|  | // -*- C++ -*- | 
|  | //===------------------------- fuzzing.cpp -------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is dual licensed under the MIT and the University of Illinois Open | 
|  | // Source Licenses. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | //  A set of routines to use when fuzzing the algorithms in libc++ | 
|  | //  Each one tests a single algorithm. | 
|  | // | 
|  | //  They all have the form of: | 
|  | //      int `algorithm`(const uint8_t *data, size_t size); | 
|  | // | 
|  | //  They perform the operation, and then check to see if the results are correct. | 
|  | //  If so, they return zero, and non-zero otherwise. | 
|  | // | 
|  | //  For example, sort calls std::sort, then checks two things: | 
|  | //      (1) The resulting vector is sorted | 
|  | //      (2) The resulting vector contains the same elements as the original data. | 
|  |  | 
|  |  | 
|  |  | 
|  | #include "fuzzing.h" | 
|  | #include <vector> | 
|  | #include <algorithm> | 
|  | #include <functional> | 
|  | #include <regex> | 
|  | #include <cassert> | 
|  |  | 
|  | #include <iostream> | 
|  |  | 
|  | //  If we had C++14, we could use the four iterator version of is_permutation and equal | 
|  |  | 
|  | namespace fuzzing { | 
|  |  | 
|  | //  This is a struct we can use to test the stable_XXX algorithms. | 
|  | //  perform the operation on the key, then check the order of the payload. | 
|  |  | 
|  | struct stable_test { | 
|  | uint8_t key; | 
|  | size_t payload; | 
|  |  | 
|  | stable_test(uint8_t k) : key(k), payload(0) {} | 
|  | stable_test(uint8_t k, size_t p) : key(k), payload(p) {} | 
|  | }; | 
|  |  | 
|  | void swap(stable_test &lhs, stable_test &rhs) | 
|  | { | 
|  | using std::swap; | 
|  | swap(lhs.key,     rhs.key); | 
|  | swap(lhs.payload, rhs.payload); | 
|  | } | 
|  |  | 
|  | struct key_less | 
|  | { | 
|  | bool operator () (const stable_test &lhs, const stable_test &rhs) const | 
|  | { | 
|  | return lhs.key < rhs.key; | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct payload_less | 
|  | { | 
|  | bool operator () (const stable_test &lhs, const stable_test &rhs) const | 
|  | { | 
|  | return lhs.payload < rhs.payload; | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct total_less | 
|  | { | 
|  | bool operator () (const stable_test &lhs, const stable_test &rhs) const | 
|  | { | 
|  | return lhs.key == rhs.key ? lhs.payload < rhs.payload : lhs.key < rhs.key; | 
|  | } | 
|  | }; | 
|  |  | 
|  | bool operator==(const stable_test &lhs, const stable_test &rhs) | 
|  | { | 
|  | return lhs.key == rhs.key && lhs.payload == rhs.payload; | 
|  | } | 
|  |  | 
|  |  | 
|  | template<typename T> | 
|  | struct is_even | 
|  | { | 
|  | bool operator () (const T &t) const | 
|  | { | 
|  | return t % 2 == 0; | 
|  | } | 
|  | }; | 
|  |  | 
|  |  | 
|  | template<> | 
|  | struct is_even<stable_test> | 
|  | { | 
|  | bool operator () (const stable_test &t) const | 
|  | { | 
|  | return t.key % 2 == 0; | 
|  | } | 
|  | }; | 
|  |  | 
|  | typedef std::vector<uint8_t> Vec; | 
|  | typedef std::vector<stable_test> StableVec; | 
|  | typedef StableVec::const_iterator SVIter; | 
|  |  | 
|  | //  Cheap version of is_permutation | 
|  | //  Builds a set of buckets for each of the key values. | 
|  | //  Sums all the payloads. | 
|  | //  Not 100% perfect, but _way_ faster | 
|  | bool is_permutation(SVIter first1, SVIter last1, SVIter first2) | 
|  | { | 
|  | size_t xBuckets[256]  = {0}; | 
|  | size_t xPayloads[256] = {0}; | 
|  | size_t yBuckets[256]  = {0}; | 
