| //===- CodeExtractor.cpp - Pull code region into a new function -----------===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements the interface to tear out a code region, such as an | 
 | // individual loop or a parallel section, into a new function, replacing it with | 
 | // a call to the new function. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/Transforms/Utils/CodeExtractor.h" | 
 | #include "llvm/ADT/ArrayRef.h" | 
 | #include "llvm/ADT/DenseMap.h" | 
 | #include "llvm/ADT/Optional.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include "llvm/ADT/SetVector.h" | 
 | #include "llvm/ADT/SmallPtrSet.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/Analysis/AssumptionCache.h" | 
 | #include "llvm/Analysis/BlockFrequencyInfo.h" | 
 | #include "llvm/Analysis/BlockFrequencyInfoImpl.h" | 
 | #include "llvm/Analysis/BranchProbabilityInfo.h" | 
 | #include "llvm/Analysis/LoopInfo.h" | 
 | #include "llvm/IR/Argument.h" | 
 | #include "llvm/IR/Attributes.h" | 
 | #include "llvm/IR/BasicBlock.h" | 
 | #include "llvm/IR/CFG.h" | 
 | #include "llvm/IR/Constant.h" | 
 | #include "llvm/IR/Constants.h" | 
 | #include "llvm/IR/DIBuilder.h" | 
 | #include "llvm/IR/DataLayout.h" | 
 | #include "llvm/IR/DebugInfo.h" | 
 | #include "llvm/IR/DebugInfoMetadata.h" | 
 | #include "llvm/IR/DerivedTypes.h" | 
 | #include "llvm/IR/Dominators.h" | 
 | #include "llvm/IR/Function.h" | 
 | #include "llvm/IR/GlobalValue.h" | 
 | #include "llvm/IR/InstIterator.h" | 
 | #include "llvm/IR/InstrTypes.h" | 
 | #include "llvm/IR/Instruction.h" | 
 | #include "llvm/IR/Instructions.h" | 
 | #include "llvm/IR/IntrinsicInst.h" | 
 | #include "llvm/IR/Intrinsics.h" | 
 | #include "llvm/IR/LLVMContext.h" | 
 | #include "llvm/IR/MDBuilder.h" | 
 | #include "llvm/IR/Module.h" | 
 | #include "llvm/IR/PatternMatch.h" | 
 | #include "llvm/IR/Type.h" | 
 | #include "llvm/IR/User.h" | 
 | #include "llvm/IR/Value.h" | 
 | #include "llvm/IR/Verifier.h" | 
 | #include "llvm/Support/BlockFrequency.h" | 
 | #include "llvm/Support/BranchProbability.h" | 
 | #include "llvm/Support/Casting.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
 | #include <cassert> | 
 | #include <cstdint> | 
 | #include <iterator> | 
 | #include <map> | 
 | #include <utility> | 
 | #include <vector> | 
 |  | 
 | using namespace llvm; | 
 | using namespace llvm::PatternMatch; | 
 | using ProfileCount = Function::ProfileCount; | 
 |  | 
 | #define DEBUG_TYPE "code-extractor" | 
 |  | 
 | // Provide a command-line option to aggregate function arguments into a struct | 
 | // for functions produced by the code extractor. This is useful when converting | 
 | // extracted functions to pthread-based code, as only one argument (void*) can | 
 | // be passed in to pthread_create(). | 
 | static cl::opt<bool> | 
 | AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, | 
 |                  cl::desc("Aggregate arguments to code-extracted functions")); | 
 |  | 
 | /// Test whether a block is valid for extraction. | 
 | static bool isBlockValidForExtraction(const BasicBlock &BB, | 
 |                                       const SetVector<BasicBlock *> &Result, | 
 |                                       bool AllowVarArgs, bool AllowAlloca) { | 
 |   // taking the address of a basic block moved to another function is illegal | 
 |   if (BB.hasAddressTaken()) | 
 |     return false; | 
 |  | 
 |   // don't hoist code that uses another basicblock address, as it's likely to | 
 |   // lead to unexpected behavior, like cross-function jumps | 
 |   SmallPtrSet<User const *, 16> Visited; | 
 |   SmallVector<User const *, 16> ToVisit; | 
 |  | 
 |   for (Instruction const &Inst : BB) | 
 |     ToVisit.push_back(&Inst); | 
 |  | 
 |   while (!ToVisit.empty()) { | 
 |     User const *Curr = ToVisit.pop_back_val(); | 
 |     if (!Visited.insert(Curr).second) | 
 |       continue; | 
 |     if (isa<BlockAddress const>(Curr)) | 
 |       return false; // even a reference to self is likely to be not compatible | 
 |  | 
 |     if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB) | 
 |       continue; | 
 |  | 
 |     for (auto const &U : Curr->operands()) { | 
 |       if (auto *UU = dyn_cast<User>(U)) | 
 |         ToVisit.push_back(UU); | 
 |     } | 
 |   } | 
 |  | 
 |   // If explicitly requested, allow vastart and alloca. For invoke instructions | 
 |   // verify that extraction is valid. | 
 |   for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) { | 
 |     if (isa<AllocaInst>(I)) { | 
 |        if (!AllowAlloca) | 
 |          return false; | 
 |        continue; | 
 |     } | 
 |  | 
 |     if (const auto *II = dyn_cast<InvokeInst>(I)) { | 
 |       // Unwind destination (either a landingpad, catchswitch, or cleanuppad) | 
 |       // must be a part of the subgraph which is being extracted. | 
 |       if (auto *UBB = II->getUnwindDest()) | 
 |         if (!Result.count(UBB)) | 
 |           return false; | 
 |       continue; | 
 |     } | 
 |  | 
 |     // All catch handlers of a catchswitch instruction as well as the unwind | 
 |     // destination must be in the subgraph. | 
 |     if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) { | 
 |       if (auto *UBB = CSI->getUnwindDest()) | 
 |         if (!Result.count(UBB)) | 
 |           return false; | 
 |       for (auto *HBB : CSI->handlers()) | 
 |         if (!Result.count(const_cast<BasicBlock*>(HBB))) | 
 |           return false; | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Make sure that entire catch handler is within subgraph. It is sufficient | 
 |     // to check that catch return's block is in the list. | 
 |     if (const auto *CPI = dyn_cast<CatchPadInst>(I)) { | 
 |       for (const auto *U : CPI->users()) | 
 |         if (const auto *CRI = dyn_cast<CatchReturnInst>(U)) | 
 |           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) | 
 |             return false; | 
 |       continue; | 
 |     } | 
 |  | 
 |     // And do similar checks for cleanup handler - the entire handler must be | 
 |     // in subgraph which is going to be extracted. For cleanup return should | 
 |     // additionally check that the unwind destination is also in the subgraph. | 
 |     if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) { | 
 |       for (const auto *U : CPI->users()) | 
 |         if (const auto *CRI = dyn_cast<CleanupReturnInst>(U)) | 
 |           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent()))) | 
 |             return false; | 
 |       continue; | 
 |     } | 
 |     if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) { | 
 |       if (auto *UBB = CRI->getUnwindDest()) | 
 |         if (!Result.count(UBB)) | 
 |           return false; | 
 |       continue; | 
 |     } | 
 |  | 
 |     if (const CallInst *CI = dyn_cast<CallInst>(I)) { | 
 |       if (const Function *F = CI->getCalledFunction()) { | 
 |         auto IID = F->getIntrinsicID(); | 
 |         if (IID == Intrinsic::vastart) { | 
 |           if (AllowVarArgs) | 
 |             continue; | 
 |           else | 
 |             return false; | 
 |         } | 
 |  | 
 |         // Currently, we miscompile outlined copies of eh_typid_for. There are | 
 |         // proposals for fixing this in llvm.org/PR39545. | 
 |         if (IID == Intrinsic::eh_typeid_for) | 
 |           return false; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// Build a set of blocks to extract if the input blocks are viable. | 
 | static SetVector<BasicBlock *> | 
 | buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, | 
 |                         bool AllowVarArgs, bool AllowAlloca) { | 
 |   assert(!BBs.empty() && "The set of blocks to extract must be non-empty"); | 
 |   SetVector<BasicBlock *> Result; | 
 |  | 
 |   // Loop over the blocks, adding them to our set-vector, and aborting with an | 
 |   // empty set if we encounter invalid blocks. | 
 |   for (BasicBlock *BB : BBs) { | 
 |     // If this block is dead, don't process it. | 
 |     if (DT && !DT->isReachableFromEntry(BB)) | 
 |       continue; | 
 |  | 
 |     if (!Result.insert(BB)) | 
 |       llvm_unreachable("Repeated basic blocks in extraction input"); | 
 |   } | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName() | 
 |                     << '\n'); | 
 |  | 
 |   for (auto *BB : Result) { | 
 |     if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca)) | 
 |       return {}; | 
 |  | 
 |     // Make sure that the first block is not a landing pad. | 
 |     if (BB == Result.front()) { | 
 |       if (BB->isEHPad()) { | 
 |         LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n"); | 
 |         return {}; | 
 |       } | 
 |       continue; | 
 |     } | 
 |  | 
 |     // All blocks other than the first must not have predecessors outside of | 
 |     // the subgraph which is being extracted. | 
 |     for (auto *PBB : predecessors(BB)) | 
 |       if (!Result.count(PBB)) { | 
 |         LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from " | 
 |                              "outside the region except for the first block!\n" | 
 |                           << "Problematic source BB: " << BB->getName() << "\n" | 
 |                           << "Problematic destination BB: " << PBB->getName() | 
 |                           << "\n"); | 
 |         return {}; | 
 |       } | 
 |   } | 
 |  | 
 |   return Result; | 
 | } | 
 |  | 
 | CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT, | 
 |                              bool AggregateArgs, BlockFrequencyInfo *BFI, | 
 |                              BranchProbabilityInfo *BPI, AssumptionCache *AC, | 
 |                              bool AllowVarArgs, bool AllowAlloca, | 
 |                              BasicBlock *AllocationBlock, std::string Suffix) | 
 |     : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), | 
 |       BPI(BPI), AC(AC), AllocationBlock(AllocationBlock), | 
 |       AllowVarArgs(AllowVarArgs), | 
 |       Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)), | 
 |       Suffix(Suffix) {} | 
 |  | 
 | CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs, | 
