|  | //===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // DependenceAnalysis is an LLVM pass that analyses dependences between memory | 
|  | // accesses. Currently, it is an (incomplete) implementation of the approach | 
|  | // described in | 
|  | // | 
|  | //            Practical Dependence Testing | 
|  | //            Goff, Kennedy, Tseng | 
|  | //            PLDI 1991 | 
|  | // | 
|  | // There's a single entry point that analyzes the dependence between a pair | 
|  | // of memory references in a function, returning either NULL, for no dependence, | 
|  | // or a more-or-less detailed description of the dependence between them. | 
|  | // | 
|  | // Currently, the implementation cannot propagate constraints between | 
|  | // coupled RDIV subscripts and lacks a multi-subscript MIV test. | 
|  | // Both of these are conservative weaknesses; | 
|  | // that is, not a source of correctness problems. | 
|  | // | 
|  | // Since Clang linearizes some array subscripts, the dependence | 
|  | // analysis is using SCEV->delinearize to recover the representation of multiple | 
|  | // subscripts, and thus avoid the more expensive and less precise MIV tests. The | 
|  | // delinearization is controlled by the flag -da-delinearize. | 
|  | // | 
|  | // We should pay some careful attention to the possibility of integer overflow | 
|  | // in the implementation of the various tests. This could happen with Add, | 
|  | // Subtract, or Multiply, with both APInt's and SCEV's. | 
|  | // | 
|  | // Some non-linear subscript pairs can be handled by the GCD test | 
|  | // (and perhaps other tests). | 
|  | // Should explore how often these things occur. | 
|  | // | 
|  | // Finally, it seems like certain test cases expose weaknesses in the SCEV | 
|  | // simplification, especially in the handling of sign and zero extensions. | 
|  | // It could be useful to spend time exploring these. | 
|  | // | 
|  | // Please note that this is work in progress and the interface is subject to | 
|  | // change. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                                                                            // | 
|  | //                   In memory of Ken Kennedy, 1945 - 2007                    // | 
|  | //                                                                            // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/DependenceAnalysis.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/ScalarEvolution.h" | 
|  | #include "llvm/Analysis/ScalarEvolutionExpressions.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/Config/llvm-config.h" | 
|  | #include "llvm/IR/InstIterator.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "da" | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // statistics | 
|  |  | 
|  | STATISTIC(TotalArrayPairs, "Array pairs tested"); | 
|  | STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs"); | 
|  | STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs"); | 
|  | STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs"); | 
|  | STATISTIC(ZIVapplications, "ZIV applications"); | 
|  | STATISTIC(ZIVindependence, "ZIV independence"); | 
|  | STATISTIC(StrongSIVapplications, "Strong SIV applications"); | 
|  | STATISTIC(StrongSIVsuccesses, "Strong SIV successes"); | 
|  | STATISTIC(StrongSIVindependence, "Strong SIV independence"); | 
|  | STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications"); | 
|  | STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes"); | 
|  | STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence"); | 
|  | STATISTIC(ExactSIVapplications, "Exact SIV applications"); | 
|  | STATISTIC(ExactSIVsuccesses, "Exact SIV successes"); | 
|  | STATISTIC(ExactSIVindependence, "Exact SIV independence"); | 
|  | STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications"); | 
|  | STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes"); | 
|  | STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence"); | 
|  | STATISTIC(ExactRDIVapplications, "Exact RDIV applications"); | 
|  | STATISTIC(ExactRDIVindependence, "Exact RDIV independence"); | 
|  | STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications"); | 
|  | STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence"); | 
|  | STATISTIC(DeltaApplications, "Delta applications"); | 
|  | STATISTIC(DeltaSuccesses, "Delta successes"); | 
|  | STATISTIC(DeltaIndependence, "Delta independence"); | 
|  | STATISTIC(DeltaPropagations, "Delta propagations"); | 
|  | STATISTIC(GCDapplications, "GCD applications"); | 
|  | STATISTIC(GCDsuccesses, "GCD successes"); | 
|  | STATISTIC(GCDindependence, "GCD independence"); | 
|  | STATISTIC(BanerjeeApplications, "Banerjee applications"); | 
|  | STATISTIC(BanerjeeIndependence, "Banerjee independence"); | 
|  | STATISTIC(BanerjeeSuccesses, "Banerjee successes"); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | Delinearize("da-delinearize", cl::init(true), cl::Hidden, cl::ZeroOrMore, | 
|  | cl::desc("Try to delinearize array references.")); | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // basics | 
|  |  | 
|  | DependenceAnalysis::Result | 
|  | DependenceAnalysis::run(Function &F, FunctionAnalysisManager &FAM) { | 
|  | auto &AA = FAM.getResult<AAManager>(F); | 
|  | auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F); | 
|  | auto &LI = FAM.getResult<LoopAnalysis>(F); | 
|  | return DependenceInfo(&F, &AA, &SE, &LI); | 
|  | } | 
|  |  | 
|  | AnalysisKey DependenceAnalysis::Key; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(DependenceAnalysisWrapperPass, "da", | 
|  | "Dependence Analysis", true, true) | 
|  | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) | 
|  | INITIALIZE_PASS_END(DependenceAnalysisWrapperPass, "da", "Dependence Analysis", | 
|  | true, true) | 
|  |  | 
|  | char DependenceAnalysisWrapperPass::ID = 0; | 
|  |  | 
|  | FunctionPass *llvm::createDependenceAnalysisWrapperPass() { | 
|  | return new DependenceAnalysisWrapperPass(); | 
|  | } | 
|  |  | 
|  | bool DependenceAnalysisWrapperPass::runOnFunction(Function &F) { | 
|  | auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); | 
|  | auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); | 
|  | auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); | 
|  | info.reset(new DependenceInfo(&F, &AA, &SE, &LI)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | DependenceInfo &DependenceAnalysisWrapperPass::getDI() const { return *info; } | 
|  |  | 
|  | void DependenceAnalysisWrapperPass::releaseMemory() { info.reset(); } | 
|  |  | 
|  | void DependenceAnalysisWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.setPreservesAll(); | 
|  | AU.addRequiredTransitive<AAResultsWrapperPass>(); | 
|  | AU.addRequiredTransitive<ScalarEvolutionWrapperPass>(); | 
|  | AU.addRequiredTransitive<LoopInfoWrapperPass>(); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Used to test the dependence analyzer. | 
|  | // Looks through the function, noting loads and stores. | 
|  | // Calls depends() on every possible pair and prints out the result. | 
|  | // Ignores all other instructions. | 
|  | static void dumpExampleDependence(raw_ostream &OS, DependenceInfo *DA) { | 
|  | auto *F = DA->getFunction(); | 
|  | for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F); SrcI != SrcE; | 
|  | ++SrcI) { | 
|  | if (isa<StoreInst>(*SrcI) || isa<LoadInst>(*SrcI)) { | 
|  | for (inst_iterator DstI = SrcI, DstE = inst_end(F); | 
|  | DstI != DstE; ++DstI) { | 
|  | if (isa<StoreInst>(*DstI) || isa<LoadInst>(*DstI)) { | 
|  | OS << "da analyze - "; | 
|  | if (auto D = DA->depends(&*SrcI, &*DstI, true)) { | 
|  | D->dump(OS); | 
|  | for (unsigned Level = 1; Level <= D->getLevels(); Level++) { | 
|  | if (D->isSplitable(Level)) { | 
|  | OS << "da analyze - split level = " << Level; | 
|  | OS << ", iteration = " << *DA->getSplitIteration(*D, Level); | 
|  | OS << "!\n"; | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | OS << "none!\n"; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void DependenceAnalysisWrapperPass::print(raw_ostream &OS, | 
|  | const Module *) const { | 
|  | dumpExampleDependence(OS, info.get()); | 
|  | } | 
|  |  | 
|  | PreservedAnalyses | 
|  | DependenceAnalysisPrinterPass::run(Function &F, FunctionAnalysisManager &FAM) { | 
|  | OS << "'Dependence Analysis' for function '" << F.getName() << "':\n"; | 
|  | dumpExampleDependence(OS, &FAM.getResult<DependenceAnalysis>(F)); | 
|  | return PreservedAnalyses::all(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Dependence methods | 
|  |  | 
|  | // Returns true if this is an input dependence. | 
|  | bool Dependence::isInput() const { | 
|  | return Src->mayReadFromMemory() && Dst->mayReadFromMemory(); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Returns true if this is an output dependence. | 
|  | bool Dependence::isOutput() const { | 
|  | return Src->mayWriteToMemory() && Dst->mayWriteToMemory(); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Returns true if this is an flow (aka true)  dependence. | 
|  | bool Dependence::isFlow() const { | 
|  | return Src->mayWriteToMemory() && Dst->mayReadFromMemory(); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Returns true if this is an anti dependence. | 
|  | bool Dependence::isAnti() const { | 
|  | return Src->mayReadFromMemory() && Dst->mayWriteToMemory(); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Returns true if a particular level is scalar; that is, | 
|  | // if no subscript in the source or destination mention the induction | 
|  | // variable associated with the loop at this level. | 
|  | // Leave this out of line, so it will serve as a virtual method anchor | 
|  | bool Dependence::isScalar(unsigned level) const { | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // FullDependence methods | 
|  |  | 
|  | FullDependence::FullDependence(Instruction *Source, Instruction *Destination, | 
|  | bool PossiblyLoopIndependent, | 
|  | unsigned CommonLevels) | 
|  | : Dependence(Source, Destination), Levels(CommonLevels), | 
|  | LoopIndependent(PossiblyLoopIndependent) { | 
|  | Consistent = true; | 
|  | if (CommonLevels) | 
|  | DV = make_unique<DVEntry[]>(CommonLevels); | 
|  | } | 
|  |  | 
|  | // The rest are simple getters that hide the implementation. | 
|  |  | 
|  | // getDirection - Returns the direction associated with a particular level. | 
|  | unsigned FullDependence::getDirection(unsigned Level) const { | 
|  | assert(0 < Level && Level <= Levels && "Level out of range"); | 
|  | return DV[Level - 1].Direction; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Returns the distance (or NULL) associated with a particular level. | 
|  | const SCEV *FullDependence::getDistance(unsigned Level) const { | 
|  | assert(0 < Level && Level <= Levels && "Level out of range"); | 
|  | return DV[Level - 1].Distance; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Returns true if a particular level is scalar; that is, | 
|  | // if no subscript in the source or destination mention the induction | 
|  | // variable associated with the loop at this level. | 
|  | bool FullDependence::isScalar(unsigned Level) const { | 
|  | assert(0 < Level && Level <= Levels && "Level out of range"); | 
|  | return DV[Level - 1].Scalar; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Returns true if peeling the first iteration from this loop | 
|  | // will break this dependence. | 
|  | bool FullDependence::isPeelFirst(unsigned Level) const { | 
|  | assert(0 < Level && Level <= Levels && "Level out of range"); | 
|  | return DV[Level - 1].PeelFirst; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Returns true if peeling the last iteration from this loop | 
|  | // will break this dependence. | 
|  | bool FullDependence::isPeelLast(unsigned Level) const { | 
|  | assert(0 < Level && Level <= Levels && "Level out of range"); | 
|  | return DV[Level - 1].PeelLast; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Returns true if splitting this loop will break the dependence. | 
|  | bool FullDependence::isSplitable(unsigned Level) const { | 
|  | assert(0 < Level && Level <= Levels && "Level out of range"); | 
|  | return DV[Level - 1].Splitable; | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // DependenceInfo::Constraint methods | 
|  |  | 
|  | // If constraint is a point <X, Y>, returns X. | 
|  | // Otherwise assert. | 
|  | const SCEV *DependenceInfo::Constraint::getX() const { | 
|  | assert(Kind == Point && "Kind should be Point"); | 
|  | return A; | 
|  | } | 
|  |  | 
|  |  | 
|  | // If constraint is a point <X, Y>, returns Y. | 
|  | // Otherwise assert. | 
|  | const SCEV *DependenceInfo::Constraint::getY() const { | 
|  | assert(Kind == Point && "Kind should be Point"); | 
|  | return B; | 
|  | } | 
|  |  | 
|  |  | 
|  | // If constraint is a line AX + BY = C, returns A. | 
|  | // Otherwise assert. | 
|  | const SCEV *DependenceInfo::Constraint::getA() const { | 
|  | assert((Kind == Line || Kind == Distance) && | 
|  | "Kind should be Line (or Distance)"); | 
|  | return A; | 
|  | } | 
|  |  | 
|  |  | 
|  | // If constraint is a line AX + BY = C, returns B. | 
|  | // Otherwise assert. | 
|  | const SCEV *DependenceInfo::Constraint::getB() const { | 
|  | assert((Kind == Line || Kind == Distance) && | 
|  | "Kind should be Line (or Distance)"); | 
|  | return B; | 
|  | } | 
|  |  | 
|  |  | 
|  | // If constraint is a line AX + BY = C, returns C. | 
|  | // Otherwise assert. | 
|  | const SCEV *DependenceInfo::Constraint::getC() const { | 
|  | assert((Kind == Line || Kind == Distance) && | 
|  | "Kind should be Line (or Distance)"); | 
|  | return C; | 
|  | } | 
|  |  | 
|  |  | 
|  | // If constraint is a distance, returns D. | 
|  | // Otherwise assert. | 
|  | const SCEV *DependenceInfo::Constraint::getD() const { | 
|  | assert(Kind == Distance && "Kind should be Distance"); | 
|  | return SE->getNegativeSCEV(C); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Returns the loop associated with this constraint. | 
|  | const Loop *DependenceInfo::Constraint::getAssociatedLoop() const { | 
|  | assert((Kind == Distance || Kind == Line || Kind == Point) && | 
|  | "Kind should be Distance, Line, or Point"); | 
|  | return AssociatedLoop; | 
|  | } | 
|  |  | 
|  | void DependenceInfo::Constraint::setPoint(const SCEV *X, const SCEV *Y, | 
|  | const Loop *CurLoop) { | 
|  | Kind = Point; | 
|  | A = X; | 
|  | B = Y; | 
|  | AssociatedLoop = CurLoop; | 
|  | } | 
|  |  | 
|  | void DependenceInfo::Constraint::setLine(const SCEV *AA, const SCEV *BB, | 
|  | const SCEV *CC, const Loop *CurLoop) { | 
|  | Kind = Line; | 
|  | A = AA; | 
|  | B = BB; | 
|  | C = CC; | 
|  | AssociatedLoop = CurLoop; | 
|  | } | 
|  |  | 
|  | void DependenceInfo::Constraint::setDistance(const SCEV *D, | 
|  | const Loop *CurLoop) { | 
|  | Kind = Distance; | 
|  | A = SE->getOne(D->getType()); | 
|  | B = SE->getNegativeSCEV(A); | 
|  | C = SE->getNegativeSCEV(D); | 
|  | AssociatedLoop = CurLoop; | 
|  | } | 
|  |  | 
|  | void DependenceInfo::Constraint::setEmpty() { Kind = Empty; } | 
|  |  | 
|  | void DependenceInfo::Constraint::setAny(ScalarEvolution *NewSE) { | 
|  | SE = NewSE; | 
|  | Kind = Any; | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | // For debugging purposes. Dumps the constraint out to OS. | 
|  | LLVM_DUMP_METHOD void DependenceInfo::Constraint::dump(raw_ostream &OS) const { | 
|  | if (isEmpty()) | 
|  | OS << " Empty\n"; | 
|  | else if (isAny()) | 
|  | OS << " Any\n"; | 
|  | else if (isPoint()) | 
|  | OS << " Point is <" << *getX() << ", " << *getY() << ">\n"; | 
|  | else if (isDistance()) | 
|  | OS << " Distance is " << *getD() << | 
|  | " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n"; | 
|  | else if (isLine()) | 
|  | OS << " Line is " << *getA() << "*X + " << | 
|  | *getB() << "*Y = " << *getC() << "\n"; | 
|  | else | 
|  | llvm_unreachable("unknown constraint type in Constraint::dump"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | // Updates X with the intersection | 
|  | // of the Constraints X and Y. Returns true if X has changed. | 
|  | // Corresponds to Figure 4 from the paper | 
|  | // | 
|  | //            Practical Dependence Testing | 
|  | //            Goff, Kennedy, Tseng | 
|  | //            PLDI 1991 | 
|  | bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) { | 
|  | ++DeltaApplications; | 
|  | LLVM_DEBUG(dbgs() << "\tintersect constraints\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t    X ="; X->dump(dbgs())); | 
|  | LLVM_DEBUG(dbgs() << "\t    Y ="; Y->dump(dbgs())); | 
|  | assert(!Y->isPoint() && "Y must not be a Point"); | 
|  | if (X->isAny()) { | 
|  | if (Y->isAny()) | 
|  | return false; | 
|  | *X = *Y; | 
|  | return true; | 
|  | } | 
|  | if (X->isEmpty()) | 
|  | return false; | 
|  | if (Y->isEmpty()) { | 
|  | X->setEmpty(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (X->isDistance() && Y->isDistance()) { | 
|  | LLVM_DEBUG(dbgs() << "\t    intersect 2 distances\n"); | 
|  | if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD())) | 
|  | return false; | 
|  | if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) { | 
|  | X->setEmpty(); | 
|  | ++DeltaSuccesses; | 
|  | return true; | 
|  | } | 
|  | // Hmmm, interesting situation. | 
|  | // I guess if either is constant, keep it and ignore the other. | 
|  | if (isa<SCEVConstant>(Y->getD())) { | 
|  | *X = *Y; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // At this point, the pseudo-code in Figure 4 of the paper | 
|  | // checks if (X->isPoint() && Y->isPoint()). | 
|  | // This case can't occur in our implementation, | 
|  | // since a Point can only arise as the result of intersecting | 
|  | // two Line constraints, and the right-hand value, Y, is never | 
|  | // the result of an intersection. | 
|  | assert(!(X->isPoint() && Y->isPoint()) && | 
|  | "We shouldn't ever see X->isPoint() && Y->isPoint()"); | 
|  |  | 
|  | if (X->isLine() && Y->isLine()) { | 
|  | LLVM_DEBUG(dbgs() << "\t    intersect 2 lines\n"); | 
|  | const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB()); | 
|  | const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA()); | 
|  | if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) { | 
|  | // slopes are equal, so lines are parallel | 
|  | LLVM_DEBUG(dbgs() << "\t\tsame slope\n"); | 
|  | Prod1 = SE->getMulExpr(X->getC(), Y->getB()); | 
|  | Prod2 = SE->getMulExpr(X->getB(), Y->getC()); | 
|  | if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) | 
|  | return false; | 
|  | if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) { | 
|  | X->setEmpty(); | 
|  | ++DeltaSuccesses; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) { | 
|  | // slopes differ, so lines intersect | 
|  | LLVM_DEBUG(dbgs() << "\t\tdifferent slopes\n"); | 
|  | const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB()); | 
|  | const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA()); | 
|  | const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB()); | 
|  | const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA()); | 
|  | const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB()); | 
|  | const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB()); | 
|  | const SCEVConstant *C1A2_C2A1 = | 
|  | dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1)); | 
|  | const SCEVConstant *C1B2_C2B1 = | 
|  | dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1)); | 
|  | const SCEVConstant *A1B2_A2B1 = | 
|  | dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1)); | 
|  | const SCEVConstant *A2B1_A1B2 = | 
|  | dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2)); | 
|  | if (!C1B2_C2B1 || !C1A2_C2A1 || | 
|  | !A1B2_A2B1 || !A2B1_A1B2) | 
|  | return false; | 
|  | APInt Xtop = C1B2_C2B1->getAPInt(); | 
|  | APInt Xbot = A1B2_A2B1->getAPInt(); | 
|  | APInt Ytop = C1A2_C2A1->getAPInt(); | 
|  | APInt Ybot = A2B1_A1B2->getAPInt(); | 
|  | LLVM_DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n"); | 
|  | APInt Xq = Xtop; // these need to be initialized, even | 
|  | APInt Xr = Xtop; // though they're just going to be overwritten | 
|  | APInt::sdivrem(Xtop, Xbot, Xq, Xr); | 
|  | APInt Yq = Ytop; | 
|  | APInt Yr = Ytop; | 
|  | APInt::sdivrem(Ytop, Ybot, Yq, Yr); | 
|  | if (Xr != 0 || Yr != 0) { | 
|  | X->setEmpty(); | 
|  | ++DeltaSuccesses; | 
|  | return true; | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n"); | 
|  | if (Xq.slt(0) || Yq.slt(0)) { | 
|  | X->setEmpty(); | 
|  | ++DeltaSuccesses; | 
|  | return true; | 
|  | } | 
|  | if (const SCEVConstant *CUB = | 
|  | collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) { | 
|  | const APInt &UpperBound = CUB->getAPInt(); | 
|  | LLVM_DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n"); | 
|  | if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) { | 
|  | X->setEmpty(); | 
|  | ++DeltaSuccesses; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | X->setPoint(SE->getConstant(Xq), | 
|  | SE->getConstant(Yq), | 
|  | X->getAssociatedLoop()); | 
|  | ++DeltaSuccesses; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // if (X->isLine() && Y->isPoint()) This case can't occur. | 
|  | assert(!(X->isLine() && Y->isPoint()) && "This case should never occur"); | 
|  |  | 
|  | if (X->isPoint() && Y->isLine()) { | 
|  | LLVM_DEBUG(dbgs() << "\t    intersect Point and Line\n"); | 
|  | const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX()); | 
|  | const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY()); | 
|  | const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1); | 
|  | if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC())) | 
|  | return false; | 
|  | if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) { | 
|  | X->setEmpty(); | 
|  | ++DeltaSuccesses; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("shouldn't reach the end of Constraint intersection"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // DependenceInfo methods | 
|  |  | 
|  | // For debugging purposes. Dumps a dependence to OS. | 
|  | void Dependence::dump(raw_ostream &OS) const { | 
|  | bool Splitable = false; | 
|  | if (isConfused()) | 
|  | OS << "confused"; | 
|  | else { | 
|  | if (isConsistent()) | 
|  | OS << "consistent "; | 
|  | if (isFlow()) | 
|  | OS << "flow"; | 
|  | else if (isOutput()) | 
|  | OS << "output"; | 
|  | else if (isAnti()) | 
|  | OS << "anti"; | 
|  | else if (isInput()) | 
|  | OS << "input"; | 
|  | unsigned Levels = getLevels(); | 
|  | OS << " ["; | 
|  | for (unsigned II = 1; II <= Levels; ++II) { | 
|  | if (isSplitable(II)) | 
|  | Splitable = true; | 
|  | if (isPeelFirst(II)) | 
|  | OS << 'p'; | 
|  | const SCEV *Distance = getDistance(II); | 
|  | if (Distance) | 
|  | OS << *Distance; | 
|  | else if (isScalar(II)) | 
|  | OS << "S"; | 
|  | else { | 
|  | unsigned Direction = getDirection(II); | 
|  | if (Direction == DVEntry::ALL) | 
|  | OS << "*"; | 
|  | else { | 
|  | if (Direction & DVEntry::LT) | 
|  | OS << "<"; | 
|  | if (Direction & DVEntry::EQ) | 
|  | OS << "="; | 
|  | if (Direction & DVEntry::GT) | 
|  | OS << ">"; | 
|  | } | 
|  | } | 
|  | if (isPeelLast(II)) | 
|  | OS << 'p'; | 
|  | if (II < Levels) | 
|  | OS << " "; | 
|  | } | 
|  | if (isLoopIndependent()) | 
|  | OS << "|<"; | 
|  | OS << "]"; | 
|  | if (Splitable) | 
|  | OS << " splitable"; | 
|  | } | 
|  | OS << "!\n"; | 
|  | } | 
|  |  | 
|  | // Returns NoAlias/MayAliass/MustAlias for two memory locations based upon their | 
|  | // underlaying objects. If LocA and LocB are known to not alias (for any reason: | 
|  | // tbaa, non-overlapping regions etc), then it is known there is no dependecy. | 
|  | // Otherwise the underlying objects are checked to see if they point to | 
|  | // different identifiable objects. | 
|  | static AliasResult underlyingObjectsAlias(AliasAnalysis *AA, | 
|  | const DataLayout &DL, | 
|  | const MemoryLocation &LocA, | 
|  | const MemoryLocation &LocB) { | 
|  | // Check the original locations (minus size) for noalias, which can happen for | 
|  | // tbaa, incompatible underlying object locations, etc. | 
|  | MemoryLocation LocAS(LocA.Ptr, LocationSize::unknown(), LocA.AATags); | 
|  | MemoryLocation LocBS(LocB.Ptr, LocationSize::unknown(), LocB.AATags); | 
|  | if (AA->alias(LocAS, LocBS) == NoAlias) | 
|  | return NoAlias; | 
|  |  | 
|  | // Check the underlying objects are the same | 
|  | const Value *AObj = GetUnderlyingObject(LocA.Ptr, DL); | 
|  | const Value *BObj = GetUnderlyingObject(LocB.Ptr, DL); | 
|  |  | 
|  | // If the underlying objects are the same, they must alias | 
|  | if (AObj == BObj) | 
|  | return MustAlias; | 
|  |  | 
|  | // We may have hit the recursion limit for underlying objects, or have | 
|  | // underlying objects where we don't know they will alias. | 
|  | if (!isIdentifiedObject(AObj) || !isIdentifiedObject(BObj)) | 
|  | return MayAlias; | 
|  |  | 
|  | // Otherwise we know the objects are different and both identified objects so | 
|  | // must not alias. | 
|  | return NoAlias; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Returns true if the load or store can be analyzed. Atomic and volatile | 
|  | // operations have properties which this analysis does not understand. | 
|  | static | 
|  | bool isLoadOrStore(const Instruction *I) { | 
|  | if (const LoadInst *LI = dyn_cast<LoadInst>(I)) | 
|  | return LI->isUnordered(); | 
|  | else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) | 
|  | return SI->isUnordered(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Examines the loop nesting of the Src and Dst | 
|  | // instructions and establishes their shared loops. Sets the variables | 
|  | // CommonLevels, SrcLevels, and MaxLevels. | 
|  | // The source and destination instructions needn't be contained in the same | 
|  | // loop. The routine establishNestingLevels finds the level of most deeply | 
|  | // nested loop that contains them both, CommonLevels. An instruction that's | 
|  | // not contained in a loop is at level = 0. MaxLevels is equal to the level | 
|  | // of the source plus the level of the destination, minus CommonLevels. | 
|  | // This lets us allocate vectors MaxLevels in length, with room for every | 
|  | // distinct loop referenced in both the source and destination subscripts. | 
|  | // The variable SrcLevels is the nesting depth of the source instruction. | 
|  | // It's used to help calculate distinct loops referenced by the destination. | 
|  | // Here's the map from loops to levels: | 
|  | //            0 - unused | 
|  | //            1 - outermost common loop | 
|  | //          ... - other common loops | 
|  | // CommonLevels - innermost common loop | 
|  | //          ... - loops containing Src but not Dst | 
|  | //    SrcLevels - innermost loop containing Src but not Dst | 
|  | //          ... - loops containing Dst but not Src | 
|  | //    MaxLevels - innermost loops containing Dst but not Src | 
|  | // Consider the follow code fragment: | 
|  | //   for (a = ...) { | 
|  | //     for (b = ...) { | 
|  | //       for (c = ...) { | 
|  | //         for (d = ...) { | 
|  | //           A[] = ...; | 
|  | //         } | 
|  | //       } | 
|  | //       for (e = ...) { | 
|  | //         for (f = ...) { | 
|  | //           for (g = ...) { | 
|  | //             ... = A[]; | 
|  | //           } | 
|  | //         } | 
|  | //       } | 
|  | //     } | 
|  | //   } | 
|  | // If we're looking at the possibility of a dependence between the store | 
|  | // to A (the Src) and the load from A (the Dst), we'll note that they | 
|  | // have 2 loops in common, so CommonLevels will equal 2 and the direction | 
|  | // vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7. | 
|  | // A map from loop names to loop numbers would look like | 
|  | //     a - 1 | 
|  | //     b - 2 = CommonLevels | 
|  | //     c - 3 | 
|  | //     d - 4 = SrcLevels | 
|  | //     e - 5 | 
|  | //     f - 6 | 
|  | //     g - 7 = MaxLevels | 
|  | void DependenceInfo::establishNestingLevels(const Instruction *Src, | 
|  | const Instruction *Dst) { | 
|  | const BasicBlock *SrcBlock = Src->getParent(); | 
|  | const BasicBlock *DstBlock = Dst->getParent(); | 
|  | unsigned SrcLevel = LI->getLoopDepth(SrcBlock); | 
|  | unsigned DstLevel = LI->getLoopDepth(DstBlock); | 
|  | const Loop *SrcLoop = LI->getLoopFor(SrcBlock); | 
|  | const Loop *DstLoop = LI->getLoopFor(DstBlock); | 
|  | SrcLevels = SrcLevel; | 
|  | MaxLevels = SrcLevel + DstLevel; | 
|  | while (SrcLevel > DstLevel) { | 
|  | SrcLoop = SrcLoop->getParentLoop(); | 
|  | SrcLevel--; | 
|  | } | 
|  | while (DstLevel > SrcLevel) { | 
|  | DstLoop = DstLoop->getParentLoop(); | 
|  | DstLevel--; | 
|  | } | 
|  | while (SrcLoop != DstLoop) { | 
|  | SrcLoop = SrcLoop->getParentLoop(); | 
|  | DstLoop = DstLoop->getParentLoop(); | 
|  | SrcLevel--; | 
|  | } | 
|  | CommonLevels = SrcLevel; | 
|  | MaxLevels -= CommonLevels; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Given one of the loops containing the source, return | 
|  | // its level index in our numbering scheme. | 
|  | unsigned DependenceInfo::mapSrcLoop(const Loop *SrcLoop) const { | 
|  | return SrcLoop->getLoopDepth(); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Given one of the loops containing the destination, | 
|  | // return its level index in our numbering scheme. | 
|  | unsigned DependenceInfo::mapDstLoop(const Loop *DstLoop) const { | 
|  | unsigned D = DstLoop->getLoopDepth(); | 
|  | if (D > CommonLevels) | 
|  | return D - CommonLevels + SrcLevels; | 
|  | else | 
|  | return D; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Returns true if Expression is loop invariant in LoopNest. | 
|  | bool DependenceInfo::isLoopInvariant(const SCEV *Expression, | 
|  | const Loop *LoopNest) const { | 
|  | if (!LoopNest) | 
|  | return true; | 
|  | return SE->isLoopInvariant(Expression, LoopNest) && | 
|  | isLoopInvariant(Expression, LoopNest->getParentLoop()); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | // Finds the set of loops from the LoopNest that | 
|  | // have a level <= CommonLevels and are referred to by the SCEV Expression. | 
|  | void DependenceInfo::collectCommonLoops(const SCEV *Expression, | 
|  | const Loop *LoopNest, | 
|  | SmallBitVector &Loops) const { | 
|  | while (LoopNest) { | 
|  | unsigned Level = LoopNest->getLoopDepth(); | 
|  | if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest)) | 
|  | Loops.set(Level); | 
|  | LoopNest = LoopNest->getParentLoop(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void DependenceInfo::unifySubscriptType(ArrayRef<Subscript *> Pairs) { | 
|  |  | 
|  | unsigned widestWidthSeen = 0; | 
|  | Type *widestType; | 
|  |  | 
|  | // Go through each pair and find the widest bit to which we need | 
|  | // to extend all of them. | 
|  | for (Subscript *Pair : Pairs) { | 
|  | const SCEV *Src = Pair->Src; | 
|  | const SCEV *Dst = Pair->Dst; | 
|  | IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType()); | 
|  | IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType()); | 
|  | if (SrcTy == nullptr || DstTy == nullptr) { | 
|  | assert(SrcTy == DstTy && "This function only unify integer types and " | 
|  | "expect Src and Dst share the same type " | 
|  | "otherwise."); | 
|  | continue; | 
|  | } | 
|  | if (SrcTy->getBitWidth() > widestWidthSeen) { | 
|  | widestWidthSeen = SrcTy->getBitWidth(); | 
|  | widestType = SrcTy; | 
|  | } | 
|  | if (DstTy->getBitWidth() > widestWidthSeen) { | 
|  | widestWidthSeen = DstTy->getBitWidth(); | 
|  | widestType = DstTy; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | assert(widestWidthSeen > 0); | 
|  |  | 
|  | // Now extend each pair to the widest seen. | 
|  | for (Subscript *Pair : Pairs) { | 
|  | const SCEV *Src = Pair->Src; | 
|  | const SCEV *Dst = Pair->Dst; | 
|  | IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType()); | 
|  | IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType()); | 
|  | if (SrcTy == nullptr || DstTy == nullptr) { | 
|  | assert(SrcTy == DstTy && "This function only unify integer types and " | 
|  | "expect Src and Dst share the same type " | 
|  | "otherwise."); | 
|  | continue; | 
|  | } | 
|  | if (SrcTy->getBitWidth() < widestWidthSeen) | 
|  | // Sign-extend Src to widestType | 
|  | Pair->Src = SE->getSignExtendExpr(Src, widestType); | 
|  | if (DstTy->getBitWidth() < widestWidthSeen) { | 
|  | // Sign-extend Dst to widestType | 
|  | Pair->Dst = SE->getSignExtendExpr(Dst, widestType); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // removeMatchingExtensions - Examines a subscript pair. | 
|  | // If the source and destination are identically sign (or zero) | 
|  | // extended, it strips off the extension in an effect to simplify | 
|  | // the actual analysis. | 
|  | void DependenceInfo::removeMatchingExtensions(Subscript *Pair) { | 
|  | const SCEV *Src = Pair->Src; | 
|  | const SCEV *Dst = Pair->Dst; | 
|  | if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) || | 
|  | (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) { | 
|  | const SCEVCastExpr *SrcCast = cast<SCEVCastExpr>(Src); | 
|  | const SCEVCastExpr *DstCast = cast<SCEVCastExpr>(Dst); | 
|  | const SCEV *SrcCastOp = SrcCast->getOperand(); | 
|  | const SCEV *DstCastOp = DstCast->getOperand(); | 
|  | if (SrcCastOp->getType() == DstCastOp->getType()) { | 
|  | Pair->Src = SrcCastOp; | 
|  | Pair->Dst = DstCastOp; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Examine the scev and return true iff it's linear. | 
|  | // Collect any loops mentioned in the set of "Loops". | 
|  | bool DependenceInfo::checkSrcSubscript(const SCEV *Src, const Loop *LoopNest, | 
|  | SmallBitVector &Loops) { | 
|  | const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Src); | 
|  | if (!AddRec) | 
|  | return isLoopInvariant(Src, LoopNest); | 
|  | const SCEV *Start = AddRec->getStart(); | 
|  | const SCEV *Step = AddRec->getStepRecurrence(*SE); | 
|  | const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop()); | 
|  | if (!isa<SCEVCouldNotCompute>(UB)) { | 
|  | if (SE->getTypeSizeInBits(Start->getType()) < | 
|  | SE->getTypeSizeInBits(UB->getType())) { | 
|  | if (!AddRec->getNoWrapFlags()) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | if (!isLoopInvariant(Step, LoopNest)) | 
|  | return false; | 
|  | Loops.set(mapSrcLoop(AddRec->getLoop())); | 
|  | return checkSrcSubscript(Start, LoopNest, Loops); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | // Examine the scev and return true iff it's linear. | 
|  | // Collect any loops mentioned in the set of "Loops". | 
|  | bool DependenceInfo::checkDstSubscript(const SCEV *Dst, const Loop *LoopNest, | 
|  | SmallBitVector &Loops) { | 
|  | const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Dst); | 
|  | if (!AddRec) | 
|  | return isLoopInvariant(Dst, LoopNest); | 
|  | const SCEV *Start = AddRec->getStart(); | 
|  | const SCEV *Step = AddRec->getStepRecurrence(*SE); | 
|  | const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop()); | 
|  | if (!isa<SCEVCouldNotCompute>(UB)) { | 
|  | if (SE->getTypeSizeInBits(Start->getType()) < | 
|  | SE->getTypeSizeInBits(UB->getType())) { | 
|  | if (!AddRec->getNoWrapFlags()) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | if (!isLoopInvariant(Step, LoopNest)) | 
|  | return false; | 
|  | Loops.set(mapDstLoop(AddRec->getLoop())); | 
|  | return checkDstSubscript(Start, LoopNest, Loops); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Examines the subscript pair (the Src and Dst SCEVs) | 
|  | // and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear. | 
|  | // Collects the associated loops in a set. | 
|  | DependenceInfo::Subscript::ClassificationKind | 
|  | DependenceInfo::classifyPair(const SCEV *Src, const Loop *SrcLoopNest, | 
|  | const SCEV *Dst, const Loop *DstLoopNest, | 
|  | SmallBitVector &Loops) { | 
|  | SmallBitVector SrcLoops(MaxLevels + 1); | 
|  | SmallBitVector DstLoops(MaxLevels + 1); | 
|  | if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops)) | 
|  | return Subscript::NonLinear; | 
|  | if (!checkDstSubscript(Dst, DstLoopNest, DstLoops)) | 
|  | return Subscript::NonLinear; | 
|  | Loops = SrcLoops; | 
|  | Loops |= DstLoops; | 
|  | unsigned N = Loops.count(); | 
|  | if (N == 0) | 
|  | return Subscript::ZIV; | 
|  | if (N == 1) | 
|  | return Subscript::SIV; | 
|  | if (N == 2 && (SrcLoops.count() == 0 || | 
|  | DstLoops.count() == 0 || | 
|  | (SrcLoops.count() == 1 && DstLoops.count() == 1))) | 
|  | return Subscript::RDIV; | 
|  | return Subscript::MIV; | 
|  | } | 
|  |  | 
|  |  | 
|  | // A wrapper around SCEV::isKnownPredicate. | 
|  | // Looks for cases where we're interested in comparing for equality. | 
|  | // If both X and Y have been identically sign or zero extended, | 
|  | // it strips off the (confusing) extensions before invoking | 
|  | // SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package | 
|  | // will be similarly updated. | 
|  | // | 
|  | // If SCEV::isKnownPredicate can't prove the predicate, | 
|  | // we try simple subtraction, which seems to help in some cases | 
|  | // involving symbolics. | 
|  | bool DependenceInfo::isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *X, | 
|  | const SCEV *Y) const { | 
|  | if (Pred == CmpInst::ICMP_EQ || | 
|  | Pred == CmpInst::ICMP_NE) { | 
|  | if ((isa<SCEVSignExtendExpr>(X) && | 
|  | isa<SCEVSignExtendExpr>(Y)) || | 
|  | (isa<SCEVZeroExtendExpr>(X) && | 
|  | isa<SCEVZeroExtendExpr>(Y))) { | 
|  | const SCEVCastExpr *CX = cast<SCEVCastExpr>(X); | 
|  | const SCEVCastExpr *CY = cast<SCEVCastExpr>(Y); | 
|  | const SCEV *Xop = CX->getOperand(); | 
|  | const SCEV *Yop = CY->getOperand(); | 
|  | if (Xop->getType() == Yop->getType()) { | 
|  | X = Xop; | 
|  | Y = Yop; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (SE->isKnownPredicate(Pred, X, Y)) | 
|  | return true; | 
|  | // If SE->isKnownPredicate can't prove the condition, | 
|  | // we try the brute-force approach of subtracting | 
|  | // and testing the difference. | 
|  | // By testing with SE->isKnownPredicate first, we avoid | 
|  | // the possibility of overflow when the arguments are constants. | 
|  | const SCEV *Delta = SE->getMinusSCEV(X, Y); | 
|  | switch (Pred) { | 
|  | case CmpInst::ICMP_EQ: | 
|  | return Delta->isZero(); | 
|  | case CmpInst::ICMP_NE: | 
|  | return SE->isKnownNonZero(Delta); | 
|  | case CmpInst::ICMP_SGE: | 
|  | return SE->isKnownNonNegative(Delta); | 
|  | case CmpInst::ICMP_SLE: | 
|  | return SE->isKnownNonPositive(Delta); | 
|  | case CmpInst::ICMP_SGT: | 
|  | return SE->isKnownPositive(Delta); | 
|  | case CmpInst::ICMP_SLT: | 
|  | return SE->isKnownNegative(Delta); | 
|  | default: | 
|  | llvm_unreachable("unexpected predicate in isKnownPredicate"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Compare to see if S is less than Size, using isKnownNegative(S - max(Size, 1)) | 
|  | /// with some extra checking if S is an AddRec and we can prove less-than using | 
|  | /// the loop bounds. | 
|  | bool DependenceInfo::isKnownLessThan(const SCEV *S, const SCEV *Size) const { | 
|  | // First unify to the same type | 
|  | auto *SType = dyn_cast<IntegerType>(S->getType()); | 
|  | auto *SizeType = dyn_cast<IntegerType>(Size->getType()); | 
|  | if (!SType || !SizeType) | 
|  | return false; | 
|  | Type *MaxType = | 
|  | (SType->getBitWidth() >= SizeType->getBitWidth()) ? SType : SizeType; | 
|  | S = SE->getTruncateOrZeroExtend(S, MaxType); | 
|  | Size = SE->getTruncateOrZeroExtend(Size, MaxType); | 
|  |  | 
|  | // Special check for addrecs using BE taken count | 
|  | const SCEV *Bound = SE->getMinusSCEV(S, Size); | 
|  | if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Bound)) { | 
|  | if (AddRec->isAffine()) { | 
|  | const SCEV *BECount = SE->getBackedgeTakenCount(AddRec->getLoop()); | 
|  | if (!isa<SCEVCouldNotCompute>(BECount)) { | 
|  | const SCEV *Limit = AddRec->evaluateAtIteration(BECount, *SE); | 
|  | if (SE->isKnownNegative(Limit)) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check using normal isKnownNegative | 
|  | const SCEV *LimitedBound = | 
|  | SE->getMinusSCEV(S, SE->getSMaxExpr(Size, SE->getOne(Size->getType()))); | 
|  | return SE->isKnownNegative(LimitedBound); | 
|  | } | 
|  |  | 
|  | bool DependenceInfo::isKnownNonNegative(const SCEV *S, const Value *Ptr) const { | 
|  | bool Inbounds = false; | 
|  | if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(Ptr)) | 
|  | Inbounds = SrcGEP->isInBounds(); | 
|  | if (Inbounds) { | 
|  | if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { | 
|  | if (AddRec->isAffine()) { | 
|  | // We know S is for Ptr, the operand on a load/store, so doesn't wrap. | 
|  | // If both parts are NonNegative, the end result will be NonNegative | 
|  | if (SE->isKnownNonNegative(AddRec->getStart()) && | 
|  | SE->isKnownNonNegative(AddRec->getOperand(1))) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return SE->isKnownNonNegative(S); | 
|  | } | 
|  |  | 
|  | // All subscripts are all the same type. | 
|  | // Loop bound may be smaller (e.g., a char). | 
|  | // Should zero extend loop bound, since it's always >= 0. | 
|  | // This routine collects upper bound and extends or truncates if needed. | 
|  | // Truncating is safe when subscripts are known not to wrap. Cases without | 
|  | // nowrap flags should have been rejected earlier. | 
|  | // Return null if no bound available. | 
|  | const SCEV *DependenceInfo::collectUpperBound(const Loop *L, Type *T) const { | 
|  | if (SE->hasLoopInvariantBackedgeTakenCount(L)) { | 
|  | const SCEV *UB = SE->getBackedgeTakenCount(L); | 
|  | return SE->getTruncateOrZeroExtend(UB, T); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Calls collectUpperBound(), then attempts to cast it to SCEVConstant. | 
|  | // If the cast fails, returns NULL. | 
|  | const SCEVConstant *DependenceInfo::collectConstantUpperBound(const Loop *L, | 
|  | Type *T) const { | 
|  | if (const SCEV *UB = collectUpperBound(L, T)) | 
|  | return dyn_cast<SCEVConstant>(UB); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  |  | 
|  | // testZIV - | 
|  | // When we have a pair of subscripts of the form [c1] and [c2], | 
|  | // where c1 and c2 are both loop invariant, we attack it using | 
|  | // the ZIV test. Basically, we test by comparing the two values, | 
|  | // but there are actually three possible results: | 
|  | // 1) the values are equal, so there's a dependence | 
|  | // 2) the values are different, so there's no dependence | 
|  | // 3) the values might be equal, so we have to assume a dependence. | 
|  | // | 
|  | // Return true if dependence disproved. | 
|  | bool DependenceInfo::testZIV(const SCEV *Src, const SCEV *Dst, | 
|  | FullDependence &Result) const { | 
|  | LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n"); | 
|  | ++ZIVapplications; | 
|  | if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) { | 
|  | LLVM_DEBUG(dbgs() << "    provably dependent\n"); | 
|  | return false; // provably dependent | 
|  | } | 
|  | if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) { | 
|  | LLVM_DEBUG(dbgs() << "    provably independent\n"); | 
|  | ++ZIVindependence; | 
|  | return true; // provably independent | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "    possibly dependent\n"); | 
|  | Result.Consistent = false; | 
|  | return false; // possibly dependent | 
|  | } | 
|  |  | 
|  |  | 
|  | // strongSIVtest - | 
|  | // From the paper, Practical Dependence Testing, Section 4.2.1 | 
|  | // | 
|  | // When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i], | 
|  | // where i is an induction variable, c1 and c2 are loop invariant, | 
|  | //  and a is a constant, we can solve it exactly using the Strong SIV test. | 
|  | // | 
|  | // Can prove independence. Failing that, can compute distance (and direction). | 
|  | // In the presence of symbolic terms, we can sometimes make progress. | 
|  | // | 
|  | // If there's a dependence, | 
|  | // | 
|  | //    c1 + a*i = c2 + a*i' | 
|  | // | 
|  | // The dependence distance is | 
|  | // | 
|  | //    d = i' - i = (c1 - c2)/a | 
|  | // | 
|  | // A dependence only exists if d is an integer and abs(d) <= U, where U is the | 
|  | // loop's upper bound. If a dependence exists, the dependence direction is | 
|  | // defined as | 
|  | // | 
|  | //                { < if d > 0 | 
|  | //    direction = { = if d = 0 | 
|  | //                { > if d < 0 | 
|  | // | 
|  | // Return true if dependence disproved. | 
|  | bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst, | 
|  | const SCEV *DstConst, const Loop *CurLoop, | 
|  | unsigned Level, FullDependence &Result, | 
|  | Constraint &NewConstraint) const { | 
|  | LLVM_DEBUG(dbgs() << "\tStrong SIV test\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t    Coeff = " << *Coeff); | 
|  | LLVM_DEBUG(dbgs() << ", " << *Coeff->getType() << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst); | 
|  | LLVM_DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst); | 
|  | LLVM_DEBUG(dbgs() << ", " << *DstConst->getType() << "\n"); | 
|  | ++StrongSIVapplications; | 
|  | assert(0 < Level && Level <= CommonLevels && "level out of range"); | 
|  | Level--; | 
|  |  | 
|  | const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst); | 
|  | LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta); | 
|  | LLVM_DEBUG(dbgs() << ", " << *Delta->getType() << "\n"); | 
|  |  | 
|  | // check that |Delta| < iteration count | 
|  | if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) { | 
|  | LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound); | 
|  | LLVM_DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n"); | 
|  | const SCEV *AbsDelta = | 
|  | SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta); | 
|  | const SCEV *AbsCoeff = | 
|  | SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff); | 
|  | const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff); | 
|  | if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) { | 
|  | // Distance greater than trip count - no dependence | 
|  | ++StrongSIVindependence; | 
|  | ++StrongSIVsuccesses; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Can we compute distance? | 
|  | if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) { | 
|  | APInt ConstDelta = cast<SCEVConstant>(Delta)->getAPInt(); | 
|  | APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getAPInt(); | 
|  | APInt Distance  = ConstDelta; // these need to be initialized | 
|  | APInt Remainder = ConstDelta; | 
|  | APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder); | 
|  | LLVM_DEBUG(dbgs() << "\t    Distance = " << Distance << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n"); | 
|  | // Make sure Coeff divides Delta exactly | 
|  | if (Remainder != 0) { | 
|  | // Coeff doesn't divide Distance, no dependence | 
|  | ++StrongSIVindependence; | 
|  | ++StrongSIVsuccesses; | 
|  | return true; | 
|  | } | 
|  | Result.DV[Level].Distance = SE->getConstant(Distance); | 
|  | NewConstraint.setDistance(SE->getConstant(Distance), CurLoop); | 
|  | if (Distance.sgt(0)) | 
|  | Result.DV[Level].Direction &= Dependence::DVEntry::LT; | 
|  | else if (Distance.slt(0)) | 
|  | Result.DV[Level].Direction &= Dependence::DVEntry::GT; | 
|  | else | 
|  | Result.DV[Level].Direction &= Dependence::DVEntry::EQ; | 
|  | ++StrongSIVsuccesses; | 
|  | } | 
|  | else if (Delta->isZero()) { | 
|  | // since 0/X == 0 | 
|  | Result.DV[Level].Distance = Delta; | 
|  | NewConstraint.setDistance(Delta, CurLoop); | 
|  | Result.DV[Level].Direction &= Dependence::DVEntry::EQ; | 
|  | ++StrongSIVsuccesses; | 
|  | } | 
|  | else { | 
|  | if (Coeff->isOne()) { | 
|  | LLVM_DEBUG(dbgs() << "\t    Distance = " << *Delta << "\n"); | 
|  | Result.DV[Level].Distance = Delta; // since X/1 == X | 
|  | NewConstraint.setDistance(Delta, CurLoop); | 
|  | } | 
|  | else { | 
|  | Result.Consistent = false; | 
|  | NewConstraint.setLine(Coeff, | 
|  | SE->getNegativeSCEV(Coeff), | 
|  | SE->getNegativeSCEV(Delta), CurLoop); | 
|  | } | 
|  |  | 
|  | // maybe we can get a useful direction | 
|  | bool DeltaMaybeZero     = !SE->isKnownNonZero(Delta); | 
|  | bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta); | 
|  | bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta); | 
|  | bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff); | 
|  | bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff); | 
|  | // The double negatives above are confusing. | 
|  | // It helps to read !SE->isKnownNonZero(Delta) | 
|  | // as "Delta might be Zero" | 
|  | unsigned NewDirection = Dependence::DVEntry::NONE; | 
|  | if ((DeltaMaybePositive && CoeffMaybePositive) || | 
|  | (DeltaMaybeNegative && CoeffMaybeNegative)) | 
|  | NewDirection = Dependence::DVEntry::LT; | 
|  | if (DeltaMaybeZero) | 
|  | NewDirection |= Dependence::DVEntry::EQ; | 
|  | if ((DeltaMaybeNegative && CoeffMaybePositive) || | 
|  | (DeltaMaybePositive && CoeffMaybeNegative)) | 
|  | NewDirection |= Dependence::DVEntry::GT; | 
|  | if (NewDirection < Result.DV[Level].Direction) | 
|  | ++StrongSIVsuccesses; | 
|  | Result.DV[Level].Direction &= NewDirection; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | // weakCrossingSIVtest - | 
|  | // From the paper, Practical Dependence Testing, Section 4.2.2 | 
|  | // | 
|  | // When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i], | 
|  | // where i is an induction variable, c1 and c2 are loop invariant, | 
|  | // and a is a constant, we can solve it exactly using the | 
|  | // Weak-Crossing SIV test. | 
|  | // | 
|  | // Given c1 + a*i = c2 - a*i', we can look for the intersection of | 
|  | // the two lines, where i = i', yielding | 
|  | // | 
|  | //    c1 + a*i = c2 - a*i | 
|  | //    2a*i = c2 - c1 | 
|  | //    i = (c2 - c1)/2a | 
|  | // | 
|  | // If i < 0, there is no dependence. | 
|  | // If i > upperbound, there is no dependence. | 
|  | // If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0. | 
|  | // If i = upperbound, there's a dependence with distance = 0. | 
|  | // If i is integral, there's a dependence (all directions). | 
|  | // If the non-integer part = 1/2, there's a dependence (<> directions). | 
|  | // Otherwise, there's no dependence. | 
|  | // | 
|  | // Can prove independence. Failing that, | 
|  | // can sometimes refine the directions. | 
|  | // Can determine iteration for splitting. | 
|  | // | 
|  | // Return true if dependence disproved. | 
|  | bool DependenceInfo::weakCrossingSIVtest( | 
|  | const SCEV *Coeff, const SCEV *SrcConst, const SCEV *DstConst, | 
|  | const Loop *CurLoop, unsigned Level, FullDependence &Result, | 
|  | Constraint &NewConstraint, const SCEV *&SplitIter) const { | 
|  | LLVM_DEBUG(dbgs() << "\tWeak-Crossing SIV test\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t    Coeff = " << *Coeff << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n"); | 
|  | ++WeakCrossingSIVapplications; | 
|  | assert(0 < Level && Level <= CommonLevels && "Level out of range"); | 
|  | Level--; | 
|  | Result.Consistent = false; | 
|  | const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst); | 
|  | LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n"); | 
|  | NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop); | 
|  | if (Delta->isZero()) { | 
|  | Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT); | 
|  | Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT); | 
|  | ++WeakCrossingSIVsuccesses; | 
|  | if (!Result.DV[Level].Direction) { | 
|  | ++WeakCrossingSIVindependence; | 
|  | return true; | 
|  | } | 
|  | Result.DV[Level].Distance = Delta; // = 0 | 
|  | return false; | 
|  | } | 
|  | const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff); | 
|  | if (!ConstCoeff) | 
|  | return false; | 
|  |  | 
|  | Result.DV[Level].Splitable = true; | 
|  | if (SE->isKnownNegative(ConstCoeff)) { | 
|  | ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff)); | 
|  | assert(ConstCoeff && | 
|  | "dynamic cast of negative of ConstCoeff should yield constant"); | 
|  | Delta = SE->getNegativeSCEV(Delta); | 
|  | } | 
|  | assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive"); | 
|  |  | 
|  | // compute SplitIter for use by DependenceInfo::getSplitIteration() | 
|  | SplitIter = SE->getUDivExpr( | 
|  | SE->getSMaxExpr(SE->getZero(Delta->getType()), Delta), | 
|  | SE->getMulExpr(SE->getConstant(Delta->getType(), 2), ConstCoeff)); | 
|  | LLVM_DEBUG(dbgs() << "\t    Split iter = " << *SplitIter << "\n"); | 
|  |  | 
|  | const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta); | 
|  | if (!ConstDelta) | 
|  | return false; | 
|  |  | 
|  | // We're certain that ConstCoeff > 0; therefore, | 
|  | // if Delta < 0, then no dependence. | 
|  | LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t    ConstCoeff = " << *ConstCoeff << "\n"); | 
|  | if (SE->isKnownNegative(Delta)) { | 
|  | // No dependence, Delta < 0 | 
|  | ++WeakCrossingSIVindependence; | 
|  | ++WeakCrossingSIVsuccesses; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // We're certain that Delta > 0 and ConstCoeff > 0. | 
|  | // Check Delta/(2*ConstCoeff) against upper loop bound | 
|  | if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) { | 
|  | LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n"); | 
|  | const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2); | 
|  | const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound), | 
|  | ConstantTwo); | 
|  | LLVM_DEBUG(dbgs() << "\t    ML = " << *ML << "\n"); | 
|  | if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) { | 
|  | // Delta too big, no dependence | 
|  | ++WeakCrossingSIVindependence; | 
|  | ++WeakCrossingSIVsuccesses; | 
|  | return true; | 
|  | } | 
|  | if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) { | 
|  | // i = i' = UB | 
|  | Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT); | 
|  | Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT); | 
|  | ++WeakCrossingSIVsuccesses; | 
|  | if (!Result.DV[Level].Direction) { | 
|  | ++WeakCrossingSIVindependence; | 
|  | return true; | 
|  | } | 
|  | Result.DV[Level].Splitable = false; | 
|  | Result.DV[Level].Distance = SE->getZero(Delta->getType()); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // check that Coeff divides Delta | 
|  | APInt APDelta = ConstDelta->getAPInt(); | 
|  | APInt APCoeff = ConstCoeff->getAPInt(); | 
|  | APInt Distance = APDelta; // these need to be initialzed | 
|  | APInt Remainder = APDelta; | 
|  | APInt::sdivrem(APDelta, APCoeff, Distance, Remainder); | 
|  | LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n"); | 
|  | if (Remainder != 0) { | 
|  | // Coeff doesn't divide Delta, no dependence | 
|  | ++WeakCrossingSIVindependence; | 
|  | ++WeakCrossingSIVsuccesses; | 
|  | return true; | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "\t    Distance = " << Distance << "\n"); | 
|  |  | 
|  | // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible | 
|  | APInt Two = APInt(Distance.getBitWidth(), 2, true); | 
|  | Remainder = Distance.srem(Two); | 
|  | LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n"); | 
|  | if (Remainder != 0) { | 
|  | // Equal direction isn't possible | 
|  | Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::EQ); | 
|  | ++WeakCrossingSIVsuccesses; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Kirch's algorithm, from | 
|  | // | 
|  | //        Optimizing Supercompilers for Supercomputers | 
|  | //        Michael Wolfe | 
|  | //        MIT Press, 1989 | 
|  | // | 
|  | // Program 2.1, page 29. | 
|  | // Computes the GCD of AM and BM. | 
|  | // Also finds a solution to the equation ax - by = gcd(a, b). | 
|  | // Returns true if dependence disproved; i.e., gcd does not divide Delta. | 
|  | static bool findGCD(unsigned Bits, const APInt &AM, const APInt &BM, | 
|  | const APInt &Delta, APInt &G, APInt &X, APInt &Y) { | 
|  | APInt A0(Bits, 1, true), A1(Bits, 0, true); | 
|  | APInt B0(Bits, 0, true), B1(Bits, 1, true); | 
|  | APInt G0 = AM.abs(); | 
|  | APInt G1 = BM.abs(); | 
|  | APInt Q = G0; // these need to be initialized | 
|  | APInt R = G0; | 
|  | APInt::sdivrem(G0, G1, Q, R); | 
|  | while (R != 0) { | 
|  | APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2; | 
|  | APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2; | 
|  | G0 = G1; G1 = R; | 
|  | APInt::sdivrem(G0, G1, Q, R); | 
|  | } | 
|  | G = G1; | 
|  | LLVM_DEBUG(dbgs() << "\t    GCD = " << G << "\n"); | 
|  | X = AM.slt(0) ? -A1 : A1; | 
|  | Y = BM.slt(0) ? B1 : -B1; | 
|  |  | 
|  | // make sure gcd divides Delta | 
|  | R = Delta.srem(G); | 
|  | if (R != 0) | 
|  | return true; // gcd doesn't divide Delta, no dependence | 
|  | Q = Delta.sdiv(G); | 
|  | X *= Q; | 
|  | Y *= Q; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static APInt floorOfQuotient(const APInt &A, const APInt &B) { | 
|  | APInt Q = A; // these need to be initialized | 
|  | APInt R = A; | 
|  | APInt::sdivrem(A, B, Q, R); | 
|  | if (R == 0) | 
|  | return Q; | 
|  | if ((A.sgt(0) && B.sgt(0)) || | 
|  | (A.slt(0) && B.slt(0))) | 
|  | return Q; | 
|  | else | 
|  | return Q - 1; | 
|  | } | 
|  |  | 
|  | static APInt ceilingOfQuotient(const APInt &A, const APInt &B) { | 
|  | APInt Q = A; // these need to be initialized | 
|  | APInt R = A; | 
|  | APInt::sdivrem(A, B, Q, R); | 
|  | if (R == 0) | 
|  | return Q; | 
|  | if ((A.sgt(0) && B.sgt(0)) || | 
|  | (A.slt(0) && B.slt(0))) | 
|  | return Q + 1; | 
|  | else | 
|  | return Q; | 
|  | } | 
|  |  | 
|  |  | 
|  | static | 
|  | APInt maxAPInt(APInt A, APInt B) { | 
|  | return A.sgt(B) ? A : B; | 
|  | } | 
|  |  | 
|  |  | 
|  | static | 
|  | APInt minAPInt(APInt A, APInt B) { | 
|  | return A.slt(B) ? A : B; | 
|  | } | 
|  |  | 
|  |  | 
|  | // exactSIVtest - | 
|  | // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i], | 
|  | // where i is an induction variable, c1 and c2 are loop invariant, and a1 | 
|  | // and a2 are constant, we can solve it exactly using an algorithm developed | 
|  | // by Banerjee and Wolfe. See Section 2.5.3 in | 
|  | // | 
|  | //        Optimizing Supercompilers for Supercomputers | 
|  | //        Michael Wolfe | 
|  | //        MIT Press, 1989 | 
|  | // | 
|  | // It's slower than the specialized tests (strong SIV, weak-zero SIV, etc), | 
|  | // so use them if possible. They're also a bit better with symbolics and, | 
|  | // in the case of the strong SIV test, can compute Distances. | 
|  | // | 
|  | // Return true if dependence disproved. | 
|  | bool DependenceInfo::exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff, | 
|  | const SCEV *SrcConst, const SCEV *DstConst, | 
|  | const Loop *CurLoop, unsigned Level, | 
|  | FullDependence &Result, | 
|  | Constraint &NewConstraint) const { | 
|  | LLVM_DEBUG(dbgs() << "\tExact SIV test\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n"); | 
|  | ++ExactSIVapplications; | 
|  | assert(0 < Level && Level <= CommonLevels && "Level out of range"); | 
|  | Level--; | 
|  | Result.Consistent = false; | 
|  | const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst); | 
|  | LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n"); | 
|  | NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff), | 
|  | Delta, CurLoop); | 
|  | const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta); | 
|  | const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff); | 
|  | const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff); | 
|  | if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff) | 
|  | return false; | 
|  |  | 
|  | // find gcd | 
|  | APInt G, X, Y; | 
|  | APInt AM = ConstSrcCoeff->getAPInt(); | 
|  | APInt BM = ConstDstCoeff->getAPInt(); | 
|  | unsigned Bits = AM.getBitWidth(); | 
|  | if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) { | 
|  | // gcd doesn't divide Delta, no dependence | 
|  | ++ExactSIVindependence; | 
|  | ++ExactSIVsuccesses; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n"); | 
|  |  | 
|  | // since SCEV construction normalizes, LM = 0 | 
|  | APInt UM(Bits, 1, true); | 
|  | bool UMvalid = false; | 
|  | // UM is perhaps unavailable, let's check | 
|  | if (const SCEVConstant *CUB = | 
|  | collectConstantUpperBound(CurLoop, Delta->getType())) { | 
|  | UM = CUB->getAPInt(); | 
|  | LLVM_DEBUG(dbgs() << "\t    UM = " << UM << "\n"); | 
|  | UMvalid = true; | 
|  | } | 
|  |  | 
|  | APInt TU(APInt::getSignedMaxValue(Bits)); | 
|  | APInt TL(APInt::getSignedMinValue(Bits)); | 
|  |  | 
|  | // test(BM/G, LM-X) and test(-BM/G, X-UM) | 
|  | APInt TMUL = BM.sdiv(G); | 
|  | if (TMUL.sgt(0)) { | 
|  | TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL)); | 
|  | LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n"); | 
|  | if (UMvalid) { | 
|  | TU = minAPInt(TU, floorOfQuotient(UM - X, TMUL)); | 
|  | LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n"); | 
|  | } | 
|  | } | 
|  | else { | 
|  | TU = minAPInt(TU, floorOfQuotient(-X, TMUL)); | 
|  | LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n"); | 
|  | if (UMvalid) { | 
|  | TL = maxAPInt(TL, ceilingOfQuotient(UM - X, TMUL)); | 
|  | LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // test(AM/G, LM-Y) and test(-AM/G, Y-UM) | 
|  | TMUL = AM.sdiv(G); | 
|  | if (TMUL.sgt(0)) { | 
|  | TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL)); | 
|  | LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n"); | 
|  | if (UMvalid) { | 
|  | TU = minAPInt(TU, floorOfQuotient(UM - Y, TMUL)); | 
|  | LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n"); | 
|  | } | 
|  | } | 
|  | else { | 
|  | TU = minAPInt(TU, floorOfQuotient(-Y, TMUL)); | 
|  | LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n"); | 
|  | if (UMvalid) { | 
|  | TL = maxAPInt(TL, ceilingOfQuotient(UM - Y, TMUL)); | 
|  | LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n"); | 
|  | } | 
|  | } | 
|  | if (TL.sgt(TU)) { | 
|  | ++ExactSIVindependence; | 
|  | ++ExactSIVsuccesses; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // explore directions | 
|  | unsigned NewDirection = Dependence::DVEntry::NONE; | 
|  |  | 
|  | // less than | 
|  | APInt SaveTU(TU); // save these | 
|  | APInt SaveTL(TL); | 
|  | LLVM_DEBUG(dbgs() << "\t    exploring LT direction\n"); | 
|  | TMUL = AM - BM; | 
|  | if (TMUL.sgt(0)) { | 
|  | TL = maxAPInt(TL, ceilingOfQuotient(X - Y + 1, TMUL)); | 
|  | LLVM_DEBUG(dbgs() << "\t\t    TL = " << TL << "\n"); | 
|  | } | 
|  | else { | 
|  | TU = minAPInt(TU, floorOfQuotient(X - Y + 1, TMUL)); | 
|  | LLVM_DEBUG(dbgs() << "\t\t    TU = " << TU << "\n"); | 
|  | } | 
|  | if (TL.sle(TU)) { | 
|  | NewDirection |= Dependence::DVEntry::LT; | 
|  | ++ExactSIVsuccesses; | 
|  | } | 
|  |  | 
|  | // equal | 
|  | TU = SaveTU; // restore | 
|  | TL = SaveTL; | 
|  | LLVM_DEBUG(dbgs() << "\t    exploring EQ direction\n"); | 
|  | if (TMUL.sgt(0)) { | 
|  | TL = maxAPInt(TL, ceilingOfQuotient(X - Y, TMUL)); | 
|  | LLVM_DEBUG(dbgs() << "\t\t    TL = " << TL << "\n"); | 
|  | } | 
|  | else { | 
|  | TU = minAPInt(TU, floorOfQuotient(X - Y, TMUL)); | 
|  | LLVM_DEBUG(dbgs() << "\t\t    TU = " << TU << "\n"); | 
|  | } | 
|  | TMUL = BM - AM; | 
|  | if (TMUL.sgt(0)) { | 
|  | TL = maxAPInt(TL, ceilingOfQuotient(Y - X, TMUL)); | 
|  | LLVM_DEBUG(dbgs() << "\t\t    TL = " << TL << "\n"); | 
|  | } | 
|  | else { | 
|  | TU = minAPInt(TU, floorOfQuotient(Y - X, TMUL)); | 
|  | LLVM_DEBUG(dbgs() << "\t\t    TU = " << TU << "\n"); | 
|  | } | 
|  | if (TL.sle(TU)) { | 
|  | NewDirection |= Dependence::DVEntry::EQ; | 
|  | ++ExactSIVsuccesses; | 
|  | } | 
|  |  | 
|  | // greater than | 
|  | TU = SaveTU; // restore | 
|  | TL = SaveTL; | 
|  | LLVM_DEBUG(dbgs() << "\t    exploring GT direction\n"); | 
|  | if (TMUL.sgt(0)) { | 
|  | TL = maxAPInt(TL, ceilingOfQuotient(Y - X + 1, TMUL)); | 
|  | LLVM_DEBUG(dbgs() << "\t\t    TL = " << TL << "\n"); | 
|  | } | 
|  | else { | 
|  | TU = minAPInt(TU, floorOfQuotient(Y - X + 1, TMUL)); | 
|  | LLVM_DEBUG(dbgs() << "\t\t    TU = " << TU << "\n"); | 
|  | } | 
|  | if (TL.sle(TU)) { | 
|  | NewDirection |= Dependence::DVEntry::GT; | 
|  | ++ExactSIVsuccesses; | 
|  | } | 
|  |  | 
|  | // finished | 
|  | Result.DV[Level].Direction &= NewDirection; | 
|  | if (Result.DV[Level].Direction == Dependence::DVEntry::NONE) | 
|  | ++ExactSIVindependence; | 
|  | return Result.DV[Level].Direction == Dependence::DVEntry::NONE; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | // Return true if the divisor evenly divides the dividend. | 
|  | static | 
|  | bool isRemainderZero(const SCEVConstant *Dividend, | 
|  | const SCEVConstant *Divisor) { | 
|  | const APInt &ConstDividend = Dividend->getAPInt(); | 
|  | const APInt &ConstDivisor = Divisor->getAPInt(); | 
|  | return ConstDividend.srem(ConstDivisor) == 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | // weakZeroSrcSIVtest - | 
|  | // From the paper, Practical Dependence Testing, Section 4.2.2 | 
|  | // | 
|  | // When we have a pair of subscripts of the form [c1] and [c2 + a*i], | 
|  | // where i is an induction variable, c1 and c2 are loop invariant, | 
|  | // and a is a constant, we can solve it exactly using the | 
|  | // Weak-Zero SIV test. | 
|  | // | 
|  | // Given | 
|  | // | 
|  | //    c1 = c2 + a*i | 
|  | // | 
|  | // we get | 
|  | // | 
|  | //    (c1 - c2)/a = i | 
|  | // | 
|  | // If i is not an integer, there's no dependence. | 
|  | // If i < 0 or > UB, there's no dependence. | 
|  | // If i = 0, the direction is >= and peeling the | 
|  | // 1st iteration will break the dependence. | 
|  | // If i = UB, the direction is <= and peeling the | 
|  | // last iteration will break the dependence. | 
|  | // Otherwise, the direction is *. | 
|  | // | 
|  | // Can prove independence. Failing that, we can sometimes refine | 
|  | // the directions. Can sometimes show that first or last | 
|  | // iteration carries all the dependences (so worth peeling). | 
|  | // | 
|  | // (see also weakZeroDstSIVtest) | 
|  | // | 
|  | // Return true if dependence disproved. | 
|  | bool DependenceInfo::weakZeroSrcSIVtest(const SCEV *DstCoeff, | 
|  | const SCEV *SrcConst, | 
|  | const SCEV *DstConst, | 
|  | const Loop *CurLoop, unsigned Level, | 
|  | FullDependence &Result, | 
|  | Constraint &NewConstraint) const { | 
|  | // For the WeakSIV test, it's possible the loop isn't common to | 
|  | // the Src and Dst loops. If it isn't, then there's no need to | 
|  | // record a direction. | 
|  | LLVM_DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n"); | 
|  | ++WeakZeroSIVapplications; | 
|  | assert(0 < Level && Level <= MaxLevels && "Level out of range"); | 
|  | Level--; | 
|  | Result.Consistent = false; | 
|  | const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst); | 
|  | NewConstraint.setLine(SE->getZero(Delta->getType()), DstCoeff, Delta, | 
|  | CurLoop); | 
|  | LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n"); | 
|  | if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) { | 
|  | if (Level < CommonLevels) { | 
|  | Result.DV[Level].Direction &= Dependence::DVEntry::GE; | 
|  | Result.DV[Level].PeelFirst = true; | 
|  | ++WeakZeroSIVsuccesses; | 
|  | } | 
|  | return false; // dependences caused by first iteration | 
|  | } | 
|  | const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff); | 
|  | if (!ConstCoeff) | 
|  | return false; | 
|  | const SCEV *AbsCoeff = | 
|  | SE->isKnownNegative(ConstCoeff) ? | 
|  | SE->getNegativeSCEV(ConstCoeff) : ConstCoeff; | 
|  | const SCEV *NewDelta = | 
|  | SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta; | 
|  |  | 
|  | // check that Delta/SrcCoeff < iteration count | 
|  | // really check NewDelta < count*AbsCoeff | 
|  | if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) { | 
|  | LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n"); | 
|  | const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound); | 
|  | if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) { | 
|  | ++WeakZeroSIVindependence; | 
|  | ++WeakZeroSIVsuccesses; | 
|  | return true; | 
|  | } | 
|  | if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) { | 
|  | // dependences caused by last iteration | 
|  | if (Level < CommonLevels) { | 
|  | Result.DV[Level].Direction &= Dependence::DVEntry::LE; | 
|  | Result.DV[Level].PeelLast = true; | 
|  | ++WeakZeroSIVsuccesses; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // check that Delta/SrcCoeff >= 0 | 
|  | // really check that NewDelta >= 0 | 
|  | if (SE->isKnownNegative(NewDelta)) { | 
|  | // No dependence, newDelta < 0 | 
|  | ++WeakZeroSIVindependence; | 
|  | ++WeakZeroSIVsuccesses; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // if SrcCoeff doesn't divide Delta, then no dependence | 
|  | if (isa<SCEVConstant>(Delta) && | 
|  | !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) { | 
|  | ++WeakZeroSIVindependence; | 
|  | ++WeakZeroSIVsuccesses; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | // weakZeroDstSIVtest - | 
|  | // From the paper, Practical Dependence Testing, Section 4.2.2 | 
|  | // | 
|  | // When we have a pair of subscripts of the form [c1 + a*i] and [c2], | 
|  | // where i is an induction variable, c1 and c2 are loop invariant, | 
|  | // and a is a constant, we can solve it exactly using the | 
|  | // Weak-Zero SIV test. | 
|  | // | 
|  | // Given | 
|  | // | 
|  | //    c1 + a*i = c2 | 
|  | // | 
|  | // we get | 
|  | // | 
|  | //    i = (c2 - c1)/a | 
|  | // | 
|  | // If i is not an integer, there's no dependence. | 
|  | // If i < 0 or > UB, there's no dependence. | 
|  | // If i = 0, the direction is <= and peeling the | 
|  | // 1st iteration will break the dependence. | 
|  | // If i = UB, the direction is >= and peeling the | 
|  | // last iteration will break the dependence. | 
|  | // Otherwise, the direction is *. | 
|  | // | 
|  | // Can prove independence. Failing that, we can sometimes refine | 
|  | // the directions. Can sometimes show that first or last | 
|  | // iteration carries all the dependences (so worth peeling). | 
|  | // | 
|  | // (see also weakZeroSrcSIVtest) | 
|  | // | 
|  | // Return true if dependence disproved. | 
|  | bool DependenceInfo::weakZeroDstSIVtest(const SCEV *SrcCoeff, | 
|  | const SCEV *SrcConst, | 
|  | const SCEV *DstConst, | 
|  | const Loop *CurLoop, unsigned Level, | 
|  | FullDependence &Result, | 
|  | Constraint &NewConstraint) const { | 
|  | // For the WeakSIV test, it's possible the loop isn't common to the | 
|  | // Src and Dst loops. If it isn't, then there's no need to record a direction. | 
|  | LLVM_DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n"); | 
|  | ++WeakZeroSIVapplications; | 
|  | assert(0 < Level && Level <= SrcLevels && "Level out of range"); | 
|  | Level--; | 
|  | Result.Consistent = false; | 
|  | const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst); | 
|  | NewConstraint.setLine(SrcCoeff, SE->getZero(Delta->getType()), Delta, | 
|  | CurLoop); | 
|  | LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n"); | 
|  | if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) { | 
|  | if (Level < CommonLevels) { | 
|  | Result.DV[Level].Direction &= Dependence::DVEntry::LE; | 
|  | Result.DV[Level].PeelFirst = true; | 
|  | ++WeakZeroSIVsuccesses; | 
|  | } | 
|  | return false; // dependences caused by first iteration | 
|  | } | 
|  | const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff); | 
|  | if (!ConstCoeff) | 
|  | return false; | 
|  | const SCEV *AbsCoeff = | 
|  | SE->isKnownNegative(ConstCoeff) ? | 
|  | SE->getNegativeSCEV(ConstCoeff) : ConstCoeff; | 
|  | const SCEV *NewDelta = | 
|  | SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta; | 
|  |  | 
|  | // check that Delta/SrcCoeff < iteration count | 
|  | // really check NewDelta < count*AbsCoeff | 
|  | if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) { | 
|  | LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n"); | 
|  | const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound); | 
|  | if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) { | 
|  | ++WeakZeroSIVindependence; | 
|  | ++WeakZeroSIVsuccesses; | 
|  | return true; | 
|  | } | 
|  | if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) { | 
|  | // dependences caused by last iteration | 
|  | if (Level < CommonLevels) { | 
|  | Result.DV[Level].Direction &= Dependence::DVEntry::GE; | 
|  | Result.DV[Level].PeelLast = true; | 
|  | ++WeakZeroSIVsuccesses; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // check that Delta/SrcCoeff >= 0 | 
|  | // really check that NewDelta >= 0 | 
|  | if (SE->isKnownNegative(NewDelta)) { | 
|  | // No dependence, newDelta < 0 | 
|  | ++WeakZeroSIVindependence; | 
|  | ++WeakZeroSIVsuccesses; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // if SrcCoeff doesn't divide Delta, then no dependence | 
|  | if (isa<SCEVConstant>(Delta) && | 
|  | !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) { | 
|  | ++WeakZeroSIVindependence; | 
|  | ++WeakZeroSIVsuccesses; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | // exactRDIVtest - Tests the RDIV subscript pair for dependence. | 
|  | // Things of the form [c1 + a*i] and [c2 + b*j], | 
|  | // where i and j are induction variable, c1 and c2 are loop invariant, | 
|  | // and a and b are constants. | 
|  | // Returns true if any possible dependence is disproved. | 
|  | // Marks the result as inconsistent. | 
|  | // Works in some cases that symbolicRDIVtest doesn't, and vice versa. | 
|  | bool DependenceInfo::exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff, | 
|  | const SCEV *SrcConst, const SCEV *DstConst, | 
|  | const Loop *SrcLoop, const Loop *DstLoop, | 
|  | FullDependence &Result) const { | 
|  | LLVM_DEBUG(dbgs() << "\tExact RDIV test\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n"); | 
|  | ++ExactRDIVapplications; | 
|  | Result.Consistent = false; | 
|  | const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst); | 
|  | LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n"); | 
|  | const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta); | 
|  | const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff); | 
|  | const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff); | 
|  | if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff) | 
|  | return false; | 
|  |  | 
|  | // find gcd | 
|  | APInt G, X, Y; | 
|  | APInt AM = ConstSrcCoeff->getAPInt(); | 
|  | APInt BM = ConstDstCoeff->getAPInt(); | 
|  | unsigned Bits = AM.getBitWidth(); | 
|  | if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) { | 
|  | // gcd doesn't divide Delta, no dependence | 
|  | ++ExactRDIVindependence; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n"); | 
|  |  | 
|  | // since SCEV construction seems to normalize, LM = 0 | 
|  | APInt SrcUM(Bits, 1, true); | 
|  | bool SrcUMvalid = false; | 
|  | // SrcUM is perhaps unavailable, let's check | 
|  | if (const SCEVConstant *UpperBound = | 
|  | collectConstantUpperBound(SrcLoop, Delta->getType())) { | 
|  | SrcUM = UpperBound->getAPInt(); | 
|  | LLVM_DEBUG(dbgs() << "\t    SrcUM = " << SrcUM << "\n"); | 
|  | SrcUMvalid = true; | 
|  | } | 
|  |  | 
|  | APInt DstUM(Bits, 1, true); | 
|  | bool DstUMvalid = false; | 
|  | // UM is perhaps unavailable, let's check | 
|  | if (const SCEVConstant *UpperBound = | 
|  | collectConstantUpperBound(DstLoop, Delta->getType())) { | 
|  | DstUM = UpperBound->getAPInt(); | 
|  | LLVM_DEBUG(dbgs() << "\t    DstUM = " << DstUM << "\n"); | 
|  | DstUMvalid = true; | 
|  | } | 
|  |  | 
|  | APInt TU(APInt::getSignedMaxValue(Bits)); | 
|  | APInt TL(APInt::getSignedMinValue(Bits)); | 
|  |  | 
|  | // test(BM/G, LM-X) and test(-BM/G, X-UM) | 
|  | APInt TMUL = BM.sdiv(G); | 
|  | if (TMUL.sgt(0)) { | 
|  | TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL)); | 
|  | LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n"); | 
|  | if (SrcUMvalid) { | 
|  | TU = minAPInt(TU, floorOfQuotient(SrcUM - X, TMUL)); | 
|  | LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n"); | 
|  | } | 
|  | } | 
|  | else { | 
|  | TU = minAPInt(TU, floorOfQuotient(-X, TMUL)); | 
|  | LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n"); | 
|  | if (SrcUMvalid) { | 
|  | TL = maxAPInt(TL, ceilingOfQuotient(SrcUM - X, TMUL)); | 
|  | LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // test(AM/G, LM-Y) and test(-AM/G, Y-UM) | 
|  | TMUL = AM.sdiv(G); | 
|  | if (TMUL.sgt(0)) { | 
|  | TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL)); | 
|  | LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n"); | 
|  | if (DstUMvalid) { | 
|  | TU = minAPInt(TU, floorOfQuotient(DstUM - Y, TMUL)); | 
|  | LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n"); | 
|  | } | 
|  | } | 
|  | else { | 
|  | TU = minAPInt(TU, floorOfQuotient(-Y, TMUL)); | 
|  | LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n"); | 
|  | if (DstUMvalid) { | 
|  | TL = maxAPInt(TL, ceilingOfQuotient(DstUM - Y, TMUL)); | 
|  | LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n"); | 
|  | } | 
|  | } | 
|  | if (TL.sgt(TU)) | 
|  | ++ExactRDIVindependence; | 
|  | return TL.sgt(TU); | 
|  | } | 
|  |  | 
|  |  | 
|  | // symbolicRDIVtest - | 
|  | // In Section 4.5 of the Practical Dependence Testing paper,the authors | 
|  | // introduce a special case of Banerjee's Inequalities (also called the | 
|  | // Extreme-Value Test) that can handle some of the SIV and RDIV cases, | 
|  | // particularly cases with symbolics. Since it's only able to disprove | 
|  | // dependence (not compute distances or directions), we'll use it as a | 
|  | // fall back for the other tests. | 
|  | // | 
|  | // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j] | 
|  | // where i and j are induction variables and c1 and c2 are loop invariants, | 
|  | // we can use the symbolic tests to disprove some dependences, serving as a | 
|  | // backup for the RDIV test. Note that i and j can be the same variable, | 
|  | // letting this test serve as a backup for the various SIV tests. | 
|  | // | 
|  | // For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some | 
|  | //  0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized) | 
|  | // loop bounds for the i and j loops, respectively. So, ... | 
|  | // | 
|  | // c1 + a1*i = c2 + a2*j | 
|  | // a1*i - a2*j = c2 - c1 | 
|  | // | 
|  | // To test for a dependence, we compute c2 - c1 and make sure it's in the | 
|  | // range of the maximum and minimum possible values of a1*i - a2*j. | 
|  | // Considering the signs of a1 and a2, we have 4 possible cases: | 
|  | // | 
|  | // 1) If a1 >= 0 and a2 >= 0, then | 
|  | //        a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0 | 
|  | //              -a2*N2 <= c2 - c1 <= a1*N1 | 
|  | // | 
|  | // 2) If a1 >= 0 and a2 <= 0, then | 
|  | //        a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2 | 
|  | //                  0 <= c2 - c1 <= a1*N1 - a2*N2 | 
|  | // | 
|  | // 3) If a1 <= 0 and a2 >= 0, then | 
|  | //        a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0 | 
|  | //        a1*N1 - a2*N2 <= c2 - c1 <= 0 | 
|  | // | 
|  | // 4) If a1 <= 0 and a2 <= 0, then | 
|  | //        a1*N1 - a2*0  <= c2 - c1 <= a1*0 - a2*N2 | 
|  | //        a1*N1         <= c2 - c1 <=       -a2*N2 | 
|  | // | 
|  | // return true if dependence disproved | 
|  | bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2, | 
|  | const SCEV *C1, const SCEV *C2, | 
|  | const Loop *Loop1, | 
|  | const Loop *Loop2) const { | 
|  | ++SymbolicRDIVapplications; | 
|  | LLVM_DEBUG(dbgs() << "\ttry symbolic RDIV test\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t    A1 = " << *A1); | 
|  | LLVM_DEBUG(dbgs() << ", type = " << *A1->getType() << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t    A2 = " << *A2 << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t    C1 = " << *C1 << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t    C2 = " << *C2 << "\n"); | 
|  | const SCEV *N1 = collectUpperBound(Loop1, A1->getType()); | 
|  | const SCEV *N2 = collectUpperBound(Loop2, A1->getType()); | 
|  | LLVM_DEBUG(if (N1) dbgs() << "\t    N1 = " << *N1 << "\n"); | 
|  | LLVM_DEBUG(if (N2) dbgs() << "\t    N2 = " << *N2 << "\n"); | 
|  | const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1); | 
|  | const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2); | 
|  | LLVM_DEBUG(dbgs() << "\t    C2 - C1 = " << *C2_C1 << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t    C1 - C2 = " << *C1_C2 << "\n"); | 
|  | if (SE->isKnownNonNegative(A1)) { | 
|  | if (SE->isKnownNonNegative(A2)) { | 
|  | // A1 >= 0 && A2 >= 0 | 
|  | if (N1) { | 
|  | // make sure that c2 - c1 <= a1*N1 | 
|  | const SCEV *A1N1 = SE->getMulExpr(A1, N1); | 
|  | LLVM_DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n"); | 
|  | if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) { | 
|  | ++SymbolicRDIVindependence; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | if (N2) { | 
|  | // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2 | 
|  | const SCEV *A2N2 = SE->getMulExpr(A2, N2); | 
|  | LLVM_DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n"); | 
|  | if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) { | 
|  | ++SymbolicRDIVindependence; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | else if (SE->isKnownNonPositive(A2)) { | 
|  | // a1 >= 0 && a2 <= 0 | 
|  | if (N1 && N2) { | 
|  | // make sure that c2 - c1 <= a1*N1 - a2*N2 | 
|  | const SCEV *A1N1 = SE->getMulExpr(A1, N1); | 
|  | const SCEV *A2N2 = SE->getMulExpr(A2, N2); | 
|  | const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2); | 
|  | LLVM_DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n"); | 
|  | if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) { | 
|  | ++SymbolicRDIVindependence; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | // make sure that 0 <= c2 - c1 | 
|  | if (SE->isKnownNegative(C2_C1)) { | 
|  | ++SymbolicRDIVindependence; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | else if (SE->isKnownNonPositive(A1)) { | 
|  | if (SE->isKnownNonNegative(A2)) { | 
|  | // a1 <= 0 && a2 >= 0 | 
|  | if (N1 && N2) { | 
|  | // make sure that a1*N1 - a2*N2 <= c2 - c1 | 
|  | const SCEV *A1N1 = SE->getMulExpr(A1, N1); | 
|  | const SCEV *A2N2 = SE->getMulExpr(A2, N2); | 
|  | const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2); | 
|  | LLVM_DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n"); | 
|  | if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) { | 
|  | ++SymbolicRDIVindependence; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | // make sure that c2 - c1 <= 0 | 
|  | if (SE->isKnownPositive(C2_C1)) { | 
|  | ++SymbolicRDIVindependence; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | else if (SE->isKnownNonPositive(A2)) { | 
|  | // a1 <= 0 && a2 <= 0 | 
|  | if (N1) { | 
|  | // make sure that a1*N1 <= c2 - c1 | 
|  | const SCEV *A1N1 = SE->getMulExpr(A1, N1); | 
|  | LLVM_DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n"); | 
|  | if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) { | 
|  | ++SymbolicRDIVindependence; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | if (N2) { | 
|  | // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2 | 
|  | const SCEV *A2N2 = SE->getMulExpr(A2, N2); | 
|  | LLVM_DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n"); | 
|  | if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) { | 
|  | ++SymbolicRDIVindependence; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | // testSIV - | 
|  | // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i] | 
|  | // where i is an induction variable, c1 and c2 are loop invariant, and a1 and | 
|  | // a2 are constant, we attack it with an SIV test. While they can all be | 
|  | // solved with the Exact SIV test, it's worthwhile to use simpler tests when | 
|  | // they apply; they're cheaper and sometimes more precise. | 
|  | // | 
|  | // Return true if dependence disproved. | 
|  | bool DependenceInfo::testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level, | 
|  | FullDependence &Result, Constraint &NewConstraint, | 
|  | const SCEV *&SplitIter) const { | 
|  | LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n"); | 
|  | const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src); | 
|  | const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst); | 
|  | if (SrcAddRec && DstAddRec) { | 
|  | const SCEV *SrcConst = SrcAddRec->getStart(); | 
|  | const SCEV *DstConst = DstAddRec->getStart(); | 
|  | const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE); | 
|  | const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE); | 
|  | const Loop *CurLoop = SrcAddRec->getLoop(); | 
|  | assert(CurLoop == DstAddRec->getLoop() && | 
|  | "both loops in SIV should be same"); | 
|  | Level = mapSrcLoop(CurLoop); | 
|  | bool disproven; | 
|  | if (SrcCoeff == DstCoeff) | 
|  | disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop, | 
|  | Level, Result, NewConstraint); | 
|  | else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff)) | 
|  | disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop, | 
|  | Level, Result, NewConstraint, SplitIter); | 
|  | else | 
|  | disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, | 
|  | Level, Result, NewConstraint); | 
|  | return disproven || | 
|  | gcdMIVtest(Src, Dst, Result) || | 
|  | symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop); | 
|  | } | 
|  | if (SrcAddRec) { | 
|  | const SCEV *SrcConst = SrcAddRec->getStart(); | 
|  | const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE); | 
|  | const SCEV *DstConst = Dst; | 
|  | const Loop *CurLoop = SrcAddRec->getLoop(); | 
|  | Level = mapSrcLoop(CurLoop); | 
|  | return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop, | 
|  | Level, Result, NewConstraint) || | 
|  | gcdMIVtest(Src, Dst, Result); | 
|  | } | 
|  | if (DstAddRec) { | 
|  | const SCEV *DstConst = DstAddRec->getStart(); | 
|  | const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE); | 
|  | const SCEV *SrcConst = Src; | 
|  | const Loop *CurLoop = DstAddRec->getLoop(); | 
|  | Level = mapDstLoop(CurLoop); | 
|  | return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst, | 
|  | CurLoop, Level, Result, NewConstraint) || | 
|  | gcdMIVtest(Src, Dst, Result); | 
|  | } | 
|  | llvm_unreachable("SIV test expected at least one AddRec"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | // testRDIV - | 
|  | // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j] | 
|  | // where i and j are induction variables, c1 and c2 are loop invariant, | 
|  | // and a1 and a2 are constant, we can solve it exactly with an easy adaptation | 
|  | // of the Exact SIV test, the Restricted Double Index Variable (RDIV) test. | 
|  | // It doesn't make sense to talk about distance or direction in this case, | 
|  | // so there's no point in making special versions of the Strong SIV test or | 
|  | // the Weak-crossing SIV test. | 
|  | // | 
|  | // With minor algebra, this test can also be used for things like | 
|  | // [c1 + a1*i + a2*j][c2]. | 
|  | // | 
|  | // Return true if dependence disproved. | 
|  | bool DependenceInfo::testRDIV(const SCEV *Src, const SCEV *Dst, | 
|  | FullDependence &Result) const { | 
|  | // we have 3 possible situations here: | 
|  | //   1) [a*i + b] and [c*j + d] | 
|  | //   2) [a*i + c*j + b] and [d] | 
|  | //   3) [b] and [a*i + c*j + d] | 
|  | // We need to find what we've got and get organized | 
|  |  | 
|  | const SCEV *SrcConst, *DstConst; | 
|  | const SCEV *SrcCoeff, *DstCoeff; | 
|  | const Loop *SrcLoop, *DstLoop; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n"); | 
|  | const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src); | 
|  | const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst); | 
|  | if (SrcAddRec && DstAddRec) { | 
|  | SrcConst = SrcAddRec->getStart(); | 
|  | SrcCoeff = SrcAddRec->getStepRecurrence(*SE); | 
|  | SrcLoop = SrcAddRec->getLoop(); | 
|  | DstConst = DstAddRec->getStart(); | 
|  | DstCoeff = DstAddRec->getStepRecurrence(*SE); | 
|  | DstLoop = DstAddRec->getLoop(); | 
|  | } | 
|  | else if (SrcAddRec) { | 
|  | if (const SCEVAddRecExpr *tmpAddRec = | 
|  | dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) { | 
|  | SrcConst = tmpAddRec->getStart(); | 
|  | SrcCoeff = tmpAddRec->getStepRecurrence(*SE); | 
|  | SrcLoop = tmpAddRec->getLoop(); | 
|  | DstConst = Dst; | 
|  | DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE)); | 
|  | DstLoop = SrcAddRec->getLoop(); | 
|  | } | 
|  | else | 
|  | llvm_unreachable("RDIV reached by surprising SCEVs"); | 
|  | } | 
|  | else if (DstAddRec) { | 
|  | if (const SCEVAddRecExpr *tmpAddRec = | 
|  | dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) { | 
|  | DstConst = tmpAddRec->getStart(); | 
|  | DstCoeff = tmpAddRec->getStepRecurrence(*SE); | 
|  | DstLoop = tmpAddRec->getLoop(); | 
|  | SrcConst = Src; | 
|  | SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE)); | 
|  | SrcLoop = DstAddRec->getLoop(); | 
|  | } | 
|  | else | 
|  | llvm_unreachable("RDIV reached by surprising SCEVs"); | 
|  | } | 
|  | else | 
|  | llvm_unreachable("RDIV expected at least one AddRec"); | 
|  | return exactRDIVtest(SrcCoeff, DstCoeff, | 
|  | SrcConst, DstConst, | 
|  | SrcLoop, DstLoop, | 
|  | Result) || | 
|  | gcdMIVtest(Src, Dst, Result) || | 
|  | symbolicRDIVtest(SrcCoeff, DstCoeff, | 
|  | SrcConst, DstConst, | 
|  | SrcLoop, DstLoop); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Tests the single-subscript MIV pair (Src and Dst) for dependence. | 
|  | // Return true if dependence disproved. | 
|  | // Can sometimes refine direction vectors. | 
|  | bool DependenceInfo::testMIV(const SCEV *Src, const SCEV *Dst, | 
|  | const SmallBitVector &Loops, | 
|  | FullDependence &Result) const { | 
|  | LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n"); | 
|  | Result.Consistent = false; | 
|  | return gcdMIVtest(Src, Dst, Result) || | 
|  | banerjeeMIVtest(Src, Dst, Loops, Result); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Given a product, e.g., 10*X*Y, returns the first constant operand, | 
|  | // in this case 10. If there is no constant part, returns NULL. | 
|  | static | 
|  | const SCEVConstant *getConstantPart(const SCEV *Expr) { | 
|  | if (const auto *Constant = dyn_cast<SCEVConstant>(Expr)) | 
|  | return Constant; | 
|  | else if (const auto *Product = dyn_cast<SCEVMulExpr>(Expr)) | 
|  | if (const auto *Constant = dyn_cast<SCEVConstant>(Product->getOperand(0))) | 
|  | return Constant; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // gcdMIVtest - | 
|  | // Tests an MIV subscript pair for dependence. | 
|  | // Returns true if any possible dependence is disproved. | 
|  | // Marks the result as inconsistent. | 
|  | // Can sometimes disprove the equal direction for 1 or more loops, | 
|  | // as discussed in Michael Wolfe's book, | 
|  | // High Performance Compilers for Parallel Computing, page 235. | 
|  | // | 
|  | // We spend some effort (code!) to handle cases like | 
|  | // [10*i + 5*N*j + 15*M + 6], where i and j are induction variables, | 
|  | // but M and N are just loop-invariant variables. | 
|  | // This should help us handle linearized subscripts; | 
|  | // also makes this test a useful backup to the various SIV tests. | 
|  | // | 
|  | // It occurs to me that the presence of loop-invariant variables | 
|  | // changes the nature of the test from "greatest common divisor" | 
|  | // to "a common divisor". | 
|  | bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst, | 
|  | FullDependence &Result) const { | 
|  | LLVM_DEBUG(dbgs() << "starting gcd\n"); | 
|  | ++GCDapplications; | 
|  | unsigned BitWidth = SE->getTypeSizeInBits(Src->getType()); | 
|  | APInt RunningGCD = APInt::getNullValue(BitWidth); | 
|  |  | 
|  | // Examine Src coefficients. | 
|  | // Compute running GCD and record source constant. | 
|  | // Because we're looking for the constant at the end of the chain, | 
|  | // we can't quit the loop just because the GCD == 1. | 
|  | const SCEV *Coefficients = Src; | 
|  | while (const SCEVAddRecExpr *AddRec = | 
|  | dyn_cast<SCEVAddRecExpr>(Coefficients)) { | 
|  | const SCEV *Coeff = AddRec->getStepRecurrence(*SE); | 
|  | // If the coefficient is the product of a constant and other stuff, | 
|  | // we can use the constant in the GCD computation. | 
|  | const auto *Constant = getConstantPart(Coeff); | 
|  | if (!Constant) | 
|  | return false; | 
|  | APInt ConstCoeff = Constant->getAPInt(); | 
|  | RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs()); | 
|  | Coefficients = AddRec->getStart(); | 
|  | } | 
|  | const SCEV *SrcConst = Coefficients; | 
|  |  | 
|  | // Examine Dst coefficients. | 
|  | // Compute running GCD and record destination constant. | 
|  | // Because we're looking for the constant at the end of the chain, | 
|  | // we can't quit the loop just because the GCD == 1. | 
|  | Coefficients = Dst; | 
|  | while (const SCEVAddRecExpr *AddRec = | 
|  | dyn_cast<SCEVAddRecExpr>(Coefficients)) { | 
|  | const SCEV *Coeff = AddRec->getStepRecurrence(*SE); | 
|  | // If the coefficient is the product of a constant and other stuff, | 
|  | // we can use the constant in the GCD computation. | 
|  | const auto *Constant = getConstantPart(Coeff); | 
|  | if (!Constant) | 
|  | return false; | 
|  | APInt ConstCoeff = Constant->getAPInt(); | 
|  | RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs()); | 
|  | Coefficients = AddRec->getStart(); | 
|  | } | 
|  | const SCEV *DstConst = Coefficients; | 
|  |  | 
|  | APInt ExtraGCD = APInt::getNullValue(BitWidth); | 
|  | const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst); | 
|  | LLVM_DEBUG(dbgs() << "    Delta = " << *Delta << "\n"); | 
|  | const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta); | 
|  | if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) { | 
|  | // If Delta is a sum of products, we may be able to make further progress. | 
|  | for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) { | 
|  | const SCEV *Operand = Sum->getOperand(Op); | 
|  | if (isa<SCEVConstant>(Operand)) { | 
|  | assert(!Constant && "Surprised to find multiple constants"); | 
|  | Constant = cast<SCEVConstant>(Operand); | 
|  | } | 
|  | else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) { | 
|  | // Search for constant operand to participate in GCD; | 
|  | // If none found; return false. | 
|  | const SCEVConstant *ConstOp = getConstantPart(Product); | 
|  | if (!ConstOp) | 
|  | return false; | 
|  | APInt ConstOpValue = ConstOp->getAPInt(); | 
|  | ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD, | 
|  | ConstOpValue.abs()); | 
|  | } | 
|  | else | 
|  | return false; | 
|  | } | 
|  | } | 
|  | if (!Constant) | 
|  | return false; | 
|  | APInt ConstDelta = cast<SCEVConstant>(Constant)->getAPInt(); | 
|  | LLVM_DEBUG(dbgs() << "    ConstDelta = " << ConstDelta << "\n"); | 
|  | if (ConstDelta == 0) | 
|  | return false; | 
|  | RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD); | 
|  | LLVM_DEBUG(dbgs() << "    RunningGCD = " << RunningGCD << "\n"); | 
|  | APInt Remainder = ConstDelta.srem(RunningGCD); | 
|  | if (Remainder != 0) { | 
|  | ++GCDindependence; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Try to disprove equal directions. | 
|  | // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1], | 
|  | // the code above can't disprove the dependence because the GCD = 1. | 
|  | // So we consider what happen if i = i' and what happens if j = j'. | 
|  | // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1], | 
|  | // which is infeasible, so we can disallow the = direction for the i level. | 
|  | // Setting j = j' doesn't help matters, so we end up with a direction vector | 
|  | // of [<>, *] | 
|  | // | 
|  | // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5], | 
|  | // we need to remember that the constant part is 5 and the RunningGCD should | 
|  | // be initialized to ExtraGCD = 30. | 
|  | LLVM_DEBUG(dbgs() << "    ExtraGCD = " << ExtraGCD << '\n'); | 
|  |  | 
|  | bool Improved = false; | 
|  | Coefficients = Src; | 
|  | while (const SCEVAddRecExpr *AddRec = | 
|  | dyn_cast<SCEVAddRecExpr>(Coefficients)) { | 
|  | Coefficients = AddRec->getStart(); | 
|  | const Loop *CurLoop = AddRec->getLoop(); | 
|  | RunningGCD = ExtraGCD; | 
|  | const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE); | 
|  | const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff); | 
|  | const SCEV *Inner = Src; | 
|  | while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) { | 
|  | AddRec = cast<SCEVAddRecExpr>(Inner); | 
|  | const SCEV *Coeff = AddRec->getStepRecurrence(*SE); | 
|  | if (CurLoop == AddRec->getLoop()) | 
|  | ; // SrcCoeff == Coeff | 
|  | else { | 
|  | // If the coefficient is the product of a constant and other stuff, | 
|  | // we can use the constant in the GCD computation. | 
|  | Constant = getConstantPart(Coeff); | 
|  | if (!Constant) | 
|  | return false; | 
|  | APInt ConstCoeff = Constant->getAPInt(); | 
|  | RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs()); | 
|  | } | 
|  | Inner = AddRec->getStart(); | 
|  | } | 
|  | Inner = Dst; | 
|  | while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) { | 
|  | AddRec = cast<SCEVAddRecExpr>(Inner); | 
|  | const SCEV *Coeff = AddRec->getStepRecurrence(*SE); | 
|  | if (CurLoop == AddRec->getLoop()) | 
|  | DstCoeff = Coeff; | 
|  | else { | 
|  | // If the coefficient is the product of a constant and other stuff, | 
|  | // we can use the constant in the GCD computation. | 
|  | Constant = getConstantPart(Coeff); | 
|  | if (!Constant) | 
|  | return false; | 
|  | APInt ConstCoeff = Constant->getAPInt(); | 
|  | RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs()); | 
|  | } | 
|  | Inner = AddRec->getStart(); | 
|  | } | 
|  | Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff); | 
|  | // If the coefficient is the product of a constant and other stuff, | 
|  | // we can use the constant in the GCD computation. | 
|  | Constant = getConstantPart(Delta); | 
|  | if (!Constant) | 
|  | // The difference of the two coefficients might not be a product | 
|  | // or constant, in which case we give up on this direction. | 
|  | continue; | 
|  | APInt ConstCoeff = Constant->getAPInt(); | 
|  | RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs()); | 
|  | LLVM_DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n"); | 
|  | if (RunningGCD != 0) { | 
|  | Remainder = ConstDelta.srem(RunningGCD); | 
|  | LLVM_DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n"); | 
|  | if (Remainder != 0) { | 
|  | unsigned Level = mapSrcLoop(CurLoop); | 
|  | Result.DV[Level - 1].Direction &= unsigned(~Dependence::DVEntry::EQ); | 
|  | Improved = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (Improved) | 
|  | ++GCDsuccesses; | 
|  | LLVM_DEBUG(dbgs() << "all done\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // banerjeeMIVtest - | 
|  | // Use Banerjee's Inequalities to test an MIV subscript pair. | 
|  | // (Wolfe, in the race-car book, calls this the Extreme Value Test.) | 
|  | // Generally follows the discussion in Section 2.5.2 of | 
|  | // | 
|  | //    Optimizing Supercompilers for Supercomputers | 
|  | //    Michael Wolfe | 
|  | // | 
|  | // The inequalities given on page 25 are simplified in that loops are | 
|  | // normalized so that the lower bound is always 0 and the stride is always 1. | 
|  | // For example, Wolfe gives | 
|  | // | 
|  | //     LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k | 
|  | // | 
|  | // where A_k is the coefficient of the kth index in the source subscript, | 
|  | // B_k is the coefficient of the kth index in the destination subscript, | 
|  | // U_k is the upper bound of the kth index, L_k is the lower bound of the Kth | 
|  | // index, and N_k is the stride of the kth index. Since all loops are normalized | 
|  | // by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the | 
|  | // equation to | 
|  | // | 
|  | //     LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1 | 
|  | //            = (A^-_k - B_k)^- (U_k - 1)  - B_k | 
|  | // | 
|  | // Similar simplifications are possible for the other equations. | 
|  | // | 
|  | // When we can't determine the number of iterations for a loop, | 
|  | // we use NULL as an indicator for the worst case, infinity. | 
|  | // When computing the upper bound, NULL denotes +inf; | 
|  | // for the lower bound, NULL denotes -inf. | 
|  | // | 
|  | // Return true if dependence disproved. | 
|  | bool DependenceInfo::banerjeeMIVtest(const SCEV *Src, const SCEV *Dst, | 
|  | const SmallBitVector &Loops, | 
|  | FullDependence &Result) const { | 
|  | LLVM_DEBUG(dbgs() << "starting Banerjee\n"); | 
|  | ++BanerjeeApplications; | 
|  | LLVM_DEBUG(dbgs() << "    Src = " << *Src << '\n'); | 
|  | const SCEV *A0; | 
|  | CoefficientInfo *A = collectCoeffInfo(Src, true, A0); | 
|  | LLVM_DEBUG(dbgs() << "    Dst = " << *Dst << '\n'); | 
|  | const SCEV *B0; | 
|  | CoefficientInfo *B = collectCoeffInfo(Dst, false, B0); | 
|  | BoundInfo *Bound = new BoundInfo[MaxLevels + 1]; | 
|  | const SCEV *Delta = SE->getMinusSCEV(B0, A0); | 
|  | LLVM_DEBUG(dbgs() << "\tDelta = " << *Delta << '\n'); | 
|  |  | 
|  | // Compute bounds for all the * directions. | 
|  | LLVM_DEBUG(dbgs() << "\tBounds[*]\n"); | 
|  | for (unsigned K = 1; K <= MaxLevels; ++K) { | 
|  | Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations; | 
|  | Bound[K].Direction = Dependence::DVEntry::ALL; | 
|  | Bound[K].DirSet = Dependence::DVEntry::NONE; | 
|  | findBoundsALL(A, B, Bound, K); | 
|  | #ifndef NDEBUG | 
|  | LLVM_DEBUG(dbgs() << "\t    " << K << '\t'); | 
|  | if (Bound[K].Lower[Dependence::DVEntry::ALL]) | 
|  | LLVM_DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t'); | 
|  | else | 
|  | LLVM_DEBUG(dbgs() << "-inf\t"); | 
|  | if (Bound[K].Upper[Dependence::DVEntry::ALL]) | 
|  | LLVM_DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n'); | 
|  | else | 
|  | LLVM_DEBUG(dbgs() << "+inf\n"); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // Test the *, *, *, ... case. | 
|  | bool Disproved = false; | 
|  | if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) { | 
|  | // Explore the direction vector hierarchy. | 
|  | unsigned DepthExpanded = 0; | 
|  | unsigned NewDeps = exploreDirections(1, A, B, Bound, | 
|  | Loops, DepthExpanded, Delta); | 
|  | if (NewDeps > 0) { | 
|  | bool Improved = false; | 
|  | for (unsigned K = 1; K <= CommonLevels; ++K) { | 
|  | if (Loops[K]) { | 
|  | unsigned Old = Result.DV[K - 1].Direction; | 
|  | Result.DV[K - 1].Direction = Old & Bound[K].DirSet; | 
|  | Improved |= Old != Result.DV[K - 1].Direction; | 
|  | if (!Result.DV[K - 1].Direction) { | 
|  | Improved = false; | 
|  | Disproved = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (Improved) | 
|  | ++BanerjeeSuccesses; | 
|  | } | 
|  | else { | 
|  | ++BanerjeeIndependence; | 
|  | Disproved = true; | 
|  | } | 
|  | } | 
|  | else { | 
|  | ++BanerjeeIndependence; | 
|  | Disproved = true; | 
|  | } | 
|  | delete [] Bound; | 
|  | delete [] A; | 
|  | delete [] B; | 
|  | return Disproved; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Hierarchically expands the direction vector | 
|  | // search space, combining the directions of discovered dependences | 
|  | // in the DirSet field of Bound. Returns the number of distinct | 
|  | // dependences discovered. If the dependence is disproved, | 
|  | // it will return 0. | 
|  | unsigned DependenceInfo::exploreDirections(unsigned Level, CoefficientInfo *A, | 
|  | CoefficientInfo *B, BoundInfo *Bound, | 
|  | const SmallBitVector &Loops, | 
|  | unsigned &DepthExpanded, | 
|  | const SCEV *Delta) const { | 
|  | if (Level > CommonLevels) { | 
|  | // record result | 
|  | LLVM_DEBUG(dbgs() << "\t["); | 
|  | for (unsigned K = 1; K <= CommonLevels; ++K) { | 
|  | if (Loops[K]) { | 
|  | Bound[K].DirSet |= Bound[K].Direction; | 
|  | #ifndef NDEBUG | 
|  | switch (Bound[K].Direction) { | 
|  | case Dependence::DVEntry::LT: | 
|  | LLVM_DEBUG(dbgs() << " <"); | 
|  | break; | 
|  | case Dependence::DVEntry::EQ: | 
|  | LLVM_DEBUG(dbgs() << " ="); | 
|  | break; | 
|  | case Dependence::DVEntry::GT: | 
|  | LLVM_DEBUG(dbgs() << " >"); | 
|  | break; | 
|  | case Dependence::DVEntry::ALL: | 
|  | LLVM_DEBUG(dbgs() << " *"); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("unexpected Bound[K].Direction"); | 
|  | } | 
|  | #endif | 
|  | } | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << " ]\n"); | 
|  | return 1; | 
|  | } | 
|  | if (Loops[Level]) { | 
|  | if (Level > DepthExpanded) { | 
|  | DepthExpanded = Level; | 
|  | // compute bounds for <, =, > at current level | 
|  | findBoundsLT(A, B, Bound, Level); | 
|  | findBoundsGT(A, B, Bound, Level); | 
|  | findBoundsEQ(A, B, Bound, Level); | 
|  | #ifndef NDEBUG | 
|  | LLVM_DEBUG(dbgs() << "\tBound for level = " << Level << '\n'); | 
|  | LLVM_DEBUG(dbgs() << "\t    <\t"); | 
|  | if (Bound[Level].Lower[Dependence::DVEntry::LT]) | 
|  | LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT] | 
|  | << '\t'); | 
|  | else | 
|  | LLVM_DEBUG(dbgs() << "-inf\t"); | 
|  | if (Bound[Level].Upper[Dependence::DVEntry::LT]) | 
|  | LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT] | 
|  | << '\n'); | 
|  | else | 
|  | LLVM_DEBUG(dbgs() << "+inf\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t    =\t"); | 
|  | if (Bound[Level].Lower[Dependence::DVEntry::EQ]) | 
|  | LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ] | 
|  | << '\t'); | 
|  | else | 
|  | LLVM_DEBUG(dbgs() << "-inf\t"); | 
|  | if (Bound[Level].Upper[Dependence::DVEntry::EQ]) | 
|  | LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ] | 
|  | << '\n'); | 
|  | else | 
|  | LLVM_DEBUG(dbgs() << "+inf\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t    >\t"); | 
|  | if (Bound[Level].Lower[Dependence::DVEntry::GT]) | 
|  | LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT] | 
|  | << '\t'); | 
|  | else | 
|  | LLVM_DEBUG(dbgs() << "-inf\t"); | 
|  | if (Bound[Level].Upper[Dependence::DVEntry::GT]) | 
|  | LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT] | 
|  | << '\n'); | 
|  | else | 
|  | LLVM_DEBUG(dbgs() << "+inf\n"); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | unsigned NewDeps = 0; | 
|  |  | 
|  | // test bounds for <, *, *, ... | 
|  | if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta)) | 
|  | NewDeps += exploreDirections(Level + 1, A, B, Bound, | 
|  | Loops, DepthExpanded, Delta); | 
|  |  | 
|  | // Test bounds for =, *, *, ... | 
|  | if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta)) | 
|  | NewDeps += exploreDirections(Level + 1, A, B, Bound, | 
|  | Loops, DepthExpanded, Delta); | 
|  |  | 
|  | // test bounds for >, *, *, ... | 
|  | if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta)) | 
|  | NewDeps += exploreDirections(Level + 1, A, B, Bound, | 
|  | Loops, DepthExpanded, Delta); | 
|  |  | 
|  | Bound[Level].Direction = Dependence::DVEntry::ALL; | 
|  | return NewDeps; | 
|  | } | 
|  | else | 
|  | return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Returns true iff the current bounds are plausible. | 
|  | bool DependenceInfo::testBounds(unsigned char DirKind, unsigned Level, | 
|  | BoundInfo *Bound, const SCEV *Delta) const { | 
|  | Bound[Level].Direction = DirKind; | 
|  | if (const SCEV *LowerBound = getLowerBound(Bound)) | 
|  | if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta)) | 
|  | return false; | 
|  | if (const SCEV *UpperBound = getUpperBound(Bound)) | 
|  | if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Computes the upper and lower bounds for level K | 
|  | // using the * direction. Records them in Bound. | 
|  | // Wolfe gives the equations | 
|  | // | 
|  | //    LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k | 
|  | //    UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k | 
|  | // | 
|  | // Since we normalize loops, we can simplify these equations to | 
|  | // | 
|  | //    LB^*_k = (A^-_k - B^+_k)U_k | 
|  | //    UB^*_k = (A^+_k - B^-_k)U_k | 
|  | // | 
|  | // We must be careful to handle the case where the upper bound is unknown. | 
|  | // Note that the lower bound is always <= 0 | 
|  | // and the upper bound is always >= 0. | 
|  | void DependenceInfo::findBoundsALL(CoefficientInfo *A, CoefficientInfo *B, | 
|  | BoundInfo *Bound, unsigned K) const { | 
|  | Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity. | 
|  | Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity. | 
|  | if (Bound[K].Iterations) { | 
|  | Bound[K].Lower[Dependence::DVEntry::ALL] = | 
|  | SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart), | 
|  | Bound[K].Iterations); | 
|  | Bound[K].Upper[Dependence::DVEntry::ALL] = | 
|  | SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart), | 
|  | Bound[K].Iterations); | 
|  | } | 
|  | else { | 
|  | // If the difference is 0, we won't need to know the number of iterations. | 
|  | if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart)) | 
|  | Bound[K].Lower[Dependence::DVEntry::ALL] = | 
|  | SE->getZero(A[K].Coeff->getType()); | 
|  | if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart)) | 
|  | Bound[K].Upper[Dependence::DVEntry::ALL] = | 
|  | SE->getZero(A[K].Coeff->getType()); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Computes the upper and lower bounds for level K | 
|  | // using the = direction. Records them in Bound. | 
|  | // Wolfe gives the equations | 
|  | // | 
|  | //    LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k | 
|  | //    UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k | 
|  | // | 
|  | // Since we normalize loops, we can simplify these equations to | 
|  | // | 
|  | //    LB^=_k = (A_k - B_k)^- U_k | 
|  | //    UB^=_k = (A_k - B_k)^+ U_k | 
|  | // | 
|  | // We must be careful to handle the case where the upper bound is unknown. | 
|  | // Note that the lower bound is always <= 0 | 
|  | // and the upper bound is always >= 0. | 
|  | void DependenceInfo::findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B, | 
|  | BoundInfo *Bound, unsigned K) const { | 
|  | Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity. | 
|  | Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity. | 
|  | if (Bound[K].Iterations) { | 
|  | const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff); | 
|  | const SCEV *NegativePart = getNegativePart(Delta); | 
|  | Bound[K].Lower[Dependence::DVEntry::EQ] = | 
|  | SE->getMulExpr(NegativePart, Bound[K].Iterations); | 
|  | const SCEV *PositivePart = getPositivePart(Delta); | 
|  | Bound[K].Upper[Dependence::DVEntry::EQ] = | 
|  | SE->getMulExpr(PositivePart, Bound[K].Iterations); | 
|  | } | 
|  | else { | 
|  | // If the positive/negative part of the difference is 0, | 
|  | // we won't need to know the number of iterations. | 
|  | const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff); | 
|  | const SCEV *NegativePart = getNegativePart(Delta); | 
|  | if (NegativePart->isZero()) | 
|  | Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero | 
|  | const SCEV *PositivePart = getPositivePart(Delta); | 
|  | if (PositivePart->isZero()) | 
|  | Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Computes the upper and lower bounds for level K | 
|  | // using the < direction. Records them in Bound. | 
|  | // Wolfe gives the equations | 
|  | // | 
|  | //    LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k | 
|  | //    UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k | 
|  | // | 
|  | // Since we normalize loops, we can simplify these equations to | 
|  | // | 
|  | //    LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k | 
|  | //    UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k | 
|  | // | 
|  | // We must be careful to handle the case where the upper bound is unknown. | 
|  | void DependenceInfo::findBoundsLT(CoefficientInfo *A, CoefficientInfo *B, | 
|  | BoundInfo *Bound, unsigned K) const { | 
|  | Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity. | 
|  | Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity. | 
|  | if (Bound[K].Iterations) { | 
|  | const SCEV *Iter_1 = SE->getMinusSCEV( | 
|  | Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType())); | 
|  | const SCEV *NegPart = | 
|  | getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff)); | 
|  | Bound[K].Lower[Dependence::DVEntry::LT] = | 
|  | SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff); | 
|  | const SCEV *PosPart = | 
|  | getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff)); | 
|  | Bound[K].Upper[Dependence::DVEntry::LT] = | 
|  | SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff); | 
|  | } | 
|  | else { | 
|  | // If the positive/negative part of the difference is 0, | 
|  | // we won't need to know the number of iterations. | 
|  | const SCEV *NegPart = | 
|  | getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff)); | 
|  | if (NegPart->isZero()) | 
|  | Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff); | 
|  | const SCEV *PosPart = | 
|  | getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff)); | 
|  | if (PosPart->isZero()) | 
|  | Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Computes the upper and lower bounds for level K | 
|  | // using the > direction. Records them in Bound. | 
|  | // Wolfe gives the equations | 
|  | // | 
|  | //    LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k | 
|  | //    UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k | 
|  | // | 
|  | // Since we normalize loops, we can simplify these equations to | 
|  | // | 
|  | //    LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k | 
|  | //    UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k | 
|  | // | 
|  | // We must be careful to handle the case where the upper bound is unknown. | 
|  | void DependenceInfo::findBoundsGT(CoefficientInfo *A, CoefficientInfo *B, | 
|  | BoundInfo *Bound, unsigned K) const { | 
|  | Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity. | 
|  | Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity. | 
|  | if (Bound[K].Iterations) { | 
|  | const SCEV *Iter_1 = SE->getMinusSCEV( | 
|  | Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType())); | 
|  | const SCEV *NegPart = | 
|  | getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart)); | 
|  | Bound[K].Lower[Dependence::DVEntry::GT] = | 
|  | SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff); | 
|  | const SCEV *PosPart = | 
|  | getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart)); | 
|  | Bound[K].Upper[Dependence::DVEntry::GT] = | 
|  | SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff); | 
|  | } | 
|  | else { | 
|  | // If the positive/negative part of the difference is 0, | 
|  | // we won't need to know the number of iterations. | 
|  | const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart)); | 
|  | if (NegPart->isZero()) | 
|  | Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff; | 
|  | const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart)); | 
|  | if (PosPart->isZero()) | 
|  | Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // X^+ = max(X, 0) | 
|  | const SCEV *DependenceInfo::getPositivePart(const SCEV *X) const { | 
|  | return SE->getSMaxExpr(X, SE->getZero(X->getType())); | 
|  | } | 
|  |  | 
|  |  | 
|  | // X^- = min(X, 0) | 
|  | const SCEV *DependenceInfo::getNegativePart(const SCEV *X) const { | 
|  | return SE->getSMinExpr(X, SE->getZero(X->getType())); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Walks through the subscript, | 
|  | // collecting each coefficient, the associated loop bounds, | 
|  | // and recording its positive and negative parts for later use. | 
|  | DependenceInfo::CoefficientInfo * | 
|  | DependenceInfo::collectCoeffInfo(const SCEV *Subscript, bool SrcFlag, | 
|  | const SCEV *&Constant) const { | 
|  | const SCEV *Zero = SE->getZero(Subscript->getType()); | 
|  | CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1]; | 
|  | for (unsigned K = 1; K <= MaxLevels; ++K) { | 
|  | CI[K].Coeff = Zero; | 
|  | CI[K].PosPart = Zero; | 
|  | CI[K].NegPart = Zero; | 
|  | CI[K].Iterations = nullptr; | 
|  | } | 
|  | while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) { | 
|  | const Loop *L = AddRec->getLoop(); | 
|  | unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L); | 
|  | CI[K].Coeff = AddRec->getStepRecurrence(*SE); | 
|  | CI[K].PosPart = getPositivePart(CI[K].Coeff); | 
|  | CI[K].NegPart = getNegativePart(CI[K].Coeff); | 
|  | CI[K].Iterations = collectUpperBound(L, Subscript->getType()); | 
|  | Subscript = AddRec->getStart(); | 
|  | } | 
|  | Constant = Subscript; | 
|  | #ifndef NDEBUG | 
|  | LLVM_DEBUG(dbgs() << "\tCoefficient Info\n"); | 
|  | for (unsigned K = 1; K <= MaxLevels; ++K) { | 
|  | LLVM_DEBUG(dbgs() << "\t    " << K << "\t" << *CI[K].Coeff); | 
|  | LLVM_DEBUG(dbgs() << "\tPos Part = "); | 
|  | LLVM_DEBUG(dbgs() << *CI[K].PosPart); | 
|  | LLVM_DEBUG(dbgs() << "\tNeg Part = "); | 
|  | LLVM_DEBUG(dbgs() << *CI[K].NegPart); | 
|  | LLVM_DEBUG(dbgs() << "\tUpper Bound = "); | 
|  | if (CI[K].Iterations) | 
|  | LLVM_DEBUG(dbgs() << *CI[K].Iterations); | 
|  | else | 
|  | LLVM_DEBUG(dbgs() << "+inf"); | 
|  | LLVM_DEBUG(dbgs() << '\n'); | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "\t    Constant = " << *Subscript << '\n'); | 
|  | #endif | 
|  | return CI; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Looks through all the bounds info and | 
|  | // computes the lower bound given the current direction settings | 
|  | // at each level. If the lower bound for any level is -inf, | 
|  | // the result is -inf. | 
|  | const SCEV *DependenceInfo::getLowerBound(BoundInfo *Bound) const { | 
|  | const SCEV *Sum = Bound[1].Lower[Bound[1].Direction]; | 
|  | for (unsigned K = 2; Sum && K <= MaxLevels; ++K) { | 
|  | if (Bound[K].Lower[Bound[K].Direction]) | 
|  | Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]); | 
|  | else | 
|  | Sum = nullptr; | 
|  | } | 
|  | return Sum; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Looks through all the bounds info and | 
|  | // computes the upper bound given the current direction settings | 
|  | // at each level. If the upper bound at any level is +inf, | 
|  | // the result is +inf. | 
|  | const SCEV *DependenceInfo::getUpperBound(BoundInfo *Bound) const { | 
|  | const SCEV *Sum = Bound[1].Upper[Bound[1].Direction]; | 
|  | for (unsigned K = 2; Sum && K <= MaxLevels; ++K) { | 
|  | if (Bound[K].Upper[Bound[K].Direction]) | 
|  | Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]); | 
|  | else | 
|  | Sum = nullptr; | 
|  | } | 
|  | return Sum; | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Constraint manipulation for Delta test. | 
|  |  | 
|  | // Given a linear SCEV, | 
|  | // return the coefficient (the step) | 
|  | // corresponding to the specified loop. | 
|  | // If there isn't one, return 0. | 
|  | // For example, given a*i + b*j + c*k, finding the coefficient | 
|  | // corresponding to the j loop would yield b. | 
|  | const SCEV *DependenceInfo::findCoefficient(const SCEV *Expr, | 
|  | const Loop *TargetLoop) const { | 
|  | const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr); | 
|  | if (!AddRec) | 
|  | return SE->getZero(Expr->getType()); | 
|  | if (AddRec->getLoop() == TargetLoop) | 
|  | return AddRec->getStepRecurrence(*SE); | 
|  | return findCoefficient(AddRec->getStart(), TargetLoop); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Given a linear SCEV, | 
|  | // return the SCEV given by zeroing out the coefficient | 
|  | // corresponding to the specified loop. | 
|  | // For example, given a*i + b*j + c*k, zeroing the coefficient | 
|  | // corresponding to the j loop would yield a*i + c*k. | 
|  | const SCEV *DependenceInfo::zeroCoefficient(const SCEV *Expr, | 
|  | const Loop *TargetLoop) const { | 
|  | const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr); | 
|  | if (!AddRec) | 
|  | return Expr; // ignore | 
|  | if (AddRec->getLoop() == TargetLoop) | 
|  | return AddRec->getStart(); | 
|  | return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop), | 
|  | AddRec->getStepRecurrence(*SE), | 
|  | AddRec->getLoop(), | 
|  | AddRec->getNoWrapFlags()); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Given a linear SCEV Expr, | 
|  | // return the SCEV given by adding some Value to the | 
|  | // coefficient corresponding to the specified TargetLoop. | 
|  | // For example, given a*i + b*j + c*k, adding 1 to the coefficient | 
|  | // corresponding to the j loop would yield a*i + (b+1)*j + c*k. | 
|  | const SCEV *DependenceInfo::addToCoefficient(const SCEV *Expr, | 
|  | const Loop *TargetLoop, | 
|  | const SCEV *Value) const { | 
|  | const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr); | 
|  | if (!AddRec) // create a new addRec | 
|  | return SE->getAddRecExpr(Expr, | 
|  | Value, | 
|  | TargetLoop, | 
|  | SCEV::FlagAnyWrap); // Worst case, with no info. | 
|  | if (AddRec->getLoop() == TargetLoop) { | 
|  | const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value); | 
|  | if (Sum->isZero()) | 
|  | return AddRec->getStart(); | 
|  | return SE->getAddRecExpr(AddRec->getStart(), | 
|  | Sum, | 
|  | AddRec->getLoop(), | 
|  | AddRec->getNoWrapFlags()); | 
|  | } | 
|  | if (SE->isLoopInvariant(AddRec, TargetLoop)) | 
|  | return SE->getAddRecExpr(AddRec, Value, TargetLoop, SCEV::FlagAnyWrap); | 
|  | return SE->getAddRecExpr( | 
|  | addToCoefficient(AddRec->getStart(), TargetLoop, Value), | 
|  | AddRec->getStepRecurrence(*SE), AddRec->getLoop(), | 
|  | AddRec->getNoWrapFlags()); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Review the constraints, looking for opportunities | 
|  | // to simplify a subscript pair (Src and Dst). | 
|  | // Return true if some simplification occurs. | 
|  | // If the simplification isn't exact (that is, if it is conservative | 
|  | // in terms of dependence), set consistent to false. | 
|  | // Corresponds to Figure 5 from the paper | 
|  | // | 
|  | //            Practical Dependence Testing | 
|  | //            Goff, Kennedy, Tseng | 
|  | //            PLDI 1991 | 
|  | bool DependenceInfo::propagate(const SCEV *&Src, const SCEV *&Dst, | 
|  | SmallBitVector &Loops, | 
|  | SmallVectorImpl<Constraint> &Constraints, | 
|  | bool &Consistent) { | 
|  | bool Result = false; | 
|  | for (unsigned LI : Loops.set_bits()) { | 
|  | LLVM_DEBUG(dbgs() << "\t    Constraint[" << LI << "] is"); | 
|  | LLVM_DEBUG(Constraints[LI].dump(dbgs())); | 
|  | if (Constraints[LI].isDistance()) | 
|  | Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent); | 
|  | else if (Constraints[LI].isLine()) | 
|  | Result |= propagateLine(Src, Dst, Constraints[LI], Consistent); | 
|  | else if (Constraints[LI].isPoint()) | 
|  | Result |= propagatePoint(Src, Dst, Constraints[LI]); | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Attempt to propagate a distance | 
|  | // constraint into a subscript pair (Src and Dst). | 
|  | // Return true if some simplification occurs. | 
|  | // If the simplification isn't exact (that is, if it is conservative | 
|  | // in terms of dependence), set consistent to false. | 
|  | bool DependenceInfo::propagateDistance(const SCEV *&Src, const SCEV *&Dst, | 
|  | Constraint &CurConstraint, | 
|  | bool &Consistent) { | 
|  | const Loop *CurLoop = CurConstraint.getAssociatedLoop(); | 
|  | LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n"); | 
|  | const SCEV *A_K = findCoefficient(Src, CurLoop); | 
|  | if (A_K->isZero()) | 
|  | return false; | 
|  | const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD()); | 
|  | Src = SE->getMinusSCEV(Src, DA_K); | 
|  | Src = zeroCoefficient(Src, CurLoop); | 
|  | LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n"); | 
|  | Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K)); | 
|  | LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n"); | 
|  | if (!findCoefficient(Dst, CurLoop)->isZero()) | 
|  | Consistent = false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Attempt to propagate a line | 
|  | // constraint into a subscript pair (Src and Dst). | 
|  | // Return true if some simplification occurs. | 
|  | // If the simplification isn't exact (that is, if it is conservative | 
|  | // in terms of dependence), set consistent to false. | 
|  | bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst, | 
|  | Constraint &CurConstraint, | 
|  | bool &Consistent) { | 
|  | const Loop *CurLoop = CurConstraint.getAssociatedLoop(); | 
|  | const SCEV *A = CurConstraint.getA(); | 
|  | const SCEV *B = CurConstraint.getB(); | 
|  | const SCEV *C = CurConstraint.getC(); | 
|  | LLVM_DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C | 
|  | << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n"); | 
|  | if (A->isZero()) { | 
|  | const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B); | 
|  | const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C); | 
|  | if (!Bconst || !Cconst) return false; | 
|  | APInt Beta = Bconst->getAPInt(); | 
|  | APInt Charlie = Cconst->getAPInt(); | 
|  | APInt CdivB = Charlie.sdiv(Beta); | 
|  | assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B"); | 
|  | const SCEV *AP_K = findCoefficient(Dst, CurLoop); | 
|  | //    Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB))); | 
|  | Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB))); | 
|  | Dst = zeroCoefficient(Dst, CurLoop); | 
|  | if (!findCoefficient(Src, CurLoop)->isZero()) | 
|  | Consistent = false; | 
|  | } | 
|  | else if (B->isZero()) { | 
|  | const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A); | 
|  | const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C); | 
|  | if (!Aconst || !Cconst) return false; | 
|  | APInt Alpha = Aconst->getAPInt(); | 
|  | APInt Charlie = Cconst->getAPInt(); | 
|  | APInt CdivA = Charlie.sdiv(Alpha); | 
|  | assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A"); | 
|  | const SCEV *A_K = findCoefficient(Src, CurLoop); | 
|  | Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA))); | 
|  | Src = zeroCoefficient(Src, CurLoop); | 
|  | if (!findCoefficient(Dst, CurLoop)->isZero()) | 
|  | Consistent = false; | 
|  | } | 
|  | else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) { | 
|  | const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A); | 
|  | const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C); | 
|  | if (!Aconst || !Cconst) return false; | 
|  | APInt Alpha = Aconst->getAPInt(); | 
|  | APInt Charlie = Cconst->getAPInt(); | 
|  | APInt CdivA = Charlie.sdiv(Alpha); | 
|  | assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A"); | 
|  | const SCEV *A_K = findCoefficient(Src, CurLoop); | 
|  | Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA))); | 
|  | Src = zeroCoefficient(Src, CurLoop); | 
|  | Dst = addToCoefficient(Dst, CurLoop, A_K); | 
|  | if (!findCoefficient(Dst, CurLoop)->isZero()) | 
|  | Consistent = false; | 
|  | } | 
|  | else { | 
|  | // paper is incorrect here, or perhaps just misleading | 
|  | const SCEV *A_K = findCoefficient(Src, CurLoop); | 
|  | Src = SE->getMulExpr(Src, A); | 
|  | Dst = SE->getMulExpr(Dst, A); | 
|  | Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C)); | 
|  | Src = zeroCoefficient(Src, CurLoop); | 
|  | Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B)); | 
|  | if (!findCoefficient(Dst, CurLoop)->isZero()) | 
|  | Consistent = false; | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Attempt to propagate a point | 
|  | // constraint into a subscript pair (Src and Dst). | 
|  | // Return true if some simplification occurs. | 
|  | bool DependenceInfo::propagatePoint(const SCEV *&Src, const SCEV *&Dst, | 
|  | Constraint &CurConstraint) { | 
|  | const Loop *CurLoop = CurConstraint.getAssociatedLoop(); | 
|  | const SCEV *A_K = findCoefficient(Src, CurLoop); | 
|  | const SCEV *AP_K = findCoefficient(Dst, CurLoop); | 
|  | const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX()); | 
|  | const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY()); | 
|  | LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n"); | 
|  | Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K)); | 
|  | Src = zeroCoefficient(Src, CurLoop); | 
|  | LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n"); | 
|  | Dst = zeroCoefficient(Dst, CurLoop); | 
|  | LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Update direction vector entry based on the current constraint. | 
|  | void DependenceInfo::updateDirection(Dependence::DVEntry &Level, | 
|  | const Constraint &CurConstraint) const { | 
|  | LLVM_DEBUG(dbgs() << "\tUpdate direction, constraint ="); | 
|  | LLVM_DEBUG(CurConstraint.dump(dbgs())); | 
|  | if (CurConstraint.isAny()) | 
|  | ; // use defaults | 
|  | else if (CurConstraint.isDistance()) { | 
|  | // this one is consistent, the others aren't | 
|  | Level.Scalar = false; | 
|  | Level.Distance = CurConstraint.getD(); | 
|  | unsigned NewDirection = Dependence::DVEntry::NONE; | 
|  | if (!SE->isKnownNonZero(Level.Distance)) // if may be zero | 
|  | NewDirection = Dependence::DVEntry::EQ; | 
|  | if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive | 
|  | NewDirection |= Dependence::DVEntry::LT; | 
|  | if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative | 
|  | NewDirection |= Dependence::DVEntry::GT; | 
|  | Level.Direction &= NewDirection; | 
|  | } | 
|  | else if (CurConstraint.isLine()) { | 
|  | Level.Scalar = false; | 
|  | Level.Distance = nullptr; | 
|  | // direction should be accurate | 
|  | } | 
|  | else if (CurConstraint.isPoint()) { | 
|  | Level.Scalar = false; | 
|  | Level.Distance = nullptr; | 
|  | unsigned NewDirection = Dependence::DVEntry::NONE; | 
|  | if (!isKnownPredicate(CmpInst::ICMP_NE, | 
|  | CurConstraint.getY(), | 
|  | CurConstraint.getX())) | 
|  | // if X may be = Y | 
|  | NewDirection |= Dependence::DVEntry::EQ; | 
|  | if (!isKnownPredicate(CmpInst::ICMP_SLE, | 
|  | CurConstraint.getY(), | 
|  | CurConstraint.getX())) | 
|  | // if Y may be > X | 
|  | NewDirection |= Dependence::DVEntry::LT; | 
|  | if (!isKnownPredicate(CmpInst::ICMP_SGE, | 
|  | CurConstraint.getY(), | 
|  | CurConstraint.getX())) | 
|  | // if Y may be < X | 
|  | NewDirection |= Dependence::DVEntry::GT; | 
|  | Level.Direction &= NewDirection; | 
|  | } | 
|  | else | 
|  | llvm_unreachable("constraint has unexpected kind"); | 
|  | } | 
|  |  | 
|  | /// Check if we can delinearize the subscripts. If the SCEVs representing the | 
|  | /// source and destination array references are recurrences on a nested loop, | 
|  | /// this function flattens the nested recurrences into separate recurrences | 
|  | /// for each loop level. | 
|  | bool DependenceInfo::tryDelinearize(Instruction *Src, Instruction *Dst, | 
|  | SmallVectorImpl<Subscript> &Pair) { | 
|  | assert(isLoadOrStore(Src) && "instruction is not load or store"); | 
|  | assert(isLoadOrStore(Dst) && "instruction is not load or store"); | 
|  | Value *SrcPtr = getLoadStorePointerOperand(Src); | 
|  | Value *DstPtr = getLoadStorePointerOperand(Dst); | 
|  |  | 
|  | Loop *SrcLoop = LI->getLoopFor(Src->getParent()); | 
|  | Loop *DstLoop = LI->getLoopFor(Dst->getParent()); | 
|  |  | 
|  | // Below code mimics the code in Delinearization.cpp | 
|  | const SCEV *SrcAccessFn = | 
|  | SE->getSCEVAtScope(SrcPtr, SrcLoop); | 
|  | const SCEV *DstAccessFn = | 
|  | SE->getSCEVAtScope(DstPtr, DstLoop); | 
|  |  | 
|  | const SCEVUnknown *SrcBase = | 
|  | dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn)); | 
|  | const SCEVUnknown *DstBase = | 
|  | dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn)); | 
|  |  | 
|  | if (!SrcBase || !DstBase || SrcBase != DstBase) | 
|  | return false; | 
|  |  | 
|  | const SCEV *ElementSize = SE->getElementSize(Src); | 
|  | if (ElementSize != SE->getElementSize(Dst)) | 
|  | return false; | 
|  |  | 
|  | const SCEV *SrcSCEV = SE->getMinusSCEV(SrcAccessFn, SrcBase); | 
|  | const SCEV *DstSCEV = SE->getMinusSCEV(DstAccessFn, DstBase); | 
|  |  | 
|  | const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV); | 
|  | const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV); | 
|  | if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine()) | 
|  | return false; | 
|  |  | 
|  | // First step: collect parametric terms in both array references. | 
|  | SmallVector<const SCEV *, 4> Terms; | 
|  | SE->collectParametricTerms(SrcAR, Terms); | 
|  | SE->collectParametricTerms(DstAR, Terms); | 
|  |  | 
|  | // Second step: find subscript sizes. | 
|  | SmallVector<const SCEV *, 4> Sizes; | 
|  | SE->findArrayDimensions(Terms, Sizes, ElementSize); | 
|  |  | 
|  | // Third step: compute the access functions for each subscript. | 
|  | SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts; | 
|  | SE->computeAccessFunctions(SrcAR, SrcSubscripts, Sizes); | 
|  | SE->computeAccessFunctions(DstAR, DstSubscripts, Sizes); | 
|  |  | 
|  | // Fail when there is only a subscript: that's a linearized access function. | 
|  | if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 || | 
|  | SrcSubscripts.size() != DstSubscripts.size()) | 
|  | return false; | 
|  |  | 
|  | int size = SrcSubscripts.size(); | 
|  |  | 
|  | // Statically check that the array bounds are in-range. The first subscript we | 
|  | // don't have a size for and it cannot overflow into another subscript, so is | 
|  | // always safe. The others need to be 0 <= subscript[i] < bound, for both src | 
|  | // and dst. | 
|  | // FIXME: It may be better to record these sizes and add them as constraints | 
|  | // to the dependency checks. | 
|  | for (int i = 1; i < size; ++i) { | 
|  | if (!isKnownNonNegative(SrcSubscripts[i], SrcPtr)) | 
|  | return false; | 
|  |  | 
|  | if (!isKnownLessThan(SrcSubscripts[i], Sizes[i - 1])) | 
|  | return false; | 
|  |  | 
|  | if (!isKnownNonNegative(DstSubscripts[i], DstPtr)) | 
|  | return false; | 
|  |  | 
|  | if (!isKnownLessThan(DstSubscripts[i], Sizes[i - 1])) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG({ | 
|  | dbgs() << "\nSrcSubscripts: "; | 
|  | for (int i = 0; i < size; i++) | 
|  | dbgs() << *SrcSubscripts[i]; | 
|  | dbgs() << "\nDstSubscripts: "; | 
|  | for (int i = 0; i < size; i++) | 
|  | dbgs() << *DstSubscripts[i]; | 
|  | }); | 
|  |  | 
|  | // The delinearization transforms a single-subscript MIV dependence test into | 
|  | // a multi-subscript SIV dependence test that is easier to compute. So we | 
|  | // resize Pair to contain as many pairs of subscripts as the delinearization | 
|  | // has found, and then initialize the pairs following the delinearization. | 
|  | Pair.resize(size); | 
|  | for (int i = 0; i < size; ++i) { | 
|  | Pair[i].Src = SrcSubscripts[i]; | 
|  | Pair[i].Dst = DstSubscripts[i]; | 
|  | unifySubscriptType(&Pair[i]); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // For debugging purposes, dump a small bit vector to dbgs(). | 
|  | static void dumpSmallBitVector(SmallBitVector &BV) { | 
|  | dbgs() << "{"; | 
|  | for (unsigned VI : BV.set_bits()) { | 
|  | dbgs() << VI; | 
|  | if (BV.find_next(VI) >= 0) | 
|  | dbgs() << ' '; | 
|  | } | 
|  | dbgs() << "}\n"; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // depends - | 
|  | // Returns NULL if there is no dependence. | 
|  | // Otherwise, return a Dependence with as many details as possible. | 
|  | // Corresponds to Section 3.1 in the paper | 
|  | // | 
|  | //            Practical Dependence Testing | 
|  | //            Goff, Kennedy, Tseng | 
|  | //            PLDI 1991 | 
|  | // | 
|  | // Care is required to keep the routine below, getSplitIteration(), | 
|  | // up to date with respect to this routine. | 
|  | std::unique_ptr<Dependence> | 
|  | DependenceInfo::depends(Instruction *Src, Instruction *Dst, | 
|  | bool PossiblyLoopIndependent) { | 
|  | if (Src == Dst) | 
|  | PossiblyLoopIndependent = false; | 
|  |  | 
|  | if ((!Src->mayReadFromMemory() && !Src->mayWriteToMemory()) || | 
|  | (!Dst->mayReadFromMemory() && !Dst->mayWriteToMemory())) | 
|  | // if both instructions don't reference memory, there's no dependence | 
|  | return nullptr; | 
|  |  | 
|  | if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) { | 
|  | // can only analyze simple loads and stores, i.e., no calls, invokes, etc. | 
|  | LLVM_DEBUG(dbgs() << "can only handle simple loads and stores\n"); | 
|  | return make_unique<Dependence>(Src, Dst); | 
|  | } | 
|  |  | 
|  | assert(isLoadOrStore(Src) && "instruction is not load or store"); | 
|  | assert(isLoadOrStore(Dst) && "instruction is not load or store"); | 
|  | Value *SrcPtr = getLoadStorePointerOperand(Src); | 
|  | Value *DstPtr = getLoadStorePointerOperand(Dst); | 
|  |  | 
|  | switch (underlyingObjectsAlias(AA, F->getParent()->getDataLayout(), | 
|  | MemoryLocation::get(Dst), | 
|  | MemoryLocation::get(Src))) { | 
|  | case MayAlias: | 
|  | case PartialAlias: | 
|  | // cannot analyse objects if we don't understand their aliasing. | 
|  | LLVM_DEBUG(dbgs() << "can't analyze may or partial alias\n"); | 
|  | return make_unique<Dependence>(Src, Dst); | 
|  | case NoAlias: | 
|  | // If the objects noalias, they are distinct, accesses are independent. | 
|  | LLVM_DEBUG(dbgs() << "no alias\n"); | 
|  | return nullptr; | 
|  | case MustAlias: | 
|  | break; // The underlying objects alias; test accesses for dependence. | 
|  | } | 
|  |  | 
|  | // establish loop nesting levels | 
|  | establishNestingLevels(Src, Dst); | 
|  | LLVM_DEBUG(dbgs() << "    common nesting levels = " << CommonLevels << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "    maximum nesting levels = " << MaxLevels << "\n"); | 
|  |  | 
|  | FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels); | 
|  | ++TotalArrayPairs; | 
|  |  | 
|  | unsigned Pairs = 1; | 
|  | SmallVector<Subscript, 2> Pair(Pairs); | 
|  | const SCEV *SrcSCEV = SE->getSCEV(SrcPtr); | 
|  | const SCEV *DstSCEV = SE->getSCEV(DstPtr); | 
|  | LLVM_DEBUG(dbgs() << "    SrcSCEV = " << *SrcSCEV << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "    DstSCEV = " << *DstSCEV << "\n"); | 
|  | Pair[0].Src = SrcSCEV; | 
|  | Pair[0].Dst = DstSCEV; | 
|  |  | 
|  | if (Delinearize) { | 
|  | if (tryDelinearize(Src, Dst, Pair)) { | 
|  | LLVM_DEBUG(dbgs() << "    delinearized\n"); | 
|  | Pairs = Pair.size(); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (unsigned P = 0; P < Pairs; ++P) { | 
|  | Pair[P].Loops.resize(MaxLevels + 1); | 
|  | Pair[P].GroupLoops.resize(MaxLevels + 1); | 
|  | Pair[P].Group.resize(Pairs); | 
|  | removeMatchingExtensions(&Pair[P]); | 
|  | Pair[P].Classification = | 
|  | classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()), | 
|  | Pair[P].Dst, LI->getLoopFor(Dst->getParent()), | 
|  | Pair[P].Loops); | 
|  | Pair[P].GroupLoops = Pair[P].Loops; | 
|  | Pair[P].Group.set(P); | 
|  | LLVM_DEBUG(dbgs() << "    subscript " << P << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "\tloops = "); | 
|  | LLVM_DEBUG(dumpSmallBitVector(Pair[P].Loops)); | 
|  | } | 
|  |  | 
|  | SmallBitVector Separable(Pairs); | 
|  | SmallBitVector Coupled(Pairs); | 
|  |  | 
|  | // Partition subscripts into separable and minimally-coupled groups | 
|  | // Algorithm in paper is algorithmically better; | 
|  | // this may be faster in practice. Check someday. | 
|  | // | 
|  | // Here's an example of how it works. Consider this code: | 
|  | // | 
|  | //   for (i = ...) { | 
|  | //     for (j = ...) { | 
|  | //       for (k = ...) { | 
|  | //         for (l = ...) { | 
|  | //           for (m = ...) { | 
|  | //             A[i][j][k][m] = ...; | 
|  | //             ... = A[0][j][l][i + j]; | 
|  | //           } | 
|  | //         } | 
|  | //       } | 
|  | //     } | 
|  | //   } | 
|  | // | 
|  | // There are 4 subscripts here: | 
|  | //    0 [i] and [0] | 
|  | //    1 [j] and [j] | 
|  | //    2 [k] and [l] | 
|  | //    3 [m] and [i + j] | 
|  | // | 
|  | // We've already classified each subscript pair as ZIV, SIV, etc., | 
|  | // and collected all the loops mentioned by pair P in Pair[P].Loops. | 
|  | // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops | 
|  | // and set Pair[P].Group = {P}. | 
|  | // | 
|  | //      Src Dst    Classification Loops  GroupLoops Group | 
|  | //    0 [i] [0]         SIV       {1}      {1}        {0} | 
|  | //    1 [j] [j]         SIV       {2}      {2}        {1} | 
|  | //    2 [k] [l]         RDIV      {3,4}    {3,4}      {2} | 
|  | //    3 [m] [i + j]     MIV       {1,2,5}  {1,2,5}    {3} | 
|  | // | 
|  | // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ. | 
|  | // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc. | 
|  | // | 
|  | // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty. | 
|  | // Next, 0 and 2. Again, the intersection of their GroupLoops is empty. | 
|  | // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty, | 
|  | // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added | 
|  | // to either Separable or Coupled). | 
|  | // | 
|  | // Next, we consider 1 and 2. The intersection of the GroupLoops is empty. | 
|  | // Next, 1 and 3. The intersectionof their GroupLoops = {2}, not empty, | 
|  | // so Pair[3].Group = {0, 1, 3} and Done = false. | 
|  | // | 
|  | // Next, we compare 2 against 3. The intersection of the GroupLoops is empty. | 
|  | // Since Done remains true, we add 2 to the set of Separable pairs. | 
|  | // | 
|  | // Finally, we consider 3. There's nothing to compare it with, | 
|  | // so Done remains true and we add it to the Coupled set. | 
|  | // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}. | 
|  | // | 
|  | // In the end, we've got 1 separable subscript and 1 coupled group. | 
|  | for (unsigned SI = 0; SI < Pairs; ++SI) { | 
|  | if (Pair[SI].Classification == Subscript::NonLinear) { | 
|  | // ignore these, but collect loops for later | 
|  | ++NonlinearSubscriptPairs; | 
|  | collectCommonLoops(Pair[SI].Src, | 
|  | LI->getLoopFor(Src->getParent()), | 
|  | Pair[SI].Loops); | 
|  | collectCommonLoops(Pair[SI].Dst, | 
|  | LI->getLoopFor(Dst->getParent()), | 
|  | Pair[SI].Loops); | 
|  | Result.Consistent = false; | 
|  | } else if (Pair[SI].Classification == Subscript::ZIV) { | 
|  | // always separable | 
|  | Separable.set(SI); | 
|  | } | 
|  | else { | 
|  | // SIV, RDIV, or MIV, so check for coupled group | 
|  | bool Done = true; | 
|  | for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) { | 
|  | SmallBitVector Intersection = Pair[SI].GroupLoops; | 
|  | Intersection &= Pair[SJ].GroupLoops; | 
|  | if (Intersection.any()) { | 
|  | // accumulate set of all the loops in group | 
|  | Pair[SJ].GroupLoops |= Pair[SI].GroupLoops; | 
|  | // accumulate set of all subscripts in group | 
|  | Pair[SJ].Group |= Pair[SI].Group; | 
|  | Done = false; | 
|  | } | 
|  | } | 
|  | if (Done) { | 
|  | if (Pair[SI].Group.count() == 1) { | 
|  | Separable.set(SI); | 
|  | ++SeparableSubscriptPairs; | 
|  | } | 
|  | else { | 
|  | Coupled.set(SI); | 
|  | ++CoupledSubscriptPairs; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "    Separable = "); | 
|  | LLVM_DEBUG(dumpSmallBitVector(Separable)); | 
|  | LLVM_DEBUG(dbgs() << "    Coupled = "); | 
|  | LLVM_DEBUG(dumpSmallBitVector(Coupled)); | 
|  |  | 
|  | Constraint NewConstraint; | 
|  | NewConstraint.setAny(SE); | 
|  |  | 
|  | // test separable subscripts | 
|  | for (unsigned SI : Separable.set_bits()) { | 
|  | LLVM_DEBUG(dbgs() << "testing subscript " << SI); | 
|  | switch (Pair[SI].Classification) { | 
|  | case Subscript::ZIV: | 
|  | LLVM_DEBUG(dbgs() << ", ZIV\n"); | 
|  | if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result)) | 
|  | return nullptr; | 
|  | break; | 
|  | case Subscript::SIV: { | 
|  | LLVM_DEBUG(dbgs() << ", SIV\n"); | 
|  | unsigned Level; | 
|  | const SCEV *SplitIter = nullptr; | 
|  | if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level, Result, NewConstraint, | 
|  | SplitIter)) | 
|  | return nullptr; | 
|  | break; | 
|  | } | 
|  | case Subscript::RDIV: | 
|  | LLVM_DEBUG(dbgs() << ", RDIV\n"); | 
|  | if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result)) | 
|  | return nullptr; | 
|  | break; | 
|  | case Subscript::MIV: | 
|  | LLVM_DEBUG(dbgs() << ", MIV\n"); | 
|  | if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result)) | 
|  | return nullptr; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("subscript has unexpected classification"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Coupled.count()) { | 
|  | // test coupled subscript groups | 
|  | LLVM_DEBUG(dbgs() << "starting on coupled subscripts\n"); | 
|  | LLVM_DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n"); | 
|  | SmallVector<Constraint, 4> Constraints(MaxLevels + 1); | 
|  | for (unsigned II = 0; II <= MaxLevels; ++II) | 
|  | Constraints[II].setAny(SE); | 
|  | for (unsigned SI : Coupled.set_bits()) { | 
|  | LLVM_DEBUG(dbgs() << "testing subscript group " << SI << " { "); | 
|  | SmallBitVector Group(Pair[SI].Group); | 
|  | SmallBitVector Sivs(Pairs); | 
|  | SmallBitVector Mivs(Pairs); | 
|  | SmallBitVector ConstrainedLevels(MaxLevels + 1); | 
|  | SmallVector<Subscript *, 4> PairsInGroup; | 
|  | for (unsigned SJ : Group.set_bits()) { | 
|  | LLVM_DEBUG(dbgs() << SJ << " "); | 
|  | if (Pair[SJ].Classification == Subscript::SIV) | 
|  | Sivs.set(SJ); | 
|  | else | 
|  | Mivs.set(SJ); | 
|  | PairsInGroup.push_back(&Pair[SJ]); | 
|  | } | 
|  | unifySubscriptType(PairsInGroup); | 
|  | LLVM_DEBUG(dbgs() << "}\n"); | 
|  | while (Sivs.any()) { | 
|  | bool Changed = false; | 
|  | for (unsigned SJ : Sivs.set_bits()) { | 
|  | LLVM_DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n"); | 
|  | // SJ is an SIV subscript that's part of the current coupled group | 
|  | unsigned Level; | 
|  | const SCEV *SplitIter = nullptr; | 
|  | LLVM_DEBUG(dbgs() << "SIV\n"); | 
|  | if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, Result, NewConstraint, | 
|  | SplitIter)) | 
|  | return nullptr; | 
|  | ConstrainedLevels.set(Level); | 
|  | if (intersectConstraints(&Constraints[Level], &NewConstraint)) { | 
|  | if (Constraints[Level].isEmpty()) { | 
|  | ++DeltaIndependence; | 
|  | return nullptr; | 
|  | } | 
|  | Changed = true; | 
|  | } | 
|  | Sivs.reset(SJ); | 
|  | } | 
|  | if (Changed) { | 
|  | // propagate, possibly creating new SIVs and ZIVs | 
|  | LLVM_DEBUG(dbgs() << "    propagating\n"); | 
|  | LLVM_DEBUG(dbgs() << "\tMivs = "); | 
|  | LLVM_DEBUG(dumpSmallBitVector(Mivs)); | 
|  | for (unsigned SJ : Mivs.set_bits()) { | 
|  | // SJ is an MIV subscript that's part of the current coupled group | 
|  | LLVM_DEBUG(dbgs() << "\tSJ = " << SJ << "\n"); | 
|  | if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, | 
|  | Constraints, Result.Consistent)) { | 
|  | LLVM_DEBUG(dbgs() << "\t    Changed\n"); | 
|  | ++DeltaPropagations; | 
|  | Pair[SJ].Classification = | 
|  | classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()), | 
|  | Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()), | 
|  | Pair[SJ].Loops); | 
|  | switch (Pair[SJ].Classification) { | 
|  | case Subscript::ZIV: | 
|  | LLVM_DEBUG(dbgs() << "ZIV\n"); | 
|  | if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result)) | 
|  | return nullptr; | 
|  | Mivs.reset(SJ); | 
|  | break; | 
|  | case Subscript::SIV: | 
|  | Sivs.set(SJ); | 
|  | Mivs.reset(SJ); | 
|  | break; | 
|  | case Subscript::RDIV: | 
|  | case Subscript::MIV: | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("bad subscript classification"); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // test & propagate remaining RDIVs | 
|  | for (unsigned SJ : Mivs.set_bits()) { | 
|  | if (Pair[SJ].Classification == Subscript::RDIV) { | 
|  | LLVM_DEBUG(dbgs() << "RDIV test\n"); | 
|  | if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result)) | 
|  | return nullptr; | 
|  | // I don't yet understand how to propagate RDIV results | 
|  | Mivs.reset(SJ); | 
|  | } | 
|  | } | 
|  |  | 
|  | // test remaining MIVs | 
|  | // This code is temporary. | 
|  | // Better to somehow test all remaining subscripts simultaneously. | 
|  | for (unsigned SJ : Mivs.set_bits()) { | 
|  | if (Pair[SJ].Classification == Subscript::MIV) { | 
|  | LLVM_DEBUG(dbgs() << "MIV test\n"); | 
|  | if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result)) | 
|  | return nullptr; | 
|  | } | 
|  | else | 
|  | llvm_unreachable("expected only MIV subscripts at this point"); | 
|  | } | 
|  |  | 
|  | // update Result.DV from constraint vector | 
|  | LLVM_DEBUG(dbgs() << "    updating\n"); | 
|  | for (unsigned SJ : ConstrainedLevels.set_bits()) { | 
|  | if (SJ > CommonLevels) | 
|  | break; | 
|  | updateDirection(Result.DV[SJ - 1], Constraints[SJ]); | 
|  | if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE) | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Make sure the Scalar flags are set correctly. | 
|  | SmallBitVector CompleteLoops(MaxLevels + 1); | 
|  | for (unsigned SI = 0; SI < Pairs; ++SI) | 
|  | CompleteLoops |= Pair[SI].Loops; | 
|  | for (unsigned II = 1; II <= CommonLevels; ++II) | 
|  | if (CompleteLoops[II]) | 
|  | Result.DV[II - 1].Scalar = false; | 
|  |  | 
|  | if (PossiblyLoopIndependent) { | 
|  | // Make sure the LoopIndependent flag is set correctly. | 
|  | // All directions must include equal, otherwise no | 
|  | // loop-independent dependence is possible. | 
|  | for (unsigned II = 1; II <= CommonLevels; ++II) { | 
|  | if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) { | 
|  | Result.LoopIndependent = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | else { | 
|  | // On the other hand, if all directions are equal and there's no | 
|  | // loop-independent dependence possible, then no dependence exists. | 
|  | bool AllEqual = true; | 
|  | for (unsigned II = 1; II <= CommonLevels; ++II) { | 
|  | if (Result.getDirection(II) != Dependence::DVEntry::EQ) { | 
|  | AllEqual = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (AllEqual) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | return make_unique<FullDependence>(std::move(Result)); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // getSplitIteration - | 
|  | // Rather than spend rarely-used space recording the splitting iteration | 
|  | // during the Weak-Crossing SIV test, we re-compute it on demand. | 
|  | // The re-computation is basically a repeat of the entire dependence test, | 
|  | // though simplified since we know that the dependence exists. | 
|  | // It's tedious, since we must go through all propagations, etc. | 
|  | // | 
|  | // Care is required to keep this code up to date with respect to the routine | 
|  | // above, depends(). | 
|  | // | 
|  | // Generally, the dependence analyzer will be used to build | 
|  | // a dependence graph for a function (basically a map from instructions | 
|  | // to dependences). Looking for cycles in the graph shows us loops | 
|  | // that cannot be trivially vectorized/parallelized. | 
|  | // | 
|  | // We can try to improve the situation by examining all the dependences | 
|  | // that make up the cycle, looking for ones we can break. | 
|  | // Sometimes, peeling the first or last iteration of a loop will break | 
|  | // dependences, and we've got flags for those possibilities. | 
|  | // Sometimes, splitting a loop at some other iteration will do the trick, | 
|  | // and we've got a flag for that case. Rather than waste the space to | 
|  | // record the exact iteration (since we rarely know), we provide | 
|  | // a method that calculates the iteration. It's a drag that it must work | 
|  | // from scratch, but wonderful in that it's possible. | 
|  | // | 
|  | // Here's an example: | 
|  | // | 
|  | //    for (i = 0; i < 10; i++) | 
|  | //        A[i] = ... | 
|  | //        ... = A[11 - i] | 
|  | // | 
|  | // There's a loop-carried flow dependence from the store to the load, | 
|  | // found by the weak-crossing SIV test. The dependence will have a flag, | 
|  | // indicating that the dependence can be broken by splitting the loop. | 
|  | // Calling getSplitIteration will return 5. | 
|  | // Splitting the loop breaks the dependence, like so: | 
|  | // | 
|  | //    for (i = 0; i <= 5; i++) | 
|  | //        A[i] = ... | 
|  | //        ... = A[11 - i] | 
|  | //    for (i = 6; i < 10; i++) | 
|  | //        A[i] = ... | 
|  | //        ... = A[11 - i] | 
|  | // | 
|  | // breaks the dependence and allows us to vectorize/parallelize | 
|  | // both loops. | 
|  | const SCEV *DependenceInfo::getSplitIteration(const Dependence &Dep, | 
|  | unsigned SplitLevel) { | 
|  | assert(Dep.isSplitable(SplitLevel) && | 
|  | "Dep should be splitable at SplitLevel"); | 
|  | Instruction *Src = Dep.getSrc(); | 
|  | Instruction *Dst = Dep.getDst(); | 
|  | assert(Src->mayReadFromMemory() || Src->mayWriteToMemory()); | 
|  | assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory()); | 
|  | assert(isLoadOrStore(Src)); | 
|  | assert(isLoadOrStore(Dst)); | 
|  | Value *SrcPtr = getLoadStorePointerOperand(Src); | 
|  | Value *DstPtr = getLoadStorePointerOperand(Dst); | 
|  | assert(underlyingObjectsAlias(AA, F->getParent()->getDataLayout(), | 
|  | MemoryLocation::get(Dst), | 
|  | MemoryLocation::get(Src)) == MustAlias); | 
|  |  | 
|  | // establish loop nesting levels | 
|  | establishNestingLevels(Src, Dst); | 
|  |  | 
|  | FullDependence Result(Src, Dst, false, CommonLevels); | 
|  |  | 
|  | unsigned Pairs = 1; | 
|  | SmallVector<Subscript, 2> Pair(Pairs); | 
|  | const SCEV *SrcSCEV = SE->getSCEV(SrcPtr); | 
|  | const SCEV *DstSCEV = SE->getSCEV(DstPtr); | 
|  | Pair[0].Src = SrcSCEV; | 
|  | Pair[0].Dst = DstSCEV; | 
|  |  | 
|  | if (Delinearize) { | 
|  | if (tryDelinearize(Src, Dst, Pair)) { | 
|  | LLVM_DEBUG(dbgs() << "    delinearized\n"); | 
|  | Pairs = Pair.size(); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (unsigned P = 0; P < Pairs; ++P) { | 
|  | Pair[P].Loops.resize(MaxLevels + 1); | 
|  | Pair[P].GroupLoops.resize(MaxLevels + 1); | 
|  | Pair[P].Group.resize(Pairs); | 
|  | removeMatchingExtensions(&Pair[P]); | 
|  | Pair[P].Classification = | 
|  | classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()), | 
|  | Pair[P].Dst, LI->getLoopFor(Dst->getParent()), | 
|  | Pair[P].Loops); | 
|  | Pair[P].GroupLoops = Pair[P].Loops; | 
|  | Pair[P].Group.set(P); | 
|  | } | 
|  |  | 
|  | SmallBitVector Separable(Pairs); | 
|  | SmallBitVector Coupled(Pairs); | 
|  |  | 
|  | // partition subscripts into separable and minimally-coupled groups | 
|  | for (unsigned SI = 0; SI < Pairs; ++SI) { | 
|  | if (Pair[SI].Classification == Subscript::NonLinear) { | 
|  | // ignore these, but collect loops for later | 
|  | collectCommonLoops(Pair[SI].Src, | 
|  | LI->getLoopFor(Src->getParent()), | 
|  | Pair[SI].Loops); | 
|  | collectCommonLoops(Pair[SI].Dst, | 
|  | LI->getLoopFor(Dst->getParent()), | 
|  | Pair[SI].Loops); | 
|  | Result.Consistent = false; | 
|  | } | 
|  | else if (Pair[SI].Classification == Subscript::ZIV) | 
|  | Separable.set(SI); | 
|  | else { | 
|  | // SIV, RDIV, or MIV, so check for coupled group | 
|  | bool Done = true; | 
|  | for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) { | 
|  | SmallBitVector Intersection = Pair[SI].GroupLoops; | 
|  | Intersection &= Pair[SJ].GroupLoops; | 
|  | if (Intersection.any()) { | 
|  | // accumulate set of all the loops in group | 
|  | Pair[SJ].GroupLoops |= Pair[SI].GroupLoops; | 
|  | // accumulate set of all subscripts in group | 
|  | Pair[SJ].Group |= Pair[SI].Group; | 
|  | Done = false; | 
|  | } | 
|  | } | 
|  | if (Done) { | 
|  | if (Pair[SI].Group.count() == 1) | 
|  | Separable.set(SI); | 
|  | else | 
|  | Coupled.set(SI); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Constraint NewConstraint; | 
|  | NewConstraint.setAny(SE); | 
|  |  | 
|  | // test separable subscripts | 
|  | for (unsigned SI : Separable.set_bits()) { | 
|  | switch (Pair[SI].Classification) { | 
|  | case Subscript::SIV: { | 
|  | unsigned Level; | 
|  | const SCEV *SplitIter = nullptr; | 
|  | (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level, | 
|  | Result, NewConstraint, SplitIter); | 
|  | if (Level == SplitLevel) { | 
|  | assert(SplitIter != nullptr); | 
|  | return SplitIter; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Subscript::ZIV: | 
|  | case Subscript::RDIV: | 
|  | case Subscript::MIV: | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("subscript has unexpected classification"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Coupled.count()) { | 
|  | // test coupled subscript groups | 
|  | SmallVector<Constraint, 4> Constraints(MaxLevels + 1); | 
|  | for (unsigned II = 0; II <= MaxLevels; ++II) | 
|  | Constraints[II].setAny(SE); | 
|  | for (unsigned SI : Coupled.set_bits()) { | 
|  | SmallBitVector Group(Pair[SI].Group); | 
|  | SmallBitVector Sivs(Pairs); | 
|  | SmallBitVector Mivs(Pairs); | 
|  | SmallBitVector ConstrainedLevels(MaxLevels + 1); | 
|  | for (unsigned SJ : Group.set_bits()) { | 
|  | if (Pair[SJ].Classification == Subscript::SIV) | 
|  | Sivs.set(SJ); | 
|  | else | 
|  | Mivs.set(SJ); | 
|  | } | 
|  | while (Sivs.any()) { | 
|  | bool Changed = false; | 
|  | for (unsigned SJ : Sivs.set_bits()) { | 
|  | // SJ is an SIV subscript that's part of the current coupled group | 
|  | unsigned Level; | 
|  | const SCEV *SplitIter = nullptr; | 
|  | (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, | 
|  | Result, NewConstraint, SplitIter); | 
|  | if (Level == SplitLevel && SplitIter) | 
|  | return SplitIter; | 
|  | ConstrainedLevels.set(Level); | 
|  | if (intersectConstraints(&Constraints[Level], &NewConstraint)) | 
|  | Changed = true; | 
|  | Sivs.reset(SJ); | 
|  | } | 
|  | if (Changed) { | 
|  | // propagate, possibly creating new SIVs and ZIVs | 
|  | for (unsigned SJ : Mivs.set_bits()) { | 
|  | // SJ is an MIV subscript that's part of the current coupled group | 
|  | if (propagate(Pair[SJ].Src, Pair[SJ].Dst, | 
|  | Pair[SJ].Loops, Constraints, Result.Consistent)) { | 
|  | Pair[SJ].Classification = | 
|  | classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()), | 
|  | Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()), | 
|  | Pair[SJ].Loops); | 
|  | switch (Pair[SJ].Classification) { | 
|  | case Subscript::ZIV: | 
|  | Mivs.reset(SJ); | 
|  | break; | 
|  | case Subscript::SIV: | 
|  | Sivs.set(SJ); | 
|  | Mivs.reset(SJ); | 
|  | break; | 
|  | case Subscript::RDIV: | 
|  | case Subscript::MIV: | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("bad subscript classification"); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | llvm_unreachable("somehow reached end of routine"); | 
|  | return nullptr; | 
|  | } |