|  | size_t yPayloads[256] = {0}; | 
|  |  | 
|  | for (; first1 != last1; ++first1, ++first2) | 
|  | { | 
|  | xBuckets [first1->key]++; | 
|  | xPayloads[first1->key] += first1->payload; | 
|  |  | 
|  | yBuckets [first2->key]++; | 
|  | yPayloads[first2->key] += first2->payload; | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < 256; ++i) | 
|  | { | 
|  | if (xBuckets[i]  != yBuckets[i]) | 
|  | return false; | 
|  | if (xPayloads[i] != yPayloads[i]) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <typename Iter1, typename Iter2> | 
|  | bool is_permutation(Iter1 first1, Iter1 last1, Iter2 first2) | 
|  | { | 
|  | static_assert((std::is_same<typename std::iterator_traits<Iter1>::value_type, uint8_t>::value), ""); | 
|  | static_assert((std::is_same<typename std::iterator_traits<Iter2>::value_type, uint8_t>::value), ""); | 
|  |  | 
|  | size_t xBuckets[256]  = {0}; | 
|  | size_t yBuckets[256]  = {0}; | 
|  |  | 
|  | for (; first1 != last1; ++first1, ++first2) | 
|  | { | 
|  | xBuckets [*first1]++; | 
|  | yBuckets [*first2]++; | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < 256; ++i) | 
|  | if (xBuckets[i]  != yBuckets[i]) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | //  == sort == | 
|  | int sort(const uint8_t *data, size_t size) | 
|  | { | 
|  | Vec working(data, data + size); | 
|  | std::sort(working.begin(), working.end()); | 
|  |  | 
|  | if (!std::is_sorted(working.begin(), working.end())) return 1; | 
|  | if (!fuzzing::is_permutation(data, data + size, working.cbegin())) return 99; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | //  == stable_sort == | 
|  | int stable_sort(const uint8_t *data, size_t size) | 
|  | { | 
|  | StableVec input; | 
|  | for (size_t i = 0; i < size; ++i) | 
|  | input.push_back(stable_test(data[i], i)); | 
|  | StableVec working = input; | 
|  | std::stable_sort(working.begin(), working.end(), key_less()); | 
|  |  | 
|  | if (!std::is_sorted(working.begin(), working.end(), key_less()))   return 1; | 
|  | auto iter = working.begin(); | 
|  | while (iter != working.end()) | 
|  | { | 
|  | auto range = std::equal_range(iter, working.end(), *iter, key_less()); | 
|  | if (!std::is_sorted(range.first, range.second, total_less())) return 2; | 
|  | iter = range.second; | 
|  | } | 
|  | if (!fuzzing::is_permutation(input.cbegin(), input.cend(), working.cbegin())) return 99; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | //  == partition == | 
|  | int partition(const uint8_t *data, size_t size) | 
|  | { | 
|  | Vec working(data, data + size); | 
|  | auto iter = std::partition(working.begin(), working.end(), is_even<uint8_t>()); | 
|  |  | 
|  | if (!std::all_of (working.begin(), iter, is_even<uint8_t>())) return 1; | 
|  | if (!std::none_of(iter,   working.end(), is_even<uint8_t>())) return 2; | 
|  | if (!fuzzing::is_permutation(data, data + size, working.cbegin())) return 99; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | //  == partition_copy == | 
|  | int partition_copy(const uint8_t *data, size_t size) | 
|  | { | 
|  | Vec v1, v2; | 
|  | auto iter = std::partition_copy(data, data + size, | 
|  | std::back_inserter<Vec>(v1), std::back_inserter<Vec>(v2), | 
|  | is_even<uint8_t>()); | 
|  |  | 
|  | //  The two vectors should add up to the original size | 
|  | if (v1.size() + v2.size() != size) return 1; | 
|  |  | 
|  | //  All of the even values should be in the first vector, and none in the second | 
|  | if (!std::all_of (v1.begin(), v1.end(), is_even<uint8_t>())) return 2; | 
|  | if (!std::none_of(v2.begin(), v2.end(), is_even<uint8_t>())) return 3; | 
