|  | //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the visit functions for add, fadd, sub, and fsub. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "InstCombineInternal.h" | 
|  | #include "llvm/ADT/APFloat.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Support/AlignOf.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/KnownBits.h" | 
|  | #include "llvm/Transforms/InstCombine/InstCombiner.h" | 
|  | #include <cassert> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace PatternMatch; | 
|  |  | 
|  | #define DEBUG_TYPE "instcombine" | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Class representing coefficient of floating-point addend. | 
|  | /// This class needs to be highly efficient, which is especially true for | 
|  | /// the constructor. As of I write this comment, the cost of the default | 
|  | /// constructor is merely 4-byte-store-zero (Assuming compiler is able to | 
|  | /// perform write-merging). | 
|  | /// | 
|  | class FAddendCoef { | 
|  | public: | 
|  | // The constructor has to initialize a APFloat, which is unnecessary for | 
|  | // most addends which have coefficient either 1 or -1. So, the constructor | 
|  | // is expensive. In order to avoid the cost of the constructor, we should | 
|  | // reuse some instances whenever possible. The pre-created instances | 
|  | // FAddCombine::Add[0-5] embodies this idea. | 
|  | FAddendCoef() = default; | 
|  | ~FAddendCoef(); | 
|  |  | 
|  | // If possible, don't define operator+/operator- etc because these | 
|  | // operators inevitably call FAddendCoef's constructor which is not cheap. | 
|  | void operator=(const FAddendCoef &A); | 
|  | void operator+=(const FAddendCoef &A); | 
|  | void operator*=(const FAddendCoef &S); | 
|  |  | 
|  | void set(short C) { | 
|  | assert(!insaneIntVal(C) && "Insane coefficient"); | 
|  | IsFp = false; IntVal = C; | 
|  | } | 
|  |  | 
|  | void set(const APFloat& C); | 
|  |  | 
|  | void negate(); | 
|  |  | 
|  | bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); } | 
|  | Value *getValue(Type *) const; | 
|  |  | 
|  | bool isOne() const { return isInt() && IntVal == 1; } | 
|  | bool isTwo() const { return isInt() && IntVal == 2; } | 
|  | bool isMinusOne() const { return isInt() && IntVal == -1; } | 
|  | bool isMinusTwo() const { return isInt() && IntVal == -2; } | 
|  |  | 
|  | private: | 
|  | bool insaneIntVal(int V) { return V > 4 || V < -4; } | 
|  |  | 
|  | APFloat *getFpValPtr() { return reinterpret_cast<APFloat *>(&FpValBuf); } | 
|  |  | 
|  | const APFloat *getFpValPtr() const { | 
|  | return reinterpret_cast<const APFloat *>(&FpValBuf); | 
|  | } | 
|  |  | 
|  | const APFloat &getFpVal() const { | 
|  | assert(IsFp && BufHasFpVal && "Incorret state"); | 
|  | return *getFpValPtr(); | 
|  | } | 
|  |  | 
|  | APFloat &getFpVal() { | 
|  | assert(IsFp && BufHasFpVal && "Incorret state"); | 
|  | return *getFpValPtr(); | 
|  | } | 
|  |  | 
|  | bool isInt() const { return !IsFp; } | 
|  |  | 
|  | // If the coefficient is represented by an integer, promote it to a | 
|  | // floating point. | 
|  | void convertToFpType(const fltSemantics &Sem); | 
|  |  | 
|  | // Construct an APFloat from a signed integer. | 
|  | // TODO: We should get rid of this function when APFloat can be constructed | 
|  | //       from an *SIGNED* integer. | 
|  | APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val); | 
|  |  | 
|  | bool IsFp = false; | 
|  |  | 
|  | // True iff FpValBuf contains an instance of APFloat. | 
|  | bool BufHasFpVal = false; | 
|  |  | 
|  | // The integer coefficient of an individual addend is either 1 or -1, | 
|  | // and we try to simplify at most 4 addends from neighboring at most | 
|  | // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt | 
|  | // is overkill of this end. | 
|  | short IntVal = 0; | 
|  |  | 
|  | AlignedCharArrayUnion<APFloat> FpValBuf; | 
|  | }; | 
|  |  | 
|  | /// FAddend is used to represent floating-point addend. An addend is | 
|  | /// represented as <C, V>, where the V is a symbolic value, and C is a | 
|  | /// constant coefficient. A constant addend is represented as <C, 0>. | 
|  | class FAddend { | 
|  | public: | 
|  | FAddend() = default; | 
|  |  | 
|  | void operator+=(const FAddend &T) { | 
|  | assert((Val == T.Val) && "Symbolic-values disagree"); | 
|  | Coeff += T.Coeff; | 
|  | } | 
|  |  | 
|  | Value *getSymVal() const { return Val; } | 
|  | const FAddendCoef &getCoef() const { return Coeff; } | 
|  |  | 
|  | bool isConstant() const { return Val == nullptr; } | 
|  | bool isZero() const { return Coeff.isZero(); } | 
|  |  | 
|  | void set(short Coefficient, Value *V) { | 
|  | Coeff.set(Coefficient); | 
|  | Val = V; | 
|  | } | 
|  | void set(const APFloat &Coefficient, Value *V) { | 
|  | Coeff.set(Coefficient); | 
|  | Val = V; | 
|  | } | 
|  | void set(const ConstantFP *Coefficient, Value *V) { | 
|  | Coeff.set(Coefficient->getValueAPF()); | 
|  | Val = V; | 
|  | } | 
|  |  | 
|  | void negate() { Coeff.negate(); } | 
|  |  | 
|  | /// Drill down the U-D chain one step to find the definition of V, and | 
|  | /// try to break the definition into one or two addends. | 
|  | static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1); | 
|  |  | 
|  | /// Similar to FAddend::drillDownOneStep() except that the value being | 
|  | /// splitted is the addend itself. | 
|  | unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const; | 
|  |  | 
|  | private: | 
|  | void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; } | 
|  |  | 
|  | // This addend has the value of "Coeff * Val". | 
|  | Value *Val = nullptr; | 
|  | FAddendCoef Coeff; | 
|  | }; | 
|  |  | 
|  | /// FAddCombine is the class for optimizing an unsafe fadd/fsub along | 
|  | /// with its neighboring at most two instructions. | 
|  | /// | 
|  | class FAddCombine { | 
|  | public: | 
|  | FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {} | 
|  |  | 
|  | Value *simplify(Instruction *FAdd); | 
|  |  | 
|  | private: | 
|  | using AddendVect = SmallVector<const FAddend *, 4>; | 
|  |  | 
|  | Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota); | 
|  |  | 
|  | /// Convert given addend to a Value | 
|  | Value *createAddendVal(const FAddend &A, bool& NeedNeg); | 
|  |  | 
|  | /// Return the number of instructions needed to emit the N-ary addition. | 
|  | unsigned calcInstrNumber(const AddendVect& Vect); | 
|  |  | 
|  | Value *createFSub(Value *Opnd0, Value *Opnd1); | 
|  | Value *createFAdd(Value *Opnd0, Value *Opnd1); | 
|  | Value *createFMul(Value *Opnd0, Value *Opnd1); | 
|  | Value *createFNeg(Value *V); | 
|  | Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota); | 
|  | void createInstPostProc(Instruction *NewInst, bool NoNumber = false); | 
|  |  | 
|  | // Debugging stuff are clustered here. | 
|  | #ifndef NDEBUG | 
|  | unsigned CreateInstrNum; | 
|  | void initCreateInstNum() { CreateInstrNum = 0; } | 
|  | void incCreateInstNum() { CreateInstrNum++; } | 
|  | #else | 
|  | void initCreateInstNum() {} | 
|  | void incCreateInstNum() {} | 
|  | #endif | 
|  |  | 
|  | InstCombiner::BuilderTy &Builder; | 
|  | Instruction *Instr = nullptr; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // Implementation of | 
|  | //    {FAddendCoef, FAddend, FAddition, FAddCombine}. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | FAddendCoef::~FAddendCoef() { | 
|  | if (BufHasFpVal) | 
|  | getFpValPtr()->~APFloat(); | 
|  | } | 
|  |  | 
|  | void FAddendCoef::set(const APFloat& C) { | 
|  | APFloat *P = getFpValPtr(); | 
|  |  | 
|  | if (isInt()) { | 
|  | // As the buffer is meanless byte stream, we cannot call | 
|  | // APFloat::operator=(). | 
|  | new(P) APFloat(C); | 
|  | } else | 
|  | *P = C; | 
|  |  | 
|  | IsFp = BufHasFpVal = true; | 
|  | } | 
|  |  | 
|  | void FAddendCoef::convertToFpType(const fltSemantics &Sem) { | 
|  | if (!isInt()) | 
|  | return; | 
|  |  | 
|  | APFloat *P = getFpValPtr(); | 
|  | if (IntVal > 0) | 
|  | new(P) APFloat(Sem, IntVal); | 
|  | else { | 
|  | new(P) APFloat(Sem, 0 - IntVal); | 
|  | P->changeSign(); | 
|  | } | 
|  | IsFp = BufHasFpVal = true; | 
|  | } | 
|  |  | 
|  | APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) { | 
|  | if (Val >= 0) | 
|  | return APFloat(Sem, Val); | 
|  |  | 
|  | APFloat T(Sem, 0 - Val); | 
|  | T.changeSign(); | 
|  |  | 
|  | return T; | 
|  | } | 
|  |  | 
|  | void FAddendCoef::operator=(const FAddendCoef &That) { | 
|  | if (That.isInt()) | 
|  | set(That.IntVal); | 
|  | else | 
|  | set(That.getFpVal()); | 
|  | } | 
|  |  | 
|  | void FAddendCoef::operator+=(const FAddendCoef &That) { | 
|  | RoundingMode RndMode = RoundingMode::NearestTiesToEven; | 
|  | if (isInt() == That.isInt()) { | 
|  | if (isInt()) | 
|  | IntVal += That.IntVal; | 
|  | else | 
|  | getFpVal().add(That.getFpVal(), RndMode); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (isInt()) { | 
|  | const APFloat &T = That.getFpVal(); | 
|  | convertToFpType(T.getSemantics()); | 
|  | getFpVal().add(T, RndMode); | 
|  | return; | 
|  | } | 
|  |  | 
|  | APFloat &T = getFpVal(); | 
|  | T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode); | 
|  | } | 
|  |  | 
|  | void FAddendCoef::operator*=(const FAddendCoef &That) { | 
|  | if (That.isOne()) | 
|  | return; | 
|  |  | 
|  | if (That.isMinusOne()) { | 
|  | negate(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (isInt() && That.isInt()) { | 
|  | int Res = IntVal * (int)That.IntVal; | 
|  | assert(!insaneIntVal(Res) && "Insane int value"); | 
|  | IntVal = Res; | 
|  | return; | 
|  | } | 
|  |  | 
|  | const fltSemantics &Semantic = | 
|  | isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics(); | 
|  |  | 
|  | if (isInt()) | 
|  | convertToFpType(Semantic); | 
|  | APFloat &F0 = getFpVal(); | 
|  |  | 
|  | if (That.isInt()) | 
|  | F0.multiply(createAPFloatFromInt(Semantic, That.IntVal), | 
|  | APFloat::rmNearestTiesToEven); | 
|  | else | 
|  | F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven); | 
|  | } | 
|  |  | 
|  | void FAddendCoef::negate() { | 
|  | if (isInt()) | 
|  | IntVal = 0 - IntVal; | 
|  | else | 
|  | getFpVal().changeSign(); | 
|  | } | 
|  |  | 
|  | Value *FAddendCoef::getValue(Type *Ty) const { | 
|  | return isInt() ? | 
|  | ConstantFP::get(Ty, float(IntVal)) : | 
|  | ConstantFP::get(Ty->getContext(), getFpVal()); | 
|  | } | 
|  |  | 
|  | // The definition of <Val>     Addends | 
|  | // ========================================= | 
|  | //  A + B                     <1, A>, <1,B> | 
|  | //  A - B                     <1, A>, <1,B> | 
|  | //  0 - B                     <-1, B> | 
|  | //  C * A,                    <C, A> | 
|  | //  A + C                     <1, A> <C, NULL> | 
|  | //  0 +/- 0                   <0, NULL> (corner case) | 
|  | // | 
|  | // Legend: A and B are not constant, C is constant | 
|  | unsigned FAddend::drillValueDownOneStep | 
|  | (Value *Val, FAddend &Addend0, FAddend &Addend1) { | 
|  | Instruction *I = nullptr; | 
|  | if (!Val || !(I = dyn_cast<Instruction>(Val))) | 
|  | return 0; | 
|  |  | 
|  | unsigned Opcode = I->getOpcode(); | 
|  |  | 
|  | if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) { | 
|  | ConstantFP *C0, *C1; | 
|  | Value *Opnd0 = I->getOperand(0); | 
|  | Value *Opnd1 = I->getOperand(1); | 
|  | if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero()) | 
|  | Opnd0 = nullptr; | 
|  |  | 
|  | if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero()) | 
|  | Opnd1 = nullptr; | 
|  |  | 
|  | if (Opnd0) { | 
|  | if (!C0) | 
|  | Addend0.set(1, Opnd0); | 
|  | else | 
|  | Addend0.set(C0, nullptr); | 
|  | } | 
|  |  | 
|  | if (Opnd1) { | 
|  | FAddend &Addend = Opnd0 ? Addend1 : Addend0; | 
|  | if (!C1) | 
|  | Addend.set(1, Opnd1); | 
|  | else | 
|  | Addend.set(C1, nullptr); | 
|  | if (Opcode == Instruction::FSub) | 
|  | Addend.negate(); | 
|  | } | 
|  |  | 
|  | if (Opnd0 || Opnd1) | 
|  | return Opnd0 && Opnd1 ? 2 : 1; | 
|  |  | 
|  | // Both operands are zero. Weird! | 
|  | Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (I->getOpcode() == Instruction::FMul) { | 
|  | Value *V0 = I->getOperand(0); | 
|  | Value *V1 = I->getOperand(1); | 
