|  | //===- InlineCost.cpp - Cost analysis for inliner -------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements inline cost analysis. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/InlineCost.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/AssumptionCache.h" | 
|  | #include "llvm/Analysis/BlockFrequencyInfo.h" | 
|  | #include "llvm/Analysis/CodeMetrics.h" | 
|  | #include "llvm/Analysis/ConstantFolding.h" | 
|  | #include "llvm/Analysis/CFG.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/ProfileSummaryInfo.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/Config/llvm-config.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/CallingConv.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/IR/GlobalAlias.h" | 
|  | #include "llvm/IR/InstVisitor.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "inline-cost" | 
|  |  | 
|  | STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed"); | 
|  |  | 
|  | static cl::opt<int> InlineThreshold( | 
|  | "inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore, | 
|  | cl::desc("Control the amount of inlining to perform (default = 225)")); | 
|  |  | 
|  | static cl::opt<int> HintThreshold( | 
|  | "inlinehint-threshold", cl::Hidden, cl::init(325), | 
|  | cl::desc("Threshold for inlining functions with inline hint")); | 
|  |  | 
|  | static cl::opt<int> | 
|  | ColdCallSiteThreshold("inline-cold-callsite-threshold", cl::Hidden, | 
|  | cl::init(45), | 
|  | cl::desc("Threshold for inlining cold callsites")); | 
|  |  | 
|  | // We introduce this threshold to help performance of instrumentation based | 
|  | // PGO before we actually hook up inliner with analysis passes such as BPI and | 
|  | // BFI. | 
|  | static cl::opt<int> ColdThreshold( | 
|  | "inlinecold-threshold", cl::Hidden, cl::init(45), | 
|  | cl::desc("Threshold for inlining functions with cold attribute")); | 
|  |  | 
|  | static cl::opt<int> | 
|  | HotCallSiteThreshold("hot-callsite-threshold", cl::Hidden, cl::init(3000), | 
|  | cl::ZeroOrMore, | 
|  | cl::desc("Threshold for hot callsites ")); | 
|  |  | 
|  | static cl::opt<int> LocallyHotCallSiteThreshold( | 
|  | "locally-hot-callsite-threshold", cl::Hidden, cl::init(525), cl::ZeroOrMore, | 
|  | cl::desc("Threshold for locally hot callsites ")); | 
|  |  | 
|  | static cl::opt<int> ColdCallSiteRelFreq( | 
|  | "cold-callsite-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore, | 
|  | cl::desc("Maxmimum block frequency, expressed as a percentage of caller's " | 
|  | "entry frequency, for a callsite to be cold in the absence of " | 
|  | "profile information.")); | 
|  |  | 
|  | static cl::opt<int> HotCallSiteRelFreq( | 
|  | "hot-callsite-rel-freq", cl::Hidden, cl::init(60), cl::ZeroOrMore, | 
|  | cl::desc("Minimum block frequency, expressed as a multiple of caller's " | 
|  | "entry frequency, for a callsite to be hot in the absence of " | 
|  | "profile information.")); | 
|  |  | 
|  | static cl::opt<bool> OptComputeFullInlineCost( | 
|  | "inline-cost-full", cl::Hidden, cl::init(false), | 
|  | cl::desc("Compute the full inline cost of a call site even when the cost " | 
|  | "exceeds the threshold.")); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> { | 
|  | typedef InstVisitor<CallAnalyzer, bool> Base; | 
|  | friend class InstVisitor<CallAnalyzer, bool>; | 
|  |  | 
|  | /// The TargetTransformInfo available for this compilation. | 
|  | const TargetTransformInfo &TTI; | 
|  |  | 
|  | /// Getter for the cache of @llvm.assume intrinsics. | 
|  | std::function<AssumptionCache &(Function &)> &GetAssumptionCache; | 
|  |  | 
|  | /// Getter for BlockFrequencyInfo | 
|  | Optional<function_ref<BlockFrequencyInfo &(Function &)>> &GetBFI; | 
|  |  | 
|  | /// Profile summary information. | 
|  | ProfileSummaryInfo *PSI; | 
|  |  | 
|  | /// The called function. | 
|  | Function &F; | 
|  |  | 
|  | // Cache the DataLayout since we use it a lot. | 
|  | const DataLayout &DL; | 
|  |  | 
|  | /// The OptimizationRemarkEmitter available for this compilation. | 
|  | OptimizationRemarkEmitter *ORE; | 
|  |  | 
|  | /// The candidate callsite being analyzed. Please do not use this to do | 
|  | /// analysis in the caller function; we want the inline cost query to be | 
|  | /// easily cacheable. Instead, use the cover function paramHasAttr. | 
|  | CallSite CandidateCS; | 
|  |  | 
|  | /// Tunable parameters that control the analysis. | 
|  | const InlineParams &Params; | 
|  |  | 
|  | int Threshold; | 
|  | int Cost; | 
|  | bool ComputeFullInlineCost; | 
|  |  | 
|  | bool IsCallerRecursive; | 
|  | bool IsRecursiveCall; | 
|  | bool ExposesReturnsTwice; | 
|  | bool HasDynamicAlloca; | 
|  | bool ContainsNoDuplicateCall; | 
|  | bool HasReturn; | 
|  | bool HasIndirectBr; | 
|  | bool HasUninlineableIntrinsic; | 
|  | bool InitsVargArgs; | 
|  |  | 
|  | /// Number of bytes allocated statically by the callee. | 
|  | uint64_t AllocatedSize; | 
|  | unsigned NumInstructions, NumVectorInstructions; | 
|  | int VectorBonus, TenPercentVectorBonus; | 
|  | // Bonus to be applied when the callee has only one reachable basic block. | 
|  | int SingleBBBonus; | 
|  |  | 
|  | /// While we walk the potentially-inlined instructions, we build up and | 
|  | /// maintain a mapping of simplified values specific to this callsite. The | 
|  | /// idea is to propagate any special information we have about arguments to | 
|  | /// this call through the inlinable section of the function, and account for | 
|  | /// likely simplifications post-inlining. The most important aspect we track | 
|  | /// is CFG altering simplifications -- when we prove a basic block dead, that | 
|  | /// can cause dramatic shifts in the cost of inlining a function. | 
|  | DenseMap<Value *, Constant *> SimplifiedValues; | 
|  |  | 
|  | /// Keep track of the values which map back (through function arguments) to | 
|  | /// allocas on the caller stack which could be simplified through SROA. | 
|  | DenseMap<Value *, Value *> SROAArgValues; | 
|  |  | 
|  | /// The mapping of caller Alloca values to their accumulated cost savings. If | 
|  | /// we have to disable SROA for one of the allocas, this tells us how much | 
|  | /// cost must be added. | 
|  | DenseMap<Value *, int> SROAArgCosts; | 
|  |  | 
|  | /// Keep track of values which map to a pointer base and constant offset. | 
|  | DenseMap<Value *, std::pair<Value *, APInt>> ConstantOffsetPtrs; | 
|  |  | 
|  | /// Keep track of dead blocks due to the constant arguments. | 
|  | SetVector<BasicBlock *> DeadBlocks; | 
|  |  | 
|  | /// The mapping of the blocks to their known unique successors due to the | 
|  | /// constant arguments. | 
|  | DenseMap<BasicBlock *, BasicBlock *> KnownSuccessors; | 
|  |  | 
|  | /// Model the elimination of repeated loads that is expected to happen | 
|  | /// whenever we simplify away the stores that would otherwise cause them to be | 
|  | /// loads. | 
|  | bool EnableLoadElimination; | 
|  | SmallPtrSet<Value *, 16> LoadAddrSet; | 
|  | int LoadEliminationCost; | 
|  |  | 
|  | // Custom simplification helper routines. | 
|  | bool isAllocaDerivedArg(Value *V); | 
|  | bool lookupSROAArgAndCost(Value *V, Value *&Arg, | 
|  | DenseMap<Value *, int>::iterator &CostIt); | 
|  | void disableSROA(DenseMap<Value *, int>::iterator CostIt); | 
|  | void disableSROA(Value *V); | 
|  | void findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB); | 
|  | void accumulateSROACost(DenseMap<Value *, int>::iterator CostIt, | 
|  | int InstructionCost); | 
|  | void disableLoadElimination(); | 
|  | bool isGEPFree(GetElementPtrInst &GEP); | 
|  | bool canFoldInboundsGEP(GetElementPtrInst &I); | 
|  | bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset); | 
|  | bool simplifyCallSite(Function *F, CallSite CS); | 
|  | template <typename Callable> | 
|  | bool simplifyInstruction(Instruction &I, Callable Evaluate); | 
|  | ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V); | 
|  |  | 
|  | /// Return true if the given argument to the function being considered for | 
|  | /// inlining has the given attribute set either at the call site or the | 
|  | /// function declaration.  Primarily used to inspect call site specific | 
|  | /// attributes since these can be more precise than the ones on the callee | 
|  | /// itself. | 
|  | bool paramHasAttr(Argument *A, Attribute::AttrKind Attr); | 
|  |  | 
|  | /// Return true if the given value is known non null within the callee if | 
|  | /// inlined through this particular callsite. | 
|  | bool isKnownNonNullInCallee(Value *V); | 
|  |  | 
|  | /// Update Threshold based on callsite properties such as callee | 
|  | /// attributes and callee hotness for PGO builds. The Callee is explicitly | 
|  | /// passed to support analyzing indirect calls whose target is inferred by | 
|  | /// analysis. | 
|  | void updateThreshold(CallSite CS, Function &Callee); | 
|  |  | 
|  | /// Return true if size growth is allowed when inlining the callee at CS. | 
|  | bool allowSizeGrowth(CallSite CS); | 
|  |  | 
|  | /// Return true if \p CS is a cold callsite. | 
|  | bool isColdCallSite(CallSite CS, BlockFrequencyInfo *CallerBFI); | 
|  |  | 
|  | /// Return a higher threshold if \p CS is a hot callsite. | 
|  | Optional<int> getHotCallSiteThreshold(CallSite CS, | 
|  | BlockFrequencyInfo *CallerBFI); | 
|  |  | 
|  | // Custom analysis routines. | 
|  | InlineResult analyzeBlock(BasicBlock *BB, | 
|  | SmallPtrSetImpl<const Value *> &EphValues); | 
|  |  | 
|  | // Disable several entry points to the visitor so we don't accidentally use | 
|  | // them by declaring but not defining them here. | 
|  | void visit(Module *); | 
|  | void visit(Module &); | 
|  | void visit(Function *); | 
|  | void visit(Function &); | 
|  | void visit(BasicBlock *); | 
|  | void visit(BasicBlock &); | 
|  |  | 
|  | // Provide base case for our instruction visit. | 
|  | bool visitInstruction(Instruction &I); | 
|  |  | 
|  | // Our visit overrides. | 
|  | bool visitAlloca(AllocaInst &I); | 
|  | bool visitPHI(PHINode &I); | 
|  | bool visitGetElementPtr(GetElementPtrInst &I); | 
|  | bool visitBitCast(BitCastInst &I); | 
|  | bool visitPtrToInt(PtrToIntInst &I); | 
|  | bool visitIntToPtr(IntToPtrInst &I); | 
|  | bool visitCastInst(CastInst &I); | 
|  | bool visitUnaryInstruction(UnaryInstruction &I); | 
|  | bool visitCmpInst(CmpInst &I); | 
|  | bool visitSub(BinaryOperator &I); | 
|  | bool visitBinaryOperator(BinaryOperator &I); | 
|  | bool visitLoad(LoadInst &I); | 
|  | bool visitStore(StoreInst &I); | 
|  | bool visitExtractValue(ExtractValueInst &I); | 
|  | bool visitInsertValue(InsertValueInst &I); | 
|  | bool visitCallSite(CallSite CS); | 
|  | bool visitReturnInst(ReturnInst &RI); | 
|  | bool visitBranchInst(BranchInst &BI); | 
|  | bool visitSelectInst(SelectInst &SI); | 
|  | bool visitSwitchInst(SwitchInst &SI); | 
|  | bool visitIndirectBrInst(IndirectBrInst &IBI); | 
|  | bool visitResumeInst(ResumeInst &RI); | 
|  | bool visitCleanupReturnInst(CleanupReturnInst &RI); | 
|  | bool visitCatchReturnInst(CatchReturnInst &RI); | 
|  | bool visitUnreachableInst(UnreachableInst &I); | 
|  |  | 
|  | public: | 
|  | CallAnalyzer(const TargetTransformInfo &TTI, | 
|  | std::function<AssumptionCache &(Function &)> &GetAssumptionCache, | 
|  | Optional<function_ref<BlockFrequencyInfo &(Function &)>> &GetBFI, | 
|  | ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE, | 
|  | Function &Callee, CallSite CSArg, const InlineParams &Params) | 
|  | : TTI(TTI), GetAssumptionCache(GetAssumptionCache), GetBFI(GetBFI), | 