|  |  | 
|  | //  Every value in both vectors has to be in the original | 
|  |  | 
|  | //	Make a copy of the input, and sort it | 
|  | Vec v0{data, data + size}; | 
|  | std::sort(v0.begin(), v0.end()); | 
|  |  | 
|  | //	Sort each vector and ensure that all of the elements appear in the original input | 
|  | std::sort(v1.begin(), v1.end()); | 
|  | if (!std::includes(v0.begin(), v0.end(), v1.begin(), v1.end())) return 4; | 
|  |  | 
|  | std::sort(v2.begin(), v2.end()); | 
|  | if (!std::includes(v0.begin(), v0.end(), v2.begin(), v2.end())) return 5; | 
|  |  | 
|  | //  This, while simple, is really slow - 20 seconds on a 500K element input. | 
|  | //     for (auto v: v1) | 
|  | //         if (std::find(data, data + size, v) == data + size) return 4; | 
|  | // | 
|  | //     for (auto v: v2) | 
|  | //         if (std::find(data, data + size, v) == data + size) return 5; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | //  == stable_partition == | 
|  | int stable_partition (const uint8_t *data, size_t size) | 
|  | { | 
|  | StableVec input; | 
|  | for (size_t i = 0; i < size; ++i) | 
|  | input.push_back(stable_test(data[i], i)); | 
|  | StableVec working = input; | 
|  | auto iter = std::stable_partition(working.begin(), working.end(), is_even<stable_test>()); | 
|  |  | 
|  | if (!std::all_of (working.begin(), iter, is_even<stable_test>())) return 1; | 
|  | if (!std::none_of(iter,   working.end(), is_even<stable_test>())) return 2; | 
|  | if (!std::is_sorted(working.begin(), iter, payload_less()))   return 3; | 
|  | if (!std::is_sorted(iter,   working.end(), payload_less()))   return 4; | 
|  | if (!fuzzing::is_permutation(input.cbegin(), input.cend(), working.cbegin())) return 99; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | //  == nth_element == | 
|  | //  use the first element as a position into the data | 
|  | int nth_element (const uint8_t *data, size_t size) | 
|  | { | 
|  | if (size <= 1) return 0; | 
|  | const size_t partition_point = data[0] % size; | 
|  | Vec working(data + 1, data + size); | 
|  | const auto partition_iter = working.begin() + partition_point; | 
|  | std::nth_element(working.begin(), partition_iter, working.end()); | 
|  |  | 
|  | //  nth may be the end iterator, in this case nth_element has no effect. | 
|  | if (partition_iter == working.end()) | 
|  | { | 
|  | if (!std::equal(data + 1, data + size, working.begin())) return 98; | 
|  | } | 
|  | else | 
|  | { | 
|  | const uint8_t nth = *partition_iter; | 
|  | if (!std::all_of(working.begin(), partition_iter, [=](uint8_t v) { return v <= nth; })) | 
|  | return 1; | 
|  | if (!std::all_of(partition_iter, working.end(),   [=](uint8_t v) { return v >= nth; })) | 
|  | return 2; | 
|  | if (!fuzzing::is_permutation(data + 1, data + size, working.cbegin())) return 99; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | //  == partial_sort == | 
|  | //  use the first element as a position into the data | 
|  | int partial_sort (const uint8_t *data, size_t size) | 
|  | { | 
|  | if (size <= 1) return 0; | 
|  | const size_t sort_point = data[0] % size; | 
|  | Vec working(data + 1, data + size); | 
|  | const auto sort_iter = working.begin() + sort_point; | 
|  | std::partial_sort(working.begin(), sort_iter, working.end()); | 
|  |  | 
|  | if (sort_iter != working.end()) | 
|  | { | 
|  | const uint8_t nth = *std::min_element(sort_iter, working.end()); | 
|  | if (!std::all_of(working.begin(), sort_iter, [=](uint8_t v) { return v <= nth; })) | 
|  | return 1; | 
|  | if (!std::all_of(sort_iter, working.end(),   [=](uint8_t v) { return v >= nth; })) | 
|  | return 2; | 
|  | } | 
|  | if (!std::is_sorted(working.begin(), sort_iter)) return 3; | 
|  | if (!fuzzing::is_permutation(data + 1, data + size, working.cbegin())) return 99; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | //  == partial_sort_copy == | 
|  | //  use the first element as a count | 
|  | int partial_sort_copy (const uint8_t *data, size_t size) | 
|  | { | 
|  | if (size <= 1) return 0; | 
|  | const size_t num_results = data[0] % size; | 
|  | Vec results(num_results); | 
|  | (void) std::partial_sort_copy(data + 1, data + size, results.begin(), results.end()); | 
|  |  | 
|  | //  The results have to be sorted | 
|  | if (!std::is_sorted(results.begin(), results.end())) return 1; | 
|  | //  All the values in results have to be in the original data | 
|  | for (auto v: results) | 
|  | if (std::find(data + 1, data + size, v) == data + size) return 2; | 
|  |  | 
|  | //  The things in results have to be the smallest N in the original data | 
|  | Vec sorted(data + 1, data + size); | 
|  | std::sort(sorted.begin(), sorted.end()); | 
|  | if (!std::equal(results.begin(), results.end(), sorted.begin())) return 3; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | //  The second sequence has been "uniqued" | 
|  | template <typename Iter1, typename Iter2> | 
|  | static bool compare_unique(Iter1 first1, Iter1 last1, Iter2 first2, Iter2 last2) | 
|  | { | 
|  | assert(first1 != last1 && first2 != last2); | 
|  | if (*first1 != *first2) return false; | 
|  |  | 
|  | uint8_t last_value = *first1; | 
|  | ++first1; ++first2; | 
|  | while(first1 != last1 && first2 != last2) | 
|  | { | 
|  | //  Skip over dups in the first sequence | 
|  | while (*first1 == last_value) | 
|  | if (++first1 == last1) return false; | 
|  | if (*first1 != *first2) return false; | 
|  | last_value = *first1; | 
|  | ++first1; ++first2; | 
|  | } | 
|  |  | 
|  | //  Still stuff left in the 'uniqued' sequence - oops | 
|  | if (first1 == last1 && first2 != last2) return false; | 
|  |  | 
|  | //  Still stuff left in the original sequence - better be all the same | 
|  | while (first1 != last1) | 
|  | { | 
|  | if (*first1 != last_value) return false; | 
|  | ++first1; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | //  == unique == | 
|  | int unique (const uint8_t *data, size_t size) | 
|  | { | 
|  | Vec working(data, data + size); | 
|  | std::sort(working.begin(), working.end()); | 
|  | Vec results = working; | 
|  | Vec::iterator new_end = std::unique(results.begin(), results.end()); | 
|  | Vec::iterator it;   // scratch iterator | 
|  |  | 
|  | //  Check the size of the unique'd sequence. | 
|  | //  it should only be zero if the input sequence was empty. | 
|  | if (results.begin() == new_end) | 
|  | return working.size() == 0 ? 0 : 1; | 
|  |  | 
|  | //  'results' is sorted | 
|  | if (!std::is_sorted(results.begin(), new_end)) return 2; | 
|  |  | 
|  | //  All the elements in 'results' must be different | 
|  | it = results.begin(); | 
|  | uint8_t prev_value = *it++; | 
|  | for (; it != new_end; ++it) | 
|  | { | 
|  | if (*it == prev_value) return 3; | 
|  | prev_value = *it; | 
|  | } | 
|  |  | 
|  | //  Every element in 'results' must be in 'working' | 
|  | for (it = results.begin(); it != new_end; ++it) | 
|  | if (std::find(working.begin(), working.end(), *it) == working.end()) | 
|  | return 4; | 
|  |  | 
|  | //  Every element in 'working' must be in 'results' | 
|  | for (auto v : working) | 