 |                              BlockFrequencyInfo *BFI, | 
 |                              BranchProbabilityInfo *BPI, AssumptionCache *AC, | 
 |                              std::string Suffix) | 
 |     : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI), | 
 |       BPI(BPI), AC(AC), AllocationBlock(nullptr), AllowVarArgs(false), | 
 |       Blocks(buildExtractionBlockSet(L.getBlocks(), &DT, | 
 |                                      /* AllowVarArgs */ false, | 
 |                                      /* AllowAlloca */ false)), | 
 |       Suffix(Suffix) {} | 
 |  | 
 | /// definedInRegion - Return true if the specified value is defined in the | 
 | /// extracted region. | 
 | static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) { | 
 |   if (Instruction *I = dyn_cast<Instruction>(V)) | 
 |     if (Blocks.count(I->getParent())) | 
 |       return true; | 
 |   return false; | 
 | } | 
 |  | 
 | /// definedInCaller - Return true if the specified value is defined in the | 
 | /// function being code extracted, but not in the region being extracted. | 
 | /// These values must be passed in as live-ins to the function. | 
 | static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) { | 
 |   if (isa<Argument>(V)) return true; | 
 |   if (Instruction *I = dyn_cast<Instruction>(V)) | 
 |     if (!Blocks.count(I->getParent())) | 
 |       return true; | 
 |   return false; | 
 | } | 
 |  | 
 | static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) { | 
 |   BasicBlock *CommonExitBlock = nullptr; | 
 |   auto hasNonCommonExitSucc = [&](BasicBlock *Block) { | 
 |     for (auto *Succ : successors(Block)) { | 
 |       // Internal edges, ok. | 
 |       if (Blocks.count(Succ)) | 
 |         continue; | 
 |       if (!CommonExitBlock) { | 
 |         CommonExitBlock = Succ; | 
 |         continue; | 
 |       } | 
 |       if (CommonExitBlock != Succ) | 
 |         return true; | 
 |     } | 
 |     return false; | 
 |   }; | 
 |  | 
 |   if (any_of(Blocks, hasNonCommonExitSucc)) | 
 |     return nullptr; | 
 |  | 
 |   return CommonExitBlock; | 
 | } | 
 |  | 
 | CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) { | 
 |   for (BasicBlock &BB : F) { | 
 |     for (Instruction &II : BB.instructionsWithoutDebug()) | 
 |       if (auto *AI = dyn_cast<AllocaInst>(&II)) | 
 |         Allocas.push_back(AI); | 
 |  | 
 |     findSideEffectInfoForBlock(BB); | 
 |   } | 
 | } | 
 |  | 
 | void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) { | 
 |   for (Instruction &II : BB.instructionsWithoutDebug()) { | 
 |     unsigned Opcode = II.getOpcode(); | 
 |     Value *MemAddr = nullptr; | 
 |     switch (Opcode) { | 
 |     case Instruction::Store: | 
 |     case Instruction::Load: { | 
 |       if (Opcode == Instruction::Store) { | 
 |         StoreInst *SI = cast<StoreInst>(&II); | 
 |         MemAddr = SI->getPointerOperand(); | 
 |       } else { | 
 |         LoadInst *LI = cast<LoadInst>(&II); | 
 |         MemAddr = LI->getPointerOperand(); | 
 |       } | 
 |       // Global variable can not be aliased with locals. | 
 |       if (isa<Constant>(MemAddr)) | 
 |         break; | 
 |       Value *Base = MemAddr->stripInBoundsConstantOffsets(); | 
 |       if (!isa<AllocaInst>(Base)) { | 
 |         SideEffectingBlocks.insert(&BB); | 
 |         return; | 
 |       } | 
 |       BaseMemAddrs[&BB].insert(Base); | 
 |       break; | 
 |     } | 
 |     default: { | 
 |       IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II); | 
 |       if (IntrInst) { | 
 |         if (IntrInst->isLifetimeStartOrEnd()) | 
 |           break; | 
 |         SideEffectingBlocks.insert(&BB); | 
 |         return; | 
 |       } | 
 |       // Treat all the other cases conservatively if it has side effects. | 
 |       if (II.mayHaveSideEffects()) { | 
 |         SideEffectingBlocks.insert(&BB); | 
 |         return; | 
 |       } | 
 |     } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr( | 
 |     BasicBlock &BB, AllocaInst *Addr) const { | 
 |   if (SideEffectingBlocks.count(&BB)) | 
 |     return true; | 
 |   auto It = BaseMemAddrs.find(&BB); | 
 |   if (It != BaseMemAddrs.end()) | 
 |     return It->second.count(Addr); | 
 |   return false; | 
 | } | 
 |  | 
 | bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers( | 
 |     const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const { | 
 |   AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets()); | 
 |   Function *Func = (*Blocks.begin())->getParent(); | 
 |   for (BasicBlock &BB : *Func) { | 
 |     if (Blocks.count(&BB)) | 
 |       continue; | 
 |     if (CEAC.doesBlockContainClobberOfAddr(BB, AI)) | 
 |       return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | BasicBlock * | 
 | CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) { | 
 |   BasicBlock *SinglePredFromOutlineRegion = nullptr; | 
 |   assert(!Blocks.count(CommonExitBlock) && | 
 |          "Expect a block outside the region!"); | 
 |   for (auto *Pred : predecessors(CommonExitBlock)) { | 
 |     if (!Blocks.count(Pred)) | 
 |       continue; | 
 |     if (!SinglePredFromOutlineRegion) { | 
 |       SinglePredFromOutlineRegion = Pred; | 
 |     } else if (SinglePredFromOutlineRegion != Pred) { | 
 |       SinglePredFromOutlineRegion = nullptr; | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   if (SinglePredFromOutlineRegion) | 
 |     return SinglePredFromOutlineRegion; | 
 |  | 
 | #ifndef NDEBUG | 
 |   auto getFirstPHI = [](BasicBlock *BB) { | 
 |     BasicBlock::iterator I = BB->begin(); | 
 |     PHINode *FirstPhi = nullptr; | 
 |     while (I != BB->end()) { | 
 |       PHINode *Phi = dyn_cast<PHINode>(I); | 
 |       if (!Phi) | 
 |         break; | 
 |       if (!FirstPhi) { | 
 |         FirstPhi = Phi; | 
 |         break; | 
 |       } | 
 |     } | 
 |     return FirstPhi; | 
 |   }; | 
 |   // If there are any phi nodes, the single pred either exists or has already | 
 |   // be created before code extraction. | 
 |   assert(!getFirstPHI(CommonExitBlock) && "Phi not expected"); | 
 | #endif | 
 |  | 
 |   BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock( | 
 |       CommonExitBlock->getFirstNonPHI()->getIterator()); | 
 |  | 
 |   for (BasicBlock *Pred : | 
 |        llvm::make_early_inc_range(predecessors(CommonExitBlock))) { | 
 |     if (Blocks.count(Pred)) | 
 |       continue; | 
 |     Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock); | 
 |   } | 
 |   // Now add the old exit block to the outline region. | 
 |   Blocks.insert(CommonExitBlock); | 
 |   OldTargets.push_back(NewExitBlock); | 
 |   return CommonExitBlock; | 
 | } | 
 |  | 
 | // Find the pair of life time markers for address 'Addr' that are either | 
 | // defined inside the outline region or can legally be shrinkwrapped into the | 
 | // outline region. If there are not other untracked uses of the address, return | 
 | // the pair of markers if found; otherwise return a pair of nullptr. | 
 | CodeExtractor::LifetimeMarkerInfo | 
 | CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC, | 
 |                                   Instruction *Addr, | 
 |                                   BasicBlock *ExitBlock) const { | 
 |   LifetimeMarkerInfo Info; | 
 |  | 
 |   for (User *U : Addr->users()) { | 
 |     IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U); | 
 |     if (IntrInst) { | 
 |       // We don't model addresses with multiple start/end markers, but the | 
 |       // markers do not need to be in the region. | 
 |       if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) { | 
 |         if (Info.LifeStart) | 
 |           return {}; | 
 |         Info.LifeStart = IntrInst; | 
 |         continue; | 
 |       } | 
 |       if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) { | 
 |         if (Info.LifeEnd) | 
 |           return {}; | 
 |         Info.LifeEnd = IntrInst; | 
 |         continue; | 
 |       } | 
 |       // At this point, permit debug uses outside of the region. | 
 |       // This is fixed in a later call to fixupDebugInfoPostExtraction(). | 
 |       if (isa<DbgInfoIntrinsic>(IntrInst)) | 
 |         continue; | 
 |     } | 
 |     // Find untracked uses of the address, bail. | 
 |     if (!definedInRegion(Blocks, U)) | 
 |       return {}; | 
 |   } | 
 |  | 
 |   if (!Info.LifeStart || !Info.LifeEnd) | 
 |     return {}; | 
 |  | 
 |   Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart); | 
 |   Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd); | 
 |   // Do legality check. | 
 |   if ((Info.SinkLifeStart || Info.HoistLifeEnd) && | 
 |       !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr)) | 
 |     return {}; | 
 |  | 
 |   // Check to see if we have a place to do hoisting, if not, bail. | 
 |   if (Info.HoistLifeEnd && !ExitBlock) | 
 |     return {}; | 
 |  | 
 |   return Info; | 
 | } | 
 |  | 
 | void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC, | 
 |                                 ValueSet &SinkCands, ValueSet &HoistCands, | 
 |                                 BasicBlock *&ExitBlock) const { | 
 |   Function *Func = (*Blocks.begin())->getParent(); | 
 |   ExitBlock = getCommonExitBlock(Blocks); | 
 |  | 
 |   auto moveOrIgnoreLifetimeMarkers = | 
 |       [&](const LifetimeMarkerInfo &LMI) -> bool { | 
 |     if (!LMI.LifeStart) | 
 |       return false; | 
 |     if (LMI.SinkLifeStart) { | 
 |       LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart | 
 |                         << "\n"); | 
 |       SinkCands.insert(LMI.LifeStart); | 
 |     } | 
 |     if (LMI.HoistLifeEnd) { | 
 |       LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n"); | 
 |       HoistCands.insert(LMI.LifeEnd); | 
 |     } | 
 |     return true; | 
 |   }; | 
 |  | 
 |   // Look up allocas in the original function in CodeExtractorAnalysisCache, as | 
 |   // this is much faster than walking all the instructions. | 
 |   for (AllocaInst *AI : CEAC.getAllocas()) { | 
 |     BasicBlock *BB = AI->getParent(); | 
 |     if (Blocks.count(BB)) | 
 |       continue; | 
 |  | 
 |     // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca, | 
