, | 
|  | bool LookThroughSExt) { | 
|  | assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call"); | 
|  | return computeArraySize(CI, DL, TLI, LookThroughSExt); | 
|  | } | 
|  |  | 
|  | /// extractCallocCall - Returns the corresponding CallInst if the instruction | 
|  | /// is a calloc call. | 
|  | const CallInst *llvm::extractCallocCall(const Value *I, | 
|  | const TargetLibraryInfo *TLI) { | 
|  | return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr; | 
|  | } | 
|  |  | 
|  | /// isFreeCall - Returns non-null if the value is a call to the builtin free() | 
|  | const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) { | 
|  | bool IsNoBuiltinCall; | 
|  | const Function *Callee = | 
|  | getCalledFunction(I, /*LookThroughBitCast=*/false, IsNoBuiltinCall); | 
|  | if (Callee == nullptr || IsNoBuiltinCall) | 
|  | return nullptr; | 
|  |  | 
|  | StringRef FnName = Callee->getName(); | 
|  | LibFunc TLIFn; | 
|  | if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn)) | 
|  | return nullptr; | 
|  |  | 
|  | unsigned ExpectedNumParams; | 
|  | if (TLIFn == LibFunc_free || | 
|  | TLIFn == LibFunc_ZdlPv || // operator delete(void*) | 
|  | TLIFn == LibFunc_ZdaPv || // operator delete[](void*) | 
|  | TLIFn == LibFunc_msvc_delete_ptr32 || // operator delete(void*) | 
|  | TLIFn == LibFunc_msvc_delete_ptr64 || // operator delete(void*) | 
|  | TLIFn == LibFunc_msvc_delete_array_ptr32 || // operator delete[](void*) | 
|  | TLIFn == LibFunc_msvc_delete_array_ptr64)   // operator delete[](void*) | 
|  | ExpectedNumParams = 1; | 
|  | else if (TLIFn == LibFunc_ZdlPvj ||              // delete(void*, uint) | 
|  | TLIFn == LibFunc_ZdlPvm ||              // delete(void*, ulong) | 
|  | TLIFn == LibFunc_ZdlPvRKSt9nothrow_t || // delete(void*, nothrow) | 
|  | TLIFn == LibFunc_ZdlPvSt11align_val_t || // delete(void*, align_val_t) | 
|  | TLIFn == LibFunc_ZdaPvj ||              // delete[](void*, uint) | 
|  | TLIFn == LibFunc_ZdaPvm ||              // delete[](void*, ulong) | 
|  | TLIFn == LibFunc_ZdaPvRKSt9nothrow_t || // delete[](void*, nothrow) | 
|  | TLIFn == LibFunc_ZdaPvSt11align_val_t || // delete[](void*, align_val_t) | 
|  | TLIFn == LibFunc_msvc_delete_ptr32_int ||      // delete(void*, uint) | 
|  | TLIFn == LibFunc_msvc_delete_ptr64_longlong || // delete(void*, ulonglong) | 
|  | TLIFn == LibFunc_msvc_delete_ptr32_nothrow || // delete(void*, nothrow) | 
|  | TLIFn == LibFunc_msvc_delete_ptr64_nothrow || // delete(void*, nothrow) | 
|  | TLIFn == LibFunc_msvc_delete_array_ptr32_int ||      // delete[](void*, uint) | 
|  | TLIFn == LibFunc_msvc_delete_array_ptr64_longlong || // delete[](void*, ulonglong) | 
|  | TLIFn == LibFunc_msvc_delete_array_ptr32_nothrow || // delete[](void*, nothrow) | 
|  | TLIFn == LibFunc_msvc_delete_array_ptr64_nothrow)   // delete[](void*, nothrow) | 
|  | ExpectedNumParams = 2; | 
|  | else if (TLIFn == LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t || // delete(void*, align_val_t, nothrow) | 
|  | TLIFn == LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t) // delete[](void*, align_val_t, nothrow) | 
|  | ExpectedNumParams = 3; | 
|  | else | 
|  | return nullptr; | 
|  |  | 
|  | // Check free prototype. | 
|  | // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin | 
|  | // attribute will exist. | 
|  | FunctionType *FTy = Callee->getFunctionType(); | 
|  | if (!FTy->getReturnType()->isVoidTy()) | 
|  | return nullptr; | 
|  | if (FTy->getNumParams() != ExpectedNumParams) | 
|  | return nullptr; | 
|  | if (FTy->getParamType(0) != Type::getInt8PtrTy(Callee->getContext())) | 
|  | return nullptr; | 
|  |  | 
|  | return dyn_cast<CallInst>(I); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Utility functions to compute size of objects. | 
|  | // | 
|  | static APInt getSizeWithOverflow(const SizeOffsetType &Data) { | 
|  | if (Data.second.isNegative() || Data.first.ult(Data.second)) | 
|  | return APInt(Data.first.getBitWidth(), 0); | 
|  | return Data.first - Data.second; | 