|  | if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) { | 
|  | Addend0.set(C, V1); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) { | 
|  | Addend0.set(C, V0); | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Try to break *this* addend into two addends. e.g. Suppose this addend is | 
|  | // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends, | 
|  | // i.e. <2.3, X> and <2.3, Y>. | 
|  | unsigned FAddend::drillAddendDownOneStep | 
|  | (FAddend &Addend0, FAddend &Addend1) const { | 
|  | if (isConstant()) | 
|  | return 0; | 
|  |  | 
|  | unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1); | 
|  | if (!BreakNum || Coeff.isOne()) | 
|  | return BreakNum; | 
|  |  | 
|  | Addend0.Scale(Coeff); | 
|  |  | 
|  | if (BreakNum == 2) | 
|  | Addend1.Scale(Coeff); | 
|  |  | 
|  | return BreakNum; | 
|  | } | 
|  |  | 
|  | Value *FAddCombine::simplify(Instruction *I) { | 
|  | assert(I->hasAllowReassoc() && I->hasNoSignedZeros() && | 
|  | "Expected 'reassoc'+'nsz' instruction"); | 
|  |  | 
|  | // Currently we are not able to handle vector type. | 
|  | if (I->getType()->isVectorTy()) | 
|  | return nullptr; | 
|  |  | 
|  | assert((I->getOpcode() == Instruction::FAdd || | 
|  | I->getOpcode() == Instruction::FSub) && "Expect add/sub"); | 
|  |  | 
|  | // Save the instruction before calling other member-functions. | 
|  | Instr = I; | 
|  |  | 
|  | FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1; | 
|  |  | 
|  | unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1); | 
|  |  | 
|  | // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1. | 
|  | unsigned Opnd0_ExpNum = 0; | 
|  | unsigned Opnd1_ExpNum = 0; | 
|  |  | 
|  | if (!Opnd0.isConstant()) | 
|  | Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1); | 
|  |  | 
|  | // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1. | 
|  | if (OpndNum == 2 && !Opnd1.isConstant()) | 
|  | Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1); | 
|  |  | 
|  | // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1 | 
|  | if (Opnd0_ExpNum && Opnd1_ExpNum) { | 
|  | AddendVect AllOpnds; | 
|  | AllOpnds.push_back(&Opnd0_0); | 
|  | AllOpnds.push_back(&Opnd1_0); | 
|  | if (Opnd0_ExpNum == 2) | 
|  | AllOpnds.push_back(&Opnd0_1); | 
|  | if (Opnd1_ExpNum == 2) | 
|  | AllOpnds.push_back(&Opnd1_1); | 
|  |  | 
|  | // Compute instruction quota. We should save at least one instruction. | 
|  | unsigned InstQuota = 0; | 
|  |  | 
|  | Value *V0 = I->getOperand(0); | 
|  | Value *V1 = I->getOperand(1); | 
|  | InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) && | 
|  | (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1; | 
|  |  | 
|  | if (Value *R = simplifyFAdd(AllOpnds, InstQuota)) | 
|  | return R; | 
|  | } | 
|  |  | 
|  | if (OpndNum != 2) { | 
|  | // The input instruction is : "I=0.0 +/- V". If the "V" were able to be | 
|  | // splitted into two addends, say "V = X - Y", the instruction would have | 
|  | // been optimized into "I = Y - X" in the previous steps. | 
|  | // | 
|  | const FAddendCoef &CE = Opnd0.getCoef(); | 
|  | return CE.isOne() ? Opnd0.getSymVal() : nullptr; | 
|  | } | 
|  |  | 
|  | // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1] | 
|  | if (Opnd1_ExpNum) { | 
|  | AddendVect AllOpnds; | 
|  | AllOpnds.push_back(&Opnd0); | 
|  | AllOpnds.push_back(&Opnd1_0); | 
|  | if (Opnd1_ExpNum == 2) | 
|  | AllOpnds.push_back(&Opnd1_1); | 
|  |  | 
|  | if (Value *R = simplifyFAdd(AllOpnds, 1)) | 
|  | return R; | 
|  | } | 
|  |  | 
|  | // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1] | 
|  | if (Opnd0_ExpNum) { | 
|  | AddendVect AllOpnds; | 
|  | AllOpnds.push_back(&Opnd1); | 
|  | AllOpnds.push_back(&Opnd0_0); | 
|  | if (Opnd0_ExpNum == 2) | 
|  | AllOpnds.push_back(&Opnd0_1); | 
|  |  | 
|  | if (Value *R = simplifyFAdd(AllOpnds, 1)) | 
|  | return R; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) { | 
|  | unsigned AddendNum = Addends.size(); | 
|  | assert(AddendNum <= 4 && "Too many addends"); | 
|  |  | 
|  | // For saving intermediate results; | 
|  | unsigned NextTmpIdx = 0; | 
|  | FAddend TmpResult[3]; | 
|  |  | 
|  | // Simplified addends are placed <SimpVect>. | 
|  | AddendVect SimpVect; | 
|  |  | 
|  | // The outer loop works on one symbolic-value at a time. Suppose the input | 
|  | // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ... | 
|  | // The symbolic-values will be processed in this order: x, y, z. | 
|  | for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) { | 
|  |  | 
|  | const FAddend *ThisAddend = Addends[SymIdx]; | 
|  | if (!ThisAddend) { | 
|  | // This addend was processed before. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Value *Val = ThisAddend->getSymVal(); | 
|  |  | 
|  | // If the resulting expr has constant-addend, this constant-addend is | 
|  | // desirable to reside at the top of the resulting expression tree. Placing | 
|  | // constant close to super-expr(s) will potentially reveal some | 
|  | // optimization opportunities in super-expr(s). Here we do not implement | 
|  | // this logic intentionally and rely on SimplifyAssociativeOrCommutative | 
|  | // call later. | 
|  |  | 
|  | unsigned StartIdx = SimpVect.size(); | 
|  | SimpVect.push_back(ThisAddend); | 
|  |  | 
|  | // The inner loop collects addends sharing same symbolic-value, and these | 
|  | // addends will be later on folded into a single addend. Following above | 
|  | // example, if the symbolic value "y" is being processed, the inner loop | 
|  | // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will | 
|  | // be later on folded into "<b1+b2, y>". | 
|  | for (unsigned SameSymIdx = SymIdx + 1; | 
|  | SameSymIdx < AddendNum; SameSymIdx++) { | 
|  | const FAddend *T = Addends[SameSymIdx]; | 
|  | if (T && T->getSymVal() == Val) { | 
|  | // Set null such that next iteration of the outer loop will not process | 
|  | // this addend again. | 
|  | Addends[SameSymIdx] = nullptr; | 
|  | SimpVect.push_back(T); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If multiple addends share same symbolic value, fold them together. | 
|  | if (StartIdx + 1 != SimpVect.size()) { | 
|  | FAddend &R = TmpResult[NextTmpIdx ++]; | 
|  | R = *SimpVect[StartIdx]; | 
|  | for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++) | 
|  | R += *SimpVect[Idx]; | 
|  |  | 
|  | // Pop all addends being folded and push the resulting folded addend. | 
|  | SimpVect.resize(StartIdx); | 
|  | if (!R.isZero()) { | 
|  | SimpVect.push_back(&R); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) && | 
|  | "out-of-bound access"); | 
|  |  | 
|  | Value *Result; | 
|  | if (!SimpVect.empty()) | 
|  | Result = createNaryFAdd(SimpVect, InstrQuota); | 
|  | else { | 
|  | // The addition is folded to 0.0. | 
|  | Result = ConstantFP::get(Instr->getType(), 0.0); | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | Value *FAddCombine::createNaryFAdd | 
|  | (const AddendVect &Opnds, unsigned InstrQuota) { | 
|  | assert(!Opnds.empty() && "Expect at least one addend"); | 
|  |  | 
|  | // Step 1: Check if the # of instructions needed exceeds the quota. | 
|  |  | 
|  | unsigned InstrNeeded = calcInstrNumber(Opnds); | 
|  | if (InstrNeeded > InstrQuota) | 
|  | return nullptr; | 
|  |  | 
|  | initCreateInstNum(); | 
|  |  | 
|  | // step 2: Emit the N-ary addition. | 
|  | // Note that at most three instructions are involved in Fadd-InstCombine: the | 
|  | // addition in question, and at most two neighboring instructions. | 
|  | // The resulting optimized addition should have at least one less instruction | 
|  | // than the original addition expression tree. This implies that the resulting | 
|  | // N-ary addition has at most two instructions, and we don't need to worry | 
|  | // about tree-height when constructing the N-ary addition. | 
|  |  | 
|  | Value *LastVal = nullptr; | 
|  | bool LastValNeedNeg = false; | 
|  |  | 
|  | // Iterate the addends, creating fadd/fsub using adjacent two addends. | 
|  | for (const FAddend *Opnd : Opnds) { | 
|  | bool NeedNeg; | 
|  | Value *V = createAddendVal(*Opnd, NeedNeg); | 
|  | if (!LastVal) { | 
|  | LastVal = V; | 
|  | LastValNeedNeg = NeedNeg; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (LastValNeedNeg == NeedNeg) { | 
|  | LastVal = createFAdd(LastVal, V); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (LastValNeedNeg) | 
|  | LastVal = createFSub(V, LastVal); | 
|  | else | 
|  | LastVal = createFSub(LastVal, V); | 
|  |  | 
|  | LastValNeedNeg = false; | 
|  | } | 
|  |  | 
|  | if (LastValNeedNeg) { | 
|  | LastVal = createFNeg(LastVal); | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | assert(CreateInstrNum == InstrNeeded && | 
|  | "Inconsistent in instruction numbers"); | 
|  | #endif | 
|  |  | 
|  | return LastVal; | 
|  | } | 
|  |  | 
|  | Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) { | 
|  | Value *V = Builder.CreateFSub(Opnd0, Opnd1); | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) | 
|  | createInstPostProc(I); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | Value *FAddCombine::createFNeg(Value *V) { | 
|  | Value *NewV = Builder.CreateFNeg(V); | 
|  | if (Instruction *I = dyn_cast<Instruction>(NewV)) | 
|  | createInstPostProc(I, true); // fneg's don't receive instruction numbers. | 
|  | return NewV; | 
|  | } | 
|  |  | 
|  | Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) { | 
|  | Value *V = Builder.CreateFAdd(Opnd0, Opnd1); | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) | 
|  | createInstPostProc(I); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) { | 
|  | Value *V = Builder.CreateFMul(Opnd0, Opnd1); | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) | 
|  | createInstPostProc(I); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) { | 
|  | NewInstr->setDebugLoc(Instr->getDebugLoc()); | 
|  |  | 
|  | // Keep track of the number of instruction created. | 
|  | if (!NoNumber) | 
|  | incCreateInstNum(); | 
|  |  | 
|  | // Propagate fast-math flags | 
|  | NewInstr->setFastMathFlags(Instr->getFastMathFlags()); | 
|  | } | 
|  |  | 
|  | // Return the number of instruction needed to emit the N-ary addition. | 
|  | // NOTE: Keep this function in sync with createAddendVal(). | 
|  | unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) { | 
|  | unsigned OpndNum = Opnds.size(); | 
|  | unsigned InstrNeeded = OpndNum - 1; | 
|  |  | 
|  | // Adjust the number of instructions needed to emit the N-ary add. | 
|  | for (const FAddend *Opnd : Opnds) { | 
|  | if (Opnd->isConstant()) | 
|  | continue; | 
|  |  | 
|  | // The constant check above is really for a few special constant | 
|  | // coefficients. | 
|  | if (isa<UndefValue>(Opnd->getSymVal())) | 
|  | continue; | 
|  |  | 
|  | const FAddendCoef &CE = Opnd->getCoef(); | 
|  | // Let the addend be "c * x". If "c == +/-1", the value of the addend | 
|  | // is immediately available; otherwise, it needs exactly one instruction | 
|  | // to evaluate the value. | 
|  | if (!CE.isMinusOne() && !CE.isOne()) | 
|  | InstrNeeded++; | 
|  | } | 
|  | return InstrNeeded; | 
|  | } | 
|  |  | 
|  | // Input Addend        Value           NeedNeg(output) | 
|  | // ================================================================ | 
|  | // Constant C          C               false | 
|  | // <+/-1, V>           V               coefficient is -1 | 
|  | // <2/-2, V>          "fadd V, V"      coefficient is -2 | 
|  | // <C, V>             "fmul V, C"      false | 
|  | // | 
|  | // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber. | 
|  | Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) { | 
|  | const FAddendCoef &Coeff = Opnd.getCoef(); | 
|  |  | 
|  | if (Opnd.isConstant()) { | 
|  | NeedNeg = false; | 
|  | return Coeff.getValue(Instr->getType()); | 
|  | } | 
|  |  | 
|  | Value *OpndVal = Opnd.getSymVal(); | 
|  |  | 
|  | if (Coeff.isMinusOne() || Coeff.isOne()) { | 
|  | NeedNeg = Coeff.isMinusOne(); | 
|  | return OpndVal; | 
|  | } | 
|  |  | 
|  | if (Coeff.isTwo() || Coeff.isMinusTwo()) { | 
|  | NeedNeg = Coeff.isMinusTwo(); | 
|  | return createFAdd(OpndVal, OpndVal); | 
|  | } | 
|  |  | 
|  | NeedNeg = false; | 
|  | return createFMul(OpndVal, Coeff.getValue(Instr->getType())); | 
|  | } | 
|  |  | 