 |     // check whether it is actually still in the original function. | 
 |     Function *AIFunc = BB->getParent(); | 
 |     if (AIFunc != Func) | 
 |       continue; | 
 |  | 
 |     LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock); | 
 |     bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo); | 
 |     if (Moved) { | 
 |       LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n"); | 
 |       SinkCands.insert(AI); | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Find bitcasts in the outlined region that have lifetime marker users | 
 |     // outside that region. Replace the lifetime marker use with an | 
 |     // outside region bitcast to avoid unnecessary alloca/reload instructions | 
 |     // and extra lifetime markers. | 
 |     SmallVector<Instruction *, 2> LifetimeBitcastUsers; | 
 |     for (User *U : AI->users()) { | 
 |       if (!definedInRegion(Blocks, U)) | 
 |         continue; | 
 |  | 
 |       if (U->stripInBoundsConstantOffsets() != AI) | 
 |         continue; | 
 |  | 
 |       Instruction *Bitcast = cast<Instruction>(U); | 
 |       for (User *BU : Bitcast->users()) { | 
 |         IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(BU); | 
 |         if (!IntrInst) | 
 |           continue; | 
 |  | 
 |         if (!IntrInst->isLifetimeStartOrEnd()) | 
 |           continue; | 
 |  | 
 |         if (definedInRegion(Blocks, IntrInst)) | 
 |           continue; | 
 |  | 
 |         LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast" | 
 |                           << *Bitcast << " in out-of-region lifetime marker " | 
 |                           << *IntrInst << "\n"); | 
 |         LifetimeBitcastUsers.push_back(IntrInst); | 
 |       } | 
 |     } | 
 |  | 
 |     for (Instruction *I : LifetimeBitcastUsers) { | 
 |       Module *M = AIFunc->getParent(); | 
 |       LLVMContext &Ctx = M->getContext(); | 
 |       auto *Int8PtrTy = Type::getInt8PtrTy(Ctx); | 
 |       CastInst *CastI = | 
 |           CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I); | 
 |       I->replaceUsesOfWith(I->getOperand(1), CastI); | 
 |     } | 
 |  | 
 |     // Follow any bitcasts. | 
 |     SmallVector<Instruction *, 2> Bitcasts; | 
 |     SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo; | 
 |     for (User *U : AI->users()) { | 
 |       if (U->stripInBoundsConstantOffsets() == AI) { | 
 |         Instruction *Bitcast = cast<Instruction>(U); | 
 |         LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock); | 
 |         if (LMI.LifeStart) { | 
 |           Bitcasts.push_back(Bitcast); | 
 |           BitcastLifetimeInfo.push_back(LMI); | 
 |           continue; | 
 |         } | 
 |       } | 
 |  | 
 |       // Found unknown use of AI. | 
 |       if (!definedInRegion(Blocks, U)) { | 
 |         Bitcasts.clear(); | 
 |         break; | 
 |       } | 
 |     } | 
 |  | 
 |     // Either no bitcasts reference the alloca or there are unknown uses. | 
 |     if (Bitcasts.empty()) | 
 |       continue; | 
 |  | 
 |     LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n"); | 
 |     SinkCands.insert(AI); | 
 |     for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) { | 
 |       Instruction *BitcastAddr = Bitcasts[I]; | 
 |       const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I]; | 
 |       assert(LMI.LifeStart && | 
 |              "Unsafe to sink bitcast without lifetime markers"); | 
 |       moveOrIgnoreLifetimeMarkers(LMI); | 
 |       if (!definedInRegion(Blocks, BitcastAddr)) { | 
 |         LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr | 
 |                           << "\n"); | 
 |         SinkCands.insert(BitcastAddr); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | bool CodeExtractor::isEligible() const { | 
 |   if (Blocks.empty()) | 
 |     return false; | 
 |   BasicBlock *Header = *Blocks.begin(); | 
 |   Function *F = Header->getParent(); | 
 |  | 
 |   // For functions with varargs, check that varargs handling is only done in the | 
 |   // outlined function, i.e vastart and vaend are only used in outlined blocks. | 
 |   if (AllowVarArgs && F->getFunctionType()->isVarArg()) { | 
 |     auto containsVarArgIntrinsic = [](const Instruction &I) { | 
 |       if (const CallInst *CI = dyn_cast<CallInst>(&I)) | 
 |         if (const Function *Callee = CI->getCalledFunction()) | 
 |           return Callee->getIntrinsicID() == Intrinsic::vastart || | 
 |                  Callee->getIntrinsicID() == Intrinsic::vaend; | 
 |       return false; | 
 |     }; | 
 |  | 
 |     for (auto &BB : *F) { | 
 |       if (Blocks.count(&BB)) | 
 |         continue; | 
 |       if (llvm::any_of(BB, containsVarArgIntrinsic)) | 
 |         return false; | 
 |     } | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs, | 
 |                                       const ValueSet &SinkCands) const { | 
 |   for (BasicBlock *BB : Blocks) { | 
 |     // If a used value is defined outside the region, it's an input.  If an | 
 |     // instruction is used outside the region, it's an output. | 
 |     for (Instruction &II : *BB) { | 
 |       for (auto &OI : II.operands()) { | 
 |         Value *V = OI; | 
 |         if (!SinkCands.count(V) && definedInCaller(Blocks, V)) | 
 |           Inputs.insert(V); | 
 |       } | 
 |  | 
 |       for (User *U : II.users()) | 
 |         if (!definedInRegion(Blocks, U)) { | 
 |           Outputs.insert(&II); | 
 |           break; | 
 |         } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside | 
 | /// of the region, we need to split the entry block of the region so that the | 
 | /// PHI node is easier to deal with. | 
 | void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) { | 
 |   unsigned NumPredsFromRegion = 0; | 
 |   unsigned NumPredsOutsideRegion = 0; | 
 |  | 
 |   if (Header != &Header->getParent()->getEntryBlock()) { | 
 |     PHINode *PN = dyn_cast<PHINode>(Header->begin()); | 
 |     if (!PN) return;  // No PHI nodes. | 
 |  | 
 |     // If the header node contains any PHI nodes, check to see if there is more | 
 |     // than one entry from outside the region.  If so, we need to sever the | 
 |     // header block into two. | 
 |     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) | 
 |       if (Blocks.count(PN->getIncomingBlock(i))) | 
 |         ++NumPredsFromRegion; | 
 |       else | 
 |         ++NumPredsOutsideRegion; | 
 |  | 
 |     // If there is one (or fewer) predecessor from outside the region, we don't | 
 |     // need to do anything special. | 
 |     if (NumPredsOutsideRegion <= 1) return; | 
 |   } | 
 |  | 
 |   // Otherwise, we need to split the header block into two pieces: one | 
 |   // containing PHI nodes merging values from outside of the region, and a | 
 |   // second that contains all of the code for the block and merges back any | 
 |   // incoming values from inside of the region. | 
 |   BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT); | 
 |  | 
 |   // We only want to code extract the second block now, and it becomes the new | 
 |   // header of the region. | 
 |   BasicBlock *OldPred = Header; | 
 |   Blocks.remove(OldPred); | 
 |   Blocks.insert(NewBB); | 
 |   Header = NewBB; | 
 |  | 
 |   // Okay, now we need to adjust the PHI nodes and any branches from within the | 
 |   // region to go to the new header block instead of the old header block. | 
 |   if (NumPredsFromRegion) { | 
 |     PHINode *PN = cast<PHINode>(OldPred->begin()); | 
 |     // Loop over all of the predecessors of OldPred that are in the region, | 
 |     // changing them to branch to NewBB instead. | 
 |     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) | 
 |       if (Blocks.count(PN->getIncomingBlock(i))) { | 
 |         Instruction *TI = PN->getIncomingBlock(i)->getTerminator(); | 
 |         TI->replaceUsesOfWith(OldPred, NewBB); | 
 |       } | 
 |  | 
 |     // Okay, everything within the region is now branching to the right block, we | 
 |     // just have to update the PHI nodes now, inserting PHI nodes into NewBB. | 
 |     BasicBlock::iterator AfterPHIs; | 
 |     for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { | 
 |       PHINode *PN = cast<PHINode>(AfterPHIs); | 
 |       // Create a new PHI node in the new region, which has an incoming value | 
 |       // from OldPred of PN. | 
 |       PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion, | 
 |                                        PN->getName() + ".ce", &NewBB->front()); | 
 |       PN->replaceAllUsesWith(NewPN); | 
 |       NewPN->addIncoming(PN, OldPred); | 
 |  | 
 |       // Loop over all of the incoming value in PN, moving them to NewPN if they | 
 |       // are from the extracted region. | 
 |       for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { | 
 |         if (Blocks.count(PN->getIncomingBlock(i))) { | 
 |           NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); | 
 |           PN->removeIncomingValue(i); | 
 |           --i; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from | 
 | /// outlined region, we split these PHIs on two: one with inputs from region | 
 | /// and other with remaining incoming blocks; then first PHIs are placed in | 
 | /// outlined region. | 
 | void CodeExtractor::severSplitPHINodesOfExits( | 
 |     const SmallPtrSetImpl<BasicBlock *> &Exits) { | 
 |   for (BasicBlock *ExitBB : Exits) { | 
 |     BasicBlock *NewBB = nullptr; | 
 |  | 
 |     for (PHINode &PN : ExitBB->phis()) { | 
 |       // Find all incoming values from the outlining region. | 
 |       SmallVector<unsigned, 2> IncomingVals; | 
 |       for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i) | 
 |         if (Blocks.count(PN.getIncomingBlock(i))) | 
 |           IncomingVals.push_back(i); | 
 |  | 
 |       // Do not process PHI if there is one (or fewer) predecessor from region. | 
 |       // If PHI has exactly one predecessor from region, only this one incoming | 
 |       // will be replaced on codeRepl block, so it should be safe to skip PHI. | 
 |       if (IncomingVals.size() <= 1) | 
 |         continue; | 
 |  | 
 |       // Create block for new PHIs and add it to the list of outlined if it | 
