|  | //===- CFLGraph.h - Abstract stratified sets implementation. -----*- C++-*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | /// \file | 
|  | /// This file defines CFLGraph, an auxiliary data structure used by CFL-based | 
|  | /// alias analysis. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifndef LLVM_LIB_ANALYSIS_CFLGRAPH_H | 
|  | #define LLVM_LIB_ANALYSIS_CFLGRAPH_H | 
|  |  | 
|  | #include "AliasAnalysisSummary.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/iterator_range.h" | 
|  | #include "llvm/Analysis/MemoryBuiltins.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/IR/Argument.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GlobalValue.h" | 
|  | #include "llvm/IR/InstVisitor.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <vector> | 
|  |  | 
|  | namespace llvm { | 
|  | namespace cflaa { | 
|  |  | 
|  | /// The Program Expression Graph (PEG) of CFL analysis | 
|  | /// CFLGraph is auxiliary data structure used by CFL-based alias analysis to | 
|  | /// describe flow-insensitive pointer-related behaviors. Given an LLVM function, | 
|  | /// the main purpose of this graph is to abstract away unrelated facts and | 
|  | /// translate the rest into a form that can be easily digested by CFL analyses. | 
|  | /// Each Node in the graph is an InstantiatedValue, and each edge represent a | 
|  | /// pointer assignment between InstantiatedValue. Pointer | 
|  | /// references/dereferences are not explicitly stored in the graph: we | 
|  | /// implicitly assume that for each node (X, I) it has a dereference edge to (X, | 
|  | /// I+1) and a reference edge to (X, I-1). | 
|  | class CFLGraph { | 
|  | public: | 
|  | using Node = InstantiatedValue; | 
|  |  | 
|  | struct Edge { | 
|  | Node Other; | 
|  | int64_t Offset; | 
|  | }; | 
|  |  | 
|  | using EdgeList = std::vector<Edge>; | 
|  |  | 
|  | struct NodeInfo { | 
|  | EdgeList Edges, ReverseEdges; | 
|  | AliasAttrs Attr; | 
|  | }; | 
|  |  | 
|  | class ValueInfo { | 
|  | std::vector<NodeInfo> Levels; | 
|  |  | 
|  | public: | 
|  | bool addNodeToLevel(unsigned Level) { | 
|  | auto NumLevels = Levels.size(); | 
|  | if (NumLevels > Level) | 
|  | return false; | 
|  | Levels.resize(Level + 1); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | NodeInfo &getNodeInfoAtLevel(unsigned Level) { | 
|  | assert(Level < Levels.size()); | 
|  | return Levels[Level]; | 
|  | } | 
|  | const NodeInfo &getNodeInfoAtLevel(unsigned Level) const { | 
|  | assert(Level < Levels.size()); | 
|  | return Levels[Level]; | 
|  | } | 
|  |  | 
|  | unsigned getNumLevels() const { return Levels.size(); } | 
|  | }; | 
|  |  | 
|  | private: | 
|  | using ValueMap = DenseMap<Value *, ValueInfo>; | 
|  |  | 
|  | ValueMap ValueImpls; | 
|  |  | 
|  | NodeInfo *getNode(Node N) { | 
|  | auto Itr = ValueImpls.find(N.Val); | 
|  | if (Itr == ValueImpls.end() || Itr->second.getNumLevels() <= N.DerefLevel) | 
|  | return nullptr; | 
|  | return &Itr->second.getNodeInfoAtLevel(N.DerefLevel); | 
|  | } | 
|  |  | 
|  | public: | 
|  | using const_value_iterator = ValueMap::const_iterator; | 
|  |  | 
|  | bool addNode(Node N, AliasAttrs Attr = AliasAttrs()) { | 
|  | assert(N.Val != nullptr); | 