|  | // Checks if any operand is negative and we can convert add to sub. | 
|  | // This function checks for following negative patterns | 
|  | //   ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C)) | 
|  | //   ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C)) | 
|  | //   XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even | 
|  | static Value *checkForNegativeOperand(BinaryOperator &I, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); | 
|  |  | 
|  | // This function creates 2 instructions to replace ADD, we need at least one | 
|  | // of LHS or RHS to have one use to ensure benefit in transform. | 
|  | if (!LHS->hasOneUse() && !RHS->hasOneUse()) | 
|  | return nullptr; | 
|  |  | 
|  | Value *X = nullptr, *Y = nullptr, *Z = nullptr; | 
|  | const APInt *C1 = nullptr, *C2 = nullptr; | 
|  |  | 
|  | // if ONE is on other side, swap | 
|  | if (match(RHS, m_Add(m_Value(X), m_One()))) | 
|  | std::swap(LHS, RHS); | 
|  |  | 
|  | if (match(LHS, m_Add(m_Value(X), m_One()))) { | 
|  | // if XOR on other side, swap | 
|  | if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) | 
|  | std::swap(X, RHS); | 
|  |  | 
|  | if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) { | 
|  | // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1)) | 
|  | // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1)) | 
|  | if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) { | 
|  | Value *NewAnd = Builder.CreateAnd(Z, *C1); | 
|  | return Builder.CreateSub(RHS, NewAnd, "sub"); | 
|  | } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) { | 
|  | // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1)) | 
|  | // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1)) | 
|  | Value *NewOr = Builder.CreateOr(Z, ~(*C1)); | 
|  | return Builder.CreateSub(RHS, NewOr, "sub"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Restore LHS and RHS | 
|  | LHS = I.getOperand(0); | 
|  | RHS = I.getOperand(1); | 
|  |  | 
|  | // if XOR is on other side, swap | 
|  | if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1)))) | 
|  | std::swap(LHS, RHS); | 
|  |  | 
|  | // C2 is ODD | 
|  | // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2)) | 
|  | // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2)) | 
|  | if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1)))) | 
|  | if (C1->countTrailingZeros() == 0) | 
|  | if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) { | 
|  | Value *NewOr = Builder.CreateOr(Z, ~(*C2)); | 
|  | return Builder.CreateSub(RHS, NewOr, "sub"); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Wrapping flags may allow combining constants separated by an extend. | 
|  | static Instruction *foldNoWrapAdd(BinaryOperator &Add, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); | 
|  | Type *Ty = Add.getType(); | 
|  | Constant *Op1C; | 
|  | if (!match(Op1, m_Constant(Op1C))) | 
|  | return nullptr; | 
|  |  | 
|  | // Try this match first because it results in an add in the narrow type. | 
|  | // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1))) | 
|  | Value *X; | 
|  | const APInt *C1, *C2; | 
|  | if (match(Op1, m_APInt(C1)) && | 
|  | match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) && | 
|  | C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) { | 
|  | Constant *NewC = | 
|  | ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth())); | 
|  | return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty); | 
|  | } | 
|  |  | 
|  | // More general combining of constants in the wide type. | 
|  | // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C) | 
|  | Constant *NarrowC; | 
|  | if (match(Op0, m_OneUse(m_SExt(m_NSWAdd(m_Value(X), m_Constant(NarrowC)))))) { | 
|  | Constant *WideC = ConstantExpr::getSExt(NarrowC, Ty); | 
|  | Constant *NewC = ConstantExpr::getAdd(WideC, Op1C); | 
|  | Value *WideX = Builder.CreateSExt(X, Ty); | 
|  | return BinaryOperator::CreateAdd(WideX, NewC); | 
|  | } | 
|  | // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C) | 
|  | if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_Constant(NarrowC)))))) { | 
|  | Constant *WideC = ConstantExpr::getZExt(NarrowC, Ty); | 
|  | Constant *NewC = ConstantExpr::getAdd(WideC, Op1C); | 
|  | Value *WideX = Builder.CreateZExt(X, Ty); | 
|  | return BinaryOperator::CreateAdd(WideX, NewC); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombinerImpl::foldAddWithConstant(BinaryOperator &Add) { | 
|  | Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1); | 
|  | Constant *Op1C; | 
|  | if (!match(Op1, m_ImmConstant(Op1C))) | 
|  | return nullptr; | 
|  |  | 
|  | if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add)) | 
|  | return NV; | 
|  |  | 
|  | Value *X; | 
|  | Constant *Op00C; | 
|  |  | 
|  | // add (sub C1, X), C2 --> sub (add C1, C2), X | 
|  | if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X)))) | 
|  | return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X); | 
|  |  | 
|  | Value *Y; | 
|  |  | 
|  | // add (sub X, Y), -1 --> add (not Y), X | 
|  | if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) && | 
|  | match(Op1, m_AllOnes())) | 
|  | return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X); | 
|  |  | 
|  | // zext(bool) + C -> bool ? C + 1 : C | 
|  | if (match(Op0, m_ZExt(m_Value(X))) && | 
|  | X->getType()->getScalarSizeInBits() == 1) | 
|  | return SelectInst::Create(X, InstCombiner::AddOne(Op1C), Op1); | 
|  | // sext(bool) + C -> bool ? C - 1 : C | 
|  | if (match(Op0, m_SExt(m_Value(X))) && | 
|  | X->getType()->getScalarSizeInBits() == 1) | 
|  | return SelectInst::Create(X, InstCombiner::SubOne(Op1C), Op1); | 
|  |  | 
|  | // ~X + C --> (C-1) - X | 
|  | if (match(Op0, m_Not(m_Value(X)))) | 
|  | return BinaryOperator::CreateSub(InstCombiner::SubOne(Op1C), X); | 
|  |  | 
|  | const APInt *C; | 
|  | if (!match(Op1, m_APInt(C))) | 
|  | return nullptr; | 
|  |  | 
|  | // (X | Op01C) + Op1C --> X + (Op01C + Op1C) iff the `or` is actually an `add` | 
|  | Constant *Op01C; | 
|  | if (match(Op0, m_Or(m_Value(X), m_ImmConstant(Op01C))) && | 
|  | haveNoCommonBitsSet(X, Op01C, DL, &AC, &Add, &DT)) | 
|  | return BinaryOperator::CreateAdd(X, ConstantExpr::getAdd(Op01C, Op1C)); | 
|  |  | 
|  | // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C) | 
|  | const APInt *C2; | 
|  | if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C) | 
|  | return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2)); | 
|  |  | 
|  | if (C->isSignMask()) { | 
|  | // If wrapping is not allowed, then the addition must set the sign bit: | 
|  | // X + (signmask) --> X | signmask | 
|  | if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap()) | 
|  | return BinaryOperator::CreateOr(Op0, Op1); | 
|  |  | 
|  | // If wrapping is allowed, then the addition flips the sign bit of LHS: | 
|  | // X + (signmask) --> X ^ signmask | 
|  | return BinaryOperator::CreateXor(Op0, Op1); | 
|  | } | 
|  |  | 
|  | // Is this add the last step in a convoluted sext? | 
|  | // add(zext(xor i16 X, -32768), -32768) --> sext X | 
|  | Type *Ty = Add.getType(); | 
|  | if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) && | 
|  | C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C) | 
|  | return CastInst::Create(Instruction::SExt, X, Ty); | 
|  |  | 
|  | if (match(Op0, m_Xor(m_Value(X), m_APInt(C2)))) { | 
|  | // (X ^ signmask) + C --> (X + (signmask ^ C)) | 
|  | if (C2->isSignMask()) | 
|  | return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C2 ^ *C)); | 
|  |  | 
|  | // If X has no high-bits set above an xor mask: | 
|  | // add (xor X, LowMaskC), C --> sub (LowMaskC + C), X | 
|  | if (C2->isMask()) { | 
|  | KnownBits LHSKnown = computeKnownBits(X, 0, &Add); | 
|  | if ((*C2 | LHSKnown.Zero).isAllOnes()) | 
|  | return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C2 + *C), X); | 
|  | } | 
|  |  | 
|  | // Look for a math+logic pattern that corresponds to sext-in-register of a | 
|  | // value with cleared high bits. Convert that into a pair of shifts: | 
|  | // add (xor X, 0x80), 0xF..F80 --> (X << ShAmtC) >>s ShAmtC | 
|  | // add (xor X, 0xF..F80), 0x80 --> (X << ShAmtC) >>s ShAmtC | 
|  | if (Op0->hasOneUse() && *C2 == -(*C)) { | 
|  | unsigned BitWidth = Ty->getScalarSizeInBits(); | 
|  | unsigned ShAmt = 0; | 
|  | if (C->isPowerOf2()) | 
|  | ShAmt = BitWidth - C->logBase2() - 1; | 
|  | else if (C2->isPowerOf2()) | 
|  | ShAmt = BitWidth - C2->logBase2() - 1; | 
|  | if (ShAmt && MaskedValueIsZero(X, APInt::getHighBitsSet(BitWidth, ShAmt), | 
|  | 0, &Add)) { | 
|  | Constant *ShAmtC = ConstantInt::get(Ty, ShAmt); | 
|  | Value *NewShl = Builder.CreateShl(X, ShAmtC, "sext"); | 
|  | return BinaryOperator::CreateAShr(NewShl, ShAmtC); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (C->isOne() && Op0->hasOneUse()) { | 
|  | // add (sext i1 X), 1 --> zext (not X) | 
|  | // TODO: The smallest IR representation is (select X, 0, 1), and that would | 
|  | // not require the one-use check. But we need to remove a transform in | 
|  | // visitSelect and make sure that IR value tracking for select is equal or | 
|  | // better than for these ops. | 
|  | if (match(Op0, m_SExt(m_Value(X))) && | 
|  | X->getType()->getScalarSizeInBits() == 1) | 
|  | return new ZExtInst(Builder.CreateNot(X), Ty); | 
|  |  | 
|  | // Shifts and add used to flip and mask off the low bit: | 
|  | // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1 | 
|  | const APInt *C3; | 
|  | if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) && | 
|  | C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) { | 
|  | Value *NotX = Builder.CreateNot(X); | 
|  | return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If all bits affected by the add are included in a high-bit-mask, do the | 
|  | // add before the mask op: | 
|  | // (X & 0xFF00) + xx00 --> (X + xx00) & 0xFF00 | 
|  | if (match(Op0, m_OneUse(m_And(m_Value(X), m_APInt(C2)))) && | 
|  | C2->isNegative() && C2->isShiftedMask() && *C == (*C & *C2)) { | 
|  | Value *NewAdd = Builder.CreateAdd(X, ConstantInt::get(Ty, *C)); | 
|  | return BinaryOperator::CreateAnd(NewAdd, ConstantInt::get(Ty, *C2)); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Matches multiplication expression Op * C where C is a constant. Returns the | 
|  | // constant value in C and the other operand in Op. Returns true if such a | 
|  | // match is found. | 
|  | static bool MatchMul(Value *E, Value *&Op, APInt &C) { | 
|  | const APInt *AI; | 
|  | if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) { | 
|  | C = *AI; | 
|  | return true; | 
|  | } | 
|  | if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) { | 
|  | C = APInt(AI->getBitWidth(), 1); | 
|  | C <<= *AI; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Matches remainder expression Op % C where C is a constant. Returns the | 
|  | // constant value in C and the other operand in Op. Returns the signedness of | 
|  | // the remainder operation in IsSigned. Returns true if such a match is | 
|  | // found. | 
|  | static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) { | 
|  | const APInt *AI; | 
|  | IsSigned = false; | 
|  | if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) { | 
|  | IsSigned = true; | 
|  | C = *AI; | 
|  | return true; | 
|  | } | 
|  | if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) { | 
|  | C = *AI; | 
|  | return true; | 
|  | } | 
|  | if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) { | 
|  | C = *AI + 1; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Matches division expression Op / C with the given signedness as indicated | 
|  | // by IsSigned, where C is a constant. Returns the constant value in C and the | 
|  | // other operand in Op. Returns true if such a match is found. | 
|  | static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) { | 
|  | const APInt *AI; | 
|  | if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) { | 
|  | C = *AI; | 
|  | return true; | 
|  | } | 
|  | if (!IsSigned) { | 
|  | if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) { | 
|  | C = *AI; | 
|  | return true; | 
|  | } | 
|  | if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) { | 
|  | C = APInt(AI->getBitWidth(), 1); | 