 |       // wasn't done before. | 
 |       if (!NewBB) { | 
 |         NewBB = BasicBlock::Create(ExitBB->getContext(), | 
 |                                    ExitBB->getName() + ".split", | 
 |                                    ExitBB->getParent(), ExitBB); | 
 |         SmallVector<BasicBlock *, 4> Preds(predecessors(ExitBB)); | 
 |         for (BasicBlock *PredBB : Preds) | 
 |           if (Blocks.count(PredBB)) | 
 |             PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB); | 
 |         BranchInst::Create(ExitBB, NewBB); | 
 |         Blocks.insert(NewBB); | 
 |       } | 
 |  | 
 |       // Split this PHI. | 
 |       PHINode *NewPN = | 
 |           PHINode::Create(PN.getType(), IncomingVals.size(), | 
 |                           PN.getName() + ".ce", NewBB->getFirstNonPHI()); | 
 |       for (unsigned i : IncomingVals) | 
 |         NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i)); | 
 |       for (unsigned i : reverse(IncomingVals)) | 
 |         PN.removeIncomingValue(i, false); | 
 |       PN.addIncoming(NewPN, NewBB); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void CodeExtractor::splitReturnBlocks() { | 
 |   for (BasicBlock *Block : Blocks) | 
 |     if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) { | 
 |       BasicBlock *New = | 
 |           Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret"); | 
 |       if (DT) { | 
 |         // Old dominates New. New node dominates all other nodes dominated | 
 |         // by Old. | 
 |         DomTreeNode *OldNode = DT->getNode(Block); | 
 |         SmallVector<DomTreeNode *, 8> Children(OldNode->begin(), | 
 |                                                OldNode->end()); | 
 |  | 
 |         DomTreeNode *NewNode = DT->addNewBlock(New, Block); | 
 |  | 
 |         for (DomTreeNode *I : Children) | 
 |           DT->changeImmediateDominator(I, NewNode); | 
 |       } | 
 |     } | 
 | } | 
 |  | 
 | /// constructFunction - make a function based on inputs and outputs, as follows: | 
 | /// f(in0, ..., inN, out0, ..., outN) | 
 | Function *CodeExtractor::constructFunction(const ValueSet &inputs, | 
 |                                            const ValueSet &outputs, | 
 |                                            BasicBlock *header, | 
 |                                            BasicBlock *newRootNode, | 
 |                                            BasicBlock *newHeader, | 
 |                                            Function *oldFunction, | 
 |                                            Module *M) { | 
 |   LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); | 
 |   LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); | 
 |  | 
 |   // This function returns unsigned, outputs will go back by reference. | 
 |   switch (NumExitBlocks) { | 
 |   case 0: | 
 |   case 1: RetTy = Type::getVoidTy(header->getContext()); break; | 
 |   case 2: RetTy = Type::getInt1Ty(header->getContext()); break; | 
 |   default: RetTy = Type::getInt16Ty(header->getContext()); break; | 
 |   } | 
 |  | 
 |   std::vector<Type *> ParamTy; | 
 |   std::vector<Type *> AggParamTy; | 
 |   ValueSet StructValues; | 
 |  | 
 |   // Add the types of the input values to the function's argument list | 
 |   for (Value *value : inputs) { | 
 |     LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n"); | 
 |     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(value)) { | 
 |       AggParamTy.push_back(value->getType()); | 
 |       StructValues.insert(value); | 
 |     } else | 
 |       ParamTy.push_back(value->getType()); | 
 |   } | 
 |  | 
 |   // Add the types of the output values to the function's argument list. | 
 |   for (Value *output : outputs) { | 
 |     LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n"); | 
 |     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) { | 
 |       AggParamTy.push_back(output->getType()); | 
 |       StructValues.insert(output); | 
 |     } else | 
 |       ParamTy.push_back(PointerType::getUnqual(output->getType())); | 
 |   } | 
 |  | 
 |   assert( | 
 |       (ParamTy.size() + AggParamTy.size()) == | 
 |           (inputs.size() + outputs.size()) && | 
 |       "Number of scalar and aggregate params does not match inputs, outputs"); | 
 |   assert((StructValues.empty() || AggregateArgs) && | 
 |          "Expeced StructValues only with AggregateArgs set"); | 
 |  | 
 |   // Concatenate scalar and aggregate params in ParamTy. | 
 |   size_t NumScalarParams = ParamTy.size(); | 
 |   StructType *StructTy = nullptr; | 
 |   if (AggregateArgs && !AggParamTy.empty()) { | 
 |     StructTy = StructType::get(M->getContext(), AggParamTy); | 
 |     ParamTy.push_back(PointerType::getUnqual(StructTy)); | 
 |   } | 
 |  | 
 |   LLVM_DEBUG({ | 
 |     dbgs() << "Function type: " << *RetTy << " f("; | 
 |     for (Type *i : ParamTy) | 
 |       dbgs() << *i << ", "; | 
 |     dbgs() << ")\n"; | 
 |   }); | 
 |  | 
 |   FunctionType *funcType = FunctionType::get( | 
 |       RetTy, ParamTy, AllowVarArgs && oldFunction->isVarArg()); | 
 |  | 
 |   std::string SuffixToUse = | 
 |       Suffix.empty() | 
 |           ? (header->getName().empty() ? "extracted" : header->getName().str()) | 
 |           : Suffix; | 
 |   // Create the new function | 
 |   Function *newFunction = Function::Create( | 
 |       funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(), | 
 |       oldFunction->getName() + "." + SuffixToUse, M); | 
 |  | 
 |   // Inherit all of the target dependent attributes and white-listed | 
 |   // target independent attributes. | 
 |   //  (e.g. If the extracted region contains a call to an x86.sse | 
 |   //  instruction we need to make sure that the extracted region has the | 
 |   //  "target-features" attribute allowing it to be lowered. | 
 |   // FIXME: This should be changed to check to see if a specific | 
 |   //           attribute can not be inherited. | 
 |   for (const auto &Attr : oldFunction->getAttributes().getFnAttrs()) { | 
 |     if (Attr.isStringAttribute()) { | 
 |       if (Attr.getKindAsString() == "thunk") | 
 |         continue; | 
 |     } else | 
 |       switch (Attr.getKindAsEnum()) { | 
 |       // Those attributes cannot be propagated safely. Explicitly list them | 
 |       // here so we get a warning if new attributes are added. | 
 |       case Attribute::AllocSize: | 
 |       case Attribute::ArgMemOnly: | 
 |       case Attribute::Builtin: | 
 |       case Attribute::Convergent: | 
 |       case Attribute::InaccessibleMemOnly: | 
 |       case Attribute::InaccessibleMemOrArgMemOnly: | 
 |       case Attribute::JumpTable: | 
 |       case Attribute::Naked: | 
 |       case Attribute::NoBuiltin: | 
 |       case Attribute::NoMerge: | 
 |       case Attribute::NoReturn: | 
 |       case Attribute::NoSync: | 
 |       case Attribute::ReadNone: | 
 |       case Attribute::ReadOnly: | 
 |       case Attribute::ReturnsTwice: | 
 |       case Attribute::Speculatable: | 
 |       case Attribute::StackAlignment: | 
 |       case Attribute::WillReturn: | 
 |       case Attribute::WriteOnly: | 
 |       case Attribute::AllocKind: | 
 |       case Attribute::PresplitCoroutine: | 
 |         continue; | 
 |       // Those attributes should be safe to propagate to the extracted function. | 
 |       case Attribute::AlwaysInline: | 
 |       case Attribute::Cold: | 
 |       case Attribute::DisableSanitizerInstrumentation: | 
 |       case Attribute::FnRetThunkExtern: | 
 |       case Attribute::Hot: | 
 |       case Attribute::NoRecurse: | 
 |       case Attribute::InlineHint: | 
 |       case Attribute::MinSize: | 
 |       case Attribute::NoCallback: | 
 |       case Attribute::NoDuplicate: | 
 |       case Attribute::NoFree: | 
 |       case Attribute::NoImplicitFloat: | 
 |       case Attribute::NoInline: | 
 |       case Attribute::NonLazyBind: | 
 |       case Attribute::NoRedZone: | 
 |       case Attribute::NoUnwind: | 
 |       case Attribute::NoSanitizeBounds: | 
 |       case Attribute::NoSanitizeCoverage: | 
 |       case Attribute::NullPointerIsValid: | 
 |       case Attribute::OptForFuzzing: | 
 |       case Attribute::OptimizeNone: | 
 |       case Attribute::OptimizeForSize: | 
 |       case Attribute::SafeStack: | 
 |       case Attribute::ShadowCallStack: | 
 |       case Attribute::SanitizeAddress: | 
 |       case Attribute::SanitizeMemory: | 
 |       case Attribute::SanitizeThread: | 
 |       case Attribute::SanitizeHWAddress: | 
 |       case Attribute::SanitizeMemTag: | 
 |       case Attribute::SpeculativeLoadHardening: | 
 |       case Attribute::StackProtect: | 
 |       case Attribute::StackProtectReq: | 
 |       case Attribute::StackProtectStrong: | 
 |       case Attribute::StrictFP: | 
 |       case Attribute::UWTable: | 
 |       case Attribute::VScaleRange: | 
 |       case Attribute::NoCfCheck: | 
 |       case Attribute::MustProgress: | 
 |       case Attribute::NoProfile: | 
 |         break; | 
 |       // These attributes cannot be applied to functions. | 
 |       case Attribute::Alignment: | 
 |       case Attribute::AllocatedPointer: | 
 |       case Attribute::AllocAlign: | 
 |       case Attribute::ByVal: | 
 |       case Attribute::Dereferenceable: | 
 |       case Attribute::DereferenceableOrNull: | 
 |       case Attribute::ElementType: | 
 |       case Attribute::InAlloca: | 
 |       case Attribute::InReg: | 
 |       case Attribute::Nest: | 
 |       case Attribute::NoAlias: | 
 |       case Attribute::NoCapture: | 
 |       case Attribute::NoUndef: | 
 |       case Attribute::NonNull: | 
 |       case Attribute::Preallocated: | 
 |       case Attribute::Returned: | 
 |       case Attribute::SExt: | 
 |       case Attribute::StructRet: | 
 |       case Attribute::SwiftError: | 
 |       case Attribute::SwiftSelf: | 
 |       case Attribute::SwiftAsync: | 
 |       case Attribute::ZExt: | 
 |       case Attribute::ImmArg: | 
 |       case Attribute::ByRef: | 
 |       //  These are not really attributes. | 
 |       case Attribute::None: | 
 |       case Attribute::EndAttrKinds: | 
 |       case Attribute::EmptyKey: | 
 |       case Attribute::TombstoneKey: | 
 |         llvm_unreachable("Not a function attribute"); | 
 |       } | 
 |  | 
 |     newFunction->addFnAttr(Attr); | 
 |   } | 
 |   newFunction->getBasicBlockList().push_back(newRootNode); | 
 |  | 
 |   // Create scalar and aggregate iterators to name all of the arguments we | 
 |   // inserted. | 
 |   Function::arg_iterator ScalarAI = newFunction->arg_begin(); | 
 |   Function::arg_iterator AggAI = std::next(ScalarAI, NumScalarParams); | 
 |  | 
 |   // Rewrite all users of the inputs in the extracted region to use the | 
 |   // arguments (or appropriate addressing into struct) instead. | 
 |   for (unsigned i = 0, e = inputs.size(), aggIdx = 0; i != e; ++i) { | 
 |     Value *RewriteVal; | 
 |     if (AggregateArgs && StructValues.contains(inputs[i])) { | 
 |       Value *Idx[2]; | 
 |       Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); | 
 |       Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), aggIdx); | 
 |       Instruction *TI = newFunction->begin()->getTerminator(); | 
 |       GetElementPtrInst *GEP = GetElementPtrInst::Create( | 
 |           StructTy, &*AggAI, Idx, "gep_" + inputs[i]->getName(), TI); | 
 |       RewriteVal = new LoadInst(StructTy->getElementType(aggIdx), GEP, | 
 |                                 "loadgep_" + inputs[i]->getName(), TI); | 
 |       ++aggIdx; | 
 |     } else | 
 |       RewriteVal = &*ScalarAI++; | 
 |  | 
 |     std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end()); | 
 |     for (User *use : Users) | 
 |       if (Instruction *inst = dyn_cast<Instruction>(use)) | 
 |         if (Blocks.count(inst->getParent())) | 
 |           inst->replaceUsesOfWith(inputs[i], RewriteVal); | 
 |   } | 
 |  | 
 |   // Set names for input and output arguments. | 
 |   if (NumScalarParams) { | 
 |     ScalarAI = newFunction->arg_begin(); | 
 |     for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++ScalarAI) | 
 |       if (!StructValues.contains(inputs[i])) | 
 |         ScalarAI->setName(inputs[i]->getName()); | 
 |     for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++ScalarAI) | 
 |       if (!StructValues.contains(outputs[i])) | 
 |         ScalarAI->setName(outputs[i]->getName() + ".out"); | 
 |   } | 
 |  | 
 |   // Rewrite branches to basic blocks outside of the loop to new dummy blocks | 
 |   // within the new function. This must be done before we lose track of which | 
 |   // blocks were originally in the code region. | 
 |   std::vector<User *> Users(header->user_begin(), header->user_end()); | 
 |   for (auto &U : Users) | 
 |     // The BasicBlock which contains the branch is not in the region | 
 |     // modify the branch target to a new block | 
 |     if (Instruction *I = dyn_cast<Instruction>(U)) | 
 |       if (I->isTerminator() && I->getFunction() == oldFunction && | 
 |           !Blocks.count(I->getParent())) | 
 |         I->replaceUsesOfWith(header, newHeader); | 
 |  | 
 |   return newFunction; | 
 | } | 
 |  | 
 | /// Erase lifetime.start markers which reference inputs to the extraction | 
 | /// region, and insert the referenced memory into \p LifetimesStart. | 
 | /// | 
 | /// The extraction region is defined by a set of blocks (\p Blocks), and a set | 
 | /// of allocas which will be moved from the caller function into the extracted | 
 | /// function (\p SunkAllocas). | 
 | static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks, | 
 |                                          const SetVector<Value *> &SunkAllocas, | 
 |                                          SetVector<Value *> &LifetimesStart) { | 
 |   for (BasicBlock *BB : Blocks) { | 
 |     for (Instruction &I : llvm::make_early_inc_range(*BB)) { | 
 |       auto *II = dyn_cast<IntrinsicInst>(&I); | 
 |       if (!II || !II->isLifetimeStartOrEnd()) | 
 |         continue; | 
 |  | 
 |       // Get the memory operand of the lifetime marker. If the underlying | 
 |       // object is a sunk alloca, or is otherwise defined in the extraction | 
 |       // region, the lifetime marker must not be erased. | 
 |       Value *Mem = II->getOperand(1)->stripInBoundsOffsets(); | 
 |       if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem)) | 
 |         continue; | 
 |  | 
 |       if (II->getIntrinsicID() == Intrinsic::lifetime_start) | 
 |         LifetimesStart.insert(Mem); | 
 |       II->eraseFromParent(); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// Insert lifetime start/end markers surrounding the call to the new function | 
 | /// for objects defined in the caller. | 
 | static void insertLifetimeMarkersSurroundingCall( | 
 |     Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd, | 
 |     CallInst *TheCall) { | 
 |   LLVMContext &Ctx = M->getContext(); | 
 |   auto Int8PtrTy = Type::getInt8PtrTy(Ctx); | 
 |   auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1); | 
 |   Instruction *Term = TheCall->getParent()->getTerminator(); | 
 |  | 
 |   // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts | 
 |   // needed to satisfy this requirement so they may be reused. | 
 |   DenseMap<Value *, Value *> Bitcasts; | 
 |  | 
 |   // Emit lifetime markers for the pointers given in \p Objects. Insert the | 
 |   // markers before the call if \p InsertBefore, and after the call otherwise. | 
 |   auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects, | 
 |                            bool InsertBefore) { | 
 |     for (Value *Mem : Objects) { | 
 |       assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() == | 
 |                                             TheCall->getFunction()) && | 
 |              "Input memory not defined in original function"); | 
 |       Value *&MemAsI8Ptr = Bitcasts[Mem]; | 
 |       if (!MemAsI8Ptr) { | 
 |         if (Mem->getType() == Int8PtrTy) | 
 |           MemAsI8Ptr = Mem; | 
 |         else | 
 |           MemAsI8Ptr = | 
 |               CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall); | 
 |       } | 
 |  | 
 |       auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr}); | 
 |       if (InsertBefore) | 
 |         Marker->insertBefore(TheCall); | 
 |       else | 
 |         Marker->insertBefore(Term); | 
 |     } | 
 |   }; | 
 |  | 
 |   if (!LifetimesStart.empty()) { | 
 |     auto StartFn = llvm::Intrinsic::getDeclaration( | 
 |         M, llvm::Intrinsic::lifetime_start, Int8PtrTy); | 
 |     insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true); | 
 |   } | 
 |  | 
 |   if (!LifetimesEnd.empty()) { | 
 |     auto EndFn = llvm::Intrinsic::getDeclaration( | 
 |         M, llvm::Intrinsic::lifetime_end, Int8PtrTy); | 
 |     insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false); | 
 |   } | 
 | } | 
 |  | 
 | /// emitCallAndSwitchStatement - This method sets up the caller side by adding | 
 | /// the call instruction, splitting any PHI nodes in the header block as | 
 | /// necessary. | 
 | CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction, | 
 |                                                     BasicBlock *codeReplacer, | 
 |                                                     ValueSet &inputs, | 
 |                                                     ValueSet &outputs) { | 
 |   // Emit a call to the new function, passing in: *pointer to struct (if | 
 |   // aggregating parameters), or plan inputs and allocated memory for outputs | 
 |   std::vector<Value *> params, ReloadOutputs, Reloads; | 
 |   ValueSet StructValues; | 
 |  | 
 |   Module *M = newFunction->getParent(); | 
 |   LLVMContext &Context = M->getContext(); | 
 |   const DataLayout &DL = M->getDataLayout(); | 
 |   CallInst *call = nullptr; | 
 |  | 
 |   // Add inputs as params, or to be filled into the struct | 
 |   unsigned ScalarInputArgNo = 0; | 
 |   SmallVector<unsigned, 1> SwiftErrorArgs; | 
 |   for (Value *input : inputs) { | 
 |     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(input)) | 
 |       StructValues.insert(input); | 
 |     else { | 
 |       params.push_back(input); | 
 |       if (input->isSwiftError()) | 
 |         SwiftErrorArgs.push_back(ScalarInputArgNo); | 
 |     } | 
 |     ++ScalarInputArgNo; | 
 |   } | 
 |  | 
 |   // Create allocas for the outputs | 
 |   unsigned ScalarOutputArgNo = 0; | 
 |   for (Value *output : outputs) { | 
 |     if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) { | 
 |       StructValues.insert(output); | 
 |     } else { | 
 |       AllocaInst *alloca = | 
 |         new AllocaInst(output->getType(), DL.getAllocaAddrSpace(), | 
 |                        nullptr, output->getName() + ".loc", | 
 |                        &codeReplacer->getParent()->front().front()); | 
 |       ReloadOutputs.push_back(alloca); | 
 |       params.push_back(alloca); | 
 |       ++ScalarOutputArgNo; | 
 |     } | 
 |   } | 
 |  | 
 |   StructType *StructArgTy = nullptr; | 
 |   AllocaInst *Struct = nullptr; | 
 |   unsigned NumAggregatedInputs = 0; | 
 |   if (AggregateArgs && !StructValues.empty()) { | 
 |     std::vector<Type *> ArgTypes; | 
 |     for (Value *V : StructValues) | 
 |       ArgTypes.push_back(V->getType()); | 
 |  | 
 |     // Allocate a struct at the beginning of this function | 
 |     StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); | 
 |     Struct = new AllocaInst( | 
 |         StructArgTy, DL.getAllocaAddrSpace(), nullptr, "structArg", | 
 |         AllocationBlock ? &*AllocationBlock->getFirstInsertionPt() | 
 |                         : &codeReplacer->getParent()->front().front()); | 
 |     params.push_back(Struct); | 
 |  | 
 |     // Store aggregated inputs in the struct. | 
 |     for (unsigned i = 0, e = StructValues.size(); i != e; ++i) { | 
 |       if (inputs.contains(StructValues[i])) { | 
 |         Value *Idx[2]; | 
 |         Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); | 
 |         Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); | 
 |         GetElementPtrInst *GEP = GetElementPtrInst::Create( | 
 |             StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName()); | 
 |         codeReplacer->getInstList().push_back(GEP); | 