|  | if (std::find(results.begin(), new_end, v) == new_end) | 
|  | return 5; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | //  == unique_copy == | 
|  | int unique_copy (const uint8_t *data, size_t size) | 
|  | { | 
|  | Vec working(data, data + size); | 
|  | std::sort(working.begin(), working.end()); | 
|  | Vec results; | 
|  | (void) std::unique_copy(working.begin(), working.end(), | 
|  | std::back_inserter<Vec>(results)); | 
|  | Vec::iterator it;   // scratch iterator | 
|  |  | 
|  | //  Check the size of the unique'd sequence. | 
|  | //  it should only be zero if the input sequence was empty. | 
|  | if (results.size() == 0) | 
|  | return working.size() == 0 ? 0 : 1; | 
|  |  | 
|  | //  'results' is sorted | 
|  | if (!std::is_sorted(results.begin(), results.end())) return 2; | 
|  |  | 
|  | //  All the elements in 'results' must be different | 
|  | it = results.begin(); | 
|  | uint8_t prev_value = *it++; | 
|  | for (; it != results.end(); ++it) | 
|  | { | 
|  | if (*it == prev_value) return 3; | 
|  | prev_value = *it; | 
|  | } | 
|  |  | 
|  | //  Every element in 'results' must be in 'working' | 
|  | for (auto v : results) | 
|  | if (std::find(working.begin(), working.end(), v) == working.end()) | 
|  | return 4; | 
|  |  | 
|  | //  Every element in 'working' must be in 'results' | 
|  | for (auto v : working) | 
|  | if (std::find(results.begin(), results.end(), v) == results.end()) | 
|  | return 5; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | // --   regex fuzzers | 
|  | static int regex_helper(const uint8_t *data, size_t size, std::regex::flag_type flag) | 
|  | { | 
|  | if (size > 0) | 
|  | { | 
|  | try | 
|  | { | 
|  | std::string s((const char *)data, size); | 
|  | std::regex re(s, flag); | 
|  | return std::regex_match(s, re) ? 1 : 0; | 
|  | } | 
|  | catch (std::regex_error &ex) {} | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | int regex_ECMAScript (const uint8_t *data, size_t size) | 
|  | { | 
|  | (void) regex_helper(data, size, std::regex_constants::ECMAScript); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int regex_POSIX (const uint8_t *data, size_t size) | 
|  | { | 
|  | (void) regex_helper(data, size, std::regex_constants::basic); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int regex_extended (const uint8_t *data, size_t size) | 
|  | { | 
|  | (void) regex_helper(data, size, std::regex_constants::extended); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int regex_awk (const uint8_t *data, size_t size) | 
|  | { | 
|  | (void) regex_helper(data, size, std::regex_constants::awk); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int regex_grep (const uint8_t *data, size_t size) | 
|  | { | 
|  | (void) regex_helper(data, size, std::regex_constants::grep); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int regex_egrep (const uint8_t *data, size_t size) | 
|  | { | 
|  | (void) regex_helper(data, size, std::regex_constants::egrep); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // --   heap fuzzers | 
|  | int make_heap (const uint8_t *data, size_t size) | 
|  | { | 
|  | Vec working(data, data + size); | 
|  | std::make_heap(working.begin(), working.end()); | 
|  |  | 
|  | if (!std::is_heap(working.begin(), working.end())) return 1; | 
|  | if (!fuzzing::is_permutation(data, data + size, working.cbegin())) return 99; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int push_heap (const uint8_t *data, size_t size) | 
|  | { | 
|  | if (size < 2) return 0; | 
|  |  | 
|  | //  Make a heap from the first half of the data | 
|  | Vec working(data, data + size); | 