|  | C <<= *AI; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Returns whether C0 * C1 with the given signedness overflows. | 
|  | static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) { | 
|  | bool overflow; | 
|  | if (IsSigned) | 
|  | (void)C0.smul_ov(C1, overflow); | 
|  | else | 
|  | (void)C0.umul_ov(C1, overflow); | 
|  | return overflow; | 
|  | } | 
|  |  | 
|  | // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1) | 
|  | // does not overflow. | 
|  | Value *InstCombinerImpl::SimplifyAddWithRemainder(BinaryOperator &I) { | 
|  | Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); | 
|  | Value *X, *MulOpV; | 
|  | APInt C0, MulOpC; | 
|  | bool IsSigned; | 
|  | // Match I = X % C0 + MulOpV * C0 | 
|  | if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) || | 
|  | (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) && | 
|  | C0 == MulOpC) { | 
|  | Value *RemOpV; | 
|  | APInt C1; | 
|  | bool Rem2IsSigned; | 
|  | // Match MulOpC = RemOpV % C1 | 
|  | if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) && | 
|  | IsSigned == Rem2IsSigned) { | 
|  | Value *DivOpV; | 
|  | APInt DivOpC; | 
|  | // Match RemOpV = X / C0 | 
|  | if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV && | 
|  | C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) { | 
|  | Value *NewDivisor = ConstantInt::get(X->getType(), C0 * C1); | 
|  | return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem") | 
|  | : Builder.CreateURem(X, NewDivisor, "urem"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Fold | 
|  | ///   (1 << NBits) - 1 | 
|  | /// Into: | 
|  | ///   ~(-(1 << NBits)) | 
|  | /// Because a 'not' is better for bit-tracking analysis and other transforms | 
|  | /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was. | 
|  | static Instruction *canonicalizeLowbitMask(BinaryOperator &I, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | Value *NBits; | 
|  | if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes()))) | 
|  | return nullptr; | 
|  |  | 
|  | Constant *MinusOne = Constant::getAllOnesValue(NBits->getType()); | 
|  | Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask"); | 
|  | // Be wary of constant folding. | 
|  | if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) { | 
|  | // Always NSW. But NUW propagates from `add`. | 
|  | BOp->setHasNoSignedWrap(); | 
|  | BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); | 
|  | } | 
|  |  | 
|  | return BinaryOperator::CreateNot(NotMask, I.getName()); | 
|  | } | 
|  |  | 
|  | static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) { | 
|  | assert(I.getOpcode() == Instruction::Add && "Expecting add instruction"); | 
|  | Type *Ty = I.getType(); | 
|  | auto getUAddSat = [&]() { | 
|  | return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty); | 
|  | }; | 
|  |  | 
|  | // add (umin X, ~Y), Y --> uaddsat X, Y | 
|  | Value *X, *Y; | 
|  | if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))), | 
|  | m_Deferred(Y)))) | 
|  | return CallInst::Create(getUAddSat(), { X, Y }); | 
|  |  | 
|  | // add (umin X, ~C), C --> uaddsat X, C | 
|  | const APInt *C, *NotC; | 
|  | if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) && | 
|  | *C == ~*NotC) | 
|  | return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) }); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombinerImpl:: | 
|  | canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract( | 
|  | BinaryOperator &I) { | 
|  | assert((I.getOpcode() == Instruction::Add || | 
|  | I.getOpcode() == Instruction::Or || | 
|  | I.getOpcode() == Instruction::Sub) && | 
|  | "Expecting add/or/sub instruction"); | 
|  |  | 
|  | // We have a subtraction/addition between a (potentially truncated) *logical* | 
|  | // right-shift of X and a "select". | 
|  | Value *X, *Select; | 
|  | Instruction *LowBitsToSkip, *Extract; | 
|  | if (!match(&I, m_c_BinOp(m_TruncOrSelf(m_CombineAnd( | 
|  | m_LShr(m_Value(X), m_Instruction(LowBitsToSkip)), | 
|  | m_Instruction(Extract))), | 
|  | m_Value(Select)))) | 
|  | return nullptr; | 
|  |  | 
|  | // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS. | 
|  | if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select) | 
|  | return nullptr; | 
|  |  | 
|  | Type *XTy = X->getType(); | 
|  | bool HadTrunc = I.getType() != XTy; | 
|  |  | 
|  | // If there was a truncation of extracted value, then we'll need to produce | 
|  | // one extra instruction, so we need to ensure one instruction will go away. | 
|  | if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value()))) | 
|  | return nullptr; | 
|  |  | 
|  | // Extraction should extract high NBits bits, with shift amount calculated as: | 
|  | //   low bits to skip = shift bitwidth - high bits to extract | 
|  | // The shift amount itself may be extended, and we need to look past zero-ext | 
|  | // when matching NBits, that will matter for matching later. | 
|  | Constant *C; | 
|  | Value *NBits; | 
|  | if (!match( | 
|  | LowBitsToSkip, | 
|  | m_ZExtOrSelf(m_Sub(m_Constant(C), m_ZExtOrSelf(m_Value(NBits))))) || | 
|  | !match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, | 
|  | APInt(C->getType()->getScalarSizeInBits(), | 
|  | X->getType()->getScalarSizeInBits())))) | 
|  | return nullptr; | 
|  |  | 
|  | // Sign-extending value can be zero-extended if we `sub`tract it, | 
|  | // or sign-extended otherwise. | 
|  | auto SkipExtInMagic = [&I](Value *&V) { | 
|  | if (I.getOpcode() == Instruction::Sub) | 
|  | match(V, m_ZExtOrSelf(m_Value(V))); | 
|  | else | 
|  | match(V, m_SExtOrSelf(m_Value(V))); | 
|  | }; | 
|  |  | 
|  | // Now, finally validate the sign-extending magic. | 
|  | // `select` itself may be appropriately extended, look past that. | 
|  | SkipExtInMagic(Select); | 
|  |  | 
|  | ICmpInst::Predicate Pred; | 
|  | const APInt *Thr; | 
|  | Value *SignExtendingValue, *Zero; | 
|  | bool ShouldSignext; | 
|  | // It must be a select between two values we will later establish to be a | 
|  | // sign-extending value and a zero constant. The condition guarding the | 
|  | // sign-extension must be based on a sign bit of the same X we had in `lshr`. | 
|  | if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)), | 
|  | m_Value(SignExtendingValue), m_Value(Zero))) || | 
|  | !isSignBitCheck(Pred, *Thr, ShouldSignext)) | 
|  | return nullptr; | 
|  |  | 
|  | // icmp-select pair is commutative. | 
|  | if (!ShouldSignext) | 
|  | std::swap(SignExtendingValue, Zero); | 
|  |  | 
|  | // If we should not perform sign-extension then we must add/or/subtract zero. | 
|  | if (!match(Zero, m_Zero())) | 
|  | return nullptr; | 
|  | // Otherwise, it should be some constant, left-shifted by the same NBits we | 
|  | // had in `lshr`. Said left-shift can also be appropriately extended. | 
|  | // Again, we must look past zero-ext when looking for NBits. | 
|  | SkipExtInMagic(SignExtendingValue); | 
|  | Constant *SignExtendingValueBaseConstant; | 
|  | if (!match(SignExtendingValue, | 
|  | m_Shl(m_Constant(SignExtendingValueBaseConstant), | 
|  | m_ZExtOrSelf(m_Specific(NBits))))) | 
|  | return nullptr; | 
|  | // If we `sub`, then the constant should be one, else it should be all-ones. | 
|  | if (I.getOpcode() == Instruction::Sub | 
|  | ? !match(SignExtendingValueBaseConstant, m_One()) | 
|  | : !match(SignExtendingValueBaseConstant, m_AllOnes())) | 
|  | return nullptr; | 
|  |  | 
|  | auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip, | 
|  | Extract->getName() + ".sext"); | 
|  | NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness. | 
|  | if (!HadTrunc) | 
|  | return NewAShr; | 
|  |  | 
|  | Builder.Insert(NewAShr); | 
|  | return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType()); | 
|  | } | 
|  |  | 
|  | /// This is a specialization of a more general transform from | 
|  | /// SimplifyUsingDistributiveLaws. If that code can be made to work optimally | 
|  | /// for multi-use cases or propagating nsw/nuw, then we would not need this. | 
|  | static Instruction *factorizeMathWithShlOps(BinaryOperator &I, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | // TODO: Also handle mul by doubling the shift amount? | 
|  | assert((I.getOpcode() == Instruction::Add || | 
|  | I.getOpcode() == Instruction::Sub) && | 
|  | "Expected add/sub"); | 
|  | auto *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); | 
|  | auto *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); | 
|  | if (!Op0 || !Op1 || !(Op0->hasOneUse() || Op1->hasOneUse())) | 
|  | return nullptr; | 
|  |  | 
|  | Value *X, *Y, *ShAmt; | 
|  | if (!match(Op0, m_Shl(m_Value(X), m_Value(ShAmt))) || | 
|  | !match(Op1, m_Shl(m_Value(Y), m_Specific(ShAmt)))) | 
|  | return nullptr; | 
|  |  | 
|  | // No-wrap propagates only when all ops have no-wrap. | 
|  | bool HasNSW = I.hasNoSignedWrap() && Op0->hasNoSignedWrap() && | 
|  | Op1->hasNoSignedWrap(); | 
|  | bool HasNUW = I.hasNoUnsignedWrap() && Op0->hasNoUnsignedWrap() && | 
|  | Op1->hasNoUnsignedWrap(); | 
|  |  | 
|  | // add/sub (X << ShAmt), (Y << ShAmt) --> (add/sub X, Y) << ShAmt | 
|  | Value *NewMath = Builder.CreateBinOp(I.getOpcode(), X, Y); | 
|  | if (auto *NewI = dyn_cast<BinaryOperator>(NewMath)) { | 
|  | NewI->setHasNoSignedWrap(HasNSW); | 
|  | NewI->setHasNoUnsignedWrap(HasNUW); | 
|  | } | 
|  | auto *NewShl = BinaryOperator::CreateShl(NewMath, ShAmt); | 
|  | NewShl->setHasNoSignedWrap(HasNSW); | 
|  | NewShl->setHasNoUnsignedWrap(HasNUW); | 
|  | return NewShl; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombinerImpl::visitAdd(BinaryOperator &I) { | 
|  | if (Value *V = simplifyAddInst(I.getOperand(0), I.getOperand(1), | 
|  | I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), | 
|  | SQ.getWithInstruction(&I))) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | if (SimplifyAssociativeOrCommutative(I)) | 
|  | return &I; | 
|  |  | 
|  | if (Instruction *X = foldVectorBinop(I)) | 
|  | return X; | 
|  |  | 
|  | if (Instruction *Phi = foldBinopWithPhiOperands(I)) | 
|  | return Phi; | 
|  |  | 
|  | // (A*B)+(A*C) -> A*(B+C) etc | 
|  | if (Value *V = SimplifyUsingDistributiveLaws(I)) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | if (Instruction *R = factorizeMathWithShlOps(I, Builder)) | 
|  | return R; | 
|  |  | 
|  | if (Instruction *X = foldAddWithConstant(I)) | 
|  | return X; | 
|  |  | 
|  | if (Instruction *X = foldNoWrapAdd(I, Builder)) | 
|  | return X; | 
|  |  | 
|  | Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); | 
|  | Type *Ty = I.getType(); | 
|  | if (Ty->isIntOrIntVectorTy(1)) | 
|  | return BinaryOperator::CreateXor(LHS, RHS); | 
|  |  | 
|  | // X + X --> X << 1 | 
|  | if (LHS == RHS) { | 
|  | auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1)); | 
|  | Shl->setHasNoSignedWrap(I.hasNoSignedWrap()); | 
|  | Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); | 
|  | return Shl; | 
|  | } | 
|  |  | 
|  | Value *A, *B; | 
|  | if (match(LHS, m_Neg(m_Value(A)))) { | 
|  | // -A + -B --> -(A + B) | 
|  | if (match(RHS, m_Neg(m_Value(B)))) | 
|  | return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B)); | 
|  |  | 
|  | // -A + B --> B - A | 
|  | return BinaryOperator::CreateSub(RHS, A); | 
|  | } | 
|  |  | 
|  | // A + -B  -->  A - B | 
|  | if (match(RHS, m_Neg(m_Value(B)))) | 
|  | return BinaryOperator::CreateSub(LHS, B); | 
|  |  | 
|  | if (Value *V = checkForNegativeOperand(I, Builder)) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | // (A + 1) + ~B --> A - B | 
|  | // ~B + (A + 1) --> A - B | 
|  | // (~B + A) + 1 --> A - B | 
|  | // (A + ~B) + 1 --> A - B | 
|  | if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) || | 
|  | match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One()))) | 
|  | return BinaryOperator::CreateSub(A, B); | 
|  |  | 
|  | // (A + RHS) + RHS --> A + (RHS << 1) | 
|  | if (match(LHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(RHS))))) | 
|  | return BinaryOperator::CreateAdd(A, Builder.CreateShl(RHS, 1, "reass.add")); | 
|  |  | 
|  | // LHS + (A + LHS) --> A + (LHS << 1) | 
|  | if (match(RHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(LHS))))) | 
|  | return BinaryOperator::CreateAdd(A, Builder.CreateShl(LHS, 1, "reass.add")); | 
|  |  | 