|  | PSI(PSI), F(Callee), DL(F.getParent()->getDataLayout()), ORE(ORE), | 
|  | CandidateCS(CSArg), Params(Params), Threshold(Params.DefaultThreshold), | 
|  | Cost(0), ComputeFullInlineCost(OptComputeFullInlineCost || | 
|  | Params.ComputeFullInlineCost || ORE), | 
|  | IsCallerRecursive(false), IsRecursiveCall(false), | 
|  | ExposesReturnsTwice(false), HasDynamicAlloca(false), | 
|  | ContainsNoDuplicateCall(false), HasReturn(false), HasIndirectBr(false), | 
|  | HasUninlineableIntrinsic(false), InitsVargArgs(false), AllocatedSize(0), | 
|  | NumInstructions(0), NumVectorInstructions(0), VectorBonus(0), | 
|  | SingleBBBonus(0), EnableLoadElimination(true), LoadEliminationCost(0), | 
|  | NumConstantArgs(0), NumConstantOffsetPtrArgs(0), NumAllocaArgs(0), | 
|  | NumConstantPtrCmps(0), NumConstantPtrDiffs(0), | 
|  | NumInstructionsSimplified(0), SROACostSavings(0), | 
|  | SROACostSavingsLost(0) {} | 
|  |  | 
|  | InlineResult analyzeCall(CallSite CS); | 
|  |  | 
|  | int getThreshold() { return Threshold; } | 
|  | int getCost() { return Cost; } | 
|  |  | 
|  | // Keep a bunch of stats about the cost savings found so we can print them | 
|  | // out when debugging. | 
|  | unsigned NumConstantArgs; | 
|  | unsigned NumConstantOffsetPtrArgs; | 
|  | unsigned NumAllocaArgs; | 
|  | unsigned NumConstantPtrCmps; | 
|  | unsigned NumConstantPtrDiffs; | 
|  | unsigned NumInstructionsSimplified; | 
|  | unsigned SROACostSavings; | 
|  | unsigned SROACostSavingsLost; | 
|  |  | 
|  | void dump(); | 
|  | }; | 
|  |  | 
|  | } // namespace | 
|  |  | 
|  | /// Test whether the given value is an Alloca-derived function argument. | 
|  | bool CallAnalyzer::isAllocaDerivedArg(Value *V) { | 
|  | return SROAArgValues.count(V); | 
|  | } | 
|  |  | 
|  | /// Lookup the SROA-candidate argument and cost iterator which V maps to. | 
|  | /// Returns false if V does not map to a SROA-candidate. | 
|  | bool CallAnalyzer::lookupSROAArgAndCost( | 
|  | Value *V, Value *&Arg, DenseMap<Value *, int>::iterator &CostIt) { | 
|  | if (SROAArgValues.empty() || SROAArgCosts.empty()) | 
|  | return false; | 
|  |  | 
|  | DenseMap<Value *, Value *>::iterator ArgIt = SROAArgValues.find(V); | 
|  | if (ArgIt == SROAArgValues.end()) | 
|  | return false; | 
|  |  | 
|  | Arg = ArgIt->second; | 
|  | CostIt = SROAArgCosts.find(Arg); | 
|  | return CostIt != SROAArgCosts.end(); | 
|  | } | 
|  |  | 
|  | /// Disable SROA for the candidate marked by this cost iterator. | 
|  | /// | 
|  | /// This marks the candidate as no longer viable for SROA, and adds the cost | 
|  | /// savings associated with it back into the inline cost measurement. | 
|  | void CallAnalyzer::disableSROA(DenseMap<Value *, int>::iterator CostIt) { | 
|  | // If we're no longer able to perform SROA we need to undo its cost savings | 
|  | // and prevent subsequent analysis. | 
|  | Cost += CostIt->second; | 
|  | SROACostSavings -= CostIt->second; | 
|  | SROACostSavingsLost += CostIt->second; | 
|  | SROAArgCosts.erase(CostIt); | 
|  | disableLoadElimination(); | 
|  | } | 
|  |  | 
|  | /// If 'V' maps to a SROA candidate, disable SROA for it. | 
|  | void CallAnalyzer::disableSROA(Value *V) { | 
|  | Value *SROAArg; | 
|  | DenseMap<Value *, int>::iterator CostIt; | 
|  | if (lookupSROAArgAndCost(V, SROAArg, CostIt)) | 
|  | disableSROA(CostIt); | 
|  | } | 
|  |  | 
|  | /// Accumulate the given cost for a particular SROA candidate. | 
|  | void CallAnalyzer::accumulateSROACost(DenseMap<Value *, int>::iterator CostIt, | 
|  | int InstructionCost) { | 
|  | CostIt->second += InstructionCost; | 
|  | SROACostSavings += InstructionCost; | 
|  | } | 
|  |  | 
|  | void CallAnalyzer::disableLoadElimination() { | 
|  | if (EnableLoadElimination) { | 
|  | Cost += LoadEliminationCost; | 
|  | LoadEliminationCost = 0; | 
|  | EnableLoadElimination = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Accumulate a constant GEP offset into an APInt if possible. | 
|  | /// | 
|  | /// Returns false if unable to compute the offset for any reason. Respects any | 
|  | /// simplified values known during the analysis of this callsite. | 
|  | bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) { | 
|  | unsigned IntPtrWidth = DL.getIndexTypeSizeInBits(GEP.getType()); | 
|  | assert(IntPtrWidth == Offset.getBitWidth()); | 
|  |  | 
|  | for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); | 
|  | GTI != GTE; ++GTI) { | 
|  | ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); | 
|  | if (!OpC) | 
|  | if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand())) | 
|  | OpC = dyn_cast<ConstantInt>(SimpleOp); | 
|  | if (!OpC) | 
|  | return false; | 
|  | if (OpC->isZero()) | 
|  | continue; | 
|  |  | 
|  | // Handle a struct index, which adds its field offset to the pointer. | 
|  | if (StructType *STy = GTI.getStructTypeOrNull()) { | 
|  | unsigned ElementIdx = OpC->getZExtValue(); | 
|  | const StructLayout *SL = DL.getStructLayout(STy); | 
|  | Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | APInt TypeSize(IntPtrWidth, DL.getTypeAllocSize(GTI.getIndexedType())); | 
|  | Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Use TTI to check whether a GEP is free. | 
|  | /// | 
|  | /// Respects any simplified values known during the analysis of this callsite. | 
|  | bool CallAnalyzer::isGEPFree(GetElementPtrInst &GEP) { | 
|  | SmallVector<Value *, 4> Operands; | 
|  | Operands.push_back(GEP.getOperand(0)); | 
|  | for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I) | 
|  | if (Constant *SimpleOp = SimplifiedValues.lookup(*I)) | 
|  | Operands.push_back(SimpleOp); | 
|  | else | 
|  | Operands.push_back(*I); | 
|  | return TargetTransformInfo::TCC_Free == TTI.getUserCost(&GEP, Operands); | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitAlloca(AllocaInst &I) { | 
|  | // Check whether inlining will turn a dynamic alloca into a static | 
|  | // alloca and handle that case. | 
|  | if (I.isArrayAllocation()) { | 
|  | Constant *Size = SimplifiedValues.lookup(I.getArraySize()); | 
|  | if (auto *AllocSize = dyn_cast_or_null<ConstantInt>(Size)) { | 
|  | Type *Ty = I.getAllocatedType(); | 
|  | AllocatedSize = SaturatingMultiplyAdd( | 
|  | AllocSize->getLimitedValue(), DL.getTypeAllocSize(Ty), AllocatedSize); | 
|  | return Base::visitAlloca(I); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Accumulate the allocated size. | 
|  | if (I.isStaticAlloca()) { | 
|  | Type *Ty = I.getAllocatedType(); | 
|  | AllocatedSize = SaturatingAdd(DL.getTypeAllocSize(Ty), AllocatedSize); | 
|  | } | 
|  |  | 
|  | // We will happily inline static alloca instructions. | 
|  | if (I.isStaticAlloca()) | 
|  | return Base::visitAlloca(I); | 
|  |  | 
|  | // FIXME: This is overly conservative. Dynamic allocas are inefficient for | 
|  | // a variety of reasons, and so we would like to not inline them into | 
|  | // functions which don't currently have a dynamic alloca. This simply | 
|  | // disables inlining altogether in the presence of a dynamic alloca. | 
|  | HasDynamicAlloca = true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitPHI(PHINode &I) { | 
|  | // FIXME: We need to propagate SROA *disabling* through phi nodes, even | 
|  | // though we don't want to propagate it's bonuses. The idea is to disable | 
|  | // SROA if it *might* be used in an inappropriate manner. | 
|  |  | 
|  | // Phi nodes are always zero-cost. | 
|  | // FIXME: Pointer sizes may differ between different address spaces, so do we | 
|  | // need to use correct address space in the call to getPointerSizeInBits here? | 
|  | // Or could we skip the getPointerSizeInBits call completely? As far as I can | 
|  | // see the ZeroOffset is used as a dummy value, so we can probably use any | 
|  | // bit width for the ZeroOffset? | 
|  | APInt ZeroOffset = APInt::getNullValue(DL.getPointerSizeInBits(0)); | 
|  | bool CheckSROA = I.getType()->isPointerTy(); | 
|  |  | 
|  | // Track the constant or pointer with constant offset we've seen so far. | 
|  | Constant *FirstC = nullptr; | 
|  | std::pair<Value *, APInt> FirstBaseAndOffset = {nullptr, ZeroOffset}; | 
|  | Value *FirstV = nullptr; | 
|  |  | 
|  | for (unsigned i = 0, e = I.getNumIncomingValues(); i != e; ++i) { | 
|  | BasicBlock *Pred = I.getIncomingBlock(i); | 
|  | // If the incoming block is dead, skip the incoming block. | 
|  | if (DeadBlocks.count(Pred)) | 
|  | continue; | 
|  | // If the parent block of phi is not the known successor of the incoming | 
|  | // block, skip the incoming block. | 
|  | BasicBlock *KnownSuccessor = KnownSuccessors[Pred]; | 
|  | if (KnownSuccessor && KnownSuccessor != I.getParent()) | 
|  | continue; | 
|  |  | 
|  | Value *V = I.getIncomingValue(i); | 
|  | // If the incoming value is this phi itself, skip the incoming value. | 
|  | if (&I == V) | 
|  | continue; | 
|  |  | 
|  | Constant *C = dyn_cast<Constant>(V); | 
|  | if (!C) | 
|  | C = SimplifiedValues.lookup(V); | 
|  |  | 
|  | std::pair<Value *, APInt> BaseAndOffset = {nullptr, ZeroOffset}; | 
|  | if (!C && CheckSROA) | 
|  | BaseAndOffset = ConstantOffsetPtrs.lookup(V); | 
|  |  | 
|  | if (!C && !BaseAndOffset.first) | 
|  | // The incoming value is neither a constant nor a pointer with constant | 
|  | // offset, exit early. | 
|  | return true; | 
|  |  | 
|  | if (FirstC) { | 
|  | if (FirstC == C) | 
|  | // If we've seen a constant incoming value before and it is the same | 
|  | // constant we see this time, continue checking the next incoming value. | 
|  | continue; | 
|  | // Otherwise early exit because we either see a different constant or saw | 
|  | // a constant before but we have a pointer with constant offset this time. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (FirstV) { | 
|  | // The same logic as above, but check pointer with constant offset here. | 
|  | if (FirstBaseAndOffset == BaseAndOffset) | 
|  | continue; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (C) { | 
|  | // This is the 1st time we've seen a constant, record it. | 
|  | FirstC = C; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // The remaining case is that this is the 1st time we've seen a pointer with | 
|  | // constant offset, record it. | 
|  | FirstV = V; | 
|  | FirstBaseAndOffset = BaseAndOffset; | 
|  | } | 
|  |  | 
|  | // Check if we can map phi to a constant. | 
|  | if (FirstC) { | 
|  | SimplifiedValues[&I] = FirstC; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check if we can map phi to a pointer with constant offset. | 
|  | if (FirstBaseAndOffset.first) { | 
|  | ConstantOffsetPtrs[&I] = FirstBaseAndOffset; | 
|  |  | 
|  | Value *SROAArg; | 
|  | DenseMap<Value *, int>::iterator CostIt; | 
|  | if (lookupSROAArgAndCost(FirstV, SROAArg, CostIt)) | 
|  | SROAArgValues[&I] = SROAArg; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Check we can fold GEPs of constant-offset call site argument pointers. | 
|  | /// This requires target data and inbounds GEPs. | 
|  | /// | 
|  | /// \return true if the specified GEP can be folded. | 
|  | bool CallAnalyzer::canFoldInboundsGEP(GetElementPtrInst &I) { | 
|  | // Check if we have a base + offset for the pointer. | 
|  | std::pair<Value *, APInt> BaseAndOffset = | 
|  | ConstantOffsetPtrs.lookup(I.getPointerOperand()); | 
|  | if (!BaseAndOffset.first) | 
|  | return false; | 
|  |  | 
|  | // Check if the offset of this GEP is constant, and if so accumulate it | 
|  | // into Offset. | 
|  | if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) | 
|  | return false; | 
|  |  | 
|  | // Add the result as a new mapping to Base + Offset. | 