|  | auto iter = working.begin() + (size / 2); | 
|  | std::make_heap(working.begin(), iter); | 
|  | if (!std::is_heap(working.begin(), iter)) return 1; | 
|  |  | 
|  | //  Now push the rest onto the heap, one at a time | 
|  | ++iter; | 
|  | for (; iter != working.end(); ++iter) { | 
|  | std::push_heap(working.begin(), iter); | 
|  | if (!std::is_heap(working.begin(), iter)) return 2; | 
|  | } | 
|  |  | 
|  | if (!fuzzing::is_permutation(data, data + size, working.cbegin())) return 99; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int pop_heap (const uint8_t *data, size_t size) | 
|  | { | 
|  | if (size < 2) return 0; | 
|  | Vec working(data, data + size); | 
|  | std::make_heap(working.begin(), working.end()); | 
|  |  | 
|  | //  Pop things off, one at a time | 
|  | auto iter = --working.end(); | 
|  | while (iter != working.begin()) { | 
|  | std::pop_heap(working.begin(), iter); | 
|  | if (!std::is_heap(working.begin(), --iter)) return 2; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | // --   search fuzzers | 
|  | int search (const uint8_t *data, size_t size) | 
|  | { | 
|  | if (size < 2) return 0; | 
|  |  | 
|  | const size_t pat_size = data[0] * (size - 1) / std::numeric_limits<uint8_t>::max(); | 
|  | assert(pat_size <= size - 1); | 
|  | const uint8_t *pat_begin = data + 1; | 
|  | const uint8_t *pat_end   = pat_begin + pat_size; | 
|  | const uint8_t *data_end  = data + size; | 
|  | assert(pat_end <= data_end); | 
|  | //  std::cerr << "data[0] = " << size_t(data[0]) << " "; | 
|  | //  std::cerr << "Pattern size = " << pat_size << "; corpus is " << size - 1 << std::endl; | 
|  | auto it = std::search(pat_end, data_end, pat_begin, pat_end); | 
|  | if (it != data_end) // not found | 
|  | if (!std::equal(pat_begin, pat_end, it)) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | template <typename S> | 
|  | static int search_helper (const uint8_t *data, size_t size) | 
|  | { | 
|  | if (size < 2) return 0; | 
|  |  | 
|  | const size_t pat_size = data[0] * (size - 1) / std::numeric_limits<uint8_t>::max(); | 
|  | const uint8_t *pat_begin = data + 1; | 
|  | const uint8_t *pat_end   = pat_begin + pat_size; | 
|  | const uint8_t *data_end  = data + size; | 
|  |  | 
|  | auto it = std::search(pat_end, data_end, S(pat_begin, pat_end)); | 
|  | if (it != data_end) // not found | 
|  | if (!std::equal(pat_begin, pat_end, it)) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | //  These are still in std::experimental | 
|  | // int search_boyer_moore (const uint8_t *data, size_t size) | 
|  | // { | 
|  | //  return search_helper<std::boyer_moore_searcher<const uint8_t *>>(data, size); | 
|  | // } | 
|  | // | 
|  | // int search_boyer_moore_horspool (const uint8_t *data, size_t size) | 
|  | // { | 
|  | //  return search_helper<std::boyer_moore_horspool_searcher<const uint8_t *>>(data, size); | 
|  | // } | 
|  |  | 
|  |  | 
|  | // --   set operation fuzzers | 
|  | template <typename S> | 
|  | static void set_helper (const uint8_t *data, size_t size, Vec &v1, Vec &v2) | 
|  | { | 
|  | assert(size > 1); | 
|  |  | 
|  | const size_t pat_size = data[0] * (size - 1) / std::numeric_limits<uint8_t>::max(); | 
|  | const uint8_t *pat_begin = data + 1; | 
|  | const uint8_t *pat_end   = pat_begin + pat_size; | 
|  | const uint8_t *data_end  = data + size; | 
|  | v1.assign(pat_begin, pat_end); | 
|  | v2.assign(pat_end, data_end); | 
|  |  | 
|  | std::sort(v1.begin(), v1.end()); | 
|  | std::sort(v2.begin(), v2.end()); | 
|  | } | 
|  |  | 
|  | } // namespace fuzzing |