|  | { | 
|  | // (A + C1) + (C2 - B) --> (A - B) + (C1 + C2) | 
|  | Constant *C1, *C2; | 
|  | if (match(&I, m_c_Add(m_Add(m_Value(A), m_ImmConstant(C1)), | 
|  | m_Sub(m_ImmConstant(C2), m_Value(B)))) && | 
|  | (LHS->hasOneUse() || RHS->hasOneUse())) { | 
|  | Value *Sub = Builder.CreateSub(A, B); | 
|  | return BinaryOperator::CreateAdd(Sub, ConstantExpr::getAdd(C1, C2)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1) | 
|  | if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V); | 
|  |  | 
|  | // ((X s/ C1) << C2) + X => X s% -C1 where -C1 is 1 << C2 | 
|  | const APInt *C1, *C2; | 
|  | if (match(LHS, m_Shl(m_SDiv(m_Specific(RHS), m_APInt(C1)), m_APInt(C2)))) { | 
|  | APInt one(C2->getBitWidth(), 1); | 
|  | APInt minusC1 = -(*C1); | 
|  | if (minusC1 == (one << *C2)) { | 
|  | Constant *NewRHS = ConstantInt::get(RHS->getType(), minusC1); | 
|  | return BinaryOperator::CreateSRem(RHS, NewRHS); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (A & 2^C1) + A => A & (2^C1 - 1) iff bit C1 in A is a sign bit | 
|  | if (match(&I, m_c_Add(m_And(m_Value(A), m_APInt(C1)), m_Deferred(A))) && | 
|  | C1->isPowerOf2() && (ComputeNumSignBits(A) > C1->countLeadingZeros())) { | 
|  | Constant *NewMask = ConstantInt::get(RHS->getType(), *C1 - 1); | 
|  | return BinaryOperator::CreateAnd(A, NewMask); | 
|  | } | 
|  |  | 
|  | // A+B --> A|B iff A and B have no bits set in common. | 
|  | if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT)) | 
|  | return BinaryOperator::CreateOr(LHS, RHS); | 
|  |  | 
|  | // add (select X 0 (sub n A)) A  -->  select X A n | 
|  | { | 
|  | SelectInst *SI = dyn_cast<SelectInst>(LHS); | 
|  | Value *A = RHS; | 
|  | if (!SI) { | 
|  | SI = dyn_cast<SelectInst>(RHS); | 
|  | A = LHS; | 
|  | } | 
|  | if (SI && SI->hasOneUse()) { | 
|  | Value *TV = SI->getTrueValue(); | 
|  | Value *FV = SI->getFalseValue(); | 
|  | Value *N; | 
|  |  | 
|  | // Can we fold the add into the argument of the select? | 
|  | // We check both true and false select arguments for a matching subtract. | 
|  | if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A)))) | 
|  | // Fold the add into the true select value. | 
|  | return SelectInst::Create(SI->getCondition(), N, A); | 
|  |  | 
|  | if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A)))) | 
|  | // Fold the add into the false select value. | 
|  | return SelectInst::Create(SI->getCondition(), A, N); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Instruction *Ext = narrowMathIfNoOverflow(I)) | 
|  | return Ext; | 
|  |  | 
|  | // (add (xor A, B) (and A, B)) --> (or A, B) | 
|  | // (add (and A, B) (xor A, B)) --> (or A, B) | 
|  | if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)), | 
|  | m_c_And(m_Deferred(A), m_Deferred(B))))) | 
|  | return BinaryOperator::CreateOr(A, B); | 
|  |  | 
|  | // (add (or A, B) (and A, B)) --> (add A, B) | 
|  | // (add (and A, B) (or A, B)) --> (add A, B) | 
|  | if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)), | 
|  | m_c_And(m_Deferred(A), m_Deferred(B))))) { | 
|  | // Replacing operands in-place to preserve nuw/nsw flags. | 
|  | replaceOperand(I, 0, A); | 
|  | replaceOperand(I, 1, B); | 
|  | return &I; | 
|  | } | 
|  |  | 
|  | // TODO(jingyue): Consider willNotOverflowSignedAdd and | 
|  | // willNotOverflowUnsignedAdd to reduce the number of invocations of | 
|  | // computeKnownBits. | 
|  | bool Changed = false; | 
|  | if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) { | 
|  | Changed = true; | 
|  | I.setHasNoSignedWrap(true); | 
|  | } | 
|  | if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) { | 
|  | Changed = true; | 
|  | I.setHasNoUnsignedWrap(true); | 
|  | } | 
|  |  | 
|  | if (Instruction *V = canonicalizeLowbitMask(I, Builder)) | 
|  | return V; | 
|  |  | 
|  | if (Instruction *V = | 
|  | canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) | 
|  | return V; | 
|  |  | 
|  | if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I)) | 
|  | return SatAdd; | 
|  |  | 
|  | // usub.sat(A, B) + B => umax(A, B) | 
|  | if (match(&I, m_c_BinOp( | 
|  | m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Value(A), m_Value(B))), | 
|  | m_Deferred(B)))) { | 
|  | return replaceInstUsesWith(I, | 
|  | Builder.CreateIntrinsic(Intrinsic::umax, {I.getType()}, {A, B})); | 
|  | } | 
|  |  | 
|  | // ctpop(A) + ctpop(B) => ctpop(A | B) if A and B have no bits set in common. | 
|  | if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(A)))) && | 
|  | match(RHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(B)))) && | 
|  | haveNoCommonBitsSet(A, B, DL, &AC, &I, &DT)) | 
|  | return replaceInstUsesWith( | 
|  | I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()}, | 
|  | {Builder.CreateOr(A, B)})); | 
|  |  | 
|  | return Changed ? &I : nullptr; | 
|  | } | 
|  |  | 
|  | /// Eliminate an op from a linear interpolation (lerp) pattern. | 
|  | static Instruction *factorizeLerp(BinaryOperator &I, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | Value *X, *Y, *Z; | 
|  | if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y), | 
|  | m_OneUse(m_FSub(m_FPOne(), | 
|  | m_Value(Z))))), | 
|  | m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z)))))) | 
|  | return nullptr; | 
|  |  | 
|  | // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants] | 
|  | Value *XY = Builder.CreateFSubFMF(X, Y, &I); | 
|  | Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I); | 
|  | return BinaryOperator::CreateFAddFMF(Y, MulZ, &I); | 
|  | } | 
|  |  | 
|  | /// Factor a common operand out of fadd/fsub of fmul/fdiv. | 
|  | static Instruction *factorizeFAddFSub(BinaryOperator &I, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | assert((I.getOpcode() == Instruction::FAdd || | 
|  | I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub"); | 
|  | assert(I.hasAllowReassoc() && I.hasNoSignedZeros() && | 
|  | "FP factorization requires FMF"); | 
|  |  | 
|  | if (Instruction *Lerp = factorizeLerp(I, Builder)) | 
|  | return Lerp; | 
|  |  | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  | if (!Op0->hasOneUse() || !Op1->hasOneUse()) | 
|  | return nullptr; | 
|  |  | 
|  | Value *X, *Y, *Z; | 
|  | bool IsFMul; | 
|  | if ((match(Op0, m_FMul(m_Value(X), m_Value(Z))) && | 
|  | match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z)))) || | 
|  | (match(Op0, m_FMul(m_Value(Z), m_Value(X))) && | 
|  | match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z))))) | 
|  | IsFMul = true; | 
|  | else if (match(Op0, m_FDiv(m_Value(X), m_Value(Z))) && | 
|  | match(Op1, m_FDiv(m_Value(Y), m_Specific(Z)))) | 
|  | IsFMul = false; | 
|  | else | 
|  | return nullptr; | 
|  |  | 
|  | // (X * Z) + (Y * Z) --> (X + Y) * Z | 
|  | // (X * Z) - (Y * Z) --> (X - Y) * Z | 
|  | // (X / Z) + (Y / Z) --> (X + Y) / Z | 
|  | // (X / Z) - (Y / Z) --> (X - Y) / Z | 
|  | bool IsFAdd = I.getOpcode() == Instruction::FAdd; | 
|  | Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I) | 
|  | : Builder.CreateFSubFMF(X, Y, &I); | 
|  |  | 
|  | // Bail out if we just created a denormal constant. | 
|  | // TODO: This is copied from a previous implementation. Is it necessary? | 
|  | const APFloat *C; | 
|  | if (match(XY, m_APFloat(C)) && !C->isNormal()) | 
|  | return nullptr; | 
|  |  | 
|  | return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I) | 
|  | : BinaryOperator::CreateFDivFMF(XY, Z, &I); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombinerImpl::visitFAdd(BinaryOperator &I) { | 
|  | if (Value *V = simplifyFAddInst(I.getOperand(0), I.getOperand(1), | 
|  | I.getFastMathFlags(), | 
|  | SQ.getWithInstruction(&I))) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | if (SimplifyAssociativeOrCommutative(I)) | 
|  | return &I; | 
|  |  | 
|  | if (Instruction *X = foldVectorBinop(I)) | 
|  | return X; | 
|  |  | 
|  | if (Instruction *Phi = foldBinopWithPhiOperands(I)) | 
|  | return Phi; | 
|  |  | 
|  | if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I)) | 
|  | return FoldedFAdd; | 
|  |  | 
|  | // (-X) + Y --> Y - X | 
|  | Value *X, *Y; | 
|  | if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y)))) | 
|  | return BinaryOperator::CreateFSubFMF(Y, X, &I); | 
|  |  | 
|  | // Similar to above, but look through fmul/fdiv for the negated term. | 
|  | // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants] | 
|  | Value *Z; | 
|  | if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))), | 
|  | m_Value(Z)))) { | 
|  | Value *XY = Builder.CreateFMulFMF(X, Y, &I); | 
|  | return BinaryOperator::CreateFSubFMF(Z, XY, &I); | 
|  | } | 
|  | // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants] | 
|  | // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants] | 
|  | if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))), | 
|  | m_Value(Z))) || | 
|  | match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))), | 
|  | m_Value(Z)))) { | 
|  | Value *XY = Builder.CreateFDivFMF(X, Y, &I); | 
|  | return BinaryOperator::CreateFSubFMF(Z, XY, &I); | 
|  | } | 
|  |  | 
|  | // Check for (fadd double (sitofp x), y), see if we can merge this into an | 
|  | // integer add followed by a promotion. | 
|  | Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); | 
|  | if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) { | 
|  | Value *LHSIntVal = LHSConv->getOperand(0); | 
|  | Type *FPType = LHSConv->getType(); | 
|  |  | 
|  | // TODO: This check is overly conservative. In many cases known bits | 
|  | // analysis can tell us that the result of the addition has less significant | 
|  | // bits than the integer type can hold. | 
|  | auto IsValidPromotion = [](Type *FTy, Type *ITy) { | 
|  | Type *FScalarTy = FTy->getScalarType(); | 
|  | Type *IScalarTy = ITy->getScalarType(); | 
|  |  | 
|  | // Do we have enough bits in the significand to represent the result of | 
|  | // the integer addition? | 
|  | unsigned MaxRepresentableBits = | 
|  | APFloat::semanticsPrecision(FScalarTy->getFltSemantics()); | 
|  | return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits; | 
|  | }; | 
|  |  | 
|  | // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst)) | 
|  | // ... if the constant fits in the integer value.  This is useful for things | 
|  | // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer | 
|  | // requires a constant pool load, and generally allows the add to be better | 
|  | // instcombined. | 
|  | if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) | 
|  | if (IsValidPromotion(FPType, LHSIntVal->getType())) { | 
|  | Constant *CI = | 
|  | ConstantExpr::getFPToSI(CFP, LHSIntVal->getType()); | 
|  | if (LHSConv->hasOneUse() && | 
|  | ConstantExpr::getSIToFP(CI, I.getType()) == CFP && | 
|  | willNotOverflowSignedAdd(LHSIntVal, CI, I)) { | 
|  | // Insert the new integer add. | 
|  | Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv"); | 
|  | return new SIToFPInst(NewAdd, I.getType()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y)) | 
|  | if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) { | 
|  | Value *RHSIntVal = RHSConv->getOperand(0); | 
|  | // It's enough to check LHS types only because we require int types to | 
|  | // be the same for this transform. | 
|  | if (IsValidPromotion(FPType, LHSIntVal->getType())) { | 
|  | // Only do this if x/y have the same type, if at least one of them has a | 
|  | // single use (so we don't increase the number of int->fp conversions), | 
|  | // and if the integer add will not overflow. | 
|  | if (LHSIntVal->getType() == RHSIntVal->getType() && | 
|  | (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && | 
|  | willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) { | 
|  | // Insert the new integer add. | 
|  | Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv"); | 
|  | return new SIToFPInst(NewAdd, I.getType()); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle specials cases for FAdd with selects feeding the operation | 
|  | if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS)) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { | 
|  | if (Instruction *F = factorizeFAddFSub(I, Builder)) | 
|  | return F; | 
|  |  | 
|  | // Try to fold fadd into start value of reduction intrinsic. | 