 |         new StoreInst(StructValues[i], GEP, codeReplacer); | 
 |         NumAggregatedInputs++; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Emit the call to the function | 
 |   call = CallInst::Create(newFunction, params, | 
 |                           NumExitBlocks > 1 ? "targetBlock" : ""); | 
 |   // Add debug location to the new call, if the original function has debug | 
 |   // info. In that case, the terminator of the entry block of the extracted | 
 |   // function contains the first debug location of the extracted function, | 
 |   // set in extractCodeRegion. | 
 |   if (codeReplacer->getParent()->getSubprogram()) { | 
 |     if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc()) | 
 |       call->setDebugLoc(DL); | 
 |   } | 
 |   codeReplacer->getInstList().push_back(call); | 
 |  | 
 |   // Set swifterror parameter attributes. | 
 |   for (unsigned SwiftErrArgNo : SwiftErrorArgs) { | 
 |     call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); | 
 |     newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError); | 
 |   } | 
 |  | 
 |   // Reload the outputs passed in by reference, use the struct if output is in | 
 |   // the aggregate or reload from the scalar argument. | 
 |   for (unsigned i = 0, e = outputs.size(), scalarIdx = 0, | 
 |                 aggIdx = NumAggregatedInputs; | 
 |        i != e; ++i) { | 
 |     Value *Output = nullptr; | 
 |     if (AggregateArgs && StructValues.contains(outputs[i])) { | 
 |       Value *Idx[2]; | 
 |       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); | 
 |       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx); | 
 |       GetElementPtrInst *GEP = GetElementPtrInst::Create( | 
 |           StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName()); | 
 |       codeReplacer->getInstList().push_back(GEP); | 
 |       Output = GEP; | 
 |       ++aggIdx; | 
 |     } else { | 
 |       Output = ReloadOutputs[scalarIdx]; | 
 |       ++scalarIdx; | 
 |     } | 
 |     LoadInst *load = new LoadInst(outputs[i]->getType(), Output, | 
 |                                   outputs[i]->getName() + ".reload", | 
 |                                   codeReplacer); | 
 |     Reloads.push_back(load); | 
 |     std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end()); | 
 |     for (unsigned u = 0, e = Users.size(); u != e; ++u) { | 
 |       Instruction *inst = cast<Instruction>(Users[u]); | 
 |       if (!Blocks.count(inst->getParent())) | 
 |         inst->replaceUsesOfWith(outputs[i], load); | 
 |     } | 
 |   } | 
 |  | 
 |   // Now we can emit a switch statement using the call as a value. | 
 |   SwitchInst *TheSwitch = | 
 |       SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), | 
 |                          codeReplacer, 0, codeReplacer); | 
 |  | 
 |   // Since there may be multiple exits from the original region, make the new | 
 |   // function return an unsigned, switch on that number.  This loop iterates | 
 |   // over all of the blocks in the extracted region, updating any terminator | 
 |   // instructions in the to-be-extracted region that branch to blocks that are | 
 |   // not in the region to be extracted. | 
 |   std::map<BasicBlock *, BasicBlock *> ExitBlockMap; | 
 |  | 
 |   // Iterate over the previously collected targets, and create new blocks inside | 
 |   // the function to branch to. | 
 |   unsigned switchVal = 0; | 
 |   for (BasicBlock *OldTarget : OldTargets) { | 
 |     if (Blocks.count(OldTarget)) | 
 |       continue; | 
 |     BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; | 
 |     if (NewTarget) | 
 |       continue; | 
 |  | 
 |     // If we don't already have an exit stub for this non-extracted | 
 |     // destination, create one now! | 
 |     NewTarget = BasicBlock::Create(Context, | 
 |                                     OldTarget->getName() + ".exitStub", | 
 |                                     newFunction); | 
 |     unsigned SuccNum = switchVal++; | 
 |  | 
 |     Value *brVal = nullptr; | 
 |     assert(NumExitBlocks < 0xffff && "too many exit blocks for switch"); | 
 |     switch (NumExitBlocks) { | 
 |     case 0: | 
 |     case 1: break;  // No value needed. | 
 |     case 2:         // Conditional branch, return a bool | 
 |       brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); | 
 |       break; | 
 |     default: | 
 |       brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); | 
 |       break; | 
 |     } | 
 |  | 
 |     ReturnInst::Create(Context, brVal, NewTarget); | 
 |  | 
 |     // Update the switch instruction. | 
 |     TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), | 
 |                                         SuccNum), | 
 |                         OldTarget); | 
 |   } | 
 |  | 
 |   for (BasicBlock *Block : Blocks) { | 
 |     Instruction *TI = Block->getTerminator(); | 
 |     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { | 
 |       if (Blocks.count(TI->getSuccessor(i))) | 
 |         continue; | 
 |       BasicBlock *OldTarget = TI->getSuccessor(i); | 
 |       // add a new basic block which returns the appropriate value | 
 |       BasicBlock *NewTarget = ExitBlockMap[OldTarget]; | 
 |       assert(NewTarget && "Unknown target block!"); | 
 |  | 
 |       // rewrite the original branch instruction with this new target | 
 |       TI->setSuccessor(i, NewTarget); | 
 |    } | 
 |   } | 
 |  | 
 |   // Store the arguments right after the definition of output value. | 
 |   // This should be proceeded after creating exit stubs to be ensure that invoke | 
 |   // result restore will be placed in the outlined function. | 
 |   Function::arg_iterator ScalarOutputArgBegin = newFunction->arg_begin(); | 
 |   std::advance(ScalarOutputArgBegin, ScalarInputArgNo); | 
 |   Function::arg_iterator AggOutputArgBegin = newFunction->arg_begin(); | 
 |   std::advance(AggOutputArgBegin, ScalarInputArgNo + ScalarOutputArgNo); | 
 |  | 
 |   for (unsigned i = 0, e = outputs.size(), aggIdx = NumAggregatedInputs; i != e; | 
 |        ++i) { | 
 |     auto *OutI = dyn_cast<Instruction>(outputs[i]); | 
 |     if (!OutI) | 
 |       continue; | 
 |  | 
 |     // Find proper insertion point. | 
 |     BasicBlock::iterator InsertPt; | 
 |     // In case OutI is an invoke, we insert the store at the beginning in the | 
 |     // 'normal destination' BB. Otherwise we insert the store right after OutI. | 
 |     if (auto *InvokeI = dyn_cast<InvokeInst>(OutI)) | 
 |       InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt(); | 
 |     else if (auto *Phi = dyn_cast<PHINode>(OutI)) | 
 |       InsertPt = Phi->getParent()->getFirstInsertionPt(); | 
 |     else | 
 |       InsertPt = std::next(OutI->getIterator()); | 
 |  | 
 |     Instruction *InsertBefore = &*InsertPt; | 
 |     assert((InsertBefore->getFunction() == newFunction || | 
 |             Blocks.count(InsertBefore->getParent())) && | 
 |            "InsertPt should be in new function"); | 
 |     if (AggregateArgs && StructValues.contains(outputs[i])) { | 
 |       assert(AggOutputArgBegin != newFunction->arg_end() && | 
 |              "Number of aggregate output arguments should match " | 
 |              "the number of defined values"); | 
 |       Value *Idx[2]; | 
 |       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); | 
 |       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx); | 
 |       GetElementPtrInst *GEP = GetElementPtrInst::Create( | 
 |           StructArgTy, &*AggOutputArgBegin, Idx, "gep_" + outputs[i]->getName(), | 
 |           InsertBefore); | 
 |       new StoreInst(outputs[i], GEP, InsertBefore); | 
 |       ++aggIdx; | 
 |       // Since there should be only one struct argument aggregating | 
 |       // all the output values, we shouldn't increment AggOutputArgBegin, which | 
 |       // always points to the struct argument, in this case. | 
 |     } else { | 
 |       assert(ScalarOutputArgBegin != newFunction->arg_end() && | 
 |              "Number of scalar output arguments should match " | 
 |              "the number of defined values"); | 
 |       new StoreInst(outputs[i], &*ScalarOutputArgBegin, InsertBefore); | 
 |       ++ScalarOutputArgBegin; | 
 |     } | 
 |   } | 
 |  | 
 |   // Now that we've done the deed, simplify the switch instruction. | 
 |   Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); | 
 |   switch (NumExitBlocks) { | 
 |   case 0: | 
 |     // There are no successors (the block containing the switch itself), which | 
 |     // means that previously this was the last part of the function, and hence | 
 |     // this should be rewritten as a `ret' | 
 |  | 
 |     // Check if the function should return a value | 
 |     if (OldFnRetTy->isVoidTy()) { | 
 |       ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void | 
 |     } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { | 
 |       // return what we have | 
 |       ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); | 
 |     } else { | 
 |       // Otherwise we must have code extracted an unwind or something, just | 
 |       // return whatever we want. | 
 |       ReturnInst::Create(Context, | 
 |                          Constant::getNullValue(OldFnRetTy), TheSwitch); | 
 |     } | 
 |  | 
 |     TheSwitch->eraseFromParent(); | 
 |     break; | 
 |   case 1: | 
 |     // Only a single destination, change the switch into an unconditional | 
 |     // branch. | 
 |     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); | 
 |     TheSwitch->eraseFromParent(); | 
 |     break; | 
 |   case 2: | 
 |     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), | 
 |                        call, TheSwitch); | 
 |     TheSwitch->eraseFromParent(); | 
 |     break; | 
 |   default: | 
 |     // Otherwise, make the default destination of the switch instruction be one | 
 |     // of the other successors. | 
 |     TheSwitch->setCondition(call); | 
 |     TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks)); | 
 |     // Remove redundant case | 
 |     TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1)); | 
 |     break; | 
 |   } | 
 |  | 
 |   // Insert lifetime markers around the reloads of any output values. The | 
 |   // allocas output values are stored in are only in-use in the codeRepl block. | 
 |   insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call); | 
 |  | 
 |   return call; | 
 | } | 
 |  | 
 | void CodeExtractor::moveCodeToFunction(Function *newFunction) { | 
 |   Function *oldFunc = (*Blocks.begin())->getParent(); | 
 |   Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); | 
 |   Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); | 
 |  | 
 |   auto newFuncIt = newFunction->front().getIterator(); | 
 |   for (BasicBlock *Block : Blocks) { | 
 |     // Delete the basic block from the old function, and the list of blocks | 
 |     oldBlocks.remove(Block); | 
 |  | 
 |     // Insert this basic block into the new function | 
 |     // Insert the original blocks after the entry block created | 
 |     // for the new function. The entry block may be followed | 
 |     // by a set of exit blocks at this point, but these exit | 
 |     // blocks better be placed at the end of the new function. | 
 |     newFuncIt = newBlocks.insertAfter(newFuncIt, Block); | 
 |   } | 
 | } | 
 |  | 
 | void CodeExtractor::calculateNewCallTerminatorWeights( | 
 |     BasicBlock *CodeReplacer, | 
 |     DenseMap<BasicBlock *, BlockFrequency> &ExitWeights, | 
 |     BranchProbabilityInfo *BPI) { | 
 |   using Distribution = BlockFrequencyInfoImplBase::Distribution; | 
 |   using BlockNode = BlockFrequencyInfoImplBase::BlockNode; | 
 |  | 
 |   // Update the branch weights for the exit block. | 
 |   Instruction *TI = CodeReplacer->getTerminator(); | 
 |   SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0); | 
 |  | 
 |   // Block Frequency distribution with dummy node. | 
 |   Distribution BranchDist; | 
 |  | 
 |   SmallVector<BranchProbability, 4> EdgeProbabilities( | 
 |       TI->getNumSuccessors(), BranchProbability::getUnknown()); | 
 |  | 
 |   // Add each of the frequencies of the successors. | 
 |   for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) { | 
 |     BlockNode ExitNode(i); | 
 |     uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency(); | 
 |     if (ExitFreq != 0) | 
 |       BranchDist.addExit(ExitNode, ExitFreq); | 
 |     else | 
 |       EdgeProbabilities[i] = BranchProbability::getZero(); | 
 |   } | 
 |  | 
 |   // Check for no total weight. | 
 |   if (BranchDist.Total == 0) { | 
 |     BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Normalize the distribution so that they can fit in unsigned. | 
 |   BranchDist.normalize(); | 
 |  | 
 |   // Create normalized branch weights and set the metadata. | 
 |   for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) { | 
 |     const auto &Weight = BranchDist.Weights[I]; | 
 |  | 
 |     // Get the weight and update the current BFI. | 
 |     BranchWeights[Weight.TargetNode.Index] = Weight.Amount; | 
 |     BranchProbability BP(Weight.Amount, BranchDist.Total); | 
 |     EdgeProbabilities[Weight.TargetNode.Index] = BP; | 
 |   } | 
 |   BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities); | 
 |   TI->setMetadata( | 
 |       LLVMContext::MD_prof, | 
 |       MDBuilder(TI->getContext()).createBranchWeights(BranchWeights)); | 
 | } | 
 |  | 
 | /// Erase debug info intrinsics which refer to values in \p F but aren't in | 
 | /// \p F. | 
 | static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) { | 
 |   for (Instruction &I : instructions(F)) { | 
 |     SmallVector<DbgVariableIntrinsic *, 4> DbgUsers; | 
 |     findDbgUsers(DbgUsers, &I); | 
 |     for (DbgVariableIntrinsic *DVI : DbgUsers) | 
 |       if (DVI->getFunction() != &F) | 
 |         DVI->eraseFromParent(); | 
 |   } | 
 | } | 
 |  | 
 | /// Fix up the debug info in the old and new functions by pointing line | 
 | /// locations and debug intrinsics to the new subprogram scope, and by deleting | 
 | /// intrinsics which point to values outside of the new function. | 
 | static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc, | 
 |                                          CallInst &TheCall) { | 
 |   DISubprogram *OldSP = OldFunc.getSubprogram(); | 
 |   LLVMContext &Ctx = OldFunc.getContext(); | 
 |  | 
 |   if (!OldSP) { | 
 |     // Erase any debug info the new function contains. | 
 |     stripDebugInfo(NewFunc); | 
 |     // Make sure the old function doesn't contain any non-local metadata refs. | 
 |     eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Create a subprogram for the new function. Leave out a description of the | 
 |   // function arguments, as the parameters don't correspond to anything at the | 
 |   // source level. | 
 |   assert(OldSP->getUnit() && "Missing compile unit for subprogram"); | 
 |   DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false, | 
 |                 OldSP->getUnit()); | 
 |   auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None)); | 
 |   DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition | | 
 |                                     DISubprogram::SPFlagOptimized | | 
 |                                     DISubprogram::SPFlagLocalToUnit; | 
 |   auto NewSP = DIB.createFunction( | 
 |       OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(), | 
 |       /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags); | 
 |   NewFunc.setSubprogram(NewSP); | 
 |  | 
 |   // Debug intrinsics in the new function need to be updated in one of two | 
 |   // ways: | 
 |   //  1) They need to be deleted, because they describe a value in the old | 
 |   //     function. | 
 |   //  2) They need to point to fresh metadata, e.g. because they currently | 
 |   //     point to a variable in the wrong scope. | 
 |   SmallDenseMap<DINode *, DINode *> RemappedMetadata; | 
 |   SmallVector<Instruction *, 4> DebugIntrinsicsToDelete; | 
 |   for (Instruction &I : instructions(NewFunc)) { | 
 |     auto *DII = dyn_cast<DbgInfoIntrinsic>(&I); | 
 |     if (!DII) | 
 |       continue; | 
 |  | 
 |     // Point the intrinsic to a fresh label within the new function. | 
 |     if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) { | 
 |       DILabel *OldLabel = DLI->getLabel(); | 
 |       DINode *&NewLabel = RemappedMetadata[OldLabel]; | 
 |       if (!NewLabel) | 
 |         NewLabel = DILabel::get(Ctx, NewSP, OldLabel->getName(), | 
 |                                 OldLabel->getFile(), OldLabel->getLine()); | 
 |       DLI->setArgOperand(0, MetadataAsValue::get(Ctx, NewLabel)); | 
 |       continue; | 
 |     } | 
 |  | 
 |     auto IsInvalidLocation = [&NewFunc](Value *Location) { | 
 |       // Location is invalid if it isn't a constant or an instruction, or is an | 
 |       // instruction but isn't in the new function. | 
 |       if (!Location || | 
 |           (!isa<Constant>(Location) && !isa<Instruction>(Location))) | 
 |         return true; | 
 |       Instruction *LocationInst = dyn_cast<Instruction>(Location); | 
 |       return LocationInst && LocationInst->getFunction() != &NewFunc; | 
 |     }; | 
 |  | 
 |     auto *DVI = cast<DbgVariableIntrinsic>(DII); | 
 |     // If any of the used locations are invalid, delete the intrinsic. | 
 |     if (any_of(DVI->location_ops(), IsInvalidLocation)) { | 
 |       DebugIntrinsicsToDelete.push_back(DVI); | 
 |       continue; | 
 |     } | 
 |  | 
 |     // Point the intrinsic to a fresh variable within the new function. | 
 |     DILocalVariable *OldVar = DVI->getVariable(); | 
 |     DINode *&NewVar = RemappedMetadata[OldVar]; | 
 |     if (!NewVar) | 
 |       NewVar = DIB.createAutoVariable( | 
 |           NewSP, OldVar->getName(), OldVar->getFile(), OldVar->getLine(), | 
 |           OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero, | 
 |           OldVar->getAlignInBits()); | 
 |     DVI->setVariable(cast<DILocalVariable>(NewVar)); | 
 |   } | 
 |   for (auto *DII : DebugIntrinsicsToDelete) | 
 |     DII->eraseFromParent(); | 
 |   DIB.finalizeSubprogram(NewSP); | 
 |  | 
 |   // Fix up the scope information attached to the line locations in the new | 
 |   // function. | 
 |   for (Instruction &I : instructions(NewFunc)) { | 
 |     if (const DebugLoc &DL = I.getDebugLoc()) | 
 |       I.setDebugLoc(DILocation::get(Ctx, DL.getLine(), DL.getCol(), NewSP)); | 
 |  | 
 |     // Loop info metadata may contain line locations. Fix them up. | 
 |     auto updateLoopInfoLoc = [&Ctx, NewSP](Metadata *MD) -> Metadata * { | 
 |       if (auto *Loc = dyn_cast_or_null<DILocation>(MD)) | 
 |         return DILocation::get(Ctx, Loc->getLine(), Loc->getColumn(), NewSP, | 
 |                                nullptr); | 
 |       return MD; | 
 |     }; | 
 |     updateLoopMetadataDebugLocations(I, updateLoopInfoLoc); | 
 |   } | 
 |   if (!TheCall.getDebugLoc()) | 
 |     TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP)); | 
 |  | 
 |   eraseDebugIntrinsicsWithNonLocalRefs(NewFunc); | 
 | } | 
 |  | 
 | Function * | 
 | CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) { | 
 |   ValueSet Inputs, Outputs; | 
 |   return extractCodeRegion(CEAC, Inputs, Outputs); | 
 | } | 
 |  | 
 | Function * | 
 | CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC, | 
 |                                  ValueSet &inputs, ValueSet &outputs) { | 
 |   if (!isEligible()) | 
 |     return nullptr; | 
 |  | 
 |   // Assumption: this is a single-entry code region, and the header is the first | 
 |   // block in the region. | 
 |   BasicBlock *header = *Blocks.begin(); | 
 |   Function *oldFunction = header->getParent(); | 
 |  | 
 |   // Calculate the entry frequency of the new function before we change the root | 
 |   //   block. | 
 |   BlockFrequency EntryFreq; | 
 |   if (BFI) { | 
 |     assert(BPI && "Both BPI and BFI are required to preserve profile info"); | 
 |     for (BasicBlock *Pred : predecessors(header)) { | 
 |       if (Blocks.count(Pred)) | 
 |         continue; | 
 |       EntryFreq += | 
 |           BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header); | 
 |     } | 
 |   } | 
 |  | 
 |   // Remove @llvm.assume calls that will be moved to the new function from the | 
 |   // old function's assumption cache. | 
 |   for (BasicBlock *Block : Blocks) { | 
 |     for (Instruction &I : llvm::make_early_inc_range(*Block)) { | 
 |       if (auto *AI = dyn_cast<AssumeInst>(&I)) { | 
 |         if (AC) | 
 |           AC->unregisterAssumption(AI); | 
 |         AI->eraseFromParent(); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // If we have any return instructions in the region, split those blocks so | 
 |   // that the return is not in the region. | 
 |   splitReturnBlocks(); | 
 |  | 
 |   // Calculate the exit blocks for the extracted region and the total exit | 
 |   // weights for each of those blocks. | 
 |   DenseMap<BasicBlock *, BlockFrequency> ExitWeights; | 
 |   SmallPtrSet<BasicBlock *, 1> ExitBlocks; | 
 |   for (BasicBlock *Block : Blocks) { | 
 |     for (BasicBlock *Succ : successors(Block)) { | 
 |       if (!Blocks.count(Succ)) { | 
 |         // Update the branch weight for this successor. | 
 |         if (BFI) { | 
 |           BlockFrequency &BF = ExitWeights[Succ]; | 
 |           BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, Succ); | 
 |         } | 
 |         ExitBlocks.insert(Succ); | 
 |       } | 
 |     } | 
 |   } | 
 |   NumExitBlocks = ExitBlocks.size(); | 
 |  | 
 |   for (BasicBlock *Block : Blocks) { | 
 |     Instruction *TI = Block->getTerminator(); | 
 |     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { | 
 |       if (Blocks.count(TI->getSuccessor(i))) | 
 |         continue; | 
 |       BasicBlock *OldTarget = TI->getSuccessor(i); | 
 |       OldTargets.push_back(OldTarget); | 
 |     } | 
 |   } | 
 |  | 
 |   // If we have to split PHI nodes of the entry or exit blocks, do so now. | 
 |   severSplitPHINodesOfEntry(header); | 
 |   severSplitPHINodesOfExits(ExitBlocks); | 
 |  | 
 |   // This takes place of the original loop | 
 |   BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), | 
 |                                                 "codeRepl", oldFunction, | 
 |                                                 header); | 
 |  | 
 |   // The new function needs a root node because other nodes can branch to the | 
 |   // head of the region, but the entry node of a function cannot have preds. | 
 |   BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), | 
 |                                                "newFuncRoot"); | 
 |   auto *BranchI = BranchInst::Create(header); | 
 |   // If the original function has debug info, we have to add a debug location | 
 |   // to the new branch instruction from the artificial entry block. | 
 |   // We use the debug location of the first instruction in the extracted | 
 |   // blocks, as there is no other equivalent line in the source code. | 
 |   if (oldFunction->getSubprogram()) { | 
 |     any_of(Blocks, [&BranchI](const BasicBlock *BB) { | 
 |       return any_of(*BB, [&BranchI](const Instruction &I) { | 
 |         if (!I.getDebugLoc()) | 
 |           return false; | 
 |         BranchI->setDebugLoc(I.getDebugLoc()); | 
 |         return true; | 
 |       }); | 
 |     }); | 
 |   } | 
 |   newFuncRoot->getInstList().push_back(BranchI); | 
 |  | 
 |   ValueSet SinkingCands, HoistingCands; | 
 |   BasicBlock *CommonExit = nullptr; | 
 |   findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit); | 
 |   assert(HoistingCands.empty() || CommonExit); | 
 |  | 
 |   // Find inputs to, outputs from the code region. | 
 |   findInputsOutputs(inputs, outputs, SinkingCands); | 
 |  | 
 |   // Now sink all instructions which only have non-phi uses inside the region. | 
 |   // Group the allocas at the start of the block, so that any bitcast uses of | 
 |   // the allocas are well-defined. | 
 |   AllocaInst *FirstSunkAlloca = nullptr; | 
 |   for (auto *II : SinkingCands) { | 
 |     if (auto *AI = dyn_cast<AllocaInst>(II)) { | 
 |       AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt()); | 
 |       if (!FirstSunkAlloca) | 
 |         FirstSunkAlloca = AI; | 
 |     } | 
 |   } | 
 |   assert((SinkingCands.empty() || FirstSunkAlloca) && | 
 |          "Did not expect a sink candidate without any allocas"); | 
 |   for (auto *II : SinkingCands) { | 
 |     if (!isa<AllocaInst>(II)) { | 
 |       cast<Instruction>(II)->moveAfter(FirstSunkAlloca); | 
 |     } | 
 |   } | 
 |  | 
 |   if (!HoistingCands.empty()) { | 
 |     auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit); | 
 |     Instruction *TI = HoistToBlock->getTerminator(); | 
 |     for (auto *II : HoistingCands) | 
 |       cast<Instruction>(II)->moveBefore(TI); | 
 |   } | 
 |  | 
 |   // Collect objects which are inputs to the extraction region and also | 
 |   // referenced by lifetime start markers within it. The effects of these | 
 |   // markers must be replicated in the calling function to prevent the stack | 
 |   // coloring pass from merging slots which store input objects. | 
 |   ValueSet LifetimesStart; | 
 |   eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart); | 
 |  | 
 |   // Construct new function based on inputs/outputs & add allocas for all defs. | 
 |   Function *newFunction = | 
 |       constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer, | 
 |                         oldFunction, oldFunction->getParent()); | 
 |  | 
 |   // Update the entry count of the function. | 
 |   if (BFI) { | 
 |     auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency()); | 
 |     if (Count) | 
 |       newFunction->setEntryCount( | 
 |           ProfileCount(Count.value(), Function::PCT_Real)); // FIXME | 
 |     BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency()); | 
 |   } | 
 |  | 
 |   CallInst *TheCall = | 
 |       emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); | 
 |  | 
 |   moveCodeToFunction(newFunction); | 
 |  | 
 |   // Replicate the effects of any lifetime start/end markers which referenced | 
 |   // input objects in the extraction region by placing markers around the call. | 
 |   insertLifetimeMarkersSurroundingCall( | 
 |       oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall); | 
 |  | 
 |   // Propagate personality info to the new function if there is one. | 
 |   if (oldFunction->hasPersonalityFn()) | 
 |     newFunction->setPersonalityFn(oldFunction->getPersonalityFn()); | 
 |  | 
 |   // Update the branch weights for the exit block. | 
 |   if (BFI && NumExitBlocks > 1) | 
 |     calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI); | 
 |  | 
 |   // Loop over all of the PHI nodes in the header and exit blocks, and change | 
 |   // any references to the old incoming edge to be the new incoming edge. | 
 |   for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { | 
 |     PHINode *PN = cast<PHINode>(I); | 
 |     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) | 
 |       if (!Blocks.count(PN->getIncomingBlock(i))) | 
 |         PN->setIncomingBlock(i, newFuncRoot); | 
 |   } | 
 |  | 
 |   for (BasicBlock *ExitBB : ExitBlocks) | 
 |     for (PHINode &PN : ExitBB->phis()) { | 
 |       Value *IncomingCodeReplacerVal = nullptr; | 
 |       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { | 
 |         // Ignore incoming values from outside of the extracted region. | 
 |         if (!Blocks.count(PN.getIncomingBlock(i))) | 
 |           continue; | 
 |  | 
 |         // Ensure that there is only one incoming value from codeReplacer. | 
 |         if (!IncomingCodeReplacerVal) { | 
 |           PN.setIncomingBlock(i, codeReplacer); | 
 |           IncomingCodeReplacerVal = PN.getIncomingValue(i); | 
 |         } else | 
 |           assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) && | 
 |                  "PHI has two incompatbile incoming values from codeRepl"); | 
 |       } | 
 |     } | 
 |  | 
 |   fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall); | 
 |  | 
 |   // Mark the new function `noreturn` if applicable. Terminators which resume | 
 |   // exception propagation are treated as returning instructions. This is to | 
 |   // avoid inserting traps after calls to outlined functions which unwind. | 
 |   bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) { | 
 |     const Instruction *Term = BB.getTerminator(); | 
 |     return isa<ReturnInst>(Term) || isa<ResumeInst>(Term); | 
 |   }); | 
 |   if (doesNotReturn) | 
 |     newFunction->setDoesNotReturn(); | 
 |  | 
 |   LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) { | 
 |     newFunction->dump(); | 
 |     report_fatal_error("verification of newFunction failed!"); | 
 |   }); | 
 |   LLVM_DEBUG(if (verifyFunction(*oldFunction)) | 
 |              report_fatal_error("verification of oldFunction failed!")); | 
 |   LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC)) | 
 |                  report_fatal_error("Stale Asumption cache for old Function!")); | 
 |   return newFunction; | 
 | } | 
 |  | 
 | bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc, | 
 |                                           const Function &NewFunc, | 
 |                                           AssumptionCache *AC) { | 
 |   for (auto AssumeVH : AC->assumptions()) { | 
 |     auto *I = dyn_cast_or_null<CallInst>(AssumeVH); | 
 |     if (!I) | 
 |       continue; | 
 |  | 
 |     // There shouldn't be any llvm.assume intrinsics in the new function. | 
 |     if (I->getFunction() != &OldFunc) | 
 |       return true; | 
 |  | 
 |     // There shouldn't be any stale affected values in the assumption cache | 
 |     // that were previously in the old function, but that have now been moved | 
 |     // to the new function. | 
 |     for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) { | 
 |       auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH); | 
 |       if (!AffectedCI) | 
 |         continue; | 
 |       if (AffectedCI->getFunction() != &OldFunc) | 
 |         return true; | 
 |       auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0)); | 
 |       if (AssumedInst->getFunction() != &OldFunc) | 
 |         return true; | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | void CodeExtractor::excludeArgFromAggregate(Value *Arg) { | 
 |   ExcludeArgsFromAggregate.insert(Arg); | 
 | } |