|  | ConstantOffsetPtrs[&I] = BaseAndOffset; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) { | 
|  | Value *SROAArg; | 
|  | DenseMap<Value *, int>::iterator CostIt; | 
|  | bool SROACandidate = | 
|  | lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt); | 
|  |  | 
|  | // Lambda to check whether a GEP's indices are all constant. | 
|  | auto IsGEPOffsetConstant = [&](GetElementPtrInst &GEP) { | 
|  | for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I) | 
|  | if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I)) | 
|  | return false; | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | if ((I.isInBounds() && canFoldInboundsGEP(I)) || IsGEPOffsetConstant(I)) { | 
|  | if (SROACandidate) | 
|  | SROAArgValues[&I] = SROAArg; | 
|  |  | 
|  | // Constant GEPs are modeled as free. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Variable GEPs will require math and will disable SROA. | 
|  | if (SROACandidate) | 
|  | disableSROA(CostIt); | 
|  | return isGEPFree(I); | 
|  | } | 
|  |  | 
|  | /// Simplify \p I if its operands are constants and update SimplifiedValues. | 
|  | /// \p Evaluate is a callable specific to instruction type that evaluates the | 
|  | /// instruction when all the operands are constants. | 
|  | template <typename Callable> | 
|  | bool CallAnalyzer::simplifyInstruction(Instruction &I, Callable Evaluate) { | 
|  | SmallVector<Constant *, 2> COps; | 
|  | for (Value *Op : I.operands()) { | 
|  | Constant *COp = dyn_cast<Constant>(Op); | 
|  | if (!COp) | 
|  | COp = SimplifiedValues.lookup(Op); | 
|  | if (!COp) | 
|  | return false; | 
|  | COps.push_back(COp); | 
|  | } | 
|  | auto *C = Evaluate(COps); | 
|  | if (!C) | 
|  | return false; | 
|  | SimplifiedValues[&I] = C; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitBitCast(BitCastInst &I) { | 
|  | // Propagate constants through bitcasts. | 
|  | if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { | 
|  | return ConstantExpr::getBitCast(COps[0], I.getType()); | 
|  | })) | 
|  | return true; | 
|  |  | 
|  | // Track base/offsets through casts | 
|  | std::pair<Value *, APInt> BaseAndOffset = | 
|  | ConstantOffsetPtrs.lookup(I.getOperand(0)); | 
|  | // Casts don't change the offset, just wrap it up. | 
|  | if (BaseAndOffset.first) | 
|  | ConstantOffsetPtrs[&I] = BaseAndOffset; | 
|  |  | 
|  | // Also look for SROA candidates here. | 
|  | Value *SROAArg; | 
|  | DenseMap<Value *, int>::iterator CostIt; | 
|  | if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) | 
|  | SROAArgValues[&I] = SROAArg; | 
|  |  | 
|  | // Bitcasts are always zero cost. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) { | 
|  | // Propagate constants through ptrtoint. | 
|  | if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { | 
|  | return ConstantExpr::getPtrToInt(COps[0], I.getType()); | 
|  | })) | 
|  | return true; | 
|  |  | 
|  | // Track base/offset pairs when converted to a plain integer provided the | 
|  | // integer is large enough to represent the pointer. | 
|  | unsigned IntegerSize = I.getType()->getScalarSizeInBits(); | 
|  | unsigned AS = I.getOperand(0)->getType()->getPointerAddressSpace(); | 
|  | if (IntegerSize >= DL.getPointerSizeInBits(AS)) { | 
|  | std::pair<Value *, APInt> BaseAndOffset = | 
|  | ConstantOffsetPtrs.lookup(I.getOperand(0)); | 
|  | if (BaseAndOffset.first) | 
|  | ConstantOffsetPtrs[&I] = BaseAndOffset; | 
|  | } | 
|  |  | 
|  | // This is really weird. Technically, ptrtoint will disable SROA. However, | 
|  | // unless that ptrtoint is *used* somewhere in the live basic blocks after | 
|  | // inlining, it will be nuked, and SROA should proceed. All of the uses which | 
|  | // would block SROA would also block SROA if applied directly to a pointer, | 
|  | // and so we can just add the integer in here. The only places where SROA is | 
|  | // preserved either cannot fire on an integer, or won't in-and-of themselves | 
|  | // disable SROA (ext) w/o some later use that we would see and disable. | 
|  | Value *SROAArg; | 
|  | DenseMap<Value *, int>::iterator CostIt; | 
|  | if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) | 
|  | SROAArgValues[&I] = SROAArg; | 
|  |  | 
|  | return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I); | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) { | 
|  | // Propagate constants through ptrtoint. | 
|  | if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { | 
|  | return ConstantExpr::getIntToPtr(COps[0], I.getType()); | 
|  | })) | 
|  | return true; | 
|  |  | 
|  | // Track base/offset pairs when round-tripped through a pointer without | 
|  | // modifications provided the integer is not too large. | 
|  | Value *Op = I.getOperand(0); | 
|  | unsigned IntegerSize = Op->getType()->getScalarSizeInBits(); | 
|  | if (IntegerSize <= DL.getPointerTypeSizeInBits(I.getType())) { | 
|  | std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op); | 
|  | if (BaseAndOffset.first) | 
|  | ConstantOffsetPtrs[&I] = BaseAndOffset; | 
|  | } | 
|  |  | 
|  | // "Propagate" SROA here in the same manner as we do for ptrtoint above. | 
|  | Value *SROAArg; | 
|  | DenseMap<Value *, int>::iterator CostIt; | 
|  | if (lookupSROAArgAndCost(Op, SROAArg, CostIt)) | 
|  | SROAArgValues[&I] = SROAArg; | 
|  |  | 
|  | return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I); | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitCastInst(CastInst &I) { | 
|  | // Propagate constants through ptrtoint. | 
|  | if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { | 
|  | return ConstantExpr::getCast(I.getOpcode(), COps[0], I.getType()); | 
|  | })) | 
|  | return true; | 
|  |  | 
|  | // Disable SROA in the face of arbitrary casts we don't whitelist elsewhere. | 
|  | disableSROA(I.getOperand(0)); | 
|  |  | 
|  | // If this is a floating-point cast, and the target says this operation | 
|  | // is expensive, this may eventually become a library call. Treat the cost | 
|  | // as such. | 
|  | switch (I.getOpcode()) { | 
|  | case Instruction::FPTrunc: | 
|  | case Instruction::FPExt: | 
|  | case Instruction::UIToFP: | 
|  | case Instruction::SIToFP: | 
|  | case Instruction::FPToUI: | 
|  | case Instruction::FPToSI: | 
|  | if (TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive) | 
|  | Cost += InlineConstants::CallPenalty; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I); | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) { | 
|  | Value *Operand = I.getOperand(0); | 
|  | if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { | 
|  | return ConstantFoldInstOperands(&I, COps[0], DL); | 
|  | })) | 
|  | return true; | 
|  |  | 
|  | // Disable any SROA on the argument to arbitrary unary operators. | 
|  | disableSROA(Operand); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::paramHasAttr(Argument *A, Attribute::AttrKind Attr) { | 
|  | return CandidateCS.paramHasAttr(A->getArgNo(), Attr); | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::isKnownNonNullInCallee(Value *V) { | 
|  | // Does the *call site* have the NonNull attribute set on an argument?  We | 
|  | // use the attribute on the call site to memoize any analysis done in the | 
|  | // caller. This will also trip if the callee function has a non-null | 
|  | // parameter attribute, but that's a less interesting case because hopefully | 
|  | // the callee would already have been simplified based on that. | 
|  | if (Argument *A = dyn_cast<Argument>(V)) | 
|  | if (paramHasAttr(A, Attribute::NonNull)) | 
|  | return true; | 
|  |  | 
|  | // Is this an alloca in the caller?  This is distinct from the attribute case | 
|  | // above because attributes aren't updated within the inliner itself and we | 
|  | // always want to catch the alloca derived case. | 
|  | if (isAllocaDerivedArg(V)) | 
|  | // We can actually predict the result of comparisons between an | 
|  | // alloca-derived value and null. Note that this fires regardless of | 
|  | // SROA firing. | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::allowSizeGrowth(CallSite CS) { | 
|  | // If the normal destination of the invoke or the parent block of the call | 
|  | // site is unreachable-terminated, there is little point in inlining this | 
|  | // unless there is literally zero cost. | 
|  | // FIXME: Note that it is possible that an unreachable-terminated block has a | 
|  | // hot entry. For example, in below scenario inlining hot_call_X() may be | 
|  | // beneficial : | 
|  | // main() { | 
|  | //   hot_call_1(); | 
|  | //   ... | 
|  | //   hot_call_N() | 
|  | //   exit(0); | 
|  | // } | 
|  | // For now, we are not handling this corner case here as it is rare in real | 
|  | // code. In future, we should elaborate this based on BPI and BFI in more | 
|  | // general threshold adjusting heuristics in updateThreshold(). | 
|  | Instruction *Instr = CS.getInstruction(); | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst>(Instr)) { | 
|  | if (isa<UnreachableInst>(II->getNormalDest()->getTerminator())) | 
|  | return false; | 
|  | } else if (isa<UnreachableInst>(Instr->getParent()->getTerminator())) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::isColdCallSite(CallSite CS, BlockFrequencyInfo *CallerBFI) { | 
|  | // If global profile summary is available, then callsite's coldness is | 
|  | // determined based on that. | 
|  | if (PSI && PSI->hasProfileSummary()) | 
|  | return PSI->isColdCallSite(CS, CallerBFI); | 
|  |  | 
|  | // Otherwise we need BFI to be available. | 
|  | if (!CallerBFI) | 
|  | return false; | 
|  |  | 
|  | // Determine if the callsite is cold relative to caller's entry. We could | 
|  | // potentially cache the computation of scaled entry frequency, but the added | 
|  | // complexity is not worth it unless this scaling shows up high in the | 
|  | // profiles. | 
|  | const BranchProbability ColdProb(ColdCallSiteRelFreq, 100); | 
|  | auto CallSiteBB = CS.getInstruction()->getParent(); | 
|  | auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB); | 
|  | auto CallerEntryFreq = | 
|  | CallerBFI->getBlockFreq(&(CS.getCaller()->getEntryBlock())); | 
|  | return CallSiteFreq < CallerEntryFreq * ColdProb; | 
|  | } | 
|  |  | 
|  | Optional<int> | 
|  | CallAnalyzer::getHotCallSiteThreshold(CallSite CS, | 
|  | BlockFrequencyInfo *CallerBFI) { | 
|  |  | 
|  | // If global profile summary is available, then callsite's hotness is | 
|  | // determined based on that. | 
|  | if (PSI && PSI->hasProfileSummary() && PSI->isHotCallSite(CS, CallerBFI)) | 
|  | return Params.HotCallSiteThreshold; | 
|  |  | 
|  | // Otherwise we need BFI to be available and to have a locally hot callsite | 
|  | // threshold. | 
|  | if (!CallerBFI || !Params.LocallyHotCallSiteThreshold) | 
|  | return None; | 
|  |  | 
|  | // Determine if the callsite is hot relative to caller's entry. We could | 
|  | // potentially cache the computation of scaled entry frequency, but the added | 
|  | // complexity is not worth it unless this scaling shows up high in the | 
|  | // profiles. | 
|  | auto CallSiteBB = CS.getInstruction()->getParent(); | 
|  | auto CallSiteFreq = CallerBFI->getBlockFreq(CallSiteBB).getFrequency(); | 
|  | auto CallerEntryFreq = CallerBFI->getEntryFreq(); | 
|  | if (CallSiteFreq >= CallerEntryFreq * HotCallSiteRelFreq) | 
|  | return Params.LocallyHotCallSiteThreshold; | 
|  |  | 
|  | // Otherwise treat it normally. | 
|  | return None; | 
|  | } | 
|  |  | 
|  | void CallAnalyzer::updateThreshold(CallSite CS, Function &Callee) { | 
|  | // If no size growth is allowed for this inlining, set Threshold to 0. | 
|  | if (!allowSizeGrowth(CS)) { | 