|  | } | 
|  |  | 
|  | /// Compute the size of the object pointed by Ptr. Returns true and the | 
|  | /// object size in Size if successful, and false otherwise. | 
|  | /// If RoundToAlign is true, then Size is rounded up to the alignment of | 
|  | /// allocas, byval arguments, and global variables. | 
|  | bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL, | 
|  | const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) { | 
|  | ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts); | 
|  | SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr)); | 
|  | if (!Visitor.bothKnown(Data)) | 
|  | return false; | 
|  |  | 
|  | Size = getSizeWithOverflow(Data).getZExtValue(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | ConstantInt *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize, | 
|  | const DataLayout &DL, | 
|  | const TargetLibraryInfo *TLI, | 
|  | bool MustSucceed) { | 
|  | assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize && | 
|  | "ObjectSize must be a call to llvm.objectsize!"); | 
|  |  | 
|  | bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero(); | 
|  | ObjectSizeOpts EvalOptions; | 
|  | // Unless we have to fold this to something, try to be as accurate as | 
|  | // possible. | 
|  | if (MustSucceed) | 
|  | EvalOptions.EvalMode = | 
|  | MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min; | 
|  | else | 
|  | EvalOptions.EvalMode = ObjectSizeOpts::Mode::Exact; | 
|  |  | 
|  | EvalOptions.NullIsUnknownSize = | 
|  | cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne(); | 
|  |  | 
|  | // FIXME: Does it make sense to just return a failure value if the size won't | 
|  | // fit in the output and `!MustSucceed`? | 
|  | uint64_t Size; | 
|  | auto *ResultType = cast<IntegerType>(ObjectSize->getType()); | 
|  | if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) && | 
|  | isUIntN(ResultType->getBitWidth(), Size)) | 
|  | return ConstantInt::get(ResultType, Size); | 
|  |  | 
|  | if (!MustSucceed) | 
|  | return nullptr; | 
|  |  | 
|  | return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0); | 
|  | } | 
|  |  | 
|  | STATISTIC(ObjectVisitorArgument, | 
|  | "Number of arguments with unsolved size and offset"); | 
|  | STATISTIC(ObjectVisitorLoad, | 
|  | "Number of load instructions with unsolved size and offset"); | 
|  |  | 
|  | APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Align) { | 
|  | if (Options.RoundToAlign && Align) | 
|  | return APInt(IntTyBits, alignTo(Size.getZExtValue(), Align)); | 
|  | return Size; | 
|  | } | 
|  |  | 
|  | ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL, | 
|  | const TargetLibraryInfo *TLI, | 
|  | LLVMContext &Context, | 
|  | ObjectSizeOpts Options) | 
|  | : DL(DL), TLI(TLI), Options(Options) { | 
|  | // Pointer size must be rechecked for each object visited since it could have | 
|  | // a different address space. | 
|  | } | 
|  |  | 
|  | SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) { | 
|  | IntTyBits = DL.getPointerTypeSizeInBits(V->getType()); | 
|  | Zero = APInt::getNullValue(IntTyBits); | 
|  |  | 
|  | V = V->stripPointerCasts(); | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) { | 
|  | // If we have already seen this instruction, bail out. Cycles can happen in | 
|  | // unreachable code after constant propagation. | 
|  | if (!SeenInsts.insert(I).second) | 
|  | return unknown(); | 
|  |  | 
|  | if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) | 
|  | return visitGEPOperator(*GEP); | 
|  | return visit(*I); | 
|  | } | 
|  | if (Argument *A = dyn_cast<Argument>(V)) | 
|  | return visitArgument(*A); | 
|  | if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V)) | 
|  | return visitConstantPointerNull(*P); | 
|  | if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) | 
|  | return visitGlobalAlias(*GA); | 
|  | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) | 
|  | return visitGlobalVariable(*GV); | 
|  | if (UndefValue *UV = dyn_cast<UndefValue>(V)) | 
|  | return visitUndefValue(*UV); | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { | 
|  | if (CE->getOpcode() == Instruction::IntToPtr) | 
|  | return unknown(); // clueless | 
|  | if (CE->getOpcode() == Instruction::GetElementPtr) | 
|  | return visitGEPOperator(cast<GEPOperator>(*CE)); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " | 
|  | << *V << '\n'); | 
|  | return unknown(); | 
|  | } | 
|  |  | 
|  | /// When we're compiling N-bit code, and the user uses parameters that are | 
|  | /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into | 
|  | /// trouble with APInt size issues. This function handles resizing + overflow | 
|  | /// checks for us. Check and zext or trunc \p I depending on IntTyBits and | 
|  | /// I's value. | 
|  | bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) { | 
|  | // More bits than we can handle. Checking the bit width isn't necessary, but | 
|  | // it's faster than checking active bits, and should give `false` in the | 
|  | // vast majority of cases. | 
|  | if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits) | 
|  | return false; | 
|  | if (I.getBitWidth() != IntTyBits) | 
|  | I = I.zextOrTrunc(IntTyBits); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) { | 
|  | if (!I.getAllocatedType()->isSized()) | 
|  | return unknown(); | 
|  |  | 
|  | APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType())); | 
|  | if (!I.isArrayAllocation()) | 
|  | return std::make_pair(align(Size, I.getAlignment()), Zero); | 
|  |  | 
|  | Value *ArraySize = I.getArraySize(); | 
|  | if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) { | 
|  | APInt NumElems = C->getValue(); | 
|  | if (!CheckedZextOrTrunc(NumElems)) | 
|  | return unknown(); | 
|  |  | 
|  | bool Overflow; | 
|  | Size = Size.umul_ov(NumElems, Overflow); | 
|  | return Overflow ? unknown() : std::make_pair(align(Size, I.getAlignment()), | 
|  | Zero); | 
|  | } | 
|  | return unknown(); | 
|  | } | 
|  |  | 
|  | SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) { | 
|  | // No interprocedural analysis is done at the moment. | 
|  | if (!A.hasByValOrInAllocaAttr()) { | 
|  | ++ObjectVisitorArgument; | 
|  | return unknown(); | 
|  | } | 
|  | PointerType *PT = cast<PointerType>(A.getType()); | 
|  | APInt Size(IntTyBits, DL.getTypeAllocSize(PT->getElementType())); | 
|  | return std::make_pair(align(Size, A.getParamAlignment()), Zero); | 
|  | } | 
|  |  | 
|  | SizeOffsetType ObjectSizeOffsetVisitor::visitCallSite(CallSite CS) { | 
|  | Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI); | 
|  | if (!FnData) | 
|  | return unknown(); | 
|  |  | 
|  | // Handle strdup-like functions separately. | 
|  | if (FnData->AllocTy == StrDupLike) { | 
|  | APInt Size(IntTyBits, GetStringLength(CS.getArgument(0))); | 
|  | if (!Size) | 
|  | return unknown(); | 
|  |  | 
|  | // Strndup limits strlen. | 
|  | if (FnData->FstParam > 0) { | 
|  | ConstantInt *Arg = | 
|  | dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam)); | 
|  | if (!Arg) | 
|  | return unknown(); | 
|  |  | 
|  | APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits); | 
|  | if (Size.ugt(MaxSize)) | 
|  | Size = MaxSize + 1; | 
|  | } | 
|  | return std::make_pair(Size, Zero); | 
|  | } | 
|  |  | 
|  | ConstantInt *Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam)); | 
|  | if (!Arg) | 
|  | return unknown(); | 
|  |  | 
|  | APInt Size = Arg->getValue(); | 
|  | if (!CheckedZextOrTrunc(Size)) | 
|  | return unknown(); | 
|  |  | 
|  | // Size is determined by just 1 parameter. | 
|  | if (FnData->SndParam < 0) | 
|  | return std::make_pair(Size, Zero); | 
|  |  | 
|  | Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->SndParam)); | 
|  | if (!Arg) | 
|  | return unknown(); | 
|  |  | 
|  | APInt NumElems = Arg->getValue(); | 
|  | if (!CheckedZextOrTrunc(NumElems)) | 
|  | return unknown(); | 
|  |  | 
|  | bool Overflow; | 
|  | Size = Size.umul_ov(NumElems, Overflow); | 
|  | return Overflow ? unknown() : std::make_pair(Size, Zero); | 