|  | if (match(&I, m_c_FAdd(m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>( | 
|  | m_AnyZeroFP(), m_Value(X))), | 
|  | m_Value(Y)))) { | 
|  | // fadd (rdx 0.0, X), Y --> rdx Y, X | 
|  | return replaceInstUsesWith( | 
|  | I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd, | 
|  | {X->getType()}, {Y, X}, &I)); | 
|  | } | 
|  | const APFloat *StartC, *C; | 
|  | if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>( | 
|  | m_APFloat(StartC), m_Value(X)))) && | 
|  | match(RHS, m_APFloat(C))) { | 
|  | // fadd (rdx StartC, X), C --> rdx (C + StartC), X | 
|  | Constant *NewStartC = ConstantFP::get(I.getType(), *C + *StartC); | 
|  | return replaceInstUsesWith( | 
|  | I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd, | 
|  | {X->getType()}, {NewStartC, X}, &I)); | 
|  | } | 
|  |  | 
|  | // (X * MulC) + X --> X * (MulC + 1.0) | 
|  | Constant *MulC; | 
|  | if (match(&I, m_c_FAdd(m_FMul(m_Value(X), m_ImmConstant(MulC)), | 
|  | m_Deferred(X)))) { | 
|  | if (Constant *NewMulC = ConstantFoldBinaryOpOperands( | 
|  | Instruction::FAdd, MulC, ConstantFP::get(I.getType(), 1.0), DL)) | 
|  | return BinaryOperator::CreateFMulFMF(X, NewMulC, &I); | 
|  | } | 
|  |  | 
|  | if (Value *V = FAddCombine(Builder).simplify(&I)) | 
|  | return replaceInstUsesWith(I, V); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Optimize pointer differences into the same array into a size.  Consider: | 
|  | ///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer | 
|  | /// operands to the ptrtoint instructions for the LHS/RHS of the subtract. | 
|  | Value *InstCombinerImpl::OptimizePointerDifference(Value *LHS, Value *RHS, | 
|  | Type *Ty, bool IsNUW) { | 
|  | // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize | 
|  | // this. | 
|  | bool Swapped = false; | 
|  | GEPOperator *GEP1 = nullptr, *GEP2 = nullptr; | 
|  | if (!isa<GEPOperator>(LHS) && isa<GEPOperator>(RHS)) { | 
|  | std::swap(LHS, RHS); | 
|  | Swapped = true; | 
|  | } | 
|  |  | 
|  | // Require at least one GEP with a common base pointer on both sides. | 
|  | if (auto *LHSGEP = dyn_cast<GEPOperator>(LHS)) { | 
|  | // (gep X, ...) - X | 
|  | if (LHSGEP->getOperand(0)->stripPointerCasts() == | 
|  | RHS->stripPointerCasts()) { | 
|  | GEP1 = LHSGEP; | 
|  | } else if (auto *RHSGEP = dyn_cast<GEPOperator>(RHS)) { | 
|  | // (gep X, ...) - (gep X, ...) | 
|  | if (LHSGEP->getOperand(0)->stripPointerCasts() == | 
|  | RHSGEP->getOperand(0)->stripPointerCasts()) { | 
|  | GEP1 = LHSGEP; | 
|  | GEP2 = RHSGEP; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!GEP1) | 
|  | return nullptr; | 
|  |  | 
|  | if (GEP2) { | 
|  | // (gep X, ...) - (gep X, ...) | 
|  | // | 
|  | // Avoid duplicating the arithmetic if there are more than one non-constant | 
|  | // indices between the two GEPs and either GEP has a non-constant index and | 
|  | // multiple users. If zero non-constant index, the result is a constant and | 
|  | // there is no duplication. If one non-constant index, the result is an add | 
|  | // or sub with a constant, which is no larger than the original code, and | 
|  | // there's no duplicated arithmetic, even if either GEP has multiple | 
|  | // users. If more than one non-constant indices combined, as long as the GEP | 
|  | // with at least one non-constant index doesn't have multiple users, there | 
|  | // is no duplication. | 
|  | unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices(); | 
|  | unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices(); | 
|  | if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 && | 
|  | ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) || | 
|  | (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) { | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Emit the offset of the GEP and an intptr_t. | 
|  | Value *Result = EmitGEPOffset(GEP1); | 
|  |  | 
|  | // If this is a single inbounds GEP and the original sub was nuw, | 
|  | // then the final multiplication is also nuw. | 
|  | if (auto *I = dyn_cast<Instruction>(Result)) | 
|  | if (IsNUW && !GEP2 && !Swapped && GEP1->isInBounds() && | 
|  | I->getOpcode() == Instruction::Mul) | 
|  | I->setHasNoUnsignedWrap(); | 
|  |  | 
|  | // If we have a 2nd GEP of the same base pointer, subtract the offsets. | 
|  | // If both GEPs are inbounds, then the subtract does not have signed overflow. | 
|  | if (GEP2) { | 
|  | Value *Offset = EmitGEPOffset(GEP2); | 
|  | Result = Builder.CreateSub(Result, Offset, "gepdiff", /* NUW */ false, | 
|  | GEP1->isInBounds() && GEP2->isInBounds()); | 
|  | } | 
|  |  | 
|  | // If we have p - gep(p, ...)  then we have to negate the result. | 
|  | if (Swapped) | 
|  | Result = Builder.CreateNeg(Result, "diff.neg"); | 
|  |  | 
|  | return Builder.CreateIntCast(Result, Ty, true); | 
|  | } | 
|  |  | 
|  | static Instruction *foldSubOfMinMax(BinaryOperator &I, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | Value *Op0 = I.getOperand(0); | 
|  | Value *Op1 = I.getOperand(1); | 
|  | Type *Ty = I.getType(); | 
|  | auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op1); | 
|  | if (!MinMax) | 
|  | return nullptr; | 
|  |  | 
|  | // sub(add(X,Y), s/umin(X,Y)) --> s/umax(X,Y) | 
|  | // sub(add(X,Y), s/umax(X,Y)) --> s/umin(X,Y) | 
|  | Value *X = MinMax->getLHS(); | 
|  | Value *Y = MinMax->getRHS(); | 
|  | if (match(Op0, m_c_Add(m_Specific(X), m_Specific(Y))) && | 
|  | (Op0->hasOneUse() || Op1->hasOneUse())) { | 
|  | Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID()); | 
|  | Function *F = Intrinsic::getDeclaration(I.getModule(), InvID, Ty); | 
|  | return CallInst::Create(F, {X, Y}); | 
|  | } | 
|  |  | 
|  | // sub(add(X,Y),umin(Y,Z)) --> add(X,usub.sat(Y,Z)) | 
|  | // sub(add(X,Z),umin(Y,Z)) --> add(X,usub.sat(Z,Y)) | 
|  | Value *Z; | 
|  | if (match(Op1, m_OneUse(m_UMin(m_Value(Y), m_Value(Z))))) { | 
|  | if (match(Op0, m_OneUse(m_c_Add(m_Specific(Y), m_Value(X))))) { | 
|  | Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Y, Z}); | 
|  | return BinaryOperator::CreateAdd(X, USub); | 
|  | } | 
|  | if (match(Op0, m_OneUse(m_c_Add(m_Specific(Z), m_Value(X))))) { | 
|  | Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Z, Y}); | 
|  | return BinaryOperator::CreateAdd(X, USub); | 
|  | } | 
|  | } | 
|  |  | 
|  | // sub Op0, smin((sub nsw Op0, Z), 0) --> smax Op0, Z | 
|  | // sub Op0, smax((sub nsw Op0, Z), 0) --> smin Op0, Z | 
|  | if (MinMax->isSigned() && match(Y, m_ZeroInt()) && | 
|  | match(X, m_NSWSub(m_Specific(Op0), m_Value(Z)))) { | 
|  | Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID()); | 
|  | Function *F = Intrinsic::getDeclaration(I.getModule(), InvID, Ty); | 
|  | return CallInst::Create(F, {Op0, Z}); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombinerImpl::visitSub(BinaryOperator &I) { | 
|  | if (Value *V = simplifySubInst(I.getOperand(0), I.getOperand(1), | 
|  | I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), | 
|  | SQ.getWithInstruction(&I))) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | if (Instruction *X = foldVectorBinop(I)) | 
|  | return X; | 
|  |  | 
|  | if (Instruction *Phi = foldBinopWithPhiOperands(I)) | 
|  | return Phi; | 
|  |  | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  |  | 
|  | // If this is a 'B = x-(-A)', change to B = x+A. | 
|  | // We deal with this without involving Negator to preserve NSW flag. | 
|  | if (Value *V = dyn_castNegVal(Op1)) { | 
|  | BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V); | 
|  |  | 
|  | if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) { | 
|  | assert(BO->getOpcode() == Instruction::Sub && | 
|  | "Expected a subtraction operator!"); | 
|  | if (BO->hasNoSignedWrap() && I.hasNoSignedWrap()) | 
|  | Res->setHasNoSignedWrap(true); | 
|  | } else { | 
|  | if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap()) | 
|  | Res->setHasNoSignedWrap(true); | 
|  | } | 
|  |  | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | // Try this before Negator to preserve NSW flag. | 
|  | if (Instruction *R = factorizeMathWithShlOps(I, Builder)) | 
|  | return R; | 
|  |  | 
|  | Constant *C; | 
|  | if (match(Op0, m_ImmConstant(C))) { | 
|  | Value *X; | 
|  | Constant *C2; | 
|  |  | 
|  | // C-(X+C2) --> (C-C2)-X | 
|  | if (match(Op1, m_Add(m_Value(X), m_ImmConstant(C2)))) | 
|  | return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X); | 
|  | } | 
|  |  | 
|  | auto TryToNarrowDeduceFlags = [this, &I, &Op0, &Op1]() -> Instruction * { | 
|  | if (Instruction *Ext = narrowMathIfNoOverflow(I)) | 
|  | return Ext; | 
|  |  | 
|  | bool Changed = false; | 
|  | if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) { | 
|  | Changed = true; | 
|  | I.setHasNoSignedWrap(true); | 
|  | } | 
|  | if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) { | 
|  | Changed = true; | 
|  | I.setHasNoUnsignedWrap(true); | 
|  | } | 
|  |  | 
|  | return Changed ? &I : nullptr; | 
|  | }; | 
|  |  | 
|  | // First, let's try to interpret `sub a, b` as `add a, (sub 0, b)`, | 
|  | // and let's try to sink `(sub 0, b)` into `b` itself. But only if this isn't | 
|  | // a pure negation used by a select that looks like abs/nabs. | 
|  | bool IsNegation = match(Op0, m_ZeroInt()); | 
|  | if (!IsNegation || none_of(I.users(), [&I, Op1](const User *U) { | 
|  | const Instruction *UI = dyn_cast<Instruction>(U); | 
|  | if (!UI) | 
|  | return false; | 
|  | return match(UI, | 
|  | m_Select(m_Value(), m_Specific(Op1), m_Specific(&I))) || | 
|  | match(UI, m_Select(m_Value(), m_Specific(&I), m_Specific(Op1))); | 
|  | })) { | 
|  | if (Value *NegOp1 = Negator::Negate(IsNegation, Op1, *this)) | 
|  | return BinaryOperator::CreateAdd(NegOp1, Op0); | 
|  | } | 
|  | if (IsNegation) | 
|  | return TryToNarrowDeduceFlags(); // Should have been handled in Negator! | 
|  |  | 
|  | // (A*B)-(A*C) -> A*(B-C) etc | 
|  | if (Value *V = SimplifyUsingDistributiveLaws(I)) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | if (I.getType()->isIntOrIntVectorTy(1)) | 
|  | return BinaryOperator::CreateXor(Op0, Op1); | 
|  |  | 
|  | // Replace (-1 - A) with (~A). | 
|  | if (match(Op0, m_AllOnes())) | 
|  | return BinaryOperator::CreateNot(Op1); | 
|  |  | 
|  | // (X + -1) - Y --> ~Y + X | 
|  | Value *X, *Y; | 
|  | if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes())))) | 
|  | return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X); | 
|  |  | 
|  | // Reassociate sub/add sequences to create more add instructions and | 
|  | // reduce dependency chains: | 
|  | // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1) | 
|  | Value *Z; | 
|  | if (match(Op0, m_OneUse(m_c_Add(m_OneUse(m_Sub(m_Value(X), m_Value(Y))), | 
|  | m_Value(Z))))) { | 
|  | Value *XZ = Builder.CreateAdd(X, Z); | 
|  | Value *YW = Builder.CreateAdd(Y, Op1); | 
|  | return BinaryOperator::CreateSub(XZ, YW); | 
|  | } | 
|  |  | 
|  | // ((X - Y) - Op1)  -->  X - (Y + Op1) | 
|  | if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y))))) { | 
|  | Value *Add = Builder.CreateAdd(Y, Op1); | 
|  | return BinaryOperator::CreateSub(X, Add); | 
|  | } | 
|  |  | 
|  | // (~X) - (~Y) --> Y - X | 
|  | // This is placed after the other reassociations and explicitly excludes a | 
|  | // sub-of-sub pattern to avoid infinite looping. | 
|  | if (isFreeToInvert(Op0, Op0->hasOneUse()) && | 
|  | isFreeToInvert(Op1, Op1->hasOneUse()) && | 
|  | !match(Op0, m_Sub(m_ImmConstant(), m_Value()))) { | 
|  | Value *NotOp0 = Builder.CreateNot(Op0); | 
|  | Value *NotOp1 = Builder.CreateNot(Op1); | 
|  | return BinaryOperator::CreateSub(NotOp1, NotOp0); | 
|  | } | 
|  |  | 
|  | auto m_AddRdx = [](Value *&Vec) { | 
|  | return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_add>(m_Value(Vec))); | 
|  | }; | 
|  | Value *V0, *V1; | 
|  | if (match(Op0, m_AddRdx(V0)) && match(Op1, m_AddRdx(V1)) && | 
|  | V0->getType() == V1->getType()) { | 
|  | // Difference of sums is sum of differences: | 
|  | // add_rdx(V0) - add_rdx(V1) --> add_rdx(V0 - V1) | 
|  | Value *Sub = Builder.CreateSub(V0, V1); | 
|  | Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_add, | 
|  | {Sub->getType()}, {Sub}); | 
|  | return replaceInstUsesWith(I, Rdx); | 
|  | } | 
|  |  | 
|  | if (Constant *C = dyn_cast<Constant>(Op0)) { | 