|  | auto &ValInfo = ValueImpls[N.Val]; | 
|  | auto Changed = ValInfo.addNodeToLevel(N.DerefLevel); | 
|  | ValInfo.getNodeInfoAtLevel(N.DerefLevel).Attr |= Attr; | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | void addAttr(Node N, AliasAttrs Attr) { | 
|  | auto *Info = getNode(N); | 
|  | assert(Info != nullptr); | 
|  | Info->Attr |= Attr; | 
|  | } | 
|  |  | 
|  | void addEdge(Node From, Node To, int64_t Offset = 0) { | 
|  | auto *FromInfo = getNode(From); | 
|  | assert(FromInfo != nullptr); | 
|  | auto *ToInfo = getNode(To); | 
|  | assert(ToInfo != nullptr); | 
|  |  | 
|  | FromInfo->Edges.push_back(Edge{To, Offset}); | 
|  | ToInfo->ReverseEdges.push_back(Edge{From, Offset}); | 
|  | } | 
|  |  | 
|  | const NodeInfo *getNode(Node N) const { | 
|  | auto Itr = ValueImpls.find(N.Val); | 
|  | if (Itr == ValueImpls.end() || Itr->second.getNumLevels() <= N.DerefLevel) | 
|  | return nullptr; | 
|  | return &Itr->second.getNodeInfoAtLevel(N.DerefLevel); | 
|  | } | 
|  |  | 
|  | AliasAttrs attrFor(Node N) const { | 
|  | auto *Info = getNode(N); | 
|  | assert(Info != nullptr); | 
|  | return Info->Attr; | 
|  | } | 
|  |  | 
|  | iterator_range<const_value_iterator> value_mappings() const { | 
|  | return make_range<const_value_iterator>(ValueImpls.begin(), | 
|  | ValueImpls.end()); | 
|  | } | 
|  | }; | 
|  |  | 
|  | ///A builder class used to create CFLGraph instance from a given function | 
|  | /// The CFL-AA that uses this builder must provide its own type as a template | 
|  | /// argument. This is necessary for interprocedural processing: CFLGraphBuilder | 
|  | /// needs a way of obtaining the summary of other functions when callinsts are | 
|  | /// encountered. | 
|  | /// As a result, we expect the said CFL-AA to expose a getAliasSummary() public | 
|  | /// member function that takes a Function& and returns the corresponding summary | 
|  | /// as a const AliasSummary*. | 
|  | template <typename CFLAA> class CFLGraphBuilder { | 
|  | // Input of the builder | 
|  | CFLAA &Analysis; | 
|  | const TargetLibraryInfo &TLI; | 
|  |  | 
|  | // Output of the builder | 
|  | CFLGraph Graph; | 
|  | SmallVector<Value *, 4> ReturnedValues; | 
|  |  | 
|  | // Helper class | 
|  | /// Gets the edges our graph should have, based on an Instruction* | 
|  | class GetEdgesVisitor : public InstVisitor<GetEdgesVisitor, void> { | 
|  | CFLAA &AA; | 
|  | const DataLayout &DL; | 
|  | const TargetLibraryInfo &TLI; | 
|  |  | 
|  | CFLGraph &Graph; | 
|  | SmallVectorImpl<Value *> &ReturnValues; | 
|  |  | 
|  | static bool hasUsefulEdges(ConstantExpr *CE) { | 
|  | // ConstantExpr doesn't have terminators, invokes, or fences, so only | 
|  | // needs | 
|  | // to check for compares. | 
|  | return CE->getOpcode() != Instruction::ICmp && | 
|  | CE->getOpcode() != Instruction::FCmp; | 
|  | } | 
|  |  | 
|  | // Returns possible functions called by CS into the given SmallVectorImpl. | 
|  | // Returns true if targets found, false otherwise. | 
|  | static bool getPossibleTargets(CallSite CS, | 
|  | SmallVectorImpl<Function *> &Output) { | 
|  | if (auto *Fn = CS.getCalledFunction()) { | 
|  | Output.push_back(Fn); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // TODO: If the call is indirect, we might be able to enumerate all | 
|  | // potential | 
|  | // targets of the call and return them, rather than just failing. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void addNode(Value *Val, AliasAttrs Attr = AliasAttrs()) { | 
|  | assert(Val != nullptr && Val->getType()->isPointerTy()); | 
|  | if (auto GVal = dyn_cast<GlobalValue>(Val)) { | 
|  | if (Graph.addNode(InstantiatedValue{GVal, 0}, | 
|  | getGlobalOrArgAttrFromValue(*GVal))) | 
|  | Graph.addNode(InstantiatedValue{GVal, 1}, getAttrUnknown()); | 
|  | } else if (auto CExpr = dyn_cast<ConstantExpr>(Val)) { | 
|  | if (hasUsefulEdges(CExpr)) { | 
|  | if (Graph.addNode(InstantiatedValue{CExpr, 0})) | 
|  | visitConstantExpr(CExpr); | 
|  | } | 
|  | } else | 
|  | Graph.addNode(InstantiatedValue{Val, 0}, Attr); | 
|  | } | 
|  |  | 
|  | void addAssignEdge(Value *From, Value *To, int64_t Offset = 0) { | 
|  | assert(From != nullptr && To != nullptr); | 
|  | if (!From->getType()->isPointerTy() || !To->getType()->isPointerTy()) | 
|  | return; | 
|  | addNode(From); | 
|  | if (To != From) { | 
|  | addNode(To); | 
|  | Graph.addEdge(InstantiatedValue{From, 0}, InstantiatedValue{To, 0}, | 
|  | Offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | void addDerefEdge(Value *From, Value *To, bool IsRead) { | 
|  | assert(From != nullptr && To != nullptr); | 
|  | // FIXME: This is subtly broken, due to how we model some instructions | 
|  | // (e.g. extractvalue, extractelement) as loads. Since those take | 
|  | // non-pointer operands, we'll entirely skip adding edges for those. | 
|  | // | 
|  | // addAssignEdge seems to have a similar issue with insertvalue, etc. | 
|  | if (!From->getType()->isPointerTy() || !To->getType()->isPointerTy()) | 
|  | return; | 
|  | addNode(From); | 
|  | addNode(To); | 
|  | if (IsRead) { | 
|  | Graph.addNode(InstantiatedValue{From, 1}); | 
|  | Graph.addEdge(InstantiatedValue{From, 1}, InstantiatedValue{To, 0}); | 
|  | } else { | 
|  | Graph.addNode(InstantiatedValue{To, 1}); | 
|  | Graph.addEdge(InstantiatedValue{From, 0}, InstantiatedValue{To, 1}); | 
|  | } | 
|  | } | 
|  |  | 
|  | void addLoadEdge(Value *From, Value *To) { addDerefEdge(From, To, true); } | 
|  | void addStoreEdge(Value *From, Value *To) { addDerefEdge(From, To, false); } | 
|  |  | 
|  | public: | 
|  | GetEdgesVisitor(CFLGraphBuilder &Builder, const DataLayout &DL) | 
|  | : AA(Builder.Analysis), DL(DL), TLI(Builder.TLI), Graph(Builder.Graph), | 
|  | ReturnValues(Builder.ReturnedValues) {} | 
|  |  | 
|  | void visitInstruction(Instruction &) { | 
|  | llvm_unreachable("Unsupported instruction encountered"); | 
|  | } | 
|  |  | 
|  | void visitReturnInst(ReturnInst &Inst) { | 
|  | if (auto RetVal = Inst.getReturnValue()) { | 
|  | if (RetVal->getType()->isPointerTy()) { | 
|  | addNode(RetVal); | 
|  | ReturnValues.push_back(RetVal); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void visitPtrToIntInst(PtrToIntInst &Inst) { | 
|  | auto *Ptr = Inst.getOperand(0); | 
|  | addNode(Ptr, getAttrEscaped()); | 
|  | } | 
|  |  | 
|  | void visitIntToPtrInst(IntToPtrInst &Inst) { | 
|  | auto *Ptr = &Inst; | 
|  | addNode(Ptr, getAttrUnknown()); | 
|  | } | 
|  |  | 
|  | void visitCastInst(CastInst &Inst) { | 
|  | auto *Src = Inst.getOperand(0); | 
|  | addAssignEdge(Src, &Inst); | 
|  | } | 
|  |  | 
|  | void visitBinaryOperator(BinaryOperator &Inst) { | 
|  | auto *Op1 = Inst.getOperand(0); | 
|  | auto *Op2 = Inst.getOperand(1); | 
|  | addAssignEdge(Op1, &Inst); | 
|  | addAssignEdge(Op2, &Inst); | 
|  | } | 
|  |  | 
|  | void visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) { | 
|  | auto *Ptr = Inst.getPointerOperand(); | 
|  | auto *Val = Inst.getNewValOperand(); | 
|  | addStoreEdge(Val, Ptr); | 
|  | } | 
|  |  | 
|  | void visitAtomicRMWInst(AtomicRMWInst &Inst) { | 
|  | auto *Ptr = Inst.getPointerOperand(); | 
|  | auto *Val = Inst.getValOperand(); | 
|  | addStoreEdge(Val, Ptr); | 
|  | } | 
|  |  | 
|  | void visitPHINode(PHINode &Inst) { | 
|  | for (Value *Val : Inst.incoming_values()) | 
|  | addAssignEdge(Val, &Inst); | 
|  | } | 
|  |  | 
|  | void visitGEP(GEPOperator &GEPOp) { | 
|  | uint64_t Offset = UnknownOffset; | 
|  | APInt APOffset(DL.getPointerSizeInBits(GEPOp.getPointerAddressSpace()), | 
|  | 0); | 
|  | if (GEPOp.accumulateConstantOffset(DL, APOffset)) | 
|  | Offset = APOffset.getSExtValue(); | 
|  |  | 
|  | auto *Op = GEPOp.getPointerOperand(); | 
|  | addAssignEdge(Op, &GEPOp, Offset); | 
|  | } | 
|  |  | 
|  | void visitGetElementPtrInst(GetElementPtrInst &Inst) { | 
|  | auto *GEPOp = cast<GEPOperator>(&Inst); | 
|  | visitGEP(*GEPOp); | 
|  | } | 
|  |  | 
|  | void visitSelectInst(SelectInst &Inst) { | 
|  | // Condition is not processed here (The actual statement producing | 
|  | // the condition result is processed elsewhere). For select, the | 
|  | // condition is evaluated, but not loaded, stored, or assigned | 
|  | // simply as a result of being the condition of a select. | 
|  |  | 
|  | auto *TrueVal = Inst.getTrueValue(); | 
|  | auto *FalseVal = Inst.getFalseValue(); | 
|  | addAssignEdge(TrueVal, &Inst); | 
|  | addAssignEdge(FalseVal, &Inst); | 
|  | } | 
|  |  | 
|  | void visitAllocaInst(AllocaInst &Inst) { addNode(&Inst); } | 
|  |  | 
|  | void visitLoadInst(LoadInst &Inst) { | 
|  | auto *Ptr = Inst.getPointerOperand(); | 
|  | auto *Val = &Inst; | 
|  | addLoadEdge(Ptr, Val); | 
|  | } | 
|  |  | 
|  | void visitStoreInst(StoreInst &Inst) { | 
|  | auto *Ptr = Inst.getPointerOperand(); | 
|  | auto *Val = Inst.getValueOperand(); | 
|  | addStoreEdge(Val, Ptr); | 
|  | } | 
|  |  | 
|  | void visitVAArgInst(VAArgInst &Inst) { | 
|  | // We can't fully model va_arg here. For *Ptr = Inst.getOperand(0), it | 
|  | // does | 
|  | // two things: | 
|  | //  1. Loads a value from *((T*)*Ptr). | 
|  | //  2. Increments (stores to) *Ptr by some target-specific amount. | 
|  | // For now, we'll handle this like a landingpad instruction (by placing | 
|  | // the | 
|  | // result in its own group, and having that group alias externals). | 
|  | if (Inst.getType()->isPointerTy()) | 
|  | addNode(&Inst, getAttrUnknown()); | 
|  | } | 
|  |  | 
|  | static bool isFunctionExternal(Function *Fn) { | 
|  | return !Fn->hasExactDefinition(); | 
|  | } | 
|  |  | 
|  | bool tryInterproceduralAnalysis(CallSite CS, | 
|  | const SmallVectorImpl<Function *> &Fns) { | 
|  | assert(Fns.size() > 0); | 
|  |  | 
|  | if (CS.arg_size() > MaxSupportedArgsInSummary) | 
|  | return false; | 
|  |  | 
|  | // Exit early if we'll fail anyway | 
|  | for (auto *Fn : Fns) { | 
|  | if (isFunctionExternal(Fn) || Fn->isVarArg()) | 
|  | return false; | 
|  | // Fail if the caller does not provide enough arguments | 
|  | assert(Fn->arg_size() <= CS.arg_size()); | 
|  | if (!AA.getAliasSummary(*Fn)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (auto *Fn : Fns) { | 
|  | auto Summary = AA.getAliasSummary(*Fn); | 
|  | assert(Summary != nullptr); | 
|  |  | 
|  | auto &RetParamRelations = Summary->RetParamRelations; | 
|  | for (auto &Relation : RetParamRelations) { | 
|  | auto IRelation = instantiateExternalRelation(Relation, CS); | 
|  | if (IRelation.hasValue()) { | 
|  | Graph.addNode(IRelation->From); | 
|  | Graph.addNode(IRelation->To); | 
|  | Graph.addEdge(IRelation->From, IRelation->To); | 
|  | } | 
|  | } | 
|  |  | 
|  | auto &RetParamAttributes = Summary->RetParamAttributes; | 
|  | for (auto &Attribute : RetParamAttributes) { | 
|  | auto IAttr = instantiateExternalAttribute(Attribute, CS); | 
|  | if (IAttr.hasValue()) | 
|  | Graph.addNode(IAttr->IValue, IAttr->Attr); | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void visitCallSite(CallSite CS) { | 
|  | auto Inst = CS.getInstruction(); | 
|  |  | 
|  | // Make sure all arguments and return value are added to the graph first | 
|  | for (Value *V : CS.args()) | 
|  | if (V->getType()->isPointerTy()) | 
|  | addNode(V); | 
|  | if (Inst->getType()->isPointerTy()) | 
|  | addNode(Inst); | 
|  |  | 
|  | // Check if Inst is a call to a library function that | 
|  | // allocates/deallocates on the heap. Those kinds of functions do not | 
|  | // introduce any aliases. | 
|  | // TODO: address other common library functions such as realloc(), | 
|  | // strdup(), etc. | 
|  | if (isMallocOrCallocLikeFn(Inst, &TLI) || isFreeCall(Inst, &TLI)) | 
|  | return; | 
|  |  | 
|  | // TODO: Add support for noalias args/all the other fun function | 
|  | // attributes that we can tack on. | 
|  | SmallVector<Function *, 4> Targets; | 
|  | if (getPossibleTargets(CS, Targets)) | 
|  | if (tryInterproceduralAnalysis(CS, Targets)) | 
|  | return; | 
|  |  | 
|  | // Because the function is opaque, we need to note that anything | 
|  | // could have happened to the arguments (unless the function is marked | 
|  | // readonly or readnone), and that the result could alias just about | 
|  | // anything, too (unless the result is marked noalias). | 
|  | if (!CS.onlyReadsMemory()) | 
|  | for (Value *V : CS.args()) { | 
|  | if (V->getType()->isPointerTy()) { | 
|  | // The argument itself escapes. | 
|  | Graph.addAttr(InstantiatedValue{V, 0}, getAttrEscaped()); | 
|  | // The fate of argument memory is unknown. Note that since | 
|  | // AliasAttrs is transitive with respect to dereference, we only | 
|  | // need to specify it for the first-level memory. | 
|  | Graph.addNode(InstantiatedValue{V, 1}, getAttrUnknown()); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Inst->getType()->isPointerTy()) { | 
|  | auto *Fn = CS.getCalledFunction(); | 
|  | if (Fn == nullptr || !Fn->returnDoesNotAlias()) | 
|  | // No need to call addNode() since we've added Inst at the | 
|  | // beginning of this function and we know it is not a global. | 
|  | Graph.addAttr(InstantiatedValue{Inst, 0}, getAttrUnknown()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Because vectors/aggregates are immutable and unaddressable, there's | 
|  | /// nothing we can do to coax a value out of them, other than calling | 
|  | /// Extract{Element,Value}. We can effectively treat them as pointers to | 
|  | /// arbitrary memory locations we can store in and load from. | 
|  | void visitExtractElementInst(ExtractElementInst &Inst) { | 
|  | auto *Ptr = Inst.getVectorOperand(); | 
|  | auto *Val = &Inst; | 
|  | addLoadEdge(Ptr, Val); | 
|  | } | 
|  |  | 
|  | void visitInsertElementInst(InsertElementInst &Inst) { | 
|  | auto *Vec = Inst.getOperand(0); | 
|  | auto *Val = Inst.getOperand(1); | 
|  | addAssignEdge(Vec, &Inst); | 
|  | addStoreEdge(Val, &Inst); | 
|  | } | 
|  |  | 
|  | void visitLandingPadInst(LandingPadInst &Inst) { | 
|  | // Exceptions come from "nowhere", from our analysis' perspective. | 
|  | // So we place the instruction its own group, noting that said group may | 
|  | // alias externals | 
|  | if (Inst.getType()->isPointerTy()) | 
|  | addNode(&Inst, getAttrUnknown()); | 
|  | } | 
|  |  | 
|  | void visitInsertValueInst(InsertValueInst &Inst) { | 
|  | auto *Agg = Inst.getOperand(0); | 
|  | auto *Val = Inst.getOperand(1); | 
|  | addAssignEdge(Agg, &Inst); | 
|  | addStoreEdge(Val, &Inst); | 
|  | } | 
|  |  | 
|  | void visitExtractValueInst(ExtractValueInst &Inst) { | 
|  | auto *Ptr = Inst.getAggregateOperand(); | 
|  | addLoadEdge(Ptr, &Inst); | 
|  | } | 
|  |  | 
|  | void visitShuffleVectorInst(ShuffleVectorInst &Inst) { | 
|  | auto *From1 = Inst.getOperand(0); | 
|  | auto *From2 = Inst.getOperand(1); | 
|  | addAssignEdge(From1, &Inst); | 
|  | addAssignEdge(From2, &Inst); | 
|  | } | 
|  |  | 
|  | void visitConstantExpr(ConstantExpr *CE) { | 
|  | switch (CE->getOpcode()) { | 
|  | case Instruction::GetElementPtr: { | 
|  | auto GEPOp = cast<GEPOperator>(CE); | 
|  | visitGEP(*GEPOp); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Instruction::PtrToInt: { | 
|  | addNode(CE->getOperand(0), getAttrEscaped()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Instruction::IntToPtr: { | 
|  | addNode(CE, getAttrUnknown()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Instruction::BitCast: | 
|  | case Instruction::AddrSpaceCast: | 
|  | case Instruction::Trunc: | 
|  | case Instruction::ZExt: | 
|  | case Instruction::SExt: | 
|  | case Instruction::FPExt: | 
|  | case Instruction::FPTrunc: | 
|  | case Instruction::UIToFP: | 
|  | case Instruction::SIToFP: | 
|  | case Instruction::FPToUI: | 
|  | case Instruction::FPToSI: { | 
|  | addAssignEdge(CE->getOperand(0), CE); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Instruction::Select: { | 
|  | addAssignEdge(CE->getOperand(1), CE); | 
|  | addAssignEdge(CE->getOperand(2), CE); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Instruction::InsertElement: | 
|  | case Instruction::InsertValue: { | 
|  | addAssignEdge(CE->getOperand(0), CE); | 
|  | addStoreEdge(CE->getOperand(1), CE); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Instruction::ExtractElement: | 
|  | case Instruction::ExtractValue: { | 
|  | addLoadEdge(CE->getOperand(0), CE); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::FSub: | 
|  | case Instruction::Mul: | 
|  | case Instruction::FMul: | 
|  | case Instruction::UDiv: | 
|  | case Instruction::SDiv: | 
|  | case Instruction::FDiv: | 
|  | case Instruction::URem: | 
|  | case Instruction::SRem: | 
|  | case Instruction::FRem: | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | case Instruction::Shl: | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | case Instruction::ICmp: | 
|  | case Instruction::FCmp: | 
|  | case Instruction::ShuffleVector: { | 
|  | addAssignEdge(CE->getOperand(0), CE); | 
|  | addAssignEdge(CE->getOperand(1), CE); | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | llvm_unreachable("Unknown instruction type encountered!"); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Helper functions | 
|  |  | 
|  | // Determines whether or not we an instruction is useless to us (e.g. | 
|  | // FenceInst) | 
|  | static bool hasUsefulEdges(Instruction *Inst) { | 
|  | bool IsNonInvokeRetTerminator = Inst->isTerminator() && | 
|  | !isa<InvokeInst>(Inst) && | 
|  | !isa<ReturnInst>(Inst); | 
|  | return !isa<CmpInst>(Inst) && !isa<FenceInst>(Inst) && | 
|  | !IsNonInvokeRetTerminator; | 
|  | } | 
|  |  | 
|  | void addArgumentToGraph(Argument &Arg) { | 
|  | if (Arg.getType()->isPointerTy()) { | 
|  | Graph.addNode(InstantiatedValue{&Arg, 0}, | 
|  | getGlobalOrArgAttrFromValue(Arg)); | 
|  | // Pointees of a formal parameter is known to the caller | 
|  | Graph.addNode(InstantiatedValue{&Arg, 1}, getAttrCaller()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Given an Instruction, this will add it to the graph, along with any | 
|  | // Instructions that are potentially only available from said Instruction | 
|  | // For example, given the following line: | 
|  | //   %0 = load i16* getelementptr ([1 x i16]* @a, 0, 0), align 2 | 
|  | // addInstructionToGraph would add both the `load` and `getelementptr` | 
|  | // instructions to the graph appropriately. | 
|  | void addInstructionToGraph(GetEdgesVisitor &Visitor, Instruction &Inst) { | 
|  | if (!hasUsefulEdges(&Inst)) | 
|  | return; | 
|  |  | 
|  | Visitor.visit(Inst); | 
|  | } | 
|  |  | 
|  | // Builds the graph needed for constructing the StratifiedSets for the given | 
|  | // function | 
|  | void buildGraphFrom(Function &Fn) { | 
|  | GetEdgesVisitor Visitor(*this, Fn.getParent()->getDataLayout()); | 
|  |  | 
|  | for (auto &Bb : Fn.getBasicBlockList()) | 
|  | for (auto &Inst : Bb.getInstList()) | 
|  | addInstructionToGraph(Visitor, Inst); | 
|  |  | 
|  | for (auto &Arg : Fn.args()) | 
|  | addArgumentToGraph(Arg); | 
|  | } | 
|  |  | 
|  | public: | 
|  | CFLGraphBuilder(CFLAA &Analysis, const TargetLibraryInfo &TLI, Function &Fn) | 
|  | : Analysis(Analysis), TLI(TLI) { | 
|  | buildGraphFrom(Fn); | 
|  | } | 
|  |  | 
|  | const CFLGraph &getCFLGraph() const { return Graph; } | 
|  | const SmallVector<Value *, 4> &getReturnValues() const { | 
|  | return ReturnedValues; | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end namespace cflaa | 
|  | } // end namespace llvm | 
|  |  | 
|  | #endif // LLVM_LIB_ANALYSIS_CFLGRAPH_H |