|  | Threshold = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | Function *Caller = CS.getCaller(); | 
|  |  | 
|  | // return min(A, B) if B is valid. | 
|  | auto MinIfValid = [](int A, Optional<int> B) { | 
|  | return B ? std::min(A, B.getValue()) : A; | 
|  | }; | 
|  |  | 
|  | // return max(A, B) if B is valid. | 
|  | auto MaxIfValid = [](int A, Optional<int> B) { | 
|  | return B ? std::max(A, B.getValue()) : A; | 
|  | }; | 
|  |  | 
|  | // Various bonus percentages. These are multiplied by Threshold to get the | 
|  | // bonus values. | 
|  | // SingleBBBonus: This bonus is applied if the callee has a single reachable | 
|  | // basic block at the given callsite context. This is speculatively applied | 
|  | // and withdrawn if more than one basic block is seen. | 
|  | // | 
|  | // Vector bonuses: We want to more aggressively inline vector-dense kernels | 
|  | // and apply this bonus based on the percentage of vector instructions. A | 
|  | // bonus is applied if the vector instructions exceed 50% and half that amount | 
|  | // is applied if it exceeds 10%. Note that these bonuses are some what | 
|  | // arbitrary and evolved over time by accident as much as because they are | 
|  | // principled bonuses. | 
|  | // FIXME: It would be nice to base the bonus values on something more | 
|  | // scientific. | 
|  | // | 
|  | // LstCallToStaticBonus: This large bonus is applied to ensure the inlining | 
|  | // of the last call to a static function as inlining such functions is | 
|  | // guaranteed to reduce code size. | 
|  | // | 
|  | // These bonus percentages may be set to 0 based on properties of the caller | 
|  | // and the callsite. | 
|  | int SingleBBBonusPercent = 50; | 
|  | int VectorBonusPercent = 150; | 
|  | int LastCallToStaticBonus = InlineConstants::LastCallToStaticBonus; | 
|  |  | 
|  | // Lambda to set all the above bonus and bonus percentages to 0. | 
|  | auto DisallowAllBonuses = [&]() { | 
|  | SingleBBBonusPercent = 0; | 
|  | VectorBonusPercent = 0; | 
|  | LastCallToStaticBonus = 0; | 
|  | }; | 
|  |  | 
|  | // Use the OptMinSizeThreshold or OptSizeThreshold knob if they are available | 
|  | // and reduce the threshold if the caller has the necessary attribute. | 
|  | if (Caller->optForMinSize()) { | 
|  | Threshold = MinIfValid(Threshold, Params.OptMinSizeThreshold); | 
|  | // For minsize, we want to disable the single BB bonus and the vector | 
|  | // bonuses, but not the last-call-to-static bonus. Inlining the last call to | 
|  | // a static function will, at the minimum, eliminate the parameter setup and | 
|  | // call/return instructions. | 
|  | SingleBBBonusPercent = 0; | 
|  | VectorBonusPercent = 0; | 
|  | } else if (Caller->optForSize()) | 
|  | Threshold = MinIfValid(Threshold, Params.OptSizeThreshold); | 
|  |  | 
|  | // Adjust the threshold based on inlinehint attribute and profile based | 
|  | // hotness information if the caller does not have MinSize attribute. | 
|  | if (!Caller->optForMinSize()) { | 
|  | if (Callee.hasFnAttribute(Attribute::InlineHint)) | 
|  | Threshold = MaxIfValid(Threshold, Params.HintThreshold); | 
|  |  | 
|  | // FIXME: After switching to the new passmanager, simplify the logic below | 
|  | // by checking only the callsite hotness/coldness as we will reliably | 
|  | // have local profile information. | 
|  | // | 
|  | // Callsite hotness and coldness can be determined if sample profile is | 
|  | // used (which adds hotness metadata to calls) or if caller's | 
|  | // BlockFrequencyInfo is available. | 
|  | BlockFrequencyInfo *CallerBFI = GetBFI ? &((*GetBFI)(*Caller)) : nullptr; | 
|  | auto HotCallSiteThreshold = getHotCallSiteThreshold(CS, CallerBFI); | 
|  | if (!Caller->optForSize() && HotCallSiteThreshold) { | 
|  | LLVM_DEBUG(dbgs() << "Hot callsite.\n"); | 
|  | // FIXME: This should update the threshold only if it exceeds the | 
|  | // current threshold, but AutoFDO + ThinLTO currently relies on this | 
|  | // behavior to prevent inlining of hot callsites during ThinLTO | 
|  | // compile phase. | 
|  | Threshold = HotCallSiteThreshold.getValue(); | 
|  | } else if (isColdCallSite(CS, CallerBFI)) { | 
|  | LLVM_DEBUG(dbgs() << "Cold callsite.\n"); | 
|  | // Do not apply bonuses for a cold callsite including the | 
|  | // LastCallToStatic bonus. While this bonus might result in code size | 
|  | // reduction, it can cause the size of a non-cold caller to increase | 
|  | // preventing it from being inlined. | 
|  | DisallowAllBonuses(); | 
|  | Threshold = MinIfValid(Threshold, Params.ColdCallSiteThreshold); | 
|  | } else if (PSI) { | 
|  | // Use callee's global profile information only if we have no way of | 
|  | // determining this via callsite information. | 
|  | if (PSI->isFunctionEntryHot(&Callee)) { | 
|  | LLVM_DEBUG(dbgs() << "Hot callee.\n"); | 
|  | // If callsite hotness can not be determined, we may still know | 
|  | // that the callee is hot and treat it as a weaker hint for threshold | 
|  | // increase. | 
|  | Threshold = MaxIfValid(Threshold, Params.HintThreshold); | 
|  | } else if (PSI->isFunctionEntryCold(&Callee)) { | 
|  | LLVM_DEBUG(dbgs() << "Cold callee.\n"); | 
|  | // Do not apply bonuses for a cold callee including the | 
|  | // LastCallToStatic bonus. While this bonus might result in code size | 
|  | // reduction, it can cause the size of a non-cold caller to increase | 
|  | // preventing it from being inlined. | 
|  | DisallowAllBonuses(); | 
|  | Threshold = MinIfValid(Threshold, Params.ColdThreshold); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Finally, take the target-specific inlining threshold multiplier into | 
|  | // account. | 
|  | Threshold *= TTI.getInliningThresholdMultiplier(); | 
|  |  | 
|  | SingleBBBonus = Threshold * SingleBBBonusPercent / 100; | 
|  | VectorBonus = Threshold * VectorBonusPercent / 100; | 
|  |  | 
|  | bool OnlyOneCallAndLocalLinkage = | 
|  | F.hasLocalLinkage() && F.hasOneUse() && &F == CS.getCalledFunction(); | 
|  | // If there is only one call of the function, and it has internal linkage, | 
|  | // the cost of inlining it drops dramatically. It may seem odd to update | 
|  | // Cost in updateThreshold, but the bonus depends on the logic in this method. | 
|  | if (OnlyOneCallAndLocalLinkage) | 
|  | Cost -= LastCallToStaticBonus; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitCmpInst(CmpInst &I) { | 
|  | Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); | 
|  | // First try to handle simplified comparisons. | 
|  | if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { | 
|  | return ConstantExpr::getCompare(I.getPredicate(), COps[0], COps[1]); | 
|  | })) | 
|  | return true; | 
|  |  | 
|  | if (I.getOpcode() == Instruction::FCmp) | 
|  | return false; | 
|  |  | 
|  | // Otherwise look for a comparison between constant offset pointers with | 
|  | // a common base. | 
|  | Value *LHSBase, *RHSBase; | 
|  | APInt LHSOffset, RHSOffset; | 
|  | std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); | 
|  | if (LHSBase) { | 
|  | std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); | 
|  | if (RHSBase && LHSBase == RHSBase) { | 
|  | // We have common bases, fold the icmp to a constant based on the | 
|  | // offsets. | 
|  | Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); | 
|  | Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); | 
|  | if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) { | 
|  | SimplifiedValues[&I] = C; | 
|  | ++NumConstantPtrCmps; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the comparison is an equality comparison with null, we can simplify it | 
|  | // if we know the value (argument) can't be null | 
|  | if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1)) && | 
|  | isKnownNonNullInCallee(I.getOperand(0))) { | 
|  | bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE; | 
|  | SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType()) | 
|  | : ConstantInt::getFalse(I.getType()); | 
|  | return true; | 
|  | } | 
|  | // Finally check for SROA candidates in comparisons. | 
|  | Value *SROAArg; | 
|  | DenseMap<Value *, int>::iterator CostIt; | 
|  | if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) { | 
|  | if (isa<ConstantPointerNull>(I.getOperand(1))) { | 
|  | accumulateSROACost(CostIt, InlineConstants::InstrCost); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | disableSROA(CostIt); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitSub(BinaryOperator &I) { | 
|  | // Try to handle a special case: we can fold computing the difference of two | 
|  | // constant-related pointers. | 
|  | Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); | 
|  | Value *LHSBase, *RHSBase; | 
|  | APInt LHSOffset, RHSOffset; | 
|  | std::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); | 
|  | if (LHSBase) { | 
|  | std::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); | 
|  | if (RHSBase && LHSBase == RHSBase) { | 
|  | // We have common bases, fold the subtract to a constant based on the | 
|  | // offsets. | 
|  | Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); | 
|  | Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); | 
|  | if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) { | 
|  | SimplifiedValues[&I] = C; | 
|  | ++NumConstantPtrDiffs; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, fall back to the generic logic for simplifying and handling | 
|  | // instructions. | 
|  | return Base::visitSub(I); | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) { | 
|  | Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); | 
|  | Constant *CLHS = dyn_cast<Constant>(LHS); | 
|  | if (!CLHS) | 
|  | CLHS = SimplifiedValues.lookup(LHS); | 
|  | Constant *CRHS = dyn_cast<Constant>(RHS); | 
|  | if (!CRHS) | 
|  | CRHS = SimplifiedValues.lookup(RHS); | 
|  |  | 
|  | Value *SimpleV = nullptr; | 
|  | if (auto FI = dyn_cast<FPMathOperator>(&I)) | 
|  | SimpleV = SimplifyFPBinOp(I.getOpcode(), CLHS ? CLHS : LHS, | 
|  | CRHS ? CRHS : RHS, FI->getFastMathFlags(), DL); | 
|  | else | 
|  | SimpleV = | 
|  | SimplifyBinOp(I.getOpcode(), CLHS ? CLHS : LHS, CRHS ? CRHS : RHS, DL); | 
|  |  | 
|  | if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) | 
|  | SimplifiedValues[&I] = C; | 
|  |  | 
|  | if (SimpleV) | 
|  | return true; | 
|  |  | 
|  | // Disable any SROA on arguments to arbitrary, unsimplified binary operators. | 
|  | disableSROA(LHS); | 
|  | disableSROA(RHS); | 
|  |  | 
|  | // If the instruction is floating point, and the target says this operation | 
|  | // is expensive, this may eventually become a library call. Treat the cost | 
|  | // as such. | 
|  | if (I.getType()->isFloatingPointTy() && | 
|  | TTI.getFPOpCost(I.getType()) == TargetTransformInfo::TCC_Expensive) | 
|  | Cost += InlineConstants::CallPenalty; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitLoad(LoadInst &I) { | 
|  | Value *SROAArg; | 
|  | DenseMap<Value *, int>::iterator CostIt; | 
|  | if (lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt)) { | 
|  | if (I.isSimple()) { | 
|  | accumulateSROACost(CostIt, InlineConstants::InstrCost); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | disableSROA(CostIt); | 
|  | } | 
|  |  | 
|  | // If the data is already loaded from this address and hasn't been clobbered | 
|  | // by any stores or calls, this load is likely to be redundant and can be | 
|  | // eliminated. | 
|  | if (EnableLoadElimination && | 
|  | !LoadAddrSet.insert(I.getPointerOperand()).second && I.isUnordered()) { | 
|  | LoadEliminationCost += InlineConstants::InstrCost; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitStore(StoreInst &I) { | 