|  |  | 
|  | // TODO: handle more standard functions (+ wchar cousins): | 
|  | // - strdup / strndup | 
|  | // - strcpy / strncpy | 
|  | // - strcat / strncat | 
|  | // - memcpy / memmove | 
|  | // - strcat / strncat | 
|  | // - memset | 
|  | } | 
|  |  | 
|  | SizeOffsetType | 
|  | ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) { | 
|  | // If null is unknown, there's nothing we can do. Additionally, non-zero | 
|  | // address spaces can make use of null, so we don't presume to know anything | 
|  | // about that. | 
|  | // | 
|  | // TODO: How should this work with address space casts? We currently just drop | 
|  | // them on the floor, but it's unclear what we should do when a NULL from | 
|  | // addrspace(1) gets casted to addrspace(0) (or vice-versa). | 
|  | if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace()) | 
|  | return unknown(); | 
|  | return std::make_pair(Zero, Zero); | 
|  | } | 
|  |  | 
|  | SizeOffsetType | 
|  | ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) { | 
|  | return unknown(); | 
|  | } | 
|  |  | 
|  | SizeOffsetType | 
|  | ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) { | 
|  | // Easy cases were already folded by previous passes. | 
|  | return unknown(); | 
|  | } | 
|  |  | 
|  | SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) { | 
|  | SizeOffsetType PtrData = compute(GEP.getPointerOperand()); | 
|  | APInt Offset(IntTyBits, 0); | 
|  | if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset)) | 
|  | return unknown(); | 
|  |  | 
|  | return std::make_pair(PtrData.first, PtrData.second + Offset); | 
|  | } | 
|  |  | 
|  | SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) { | 
|  | if (GA.isInterposable()) | 
|  | return unknown(); | 
|  | return compute(GA.getAliasee()); | 
|  | } | 
|  |  | 
|  | SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){ | 
|  | if (!GV.hasDefinitiveInitializer()) | 
|  | return unknown(); | 
|  |  | 
|  | APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getType()->getElementType())); | 
|  | return std::make_pair(align(Size, GV.getAlignment()), Zero); | 
|  | } | 
|  |  | 
|  | SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) { | 
|  | // clueless | 
|  | return unknown(); | 
|  | } | 
|  |  | 
|  | SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) { | 
|  | ++ObjectVisitorLoad; | 
|  | return unknown(); | 
|  | } | 
|  |  | 
|  | SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) { | 
|  | // too complex to analyze statically. | 
|  | return unknown(); | 
|  | } | 
|  |  | 
|  | SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) { | 
|  | SizeOffsetType TrueSide  = compute(I.getTrueValue()); | 
|  | SizeOffsetType FalseSide = compute(I.getFalseValue()); | 
|  | if (bothKnown(TrueSide) && bothKnown(FalseSide)) { | 
|  | if (TrueSide == FalseSide) { | 
|  | return TrueSide; | 
|  | } | 
|  |  | 
|  | APInt TrueResult = getSizeWithOverflow(TrueSide); | 
|  | APInt FalseResult = getSizeWithOverflow(FalseSide); | 
|  |  | 
|  | if (TrueResult == FalseResult) { | 
|  | return TrueSide; | 
|  | } | 
|  | if (Options.EvalMode == ObjectSizeOpts::Mode::Min) { | 
|  | if (TrueResult.slt(FalseResult)) | 
|  | return TrueSide; | 
|  | return FalseSide; | 
|  | } | 
|  | if (Options.EvalMode == ObjectSizeOpts::Mode::Max) { | 
|  | if (TrueResult.sgt(FalseResult)) | 
|  | return TrueSide; | 
|  | return FalseSide; | 
|  | } | 
|  | } | 
|  | return unknown(); | 
|  | } | 
|  |  | 
|  | SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) { | 
|  | return std::make_pair(Zero, Zero); | 
|  | } | 
|  |  | 
|  | SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) { | 
|  | LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I | 
|  | << '\n'); | 
|  | return unknown(); | 
|  | } | 
|  |  | 
|  | ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator( | 
|  | const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context, | 
|  | bool RoundToAlign) | 
|  | : DL(DL), TLI(TLI), Context(Context), Builder(Context, TargetFolder(DL)), | 
|  | RoundToAlign(RoundToAlign) { | 
|  | // IntTy and Zero must be set for each compute() since the address space may | 
|  | // be different for later objects. | 
|  | } | 
|  |  | 
|  | SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) { | 
|  | // XXX - Are vectors of pointers possible here? | 
|  | IntTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); | 
|  | Zero = ConstantInt::get(IntTy, 0); | 
|  |  | 
|  | SizeOffsetEvalType Result = compute_(V); | 
|  |  | 
|  | if (!bothKnown(Result)) { | 
|  | // Erase everything that was computed in this iteration from the cache, so | 
|  | // that no dangling references are left behind. We could be a bit smarter if | 
|  | // we kept a dependency graph. It's probably not worth the complexity. | 
|  | for (const Value *SeenVal : SeenVals) { | 
|  | CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal); | 
|  | // non-computable results can be safely cached | 
|  | if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second)) | 
|  | CacheMap.erase(CacheIt); | 
|  | } | 
|  | } | 
|  |  | 
|  | SeenVals.clear(); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) { | 
|  | ObjectSizeOpts ObjSizeOptions; | 
|  | ObjSizeOptions.RoundToAlign = RoundToAlign; | 
|  |  | 
|  | ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, ObjSizeOptions); | 
|  | SizeOffsetType Const = Visitor.compute(V); | 
|  | if (Visitor.bothKnown(Const)) | 
|  | return std::make_pair(ConstantInt::get(Context, Const.first), | 
|  | ConstantInt::get(Context, Const.second)); | 
|  |  | 
|  | V = V->stripPointerCasts(); | 
|  |  | 
|  | // Check cache. | 
|  | CacheMapTy::iterator CacheIt = CacheMap.find(V); | 
|  | if (CacheIt != CacheMap.end()) | 
|  | return CacheIt->second; | 
|  |  | 
|  | // Always generate code immediately before the instruction being | 
|  | // processed, so that the generated code dominates the same BBs. | 
|  | BuilderTy::InsertPointGuard Guard(Builder); | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) | 
|  | Builder.SetInsertPoint(I); | 
|  |  | 
|  | // Now compute the size and offset. | 
|  | SizeOffsetEvalType Result; | 
|  |  | 
|  | // Record the pointers that were handled in this run, so that they can be | 
|  | // cleaned later if something fails. We also use this set to break cycles that | 
|  | // can occur in dead code. | 
|  | if (!SeenVals.insert(V).second) { | 
|  | Result = unknown(); | 
|  | } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { | 
|  | Result = visitGEPOperator(*GEP); | 
|  | } else if (Instruction *I = dyn_cast<Instruction>(V)) { | 
|  | Result = visit(*I); | 
|  | } else if (isa<Argument>(V) || | 
|  | (isa<ConstantExpr>(V) && | 
|  | cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) || | 
|  | isa<GlobalAlias>(V) || | 
|  | isa<GlobalVariable>(V)) { | 
|  | // Ignore values where we cannot do more than ObjectSizeVisitor. | 
|  | Result = unknown(); | 
|  | } else { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V | 
|  | << '\n'); | 
|  | Result = unknown(); | 
|  | } | 
|  |  | 
|  | // Don't reuse CacheIt since it may be invalid at this point. | 
|  | CacheMap[V] = Result; | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) { | 
|  | if (!I.getAllocatedType()->isSized()) | 
|  | return unknown(); | 
|  |  | 
|  | // must be a VLA | 
|  | assert(I.isArrayAllocation()); | 
|  | Value *ArraySize = I.getArraySize(); | 
|  | Value *Size = ConstantInt::get(ArraySize->getType(), | 
|  | DL.getTypeAllocSize(I.getAllocatedType())); | 
|  | Size = Builder.CreateMul(Size, ArraySize); | 
|  | return std::make_pair(Size, Zero); | 
|  | } | 
|  |  | 
|  | SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS) { | 
|  | Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI); | 
|  | if (!FnData) | 
|  | return unknown(); | 
|  |  | 
|  | // Handle strdup-like functions separately. | 
|  | if (FnData->AllocTy == StrDupLike) { | 
|  | // TODO | 
|  | return unknown(); | 
|  | } | 
|  |  | 
|  | Value *FirstArg = CS.getArgument(FnData->FstParam); | 
|  | FirstArg = Builder.CreateZExt(FirstArg, IntTy); | 
|  | if (FnData->SndParam < 0) | 
|  | return std::make_pair(FirstArg, Zero); | 
|  |  | 
|  | Value *SecondArg = CS.getArgument(FnData->SndParam); | 
|  | SecondArg = Builder.CreateZExt(SecondArg, IntTy); | 
|  | Value *Size = Builder.CreateMul(FirstArg, SecondArg); | 
|  | return std::make_pair(Size, Zero); | 
|  |  | 
|  | // TODO: handle more standard functions (+ wchar cousins): | 
|  | // - strdup / strndup | 
|  | // - strcpy / strncpy | 
|  | // - strcat / strncat | 
|  | // - memcpy / memmove | 
|  | // - strcat / strncat | 
|  | // - memset | 
|  | } | 
|  |  | 
|  | SizeOffsetEvalType | 
|  | ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) { | 
|  | return unknown(); | 
|  | } | 
|  |  | 
|  | SizeOffsetEvalType | 
|  | ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) { | 
|  | return unknown(); | 
|  | } | 
|  |  | 
|  | SizeOffsetEvalType | 
|  | ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) { | 
|  | SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand()); | 
|  | if (!bothKnown(PtrData)) | 
|  | return unknown(); | 
|  |  | 
|  | Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true); | 
|  | Offset = Builder.CreateAdd(PtrData.second, Offset); | 
|  | return std::make_pair(PtrData.first, Offset); | 
|  | } | 
|  |  | 
|  | SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) { | 
|  | // clueless | 
|  | return unknown(); | 
|  | } | 
|  |  | 
|  | SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) { | 
|  | return unknown(); | 
|  | } | 
|  |  | 
|  | SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) { | 
|  | // Create 2 PHIs: one for size and another for offset. | 
|  | PHINode *SizePHI   = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); | 
|  | PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); | 
|  |  | 
|  | // Insert right away in the cache to handle recursive PHIs. | 
|  | CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI); | 
|  |  | 
|  | // Compute offset/size for each PHI incoming pointer. | 
|  | for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) { | 
|  | Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt()); | 
|  | SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i)); | 
|  |  | 
|  | if (!bothKnown(EdgeData)) { | 
|  | OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy)); | 
|  | OffsetPHI->eraseFromParent(); | 
|  | SizePHI->replaceAllUsesWith(UndefValue::get(IntTy)); | 
|  | SizePHI->eraseFromParent(); | 
|  | return unknown(); | 
|  | } | 
|  | SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i)); | 
|  | OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i)); | 
|  | } | 
|  |  | 
|  | Value *Size = SizePHI, *Offset = OffsetPHI, *Tmp; | 
|  | if ((Tmp = SizePHI->hasConstantValue())) { | 
|  | Size = Tmp; | 
|  | SizePHI->replaceAllUsesWith(Size); | 
|  | SizePHI->eraseFromParent(); | 
|  | } | 
|  | if ((Tmp = OffsetPHI->hasConstantValue())) { | 
|  | Offset = Tmp; | 
|  | OffsetPHI->replaceAllUsesWith(Offset); | 
|  | OffsetPHI->eraseFromParent(); | 
|  | } | 
|  | return std::make_pair(Size, Offset); | 
|  | } | 
|  |  | 
|  | SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) { | 
|  | SizeOffsetEvalType TrueSide  = compute_(I.getTrueValue()); | 
|  | SizeOffsetEvalType FalseSide = compute_(I.getFalseValue()); | 
|  |  | 
|  | if (!bothKnown(TrueSide) || !bothKnown(FalseSide)) | 
|  | return unknown(); | 
|  | if (TrueSide == FalseSide) | 
|  | return TrueSide; | 
|  |  | 
|  | Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first, | 
|  | FalseSide.first); | 
|  | Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second, | 
|  | FalseSide.second); | 
|  | return std::make_pair(Size, Offset); | 
|  | } | 
|  |  | 
|  | SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) { | 
|  | LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I | 
|  | << '\n'); | 
|  | return unknown(); | 
|  | } |