|  | Value *X; | 
|  | if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) | 
|  | // C - (zext bool) --> bool ? C - 1 : C | 
|  | return SelectInst::Create(X, InstCombiner::SubOne(C), C); | 
|  | if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) | 
|  | // C - (sext bool) --> bool ? C + 1 : C | 
|  | return SelectInst::Create(X, InstCombiner::AddOne(C), C); | 
|  |  | 
|  | // C - ~X == X + (1+C) | 
|  | if (match(Op1, m_Not(m_Value(X)))) | 
|  | return BinaryOperator::CreateAdd(X, InstCombiner::AddOne(C)); | 
|  |  | 
|  | // Try to fold constant sub into select arguments. | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) | 
|  | if (Instruction *R = FoldOpIntoSelect(I, SI)) | 
|  | return R; | 
|  |  | 
|  | // Try to fold constant sub into PHI values. | 
|  | if (PHINode *PN = dyn_cast<PHINode>(Op1)) | 
|  | if (Instruction *R = foldOpIntoPhi(I, PN)) | 
|  | return R; | 
|  |  | 
|  | Constant *C2; | 
|  |  | 
|  | // C-(C2-X) --> X+(C-C2) | 
|  | if (match(Op1, m_Sub(m_ImmConstant(C2), m_Value(X)))) | 
|  | return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2)); | 
|  | } | 
|  |  | 
|  | const APInt *Op0C; | 
|  | if (match(Op0, m_APInt(Op0C)) && Op0C->isMask()) { | 
|  | // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known | 
|  | // zero. | 
|  | KnownBits RHSKnown = computeKnownBits(Op1, 0, &I); | 
|  | if ((*Op0C | RHSKnown.Zero).isAllOnes()) | 
|  | return BinaryOperator::CreateXor(Op1, Op0); | 
|  | } | 
|  |  | 
|  | { | 
|  | Value *Y; | 
|  | // X-(X+Y) == -Y    X-(Y+X) == -Y | 
|  | if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y)))) | 
|  | return BinaryOperator::CreateNeg(Y); | 
|  |  | 
|  | // (X-Y)-X == -Y | 
|  | if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y)))) | 
|  | return BinaryOperator::CreateNeg(Y); | 
|  | } | 
|  |  | 
|  | // (sub (or A, B) (and A, B)) --> (xor A, B) | 
|  | { | 
|  | Value *A, *B; | 
|  | if (match(Op1, m_And(m_Value(A), m_Value(B))) && | 
|  | match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) | 
|  | return BinaryOperator::CreateXor(A, B); | 
|  | } | 
|  |  | 
|  | // (sub (add A, B) (or A, B)) --> (and A, B) | 
|  | { | 
|  | Value *A, *B; | 
|  | if (match(Op0, m_Add(m_Value(A), m_Value(B))) && | 
|  | match(Op1, m_c_Or(m_Specific(A), m_Specific(B)))) | 
|  | return BinaryOperator::CreateAnd(A, B); | 
|  | } | 
|  |  | 
|  | // (sub (add A, B) (and A, B)) --> (or A, B) | 
|  | { | 
|  | Value *A, *B; | 
|  | if (match(Op0, m_Add(m_Value(A), m_Value(B))) && | 
|  | match(Op1, m_c_And(m_Specific(A), m_Specific(B)))) | 
|  | return BinaryOperator::CreateOr(A, B); | 
|  | } | 
|  |  | 
|  | // (sub (and A, B) (or A, B)) --> neg (xor A, B) | 
|  | { | 
|  | Value *A, *B; | 
|  | if (match(Op0, m_And(m_Value(A), m_Value(B))) && | 
|  | match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) && | 
|  | (Op0->hasOneUse() || Op1->hasOneUse())) | 
|  | return BinaryOperator::CreateNeg(Builder.CreateXor(A, B)); | 
|  | } | 
|  |  | 
|  | // (sub (or A, B), (xor A, B)) --> (and A, B) | 
|  | { | 
|  | Value *A, *B; | 
|  | if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && | 
|  | match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) | 
|  | return BinaryOperator::CreateAnd(A, B); | 
|  | } | 
|  |  | 
|  | // (sub (xor A, B) (or A, B)) --> neg (and A, B) | 
|  | { | 
|  | Value *A, *B; | 
|  | if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && | 
|  | match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) && | 
|  | (Op0->hasOneUse() || Op1->hasOneUse())) | 
|  | return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B)); | 
|  | } | 
|  |  | 
|  | { | 
|  | Value *Y; | 
|  | // ((X | Y) - X) --> (~X & Y) | 
|  | if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1))))) | 
|  | return BinaryOperator::CreateAnd( | 
|  | Y, Builder.CreateNot(Op1, Op1->getName() + ".not")); | 
|  | } | 
|  |  | 
|  | { | 
|  | // (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1)) | 
|  | Value *X; | 
|  | if (match(Op0, m_OneUse(m_c_And(m_Specific(Op1), | 
|  | m_OneUse(m_Neg(m_Value(X))))))) { | 
|  | return BinaryOperator::CreateNeg(Builder.CreateAnd( | 
|  | Op1, Builder.CreateAdd(X, Constant::getAllOnesValue(I.getType())))); | 
|  | } | 
|  | } | 
|  |  | 
|  | { | 
|  | // (sub (and Op1, C), Op1) --> neg (and Op1, ~C) | 
|  | Constant *C; | 
|  | if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_Constant(C))))) { | 
|  | return BinaryOperator::CreateNeg( | 
|  | Builder.CreateAnd(Op1, Builder.CreateNot(C))); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Instruction *R = foldSubOfMinMax(I, Builder)) | 
|  | return R; | 
|  |  | 
|  | { | 
|  | // If we have a subtraction between some value and a select between | 
|  | // said value and something else, sink subtraction into select hands, i.e.: | 
|  | //   sub (select %Cond, %TrueVal, %FalseVal), %Op1 | 
|  | //     -> | 
|  | //   select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1) | 
|  | //  or | 
|  | //   sub %Op0, (select %Cond, %TrueVal, %FalseVal) | 
|  | //     -> | 
|  | //   select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal) | 
|  | // This will result in select between new subtraction and 0. | 
|  | auto SinkSubIntoSelect = | 
|  | [Ty = I.getType()](Value *Select, Value *OtherHandOfSub, | 
|  | auto SubBuilder) -> Instruction * { | 
|  | Value *Cond, *TrueVal, *FalseVal; | 
|  | if (!match(Select, m_OneUse(m_Select(m_Value(Cond), m_Value(TrueVal), | 
|  | m_Value(FalseVal))))) | 
|  | return nullptr; | 
|  | if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal) | 
|  | return nullptr; | 
|  | // While it is really tempting to just create two subtractions and let | 
|  | // InstCombine fold one of those to 0, it isn't possible to do so | 
|  | // because of worklist visitation order. So ugly it is. | 
|  | bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal; | 
|  | Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal); | 
|  | Constant *Zero = Constant::getNullValue(Ty); | 
|  | SelectInst *NewSel = | 
|  | SelectInst::Create(Cond, OtherHandOfSubIsTrueVal ? Zero : NewSub, | 
|  | OtherHandOfSubIsTrueVal ? NewSub : Zero); | 
|  | // Preserve prof metadata if any. | 
|  | NewSel->copyMetadata(cast<Instruction>(*Select)); | 
|  | return NewSel; | 
|  | }; | 
|  | if (Instruction *NewSel = SinkSubIntoSelect( | 
|  | /*Select=*/Op0, /*OtherHandOfSub=*/Op1, | 
|  | [Builder = &Builder, Op1](Value *OtherHandOfSelect) { | 
|  | return Builder->CreateSub(OtherHandOfSelect, | 
|  | /*OtherHandOfSub=*/Op1); | 
|  | })) | 
|  | return NewSel; | 
|  | if (Instruction *NewSel = SinkSubIntoSelect( | 
|  | /*Select=*/Op1, /*OtherHandOfSub=*/Op0, | 
|  | [Builder = &Builder, Op0](Value *OtherHandOfSelect) { | 
|  | return Builder->CreateSub(/*OtherHandOfSub=*/Op0, | 
|  | OtherHandOfSelect); | 
|  | })) | 
|  | return NewSel; | 
|  | } | 
|  |  | 
|  | // (X - (X & Y))   -->   (X & ~Y) | 
|  | if (match(Op1, m_c_And(m_Specific(Op0), m_Value(Y))) && | 
|  | (Op1->hasOneUse() || isa<Constant>(Y))) | 
|  | return BinaryOperator::CreateAnd( | 
|  | Op0, Builder.CreateNot(Y, Y->getName() + ".not")); | 
|  |  | 
|  | // ~X - Min/Max(~X, Y) -> ~Min/Max(X, ~Y) - X | 
|  | // ~X - Min/Max(Y, ~X) -> ~Min/Max(X, ~Y) - X | 
|  | // Min/Max(~X, Y) - ~X -> X - ~Min/Max(X, ~Y) | 
|  | // Min/Max(Y, ~X) - ~X -> X - ~Min/Max(X, ~Y) | 
|  | // As long as Y is freely invertible, this will be neutral or a win. | 
|  | // Note: We don't generate the inverse max/min, just create the 'not' of | 
|  | // it and let other folds do the rest. | 
|  | if (match(Op0, m_Not(m_Value(X))) && | 
|  | match(Op1, m_c_MaxOrMin(m_Specific(Op0), m_Value(Y))) && | 
|  | !Op0->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) { | 
|  | Value *Not = Builder.CreateNot(Op1); | 
|  | return BinaryOperator::CreateSub(Not, X); | 
|  | } | 
|  | if (match(Op1, m_Not(m_Value(X))) && | 
|  | match(Op0, m_c_MaxOrMin(m_Specific(Op1), m_Value(Y))) && | 
|  | !Op1->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) { | 
|  | Value *Not = Builder.CreateNot(Op0); | 
|  | return BinaryOperator::CreateSub(X, Not); | 
|  | } | 
|  |  | 
|  | // Optimize pointer differences into the same array into a size.  Consider: | 
|  | //  &A[10] - &A[0]: we should compile this to "10". | 
|  | Value *LHSOp, *RHSOp; | 
|  | if (match(Op0, m_PtrToInt(m_Value(LHSOp))) && | 
|  | match(Op1, m_PtrToInt(m_Value(RHSOp)))) | 
|  | if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(), | 
|  | I.hasNoUnsignedWrap())) | 
|  | return replaceInstUsesWith(I, Res); | 
|  |  | 
|  | // trunc(p)-trunc(q) -> trunc(p-q) | 
|  | if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) && | 
|  | match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp))))) | 
|  | if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(), | 
|  | /* IsNUW */ false)) | 
|  | return replaceInstUsesWith(I, Res); | 
|  |  | 
|  | // Canonicalize a shifty way to code absolute value to the common pattern. | 
|  | // There are 2 potential commuted variants. | 
|  | // We're relying on the fact that we only do this transform when the shift has | 
|  | // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase | 
|  | // instructions). | 
|  | Value *A; | 
|  | const APInt *ShAmt; | 
|  | Type *Ty = I.getType(); | 
|  | if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) && | 
|  | Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 && | 
|  | match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) { | 
|  | // B = ashr i32 A, 31 ; smear the sign bit | 
|  | // sub (xor A, B), B  ; flip bits if negative and subtract -1 (add 1) | 
|  | // --> (A < 0) ? -A : A | 
|  | Value *IsNeg = Builder.CreateIsNeg(A); | 
|  | // Copy the nuw/nsw flags from the sub to the negate. | 
|  | Value *NegA = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(), | 
|  | I.hasNoSignedWrap()); | 
|  | return SelectInst::Create(IsNeg, NegA, A); | 
|  | } | 
|  |  | 
|  | // If we are subtracting a low-bit masked subset of some value from an add | 
|  | // of that same value with no low bits changed, that is clearing some low bits | 
|  | // of the sum: | 
|  | // sub (X + AddC), (X & AndC) --> and (X + AddC), ~AndC | 
|  | const APInt *AddC, *AndC; | 
|  | if (match(Op0, m_Add(m_Value(X), m_APInt(AddC))) && | 
|  | match(Op1, m_And(m_Specific(X), m_APInt(AndC)))) { | 
|  | unsigned BitWidth = Ty->getScalarSizeInBits(); | 
|  | unsigned Cttz = AddC->countTrailingZeros(); | 
|  | APInt HighMask(APInt::getHighBitsSet(BitWidth, BitWidth - Cttz)); | 
|  | if ((HighMask & *AndC).isZero()) | 
|  | return BinaryOperator::CreateAnd(Op0, ConstantInt::get(Ty, ~(*AndC))); | 
|  | } | 
|  |  | 
|  | if (Instruction *V = | 
|  | canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) | 
|  | return V; | 
|  |  | 
|  | // X - usub.sat(X, Y) => umin(X, Y) | 
|  | if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Specific(Op0), | 
|  | m_Value(Y))))) | 
|  | return replaceInstUsesWith( | 
|  | I, Builder.CreateIntrinsic(Intrinsic::umin, {I.getType()}, {Op0, Y})); | 
|  |  | 
|  | // umax(X, Op1) - Op1 --> usub.sat(X, Op1) | 
|  | // TODO: The one-use restriction is not strictly necessary, but it may | 
|  | //       require improving other pattern matching and/or codegen. | 
|  | if (match(Op0, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op1))))) | 
|  | return replaceInstUsesWith( | 
|  | I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op1})); | 
|  |  | 
|  | // Op0 - umin(X, Op0) --> usub.sat(Op0, X) | 
|  | if (match(Op1, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op0))))) | 
|  | return replaceInstUsesWith( | 
|  | I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op0, X})); | 
|  |  | 
|  | // Op0 - umax(X, Op0) --> 0 - usub.sat(X, Op0) | 
|  | if (match(Op1, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op0))))) { | 
|  | Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op0}); | 
|  | return BinaryOperator::CreateNeg(USub); | 
|  | } | 
|  |  | 
|  | // umin(X, Op1) - Op1 --> 0 - usub.sat(Op1, X) | 
|  | if (match(Op0, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op1))))) { | 
|  | Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op1, X}); | 
|  | return BinaryOperator::CreateNeg(USub); | 
|  | } | 
|  |  | 