|  | Value *SROAArg; | 
|  | DenseMap<Value *, int>::iterator CostIt; | 
|  | if (lookupSROAArgAndCost(I.getPointerOperand(), SROAArg, CostIt)) { | 
|  | if (I.isSimple()) { | 
|  | accumulateSROACost(CostIt, InlineConstants::InstrCost); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | disableSROA(CostIt); | 
|  | } | 
|  |  | 
|  | // The store can potentially clobber loads and prevent repeated loads from | 
|  | // being eliminated. | 
|  | // FIXME: | 
|  | // 1. We can probably keep an initial set of eliminatable loads substracted | 
|  | // from the cost even when we finally see a store. We just need to disable | 
|  | // *further* accumulation of elimination savings. | 
|  | // 2. We should probably at some point thread MemorySSA for the callee into | 
|  | // this and then use that to actually compute *really* precise savings. | 
|  | disableLoadElimination(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) { | 
|  | // Constant folding for extract value is trivial. | 
|  | if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { | 
|  | return ConstantExpr::getExtractValue(COps[0], I.getIndices()); | 
|  | })) | 
|  | return true; | 
|  |  | 
|  | // SROA can look through these but give them a cost. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitInsertValue(InsertValueInst &I) { | 
|  | // Constant folding for insert value is trivial. | 
|  | if (simplifyInstruction(I, [&](SmallVectorImpl<Constant *> &COps) { | 
|  | return ConstantExpr::getInsertValue(/*AggregateOperand*/ COps[0], | 
|  | /*InsertedValueOperand*/ COps[1], | 
|  | I.getIndices()); | 
|  | })) | 
|  | return true; | 
|  |  | 
|  | // SROA can look through these but give them a cost. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Try to simplify a call site. | 
|  | /// | 
|  | /// Takes a concrete function and callsite and tries to actually simplify it by | 
|  | /// analyzing the arguments and call itself with instsimplify. Returns true if | 
|  | /// it has simplified the callsite to some other entity (a constant), making it | 
|  | /// free. | 
|  | bool CallAnalyzer::simplifyCallSite(Function *F, CallSite CS) { | 
|  | // FIXME: Using the instsimplify logic directly for this is inefficient | 
|  | // because we have to continually rebuild the argument list even when no | 
|  | // simplifications can be performed. Until that is fixed with remapping | 
|  | // inside of instsimplify, directly constant fold calls here. | 
|  | if (!canConstantFoldCallTo(CS, F)) | 
|  | return false; | 
|  |  | 
|  | // Try to re-map the arguments to constants. | 
|  | SmallVector<Constant *, 4> ConstantArgs; | 
|  | ConstantArgs.reserve(CS.arg_size()); | 
|  | for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E; | 
|  | ++I) { | 
|  | Constant *C = dyn_cast<Constant>(*I); | 
|  | if (!C) | 
|  | C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(*I)); | 
|  | if (!C) | 
|  | return false; // This argument doesn't map to a constant. | 
|  |  | 
|  | ConstantArgs.push_back(C); | 
|  | } | 
|  | if (Constant *C = ConstantFoldCall(CS, F, ConstantArgs)) { | 
|  | SimplifiedValues[CS.getInstruction()] = C; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitCallSite(CallSite CS) { | 
|  | if (CS.hasFnAttr(Attribute::ReturnsTwice) && | 
|  | !F.hasFnAttribute(Attribute::ReturnsTwice)) { | 
|  | // This aborts the entire analysis. | 
|  | ExposesReturnsTwice = true; | 
|  | return false; | 
|  | } | 
|  | if (CS.isCall() && cast<CallInst>(CS.getInstruction())->cannotDuplicate()) | 
|  | ContainsNoDuplicateCall = true; | 
|  |  | 
|  | if (Function *F = CS.getCalledFunction()) { | 
|  | // When we have a concrete function, first try to simplify it directly. | 
|  | if (simplifyCallSite(F, CS)) | 
|  | return true; | 
|  |  | 
|  | // Next check if it is an intrinsic we know about. | 
|  | // FIXME: Lift this into part of the InstVisitor. | 
|  | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) { | 
|  | switch (II->getIntrinsicID()) { | 
|  | default: | 
|  | if (!CS.onlyReadsMemory() && !isAssumeLikeIntrinsic(II)) | 
|  | disableLoadElimination(); | 
|  | return Base::visitCallSite(CS); | 
|  |  | 
|  | case Intrinsic::load_relative: | 
|  | // This is normally lowered to 4 LLVM instructions. | 
|  | Cost += 3 * InlineConstants::InstrCost; | 
|  | return false; | 
|  |  | 
|  | case Intrinsic::memset: | 
|  | case Intrinsic::memcpy: | 
|  | case Intrinsic::memmove: | 
|  | disableLoadElimination(); | 
|  | // SROA can usually chew through these intrinsics, but they aren't free. | 
|  | return false; | 
|  | case Intrinsic::icall_branch_funnel: | 
|  | case Intrinsic::localescape: | 
|  | HasUninlineableIntrinsic = true; | 
|  | return false; | 
|  | case Intrinsic::vastart: | 
|  | InitsVargArgs = true; | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (F == CS.getInstruction()->getFunction()) { | 
|  | // This flag will fully abort the analysis, so don't bother with anything | 
|  | // else. | 
|  | IsRecursiveCall = true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (TTI.isLoweredToCall(F)) { | 
|  | // We account for the average 1 instruction per call argument setup | 
|  | // here. | 
|  | Cost += CS.arg_size() * InlineConstants::InstrCost; | 
|  |  | 
|  | // Everything other than inline ASM will also have a significant cost | 
|  | // merely from making the call. | 
|  | if (!isa<InlineAsm>(CS.getCalledValue())) | 
|  | Cost += InlineConstants::CallPenalty; | 
|  | } | 
|  |  | 
|  | if (!CS.onlyReadsMemory()) | 
|  | disableLoadElimination(); | 
|  | return Base::visitCallSite(CS); | 
|  | } | 
|  |  | 
|  | // Otherwise we're in a very special case -- an indirect function call. See | 
|  | // if we can be particularly clever about this. | 
|  | Value *Callee = CS.getCalledValue(); | 
|  |  | 
|  | // First, pay the price of the argument setup. We account for the average | 
|  | // 1 instruction per call argument setup here. | 
|  | Cost += CS.arg_size() * InlineConstants::InstrCost; | 
|  |  | 
|  | // Next, check if this happens to be an indirect function call to a known | 
|  | // function in this inline context. If not, we've done all we can. | 
|  | Function *F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee)); | 
|  | if (!F) { | 
|  | if (!CS.onlyReadsMemory()) | 
|  | disableLoadElimination(); | 
|  | return Base::visitCallSite(CS); | 
|  | } | 
|  |  | 
|  | // If we have a constant that we are calling as a function, we can peer | 
|  | // through it and see the function target. This happens not infrequently | 
|  | // during devirtualization and so we want to give it a hefty bonus for | 
|  | // inlining, but cap that bonus in the event that inlining wouldn't pan | 
|  | // out. Pretend to inline the function, with a custom threshold. | 
|  | auto IndirectCallParams = Params; | 
|  | IndirectCallParams.DefaultThreshold = InlineConstants::IndirectCallThreshold; | 
|  | CallAnalyzer CA(TTI, GetAssumptionCache, GetBFI, PSI, ORE, *F, CS, | 
|  | IndirectCallParams); | 
|  | if (CA.analyzeCall(CS)) { | 
|  | // We were able to inline the indirect call! Subtract the cost from the | 
|  | // threshold to get the bonus we want to apply, but don't go below zero. | 
|  | Cost -= std::max(0, CA.getThreshold() - CA.getCost()); | 
|  | } | 
|  |  | 
|  | if (!F->onlyReadsMemory()) | 
|  | disableLoadElimination(); | 
|  | return Base::visitCallSite(CS); | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitReturnInst(ReturnInst &RI) { | 
|  | // At least one return instruction will be free after inlining. | 
|  | bool Free = !HasReturn; | 
|  | HasReturn = true; | 
|  | return Free; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitBranchInst(BranchInst &BI) { | 
|  | // We model unconditional branches as essentially free -- they really | 
|  | // shouldn't exist at all, but handling them makes the behavior of the | 
|  | // inliner more regular and predictable. Interestingly, conditional branches | 
|  | // which will fold away are also free. | 
|  | return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) || | 
|  | dyn_cast_or_null<ConstantInt>( | 
|  | SimplifiedValues.lookup(BI.getCondition())); | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitSelectInst(SelectInst &SI) { | 
|  | bool CheckSROA = SI.getType()->isPointerTy(); | 
|  | Value *TrueVal = SI.getTrueValue(); | 
|  | Value *FalseVal = SI.getFalseValue(); | 
|  |  | 
|  | Constant *TrueC = dyn_cast<Constant>(TrueVal); | 
|  | if (!TrueC) | 
|  | TrueC = SimplifiedValues.lookup(TrueVal); | 
|  | Constant *FalseC = dyn_cast<Constant>(FalseVal); | 
|  | if (!FalseC) | 
|  | FalseC = SimplifiedValues.lookup(FalseVal); | 
|  | Constant *CondC = | 
|  | dyn_cast_or_null<Constant>(SimplifiedValues.lookup(SI.getCondition())); | 
|  |  | 
|  | if (!CondC) { | 
|  | // Select C, X, X => X | 
|  | if (TrueC == FalseC && TrueC) { | 
|  | SimplifiedValues[&SI] = TrueC; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!CheckSROA) | 
|  | return Base::visitSelectInst(SI); | 
|  |  | 
|  | std::pair<Value *, APInt> TrueBaseAndOffset = | 
|  | ConstantOffsetPtrs.lookup(TrueVal); | 
|  | std::pair<Value *, APInt> FalseBaseAndOffset = | 
|  | ConstantOffsetPtrs.lookup(FalseVal); | 
|  | if (TrueBaseAndOffset == FalseBaseAndOffset && TrueBaseAndOffset.first) { | 
|  | ConstantOffsetPtrs[&SI] = TrueBaseAndOffset; | 
|  |  | 
|  | Value *SROAArg; | 
|  | DenseMap<Value *, int>::iterator CostIt; | 
|  | if (lookupSROAArgAndCost(TrueVal, SROAArg, CostIt)) | 
|  | SROAArgValues[&SI] = SROAArg; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return Base::visitSelectInst(SI); | 
|  | } | 
|  |  | 
|  | // Select condition is a constant. | 
|  | Value *SelectedV = CondC->isAllOnesValue() | 
|  | ? TrueVal | 
|  | : (CondC->isNullValue()) ? FalseVal : nullptr; | 
|  | if (!SelectedV) { | 
|  | // Condition is a vector constant that is not all 1s or all 0s.  If all | 
|  | // operands are constants, ConstantExpr::getSelect() can handle the cases | 
|  | // such as select vectors. | 
|  | if (TrueC && FalseC) { | 
|  | if (auto *C = ConstantExpr::getSelect(CondC, TrueC, FalseC)) { | 
|  | SimplifiedValues[&SI] = C; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return Base::visitSelectInst(SI); | 
|  | } | 
|  |  | 
|  | // Condition is either all 1s or all 0s. SI can be simplified. | 
|  | if (Constant *SelectedC = dyn_cast<Constant>(SelectedV)) { | 
|  | SimplifiedValues[&SI] = SelectedC; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (!CheckSROA) | 
|  | return true; | 
|  |  | 
|  | std::pair<Value *, APInt> BaseAndOffset = | 
|  | ConstantOffsetPtrs.lookup(SelectedV); | 
|  | if (BaseAndOffset.first) { | 
|  | ConstantOffsetPtrs[&SI] = BaseAndOffset; | 
|  |  | 
|  | Value *SROAArg; | 
|  | DenseMap<Value *, int>::iterator CostIt; | 
|  | if (lookupSROAArgAndCost(SelectedV, SROAArg, CostIt)) | 
|  | SROAArgValues[&SI] = SROAArg; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) { | 
|  | // We model unconditional switches as free, see the comments on handling | 
|  | // branches. | 
|  | if (isa<ConstantInt>(SI.getCondition())) | 
|  | return true; | 
|  | if (Value *V = SimplifiedValues.lookup(SI.getCondition())) | 
|  | if (isa<ConstantInt>(V)) | 
|  | return true; | 
|  |  | 
|  | // Assume the most general case where the switch is lowered into | 
|  | // either a jump table, bit test, or a balanced binary tree consisting of | 
|  | // case clusters without merging adjacent clusters with the same | 
|  | // destination. We do not consider the switches that are lowered with a mix | 
|  | // of jump table/bit test/binary search tree. The cost of the switch is | 
|  | // proportional to the size of the tree or the size of jump table range. | 
|  | // | 
|  | // NB: We convert large switches which are just used to initialize large phi | 
|  | // nodes to lookup tables instead in simplify-cfg, so this shouldn't prevent | 
|  | // inlining those. It will prevent inlining in cases where the optimization | 
|  | // does not (yet) fire. | 
|  |  | 
|  | // Maximum valid cost increased in this function. | 
|  | int CostUpperBound = INT_MAX - InlineConstants::InstrCost - 1; | 
|  |  | 
|  | // Exit early for a large switch, assuming one case needs at least one | 
|  | // instruction. | 
|  | // FIXME: This is not true for a bit test, but ignore such case for now to | 
|  | // save compile-time. | 
|  | int64_t CostLowerBound = | 
|  | std::min((int64_t)CostUpperBound, | 
|  | (int64_t)SI.getNumCases() * InlineConstants::InstrCost + Cost); | 
|  |  | 
|  | if (CostLowerBound > Threshold && !ComputeFullInlineCost) { | 
|  | Cost = CostLowerBound; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned JumpTableSize = 0; | 
|  | unsigned NumCaseCluster = | 
|  | TTI.getEstimatedNumberOfCaseClusters(SI, JumpTableSize); | 
|  |  | 
|  | // If suitable for a jump table, consider the cost for the table size and | 
|  | // branch to destination. | 
|  | if (JumpTableSize) { | 
|  | int64_t JTCost = (int64_t)JumpTableSize * InlineConstants::InstrCost + | 
|  | 4 * InlineConstants::InstrCost; | 
|  |  | 
|  | Cost = std::min((int64_t)CostUpperBound, JTCost + Cost); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Considering forming a binary search, we should find the number of nodes | 
|  | // which is same as the number of comparisons when lowered. For a given | 
|  | // number of clusters, n, we can define a recursive function, f(n), to find | 
|  | // the number of nodes in the tree. The recursion is : | 
|  | // f(n) = 1 + f(n/2) + f (n - n/2), when n > 3, | 
|  | // and f(n) = n, when n <= 3. | 
|  | // This will lead a binary tree where the leaf should be either f(2) or f(3) | 
|  | // when n > 3.  So, the number of comparisons from leaves should be n, while | 
|  | // the number of non-leaf should be : | 
|  | //   2^(log2(n) - 1) - 1 | 
|  | //   = 2^log2(n) * 2^-1 - 1 | 
|  | //   = n / 2 - 1. | 
|  | // Considering comparisons from leaf and non-leaf nodes, we can estimate the | 
|  | // number of comparisons in a simple closed form : | 
|  | //   n + n / 2 - 1 = n * 3 / 2 - 1 | 
|  | if (NumCaseCluster <= 3) { | 
|  | // Suppose a comparison includes one compare and one conditional branch. | 
|  | Cost += NumCaseCluster * 2 * InlineConstants::InstrCost; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int64_t ExpectedNumberOfCompare = 3 * (int64_t)NumCaseCluster / 2 - 1; | 
|  | int64_t SwitchCost = | 
|  | ExpectedNumberOfCompare * 2 * InlineConstants::InstrCost; | 
|  |  | 
|  | Cost = std::min((int64_t)CostUpperBound, SwitchCost + Cost); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) { | 
|  | // We never want to inline functions that contain an indirectbr.  This is | 
|  | // incorrect because all the blockaddress's (in static global initializers | 
|  | // for example) would be referring to the original function, and this | 
|  | // indirect jump would jump from the inlined copy of the function into the | 
|  | // original function which is extremely undefined behavior. | 
|  | // FIXME: This logic isn't really right; we can safely inline functions with | 
|  | // indirectbr's as long as no other function or global references the | 
|  | // blockaddress of a block within the current function. | 
|  | HasIndirectBr = true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitResumeInst(ResumeInst &RI) { | 
|  | // FIXME: It's not clear that a single instruction is an accurate model for | 
|  | // the inline cost of a resume instruction. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitCleanupReturnInst(CleanupReturnInst &CRI) { | 
|  | // FIXME: It's not clear that a single instruction is an accurate model for | 
|  | // the inline cost of a cleanupret instruction. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitCatchReturnInst(CatchReturnInst &CRI) { | 
|  | // FIXME: It's not clear that a single instruction is an accurate model for | 
|  | // the inline cost of a catchret instruction. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) { | 
|  | // FIXME: It might be reasonably to discount the cost of instructions leading | 
|  | // to unreachable as they have the lowest possible impact on both runtime and | 
|  | // code size. | 
|  | return true; // No actual code is needed for unreachable. | 
|  | } | 
|  |  | 
|  | bool CallAnalyzer::visitInstruction(Instruction &I) { | 
|  | // Some instructions are free. All of the free intrinsics can also be | 
|  | // handled by SROA, etc. | 
|  | if (TargetTransformInfo::TCC_Free == TTI.getUserCost(&I)) | 
|  | return true; | 
|  |  | 
|  | // We found something we don't understand or can't handle. Mark any SROA-able | 
|  | // values in the operand list as no longer viable. | 
|  | for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI) | 
|  | disableSROA(*OI); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Analyze a basic block for its contribution to the inline cost. | 
|  | /// | 
|  | /// This method walks the analyzer over every instruction in the given basic | 
|  | /// block and accounts for their cost during inlining at this callsite. It | 
|  | /// aborts early if the threshold has been exceeded or an impossible to inline | 
|  | /// construct has been detected. It returns false if inlining is no longer | 
|  | /// viable, and true if inlining remains viable. | 
|  | InlineResult | 
|  | CallAnalyzer::analyzeBlock(BasicBlock *BB, | 
|  | SmallPtrSetImpl<const Value *> &EphValues) { | 
|  | for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { | 
|  | // FIXME: Currently, the number of instructions in a function regardless of | 
|  | // our ability to simplify them during inline to constants or dead code, | 
|  | // are actually used by the vector bonus heuristic. As long as that's true, | 
|  | // we have to special case debug intrinsics here to prevent differences in | 
|  | // inlining due to debug symbols. Eventually, the number of unsimplified | 
|  | // instructions shouldn't factor into the cost computation, but until then, | 
|  | // hack around it here. | 
|  | if (isa<DbgInfoIntrinsic>(I)) | 
|  | continue; | 
|  |  | 
|  | // Skip ephemeral values. | 
|  | if (EphValues.count(&*I)) | 
|  | continue; | 
|  |  | 
|  | ++NumInstructions; | 
|  | if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy()) | 
|  | ++NumVectorInstructions; | 
|  |  | 
|  | // If the instruction simplified to a constant, there is no cost to this | 
|  | // instruction. Visit the instructions using our InstVisitor to account for | 
|  | // all of the per-instruction logic. The visit tree returns true if we | 
|  | // consumed the instruction in any way, and false if the instruction's base | 
|  | // cost should count against inlining. | 
|  | if (Base::visit(&*I)) | 
|  | ++NumInstructionsSimplified; | 
|  | else | 
|  | Cost += InlineConstants::InstrCost; | 
|  |  | 
|  | using namespace ore; | 
|  | // If the visit this instruction detected an uninlinable pattern, abort. | 
|  | InlineResult IR; | 
|  | if (IsRecursiveCall) | 
|  | IR = "recursive"; | 
|  | else if (ExposesReturnsTwice) | 
|  | IR = "exposes returns twice"; | 
|  | else if (HasDynamicAlloca) | 
|  | IR = "dynamic alloca"; | 
|  | else if (HasIndirectBr) | 
|  | IR = "indirect branch"; | 
|  | else if (HasUninlineableIntrinsic) | 
|  | IR = "uninlinable intrinsic"; | 
|  | else if (InitsVargArgs) | 
|  | IR = "varargs"; | 
|  | if (!IR) { | 
|  | if (ORE) | 
|  | ORE->emit([&]() { | 
|  | return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", | 
|  | CandidateCS.getInstruction()) | 
|  | << NV("Callee", &F) << " has uninlinable pattern (" | 
|  | << NV("InlineResult", IR.message) | 
|  | << ") and cost is not fully computed"; | 
|  | }); | 
|  | return IR; | 
|  | } | 
|  |  | 
|  | // If the caller is a recursive function then we don't want to inline | 
|  | // functions which allocate a lot of stack space because it would increase | 
|  | // the caller stack usage dramatically. | 
|  | if (IsCallerRecursive && | 
|  | AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) { | 
|  | InlineResult IR = "recursive and allocates too much stack space"; | 
|  | if (ORE) | 
|  | ORE->emit([&]() { | 
|  | return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", | 
|  | CandidateCS.getInstruction()) | 
|  | << NV("Callee", &F) << " is " << NV("InlineResult", IR.message) | 
|  | << ". Cost is not fully computed"; | 
|  | }); | 
|  | return IR; | 
|  | } | 
|  |  | 
|  | // Check if we've past the maximum possible threshold so we don't spin in | 
|  | // huge basic blocks that will never inline. | 
|  | if (Cost >= Threshold && !ComputeFullInlineCost) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Compute the base pointer and cumulative constant offsets for V. | 
|  | /// | 
|  | /// This strips all constant offsets off of V, leaving it the base pointer, and | 
|  | /// accumulates the total constant offset applied in the returned constant. It | 
|  | /// returns 0 if V is not a pointer, and returns the constant '0' if there are | 
|  | /// no constant offsets applied. | 
|  | ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) { | 
|  | if (!V->getType()->isPointerTy()) | 
|  | return nullptr; | 
|  |  | 
|  | unsigned AS = V->getType()->getPointerAddressSpace(); | 
|  | unsigned IntPtrWidth = DL.getIndexSizeInBits(AS); | 
|  | APInt Offset = APInt::getNullValue(IntPtrWidth); | 
|  |  | 
|  | // Even though we don't look through PHI nodes, we could be called on an | 
|  | // instruction in an unreachable block, which may be on a cycle. | 
|  | SmallPtrSet<Value *, 4> Visited; | 
|  | Visited.insert(V); | 
|  | do { | 
|  | if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { | 
|  | if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset)) | 
|  | return nullptr; | 
|  | V = GEP->getPointerOperand(); | 
|  | } else if (Operator::getOpcode(V) == Instruction::BitCast) { | 
|  | V = cast<Operator>(V)->getOperand(0); | 
|  | } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { | 
|  | if (GA->isInterposable()) | 
|  | break; | 
|  | V = GA->getAliasee(); | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | assert(V->getType()->isPointerTy() && "Unexpected operand type!"); | 
|  | } while (Visited.insert(V).second); | 
|  |  | 
|  | Type *IntPtrTy = DL.getIntPtrType(V->getContext(), AS); | 
|  | return cast<ConstantInt>(ConstantInt::get(IntPtrTy, Offset)); | 
|  | } | 
|  |  | 
|  | /// Find dead blocks due to deleted CFG edges during inlining. | 
|  | /// | 
|  | /// If we know the successor of the current block, \p CurrBB, has to be \p | 
|  | /// NextBB, the other successors of \p CurrBB are dead if these successors have | 
|  | /// no live incoming CFG edges.  If one block is found to be dead, we can | 
|  | /// continue growing the dead block list by checking the successors of the dead | 
|  | /// blocks to see if all their incoming edges are dead or not. | 
|  | void CallAnalyzer::findDeadBlocks(BasicBlock *CurrBB, BasicBlock *NextBB) { | 
|  | auto IsEdgeDead = [&](BasicBlock *Pred, BasicBlock *Succ) { | 
|  | // A CFG edge is dead if the predecessor is dead or the predessor has a | 
|  | // known successor which is not the one under exam. | 
|  | return (DeadBlocks.count(Pred) || | 
|  | (KnownSuccessors[Pred] && KnownSuccessors[Pred] != Succ)); | 
|  | }; | 
|  |  | 
|  | auto IsNewlyDead = [&](BasicBlock *BB) { | 
|  | // If all the edges to a block are dead, the block is also dead. | 
|  | return (!DeadBlocks.count(BB) && | 
|  | llvm::all_of(predecessors(BB), | 
|  | [&](BasicBlock *P) { return IsEdgeDead(P, BB); })); | 
|  | }; | 
|  |  | 
|  | for (BasicBlock *Succ : successors(CurrBB)) { | 
|  | if (Succ == NextBB || !IsNewlyDead(Succ)) | 
|  | continue; | 
|  | SmallVector<BasicBlock *, 4> NewDead; | 
|  | NewDead.push_back(Succ); | 
|  | while (!NewDead.empty()) { | 
|  | BasicBlock *Dead = NewDead.pop_back_val(); | 
|  | if (DeadBlocks.insert(Dead)) | 
|  | // Continue growing the dead block lists. | 
|  | for (BasicBlock *S : successors(Dead)) | 
|  | if (IsNewlyDead(S)) | 
|  | NewDead.push_back(S); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Analyze a call site for potential inlining. | 
|  | /// | 
|  | /// Returns true if inlining this call is viable, and false if it is not | 
|  | /// viable. It computes the cost and adjusts the threshold based on numerous | 
|  | /// factors and heuristics. If this method returns false but the computed cost | 
|  | /// is below the computed threshold, then inlining was forcibly disabled by | 
|  | /// some artifact of the routine. | 
|  | InlineResult CallAnalyzer::analyzeCall(CallSite CS) { | 
|  | ++NumCallsAnalyzed; | 
|  |  | 
|  | // Perform some tweaks to the cost and threshold based on the direct | 
|  | // callsite information. | 
|  |  | 
|  | // We want to more aggressively inline vector-dense kernels, so up the | 
|  | // threshold, and we'll lower it if the % of vector instructions gets too | 
|  | // low. Note that these bonuses are some what arbitrary and evolved over time | 
|  | // by accident as much as because they are principled bonuses. | 
|  | // | 
|  | // FIXME: It would be nice to remove all such bonuses. At least it would be | 
|  | // nice to base the bonus values on something more scientific. | 
|  | assert(NumInstructions == 0); | 
|  | assert(NumVectorInstructions == 0); | 
|  |  | 
|  | // Update the threshold based on callsite properties | 
|  | updateThreshold(CS, F); | 
|  |  | 
|  | // While Threshold depends on commandline options that can take negative | 
|  | // values, we want to enforce the invariant that the computed threshold and | 
|  | // bonuses are non-negative. | 
|  | assert(Threshold >= 0); | 
|  | assert(SingleBBBonus >= 0); | 
|  | assert(VectorBonus >= 0); | 
|  |  | 
|  | // Speculatively apply all possible bonuses to Threshold. If cost exceeds | 
|  | // this Threshold any time, and cost cannot decrease, we can stop processing | 
|  | // the rest of the function body. | 
|  | Threshold += (SingleBBBonus + VectorBonus); | 
|  |  | 
|  | // Give out bonuses for the callsite, as the instructions setting them up | 
|  | // will be gone after inlining. | 
|  | Cost -= getCallsiteCost(CS, DL); | 
|  |  | 
|  | // If this function uses the coldcc calling convention, prefer not to inline | 
|  | // it. | 
|  | if (F.getCallingConv() == CallingConv::Cold) | 
|  | Cost += InlineConstants::ColdccPenalty; | 
|  |  | 
|  | // Check if we're done. This can happen due to bonuses and penalties. | 
|  | if (Cost >= Threshold && !ComputeFullInlineCost) | 
|  | return "high cost"; | 
|  |  | 
|  | if (F.empty()) | 
|  | return true; | 
|  |  | 
|  | Function *Caller = CS.getInstruction()->getFunction(); | 
|  | // Check if the caller function is recursive itself. | 
|  | for (User *U : Caller->users()) { | 
|  | CallSite Site(U); | 
|  | if (!Site) | 
|  | continue; | 
|  | Instruction *I = Site.getInstruction(); | 
|  | if (I->getFunction() == Caller) { | 
|  | IsCallerRecursive = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Populate our simplified values by mapping from function arguments to call | 
|  | // arguments with known important simplifications. | 
|  | CallSite::arg_iterator CAI = CS.arg_begin(); | 
|  | for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end(); | 
|  | FAI != FAE; ++FAI, ++CAI) { | 
|  | assert(CAI != CS.arg_end()); | 
|  | if (Constant *C = dyn_cast<Constant>(CAI)) | 
|  | SimplifiedValues[&*FAI] = C; | 
|  |  | 
|  | Value *PtrArg = *CAI; | 
|  | if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) { | 
|  | ConstantOffsetPtrs[&*FAI] = std::make_pair(PtrArg, C->getValue()); | 
|  |  | 
|  | // We can SROA any pointer arguments derived from alloca instructions. | 
|  | if (isa<AllocaInst>(PtrArg)) { | 
|  | SROAArgValues[&*FAI] = PtrArg; | 
|  | SROAArgCosts[PtrArg] = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  | NumConstantArgs = SimplifiedValues.size(); | 
|  | NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size(); | 
|  | NumAllocaArgs = SROAArgValues.size(); | 
|  |  | 
|  | // FIXME: If a caller has multiple calls to a callee, we end up recomputing | 
|  | // the ephemeral values multiple times (and they're completely determined by | 
|  | // the callee, so this is purely duplicate work). | 
|  | SmallPtrSet<const Value *, 32> EphValues; | 
|  | CodeMetrics::collectEphemeralValues(&F, &GetAssumptionCache(F), EphValues); | 
|  |  | 
|  | // The worklist of live basic blocks in the callee *after* inlining. We avoid | 
|  | // adding basic blocks of the callee which can be proven to be dead for this | 
|  | // particular call site in order to get more accurate cost estimates. This | 
|  | // requires a somewhat heavyweight iteration pattern: we need to walk the | 
|  | // basic blocks in a breadth-first order as we insert live successors. To | 
|  | // accomplish this, prioritizing for small iterations because we exit after | 
|  | // crossing our threshold, we use a small-size optimized SetVector. | 
|  | typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>, | 
|  | SmallPtrSet<BasicBlock *, 16>> | 
|  | BBSetVector; | 
|  | BBSetVector BBWorklist; | 
|  | BBWorklist.insert(&F.getEntryBlock()); | 
|  | bool SingleBB = true; | 
|  | // Note that we *must not* cache the size, this loop grows the worklist. | 
|  | for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { | 
|  | // Bail out the moment we cross the threshold. This means we'll under-count | 
|  | // the cost, but only when undercounting doesn't matter. | 
|  | if (Cost >= Threshold && !ComputeFullInlineCost) | 
|  | break; | 
|  |  | 
|  | BasicBlock *BB = BBWorklist[Idx]; | 
|  | if (BB->empty()) | 
|  | continue; | 
|  |  | 
|  | // Disallow inlining a blockaddress. A blockaddress only has defined | 
|  | // behavior for an indirect branch in the same function, and we do not | 
|  | // currently support inlining indirect branches. But, the inliner may not | 
|  | // see an indirect branch that ends up being dead code at a particular call | 
|  | // site. If the blockaddress escapes the function, e.g., via a global | 
|  | // variable, inlining may lead to an invalid cross-function reference. | 
|  | if (BB->hasAddressTaken()) | 
|  | return "blockaddress"; | 
|  |  | 
|  | // Analyze the cost of this block. If we blow through the threshold, this | 
|  | // returns false, and we can bail on out. | 
|  | InlineResult IR = analyzeBlock(BB, EphValues); | 
|  | if (!IR) | 
|  | return IR; | 
|  |  | 
|  | Instruction *TI = BB->getTerminator(); | 
|  |  | 
|  | // Add in the live successors by first checking whether we have terminator | 
|  | // that may be simplified based on the values simplified by this call. | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { | 
|  | if (BI->isConditional()) { | 
|  | Value *Cond = BI->getCondition(); | 
|  | if (ConstantInt *SimpleCond = | 
|  | dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { | 
|  | BasicBlock *NextBB = BI->getSuccessor(SimpleCond->isZero() ? 1 : 0); | 
|  | BBWorklist.insert(NextBB); | 
|  | KnownSuccessors[BB] = NextBB; | 
|  | findDeadBlocks(BB, NextBB); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { | 
|  | Value *Cond = SI->getCondition(); | 
|  | if (ConstantInt *SimpleCond = | 
|  | dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { | 
|  | BasicBlock *NextBB = SI->findCaseValue(SimpleCond)->getCaseSuccessor(); | 
|  | BBWorklist.insert(NextBB); | 
|  | KnownSuccessors[BB] = NextBB; | 
|  | findDeadBlocks(BB, NextBB); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we're unable to select a particular successor, just count all of | 
|  | // them. | 
|  | for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize; | 
|  | ++TIdx) | 
|  | BBWorklist.insert(TI->getSuccessor(TIdx)); | 
|  |  | 
|  | // If we had any successors at this point, than post-inlining is likely to | 
|  | // have them as well. Note that we assume any basic blocks which existed | 
|  | // due to branches or switches which folded above will also fold after | 
|  | // inlining. | 
|  | if (SingleBB && TI->getNumSuccessors() > 1) { | 
|  | // Take off the bonus we applied to the threshold. | 
|  | Threshold -= SingleBBBonus; | 
|  | SingleBB = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool OnlyOneCallAndLocalLinkage = | 
|  | F.hasLocalLinkage() && F.hasOneUse() && &F == CS.getCalledFunction(); | 
|  | // If this is a noduplicate call, we can still inline as long as | 
|  | // inlining this would cause the removal of the caller (so the instruction | 
|  | // is not actually duplicated, just moved). | 
|  | if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall) | 
|  | return "noduplicate"; | 
|  |  | 
|  | // Loops generally act a lot like calls in that they act like barriers to | 
|  | // movement, require a certain amount of setup, etc. So when optimising for | 
|  | // size, we penalise any call sites that perform loops. We do this after all | 
|  | // other costs here, so will likely only be dealing with relatively small | 
|  | // functions (and hence DT and LI will hopefully be cheap). | 
|  | if (Caller->optForMinSize()) { | 
|  | DominatorTree DT(F); | 
|  | LoopInfo LI(DT); | 
|  | int NumLoops = 0; | 
|  | for (Loop *L : LI) { | 
|  | // Ignore loops that will not be executed | 
|  | if (DeadBlocks.count(L->getHeader())) | 
|  | continue; | 
|  | NumLoops++; | 
|  | } | 
|  | Cost += NumLoops * InlineConstants::CallPenalty; | 
|  | } | 
|  |  | 
|  | // We applied the maximum possible vector bonus at the beginning. Now, | 
|  | // subtract the excess bonus, if any, from the Threshold before | 
|  | // comparing against Cost. | 
|  | if (NumVectorInstructions <= NumInstructions / 10) | 
|  | Threshold -= VectorBonus; | 
|  | else if (NumVectorInstructions <= NumInstructions / 2) | 
|  | Threshold -= VectorBonus/2; | 
|  |  | 
|  | return Cost < std::max(1, Threshold); | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | /// Dump stats about this call's analysis. | 
|  | LLVM_DUMP_METHOD void CallAnalyzer::dump() { | 
|  | #define DEBUG_PRINT_STAT(x) dbgs() << "      " #x ": " << x << "\n" | 
|  | DEBUG_PRINT_STAT(NumConstantArgs); | 
|  | DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs); | 
|  | DEBUG_PRINT_STAT(NumAllocaArgs); | 
|  | DEBUG_PRINT_STAT(NumConstantPtrCmps); | 
|  | DEBUG_PRINT_STAT(NumConstantPtrDiffs); | 
|  | DEBUG_PRINT_STAT(NumInstructionsSimplified); | 
|  | DEBUG_PRINT_STAT(NumInstructions); | 
|  | DEBUG_PRINT_STAT(SROACostSavings); | 
|  | DEBUG_PRINT_STAT(SROACostSavingsLost); | 
|  | DEBUG_PRINT_STAT(LoadEliminationCost); | 
|  | DEBUG_PRINT_STAT(ContainsNoDuplicateCall); | 
|  | DEBUG_PRINT_STAT(Cost); | 
|  | DEBUG_PRINT_STAT(Threshold); | 
|  | #undef DEBUG_PRINT_STAT | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /// Test that there are no attribute conflicts between Caller and Callee | 
|  | ///        that prevent inlining. | 
|  | static bool functionsHaveCompatibleAttributes(Function *Caller, | 
|  | Function *Callee, | 
|  | TargetTransformInfo &TTI) { | 
|  | return TTI.areInlineCompatible(Caller, Callee) && | 
|  | AttributeFuncs::areInlineCompatible(*Caller, *Callee); | 
|  | } | 
|  |  | 
|  | int llvm::getCallsiteCost(CallSite CS, const DataLayout &DL) { | 
|  | int Cost = 0; | 
|  | for (unsigned I = 0, E = CS.arg_size(); I != E; ++I) { | 
|  | if (CS.isByValArgument(I)) { | 
|  | // We approximate the number of loads and stores needed by dividing the | 
|  | // size of the byval type by the target's pointer size. | 
|  | PointerType *PTy = cast<PointerType>(CS.getArgument(I)->getType()); | 
|  | unsigned TypeSize = DL.getTypeSizeInBits(PTy->getElementType()); | 
|  | unsigned AS = PTy->getAddressSpace(); | 
|  | unsigned PointerSize = DL.getPointerSizeInBits(AS); | 
|  | // Ceiling division. | 
|  | unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize; | 
|  |  | 
|  | // If it generates more than 8 stores it is likely to be expanded as an | 
|  | // inline memcpy so we take that as an upper bound. Otherwise we assume | 
|  | // one load and one store per word copied. | 
|  | // FIXME: The maxStoresPerMemcpy setting from the target should be used | 
|  | // here instead of a magic number of 8, but it's not available via | 
|  | // DataLayout. | 
|  | NumStores = std::min(NumStores, 8U); | 
|  |  | 
|  | Cost += 2 * NumStores * InlineConstants::InstrCost; | 
|  | } else { | 
|  | // For non-byval arguments subtract off one instruction per call | 
|  | // argument. | 
|  | Cost += InlineConstants::InstrCost; | 
|  | } | 
|  | } | 
|  | // The call instruction also disappears after inlining. | 
|  | Cost += InlineConstants::InstrCost + InlineConstants::CallPenalty; | 
|  | return Cost; | 
|  | } | 
|  |  | 
|  | InlineCost llvm::getInlineCost( | 
|  | CallSite CS, const InlineParams &Params, TargetTransformInfo &CalleeTTI, | 
|  | std::function<AssumptionCache &(Function &)> &GetAssumptionCache, | 
|  | Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI, | 
|  | ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { | 
|  | return getInlineCost(CS, CS.getCalledFunction(), Params, CalleeTTI, | 
|  | GetAssumptionCache, GetBFI, PSI, ORE); | 
|  | } | 
|  |  | 
|  | InlineCost llvm::getInlineCost( | 
|  | CallSite CS, Function *Callee, const InlineParams &Params, | 
|  | TargetTransformInfo &CalleeTTI, | 
|  | std::function<AssumptionCache &(Function &)> &GetAssumptionCache, | 
|  | Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI, | 
|  | ProfileSummaryInfo *PSI, OptimizationRemarkEmitter *ORE) { | 
|  |  | 
|  | // Cannot inline indirect calls. | 
|  | if (!Callee) | 
|  | return llvm::InlineCost::getNever("indirect call"); | 
|  |  | 
|  | // Never inline calls with byval arguments that does not have the alloca | 
|  | // address space. Since byval arguments can be replaced with a copy to an | 
|  | // alloca, the inlined code would need to be adjusted to handle that the | 
|  | // argument is in the alloca address space (so it is a little bit complicated | 
|  | // to solve). | 
|  | unsigned AllocaAS = Callee->getParent()->getDataLayout().getAllocaAddrSpace(); | 
|  | for (unsigned I = 0, E = CS.arg_size(); I != E; ++I) | 
|  | if (CS.isByValArgument(I)) { | 
|  | PointerType *PTy = cast<PointerType>(CS.getArgument(I)->getType()); | 
|  | if (PTy->getAddressSpace() != AllocaAS) | 
|  | return llvm::InlineCost::getNever("byval arguments without alloca" | 
|  | " address space"); | 
|  | } | 
|  |  | 
|  | // Calls to functions with always-inline attributes should be inlined | 
|  | // whenever possible. | 
|  | if (CS.hasFnAttr(Attribute::AlwaysInline)) { | 
|  | if (isInlineViable(*Callee)) | 
|  | return llvm::InlineCost::getAlways("always inline attribute"); | 
|  | return llvm::InlineCost::getNever("inapplicable always inline attribute"); | 
|  | } | 
|  |  | 
|  | // Never inline functions with conflicting attributes (unless callee has | 
|  | // always-inline attribute). | 
|  | Function *Caller = CS.getCaller(); | 
|  | if (!functionsHaveCompatibleAttributes(Caller, Callee, CalleeTTI)) | 
|  | return llvm::InlineCost::getNever("conflicting attributes"); | 
|  |  | 
|  | // Don't inline this call if the caller has the optnone attribute. | 
|  | if (Caller->hasFnAttribute(Attribute::OptimizeNone)) | 
|  | return llvm::InlineCost::getNever("optnone attribute"); | 
|  |  | 
|  | // Don't inline a function that treats null pointer as valid into a caller | 
|  | // that does not have this attribute. | 
|  | if (!Caller->nullPointerIsDefined() && Callee->nullPointerIsDefined()) | 
|  | return llvm::InlineCost::getNever("nullptr definitions incompatible"); | 
|  |  | 
|  | // Don't inline functions which can be interposed at link-time. | 
|  | if (Callee->isInterposable()) | 
|  | return llvm::InlineCost::getNever("interposable"); | 
|  |  | 
|  | // Don't inline functions marked noinline. | 
|  | if (Callee->hasFnAttribute(Attribute::NoInline)) | 
|  | return llvm::InlineCost::getNever("noinline function attribute"); | 
|  |  | 
|  | // Don't inline call sites marked noinline. | 
|  | if (CS.isNoInline()) | 
|  | return llvm::InlineCost::getNever("noinline call site attribute"); | 
|  |  | 
|  | LLVM_DEBUG(llvm::dbgs() << "      Analyzing call of " << Callee->getName() | 
|  | << "... (caller:" << Caller->getName() << ")\n"); | 
|  |  | 
|  | CallAnalyzer CA(CalleeTTI, GetAssumptionCache, GetBFI, PSI, ORE, *Callee, CS, | 
|  | Params); | 
|  | InlineResult ShouldInline = CA.analyzeCall(CS); | 
|  |  | 
|  | LLVM_DEBUG(CA.dump()); | 
|  |  | 
|  | // Check if there was a reason to force inlining or no inlining. | 
|  | if (!ShouldInline && CA.getCost() < CA.getThreshold()) | 
|  | return InlineCost::getNever(ShouldInline.message); | 
|  | if (ShouldInline && CA.getCost() >= CA.getThreshold()) | 
|  | return InlineCost::getAlways("empty function"); | 
|  |  | 
|  | return llvm::InlineCost::get(CA.getCost(), CA.getThreshold()); | 
|  | } | 
|  |  | 
|  | bool llvm::isInlineViable(Function &F) { | 
|  | bool ReturnsTwice = F.hasFnAttribute(Attribute::ReturnsTwice); | 
|  | for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) { | 
|  | // Disallow inlining of functions which contain indirect branches or | 
|  | // blockaddresses. | 
|  | if (isa<IndirectBrInst>(BI->getTerminator()) || BI->hasAddressTaken()) | 
|  | return false; | 
|  |  | 
|  | for (auto &II : *BI) { | 
|  | CallSite CS(&II); | 
|  | if (!CS) | 
|  | continue; | 
|  |  | 
|  | // Disallow recursive calls. | 
|  | if (&F == CS.getCalledFunction()) | 
|  | return false; | 
|  |  | 
|  | // Disallow calls which expose returns-twice to a function not previously | 
|  | // attributed as such. | 
|  | if (!ReturnsTwice && CS.isCall() && | 
|  | cast<CallInst>(CS.getInstruction())->canReturnTwice()) | 
|  | return false; | 
|  |  | 
|  | if (CS.getCalledFunction()) | 
|  | switch (CS.getCalledFunction()->getIntrinsicID()) { | 
|  | default: | 
|  | break; | 
|  | // Disallow inlining of @llvm.icall.branch.funnel because current | 
|  | // backend can't separate call targets from call arguments. | 
|  | case llvm::Intrinsic::icall_branch_funnel: | 
|  | // Disallow inlining functions that call @llvm.localescape. Doing this | 
|  | // correctly would require major changes to the inliner. | 
|  | case llvm::Intrinsic::localescape: | 
|  | // Disallow inlining of functions that initialize VarArgs with va_start. | 
|  | case llvm::Intrinsic::vastart: | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // APIs to create InlineParams based on command line flags and/or other | 
|  | // parameters. | 
|  |  | 
|  | InlineParams llvm::getInlineParams(int Threshold) { | 
|  | InlineParams Params; | 
|  |  | 
|  | // This field is the threshold to use for a callee by default. This is | 
|  | // derived from one or more of: | 
|  | //  * optimization or size-optimization levels, | 
|  | //  * a value passed to createFunctionInliningPass function, or | 
|  | //  * the -inline-threshold flag. | 
|  | //  If the -inline-threshold flag is explicitly specified, that is used | 
|  | //  irrespective of anything else. | 
|  | if (InlineThreshold.getNumOccurrences() > 0) | 
|  | Params.DefaultThreshold = InlineThreshold; | 
|  | else | 
|  | Params.DefaultThreshold = Threshold; | 
|  |  | 
|  | // Set the HintThreshold knob from the -inlinehint-threshold. | 
|  | Params.HintThreshold = HintThreshold; | 
|  |  | 
|  | // Set the HotCallSiteThreshold knob from the -hot-callsite-threshold. | 
|  | Params.HotCallSiteThreshold = HotCallSiteThreshold; | 
|  |  | 
|  | // If the -locally-hot-callsite-threshold is explicitly specified, use it to | 
|  | // populate LocallyHotCallSiteThreshold. Later, we populate | 
|  | // Params.LocallyHotCallSiteThreshold from -locally-hot-callsite-threshold if | 
|  | // we know that optimization level is O3 (in the getInlineParams variant that | 
|  | // takes the opt and size levels). | 
|  | // FIXME: Remove this check (and make the assignment unconditional) after | 
|  | // addressing size regression issues at O2. | 
|  | if (LocallyHotCallSiteThreshold.getNumOccurrences() > 0) | 
|  | Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; | 
|  |  | 
|  | // Set the ColdCallSiteThreshold knob from the -inline-cold-callsite-threshold. | 
|  | Params.ColdCallSiteThreshold = ColdCallSiteThreshold; | 
|  |  | 
|  | // Set the OptMinSizeThreshold and OptSizeThreshold params only if the | 
|  | // -inlinehint-threshold commandline option is not explicitly given. If that | 
|  | // option is present, then its value applies even for callees with size and | 
|  | // minsize attributes. | 
|  | // If the -inline-threshold is not specified, set the ColdThreshold from the | 
|  | // -inlinecold-threshold even if it is not explicitly passed. If | 
|  | // -inline-threshold is specified, then -inlinecold-threshold needs to be | 
|  | // explicitly specified to set the ColdThreshold knob | 
|  | if (InlineThreshold.getNumOccurrences() == 0) { | 
|  | Params.OptMinSizeThreshold = InlineConstants::OptMinSizeThreshold; | 
|  | Params.OptSizeThreshold = InlineConstants::OptSizeThreshold; | 
|  | Params.ColdThreshold = ColdThreshold; | 
|  | } else if (ColdThreshold.getNumOccurrences() > 0) { | 
|  | Params.ColdThreshold = ColdThreshold; | 
|  | } | 
|  | return Params; | 
|  | } | 
|  |  | 
|  | InlineParams llvm::getInlineParams() { | 
|  | return getInlineParams(InlineThreshold); | 
|  | } | 
|  |  | 
|  | // Compute the default threshold for inlining based on the opt level and the | 
|  | // size opt level. | 
|  | static int computeThresholdFromOptLevels(unsigned OptLevel, | 
|  | unsigned SizeOptLevel) { | 
|  | if (OptLevel > 2) | 
|  | return InlineConstants::OptAggressiveThreshold; | 
|  | if (SizeOptLevel == 1) // -Os | 
|  | return InlineConstants::OptSizeThreshold; | 
|  | if (SizeOptLevel == 2) // -Oz | 
|  | return InlineConstants::OptMinSizeThreshold; | 
|  | return InlineThreshold; | 
|  | } | 
|  |  | 
|  | InlineParams llvm::getInlineParams(unsigned OptLevel, unsigned SizeOptLevel) { | 
|  | auto Params = | 
|  | getInlineParams(computeThresholdFromOptLevels(OptLevel, SizeOptLevel)); | 
|  | // At O3, use the value of -locally-hot-callsite-threshold option to populate | 
|  | // Params.LocallyHotCallSiteThreshold. Below O3, this flag has effect only | 
|  | // when it is specified explicitly. | 
|  | if (OptLevel > 2) | 
|  | Params.LocallyHotCallSiteThreshold = LocallyHotCallSiteThreshold; | 
|  | return Params; | 
|  | } |