|  | // C - ctpop(X) => ctpop(~X) if C is bitwidth | 
|  | if (match(Op0, m_SpecificInt(Ty->getScalarSizeInBits())) && | 
|  | match(Op1, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(X))))) | 
|  | return replaceInstUsesWith( | 
|  | I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()}, | 
|  | {Builder.CreateNot(X)})); | 
|  |  | 
|  | return TryToNarrowDeduceFlags(); | 
|  | } | 
|  |  | 
|  | /// This eliminates floating-point negation in either 'fneg(X)' or | 
|  | /// 'fsub(-0.0, X)' form by combining into a constant operand. | 
|  | static Instruction *foldFNegIntoConstant(Instruction &I) { | 
|  | // This is limited with one-use because fneg is assumed better for | 
|  | // reassociation and cheaper in codegen than fmul/fdiv. | 
|  | // TODO: Should the m_OneUse restriction be removed? | 
|  | Instruction *FNegOp; | 
|  | if (!match(&I, m_FNeg(m_OneUse(m_Instruction(FNegOp))))) | 
|  | return nullptr; | 
|  |  | 
|  | Value *X; | 
|  | Constant *C; | 
|  |  | 
|  | // Fold negation into constant operand. | 
|  | // -(X * C) --> X * (-C) | 
|  | if (match(FNegOp, m_FMul(m_Value(X), m_Constant(C)))) | 
|  | return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I); | 
|  | // -(X / C) --> X / (-C) | 
|  | if (match(FNegOp, m_FDiv(m_Value(X), m_Constant(C)))) | 
|  | return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I); | 
|  | // -(C / X) --> (-C) / X | 
|  | if (match(FNegOp, m_FDiv(m_Constant(C), m_Value(X)))) { | 
|  | Instruction *FDiv = | 
|  | BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I); | 
|  |  | 
|  | // Intersect 'nsz' and 'ninf' because those special value exceptions may not | 
|  | // apply to the fdiv. Everything else propagates from the fneg. | 
|  | // TODO: We could propagate nsz/ninf from fdiv alone? | 
|  | FastMathFlags FMF = I.getFastMathFlags(); | 
|  | FastMathFlags OpFMF = FNegOp->getFastMathFlags(); | 
|  | FDiv->setHasNoSignedZeros(FMF.noSignedZeros() && OpFMF.noSignedZeros()); | 
|  | FDiv->setHasNoInfs(FMF.noInfs() && OpFMF.noInfs()); | 
|  | return FDiv; | 
|  | } | 
|  | // With NSZ [ counter-example with -0.0: -(-0.0 + 0.0) != 0.0 + -0.0 ]: | 
|  | // -(X + C) --> -X + -C --> -C - X | 
|  | if (I.hasNoSignedZeros() && match(FNegOp, m_FAdd(m_Value(X), m_Constant(C)))) | 
|  | return BinaryOperator::CreateFSubFMF(ConstantExpr::getFNeg(C), X, &I); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static Instruction *hoistFNegAboveFMulFDiv(Instruction &I, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | Value *FNeg; | 
|  | if (!match(&I, m_FNeg(m_Value(FNeg)))) | 
|  | return nullptr; | 
|  |  | 
|  | Value *X, *Y; | 
|  | if (match(FNeg, m_OneUse(m_FMul(m_Value(X), m_Value(Y))))) | 
|  | return BinaryOperator::CreateFMulFMF(Builder.CreateFNegFMF(X, &I), Y, &I); | 
|  |  | 
|  | if (match(FNeg, m_OneUse(m_FDiv(m_Value(X), m_Value(Y))))) | 
|  | return BinaryOperator::CreateFDivFMF(Builder.CreateFNegFMF(X, &I), Y, &I); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombinerImpl::visitFNeg(UnaryOperator &I) { | 
|  | Value *Op = I.getOperand(0); | 
|  |  | 
|  | if (Value *V = simplifyFNegInst(Op, I.getFastMathFlags(), | 
|  | getSimplifyQuery().getWithInstruction(&I))) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | if (Instruction *X = foldFNegIntoConstant(I)) | 
|  | return X; | 
|  |  | 
|  | Value *X, *Y; | 
|  |  | 
|  | // If we can ignore the sign of zeros: -(X - Y) --> (Y - X) | 
|  | if (I.hasNoSignedZeros() && | 
|  | match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) | 
|  | return BinaryOperator::CreateFSubFMF(Y, X, &I); | 
|  |  | 
|  | if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder)) | 
|  | return R; | 
|  |  | 
|  | // Try to eliminate fneg if at least 1 arm of the select is negated. | 
|  | Value *Cond; | 
|  | if (match(Op, m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y))))) { | 
|  | // Unlike most transforms, this one is not safe to propagate nsz unless | 
|  | // it is present on the original select. (We are conservatively intersecting | 
|  | // the nsz flags from the select and root fneg instruction.) | 
|  | auto propagateSelectFMF = [&](SelectInst *S, bool CommonOperand) { | 
|  | S->copyFastMathFlags(&I); | 
|  | if (auto *OldSel = dyn_cast<SelectInst>(Op)) | 
|  | if (!OldSel->hasNoSignedZeros() && !CommonOperand && | 
|  | !isGuaranteedNotToBeUndefOrPoison(OldSel->getCondition())) | 
|  | S->setHasNoSignedZeros(false); | 
|  | }; | 
|  | // -(Cond ? -P : Y) --> Cond ? P : -Y | 
|  | Value *P; | 
|  | if (match(X, m_FNeg(m_Value(P)))) { | 
|  | Value *NegY = Builder.CreateFNegFMF(Y, &I, Y->getName() + ".neg"); | 
|  | SelectInst *NewSel = SelectInst::Create(Cond, P, NegY); | 
|  | propagateSelectFMF(NewSel, P == Y); | 
|  | return NewSel; | 
|  | } | 
|  | // -(Cond ? X : -P) --> Cond ? -X : P | 
|  | if (match(Y, m_FNeg(m_Value(P)))) { | 
|  | Value *NegX = Builder.CreateFNegFMF(X, &I, X->getName() + ".neg"); | 
|  | SelectInst *NewSel = SelectInst::Create(Cond, NegX, P); | 
|  | propagateSelectFMF(NewSel, P == X); | 
|  | return NewSel; | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombinerImpl::visitFSub(BinaryOperator &I) { | 
|  | if (Value *V = simplifyFSubInst(I.getOperand(0), I.getOperand(1), | 
|  | I.getFastMathFlags(), | 
|  | getSimplifyQuery().getWithInstruction(&I))) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | if (Instruction *X = foldVectorBinop(I)) | 
|  | return X; | 
|  |  | 
|  | if (Instruction *Phi = foldBinopWithPhiOperands(I)) | 
|  | return Phi; | 
|  |  | 
|  | // Subtraction from -0.0 is the canonical form of fneg. | 
|  | // fsub -0.0, X ==> fneg X | 
|  | // fsub nsz 0.0, X ==> fneg nsz X | 
|  | // | 
|  | // FIXME This matcher does not respect FTZ or DAZ yet: | 
|  | // fsub -0.0, Denorm ==> +-0 | 
|  | // fneg Denorm ==> -Denorm | 
|  | Value *Op; | 
|  | if (match(&I, m_FNeg(m_Value(Op)))) | 
|  | return UnaryOperator::CreateFNegFMF(Op, &I); | 
|  |  | 
|  | if (Instruction *X = foldFNegIntoConstant(I)) | 
|  | return X; | 
|  |  | 
|  | if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder)) | 
|  | return R; | 
|  |  | 
|  | Value *X, *Y; | 
|  | Constant *C; | 
|  |  | 
|  | Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); | 
|  | // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X) | 
|  | // Canonicalize to fadd to make analysis easier. | 
|  | // This can also help codegen because fadd is commutative. | 
|  | // Note that if this fsub was really an fneg, the fadd with -0.0 will get | 
|  | // killed later. We still limit that particular transform with 'hasOneUse' | 
|  | // because an fneg is assumed better/cheaper than a generic fsub. | 
|  | if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) { | 
|  | if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) { | 
|  | Value *NewSub = Builder.CreateFSubFMF(Y, X, &I); | 
|  | return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I); | 
|  | } | 
|  | } | 
|  |  | 
|  | // (-X) - Op1 --> -(X + Op1) | 
|  | if (I.hasNoSignedZeros() && !isa<ConstantExpr>(Op0) && | 
|  | match(Op0, m_OneUse(m_FNeg(m_Value(X))))) { | 
|  | Value *FAdd = Builder.CreateFAddFMF(X, Op1, &I); | 
|  | return UnaryOperator::CreateFNegFMF(FAdd, &I); | 
|  | } | 
|  |  | 
|  | if (isa<Constant>(Op0)) | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) | 
|  | if (Instruction *NV = FoldOpIntoSelect(I, SI)) | 
|  | return NV; | 
|  |  | 
|  | // X - C --> X + (-C) | 
|  | // But don't transform constant expressions because there's an inverse fold | 
|  | // for X + (-Y) --> X - Y. | 
|  | if (match(Op1, m_ImmConstant(C))) | 
|  | return BinaryOperator::CreateFAddFMF(Op0, ConstantExpr::getFNeg(C), &I); | 
|  |  | 
|  | // X - (-Y) --> X + Y | 
|  | if (match(Op1, m_FNeg(m_Value(Y)))) | 
|  | return BinaryOperator::CreateFAddFMF(Op0, Y, &I); | 
|  |  | 
|  | // Similar to above, but look through a cast of the negated value: | 
|  | // X - (fptrunc(-Y)) --> X + fptrunc(Y) | 
|  | Type *Ty = I.getType(); | 
|  | if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y)))))) | 
|  | return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I); | 
|  |  | 
|  | // X - (fpext(-Y)) --> X + fpext(Y) | 
|  | if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y)))))) | 
|  | return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I); | 
|  |  | 
|  | // Similar to above, but look through fmul/fdiv of the negated value: | 
|  | // Op0 - (-X * Y) --> Op0 + (X * Y) | 
|  | // Op0 - (Y * -X) --> Op0 + (X * Y) | 
|  | if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) { | 
|  | Value *FMul = Builder.CreateFMulFMF(X, Y, &I); | 
|  | return BinaryOperator::CreateFAddFMF(Op0, FMul, &I); | 
|  | } | 
|  | // Op0 - (-X / Y) --> Op0 + (X / Y) | 
|  | // Op0 - (X / -Y) --> Op0 + (X / Y) | 
|  | if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) || | 
|  | match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) { | 
|  | Value *FDiv = Builder.CreateFDivFMF(X, Y, &I); | 
|  | return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I); | 
|  | } | 
|  |  | 
|  | // Handle special cases for FSub with selects feeding the operation | 
|  | if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1)) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | if (I.hasAllowReassoc() && I.hasNoSignedZeros()) { | 
|  | // (Y - X) - Y --> -X | 
|  | if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X)))) | 
|  | return UnaryOperator::CreateFNegFMF(X, &I); | 
|  |  | 
|  | // Y - (X + Y) --> -X | 
|  | // Y - (Y + X) --> -X | 
|  | if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X)))) | 
|  | return UnaryOperator::CreateFNegFMF(X, &I); | 
|  |  | 
|  | // (X * C) - X --> X * (C - 1.0) | 
|  | if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) { | 
|  | if (Constant *CSubOne = ConstantFoldBinaryOpOperands( | 
|  | Instruction::FSub, C, ConstantFP::get(Ty, 1.0), DL)) | 
|  | return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I); | 
|  | } | 
|  | // X - (X * C) --> X * (1.0 - C) | 
|  | if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) { | 
|  | if (Constant *OneSubC = ConstantFoldBinaryOpOperands( | 
|  | Instruction::FSub, ConstantFP::get(Ty, 1.0), C, DL)) | 
|  | return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I); | 
|  | } | 
|  |  | 
|  | // Reassociate fsub/fadd sequences to create more fadd instructions and | 
|  | // reduce dependency chains: | 
|  | // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1) | 
|  | Value *Z; | 
|  | if (match(Op0, m_OneUse(m_c_FAdd(m_OneUse(m_FSub(m_Value(X), m_Value(Y))), | 
|  | m_Value(Z))))) { | 
|  | Value *XZ = Builder.CreateFAddFMF(X, Z, &I); | 
|  | Value *YW = Builder.CreateFAddFMF(Y, Op1, &I); | 
|  | return BinaryOperator::CreateFSubFMF(XZ, YW, &I); | 
|  | } | 
|  |  | 
|  | auto m_FaddRdx = [](Value *&Sum, Value *&Vec) { | 
|  | return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(m_Value(Sum), | 
|  | m_Value(Vec))); | 
|  | }; | 
|  | Value *A0, *A1, *V0, *V1; | 
|  | if (match(Op0, m_FaddRdx(A0, V0)) && match(Op1, m_FaddRdx(A1, V1)) && | 
|  | V0->getType() == V1->getType()) { | 
|  | // Difference of sums is sum of differences: | 
|  | // add_rdx(A0, V0) - add_rdx(A1, V1) --> add_rdx(A0, V0 - V1) - A1 | 
|  | Value *Sub = Builder.CreateFSubFMF(V0, V1, &I); | 
|  | Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd, | 
|  | {Sub->getType()}, {A0, Sub}, &I); | 
|  | return BinaryOperator::CreateFSubFMF(Rdx, A1, &I); | 
|  | } | 
|  |  | 
|  | if (Instruction *F = factorizeFAddFSub(I, Builder)) | 
|  | return F; | 
|  |  | 
|  | // TODO: This performs reassociative folds for FP ops. Some fraction of the | 
|  | // functionality has been subsumed by simple pattern matching here and in | 
|  | // InstSimplify. We should let a dedicated reassociation pass handle more | 
|  | // complex pattern matching and remove this from InstCombine. | 
|  | if (Value *V = FAddCombine(Builder).simplify(&I)) | 
|  | return replaceInstUsesWith(I, V); | 
|  |  | 
|  | // (X - Y) - Op1 --> X - (Y + Op1) | 
|  | if (match(Op0, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) { | 
|  | Value *FAdd = Builder.CreateFAddFMF(Y, Op1, &I); | 
|  | return BinaryOperator::CreateFSubFMF(X, FAdd, &I); | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } |