|  | //===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file is part of the X86 Disassembler. | 
|  | // It contains code to translate the data produced by the decoder into | 
|  | //  MCInsts. | 
|  | // | 
|  | // | 
|  | // The X86 disassembler is a table-driven disassembler for the 16-, 32-, and | 
|  | // 64-bit X86 instruction sets.  The main decode sequence for an assembly | 
|  | // instruction in this disassembler is: | 
|  | // | 
|  | // 1. Read the prefix bytes and determine the attributes of the instruction. | 
|  | //    These attributes, recorded in enum attributeBits | 
|  | //    (X86DisassemblerDecoderCommon.h), form a bitmask.  The table CONTEXTS_SYM | 
|  | //    provides a mapping from bitmasks to contexts, which are represented by | 
|  | //    enum InstructionContext (ibid.). | 
|  | // | 
|  | // 2. Read the opcode, and determine what kind of opcode it is.  The | 
|  | //    disassembler distinguishes four kinds of opcodes, which are enumerated in | 
|  | //    OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte | 
|  | //    (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a | 
|  | //    (0x0f 0x3a 0xnn).  Mandatory prefixes are treated as part of the context. | 
|  | // | 
|  | // 3. Depending on the opcode type, look in one of four ClassDecision structures | 
|  | //    (X86DisassemblerDecoderCommon.h).  Use the opcode class to determine which | 
|  | //    OpcodeDecision (ibid.) to look the opcode in.  Look up the opcode, to get | 
|  | //    a ModRMDecision (ibid.). | 
|  | // | 
|  | // 4. Some instructions, such as escape opcodes or extended opcodes, or even | 
|  | //    instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the | 
|  | //    ModR/M byte to complete decode.  The ModRMDecision's type is an entry from | 
|  | //    ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the | 
|  | //    ModR/M byte is required and how to interpret it. | 
|  | // | 
|  | // 5. After resolving the ModRMDecision, the disassembler has a unique ID | 
|  | //    of type InstrUID (X86DisassemblerDecoderCommon.h).  Looking this ID up in | 
|  | //    INSTRUCTIONS_SYM yields the name of the instruction and the encodings and | 
|  | //    meanings of its operands. | 
|  | // | 
|  | // 6. For each operand, its encoding is an entry from OperandEncoding | 
|  | //    (X86DisassemblerDecoderCommon.h) and its type is an entry from | 
|  | //    OperandType (ibid.).  The encoding indicates how to read it from the | 
|  | //    instruction; the type indicates how to interpret the value once it has | 
|  | //    been read.  For example, a register operand could be stored in the R/M | 
|  | //    field of the ModR/M byte, the REG field of the ModR/M byte, or added to | 
|  | //    the main opcode.  This is orthogonal from its meaning (an GPR or an XMM | 
|  | //    register, for instance).  Given this information, the operands can be | 
|  | //    extracted and interpreted. | 
|  | // | 
|  | // 7. As the last step, the disassembler translates the instruction information | 
|  | //    and operands into a format understandable by the client - in this case, an | 
|  | //    MCInst for use by the MC infrastructure. | 
|  | // | 
|  | // The disassembler is broken broadly into two parts: the table emitter that | 
|  | // emits the instruction decode tables discussed above during compilation, and | 
|  | // the disassembler itself.  The table emitter is documented in more detail in | 
|  | // utils/TableGen/X86DisassemblerEmitter.h. | 
|  | // | 
|  | // X86Disassembler.cpp contains the code responsible for step 7, and for | 
|  | //   invoking the decoder to execute steps 1-6. | 
|  | // X86DisassemblerDecoderCommon.h contains the definitions needed by both the | 
|  | //   table emitter and the disassembler. | 
|  | // X86DisassemblerDecoder.h contains the public interface of the decoder, | 
|  | //   factored out into C for possible use by other projects. | 
|  | // X86DisassemblerDecoder.c contains the source code of the decoder, which is | 
|  | //   responsible for steps 1-6. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "MCTargetDesc/X86BaseInfo.h" | 
|  | #include "MCTargetDesc/X86MCTargetDesc.h" | 
|  | #include "TargetInfo/X86TargetInfo.h" | 
|  | #include "X86DisassemblerDecoder.h" | 
|  | #include "llvm/MC/MCContext.h" | 
|  | #include "llvm/MC/MCDisassembler/MCDisassembler.h" | 
|  | #include "llvm/MC/MCExpr.h" | 
|  | #include "llvm/MC/MCInst.h" | 
|  | #include "llvm/MC/MCInstrInfo.h" | 
|  | #include "llvm/MC/MCSubtargetInfo.h" | 
|  | #include "llvm/MC/TargetRegistry.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/Format.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::X86Disassembler; | 
|  |  | 
|  | #define DEBUG_TYPE "x86-disassembler" | 
|  |  | 
|  | #define debug(s) LLVM_DEBUG(dbgs() << __LINE__ << ": " << s); | 
|  |  | 
|  | // Specifies whether a ModR/M byte is needed and (if so) which | 
|  | // instruction each possible value of the ModR/M byte corresponds to.  Once | 
|  | // this information is known, we have narrowed down to a single instruction. | 
|  | struct ModRMDecision { | 
|  | uint8_t modrm_type; | 
|  | uint16_t instructionIDs; | 
|  | }; | 
|  |  | 
|  | // Specifies which set of ModR/M->instruction tables to look at | 
|  | // given a particular opcode. | 
|  | struct OpcodeDecision { | 
|  | ModRMDecision modRMDecisions[256]; | 
|  | }; | 
|  |  | 
|  | // Specifies which opcode->instruction tables to look at given | 
|  | // a particular context (set of attributes).  Since there are many possible | 
|  | // contexts, the decoder first uses CONTEXTS_SYM to determine which context | 
|  | // applies given a specific set of attributes.  Hence there are only IC_max | 
|  | // entries in this table, rather than 2^(ATTR_max). | 
|  | struct ContextDecision { | 
|  | OpcodeDecision opcodeDecisions[IC_max]; | 
|  | }; | 
|  |  | 
|  | #include "X86GenDisassemblerTables.inc" | 
|  |  | 
|  | static InstrUID decode(OpcodeType type, InstructionContext insnContext, | 
|  | uint8_t opcode, uint8_t modRM) { | 
|  | const struct ModRMDecision *dec; | 
|  |  | 
|  | switch (type) { | 
|  | case ONEBYTE: | 
|  | dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; | 
|  | break; | 
|  | case TWOBYTE: | 
|  | dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; | 
|  | break; | 
|  | case THREEBYTE_38: | 
|  | dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; | 
|  | break; | 
|  | case THREEBYTE_3A: | 
|  | dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; | 
|  | break; | 
|  | case XOP8_MAP: | 
|  | dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; | 
|  | break; | 
|  | case XOP9_MAP: | 
|  | dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; | 
|  | break; | 
|  | case XOPA_MAP: | 
|  | dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; | 
|  | break; | 
|  | case THREEDNOW_MAP: | 
|  | dec = | 
|  | &THREEDNOW_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; | 
|  | break; | 
|  | case MAP5: | 
|  | dec = &MAP5_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; | 
|  | break; | 
|  | case MAP6: | 
|  | dec = &MAP6_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (dec->modrm_type) { | 
|  | default: | 
|  | llvm_unreachable("Corrupt table!  Unknown modrm_type"); | 
|  | return 0; | 
|  | case MODRM_ONEENTRY: | 
|  | return modRMTable[dec->instructionIDs]; | 
|  | case MODRM_SPLITRM: | 
|  | if (modFromModRM(modRM) == 0x3) | 
|  | return modRMTable[dec->instructionIDs + 1]; | 
|  | return modRMTable[dec->instructionIDs]; | 
|  | case MODRM_SPLITREG: | 
|  | if (modFromModRM(modRM) == 0x3) | 
|  | return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3) + 8]; | 
|  | return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)]; | 
|  | case MODRM_SPLITMISC: | 
|  | if (modFromModRM(modRM) == 0x3) | 
|  | return modRMTable[dec->instructionIDs + (modRM & 0x3f) + 8]; | 
|  | return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)]; | 
|  | case MODRM_FULL: | 
|  | return modRMTable[dec->instructionIDs + modRM]; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool peek(struct InternalInstruction *insn, uint8_t &byte) { | 
|  | uint64_t offset = insn->readerCursor - insn->startLocation; | 
|  | if (offset >= insn->bytes.size()) | 
|  | return true; | 
|  | byte = insn->bytes[offset]; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | template <typename T> static bool consume(InternalInstruction *insn, T &ptr) { | 
|  | auto r = insn->bytes; | 
|  | uint64_t offset = insn->readerCursor - insn->startLocation; | 
|  | if (offset + sizeof(T) > r.size()) | 
|  | return true; | 
|  | T ret = 0; | 
|  | for (unsigned i = 0; i < sizeof(T); ++i) | 
|  | ret |= (uint64_t)r[offset + i] << (i * 8); | 
|  | ptr = ret; | 
|  | insn->readerCursor += sizeof(T); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isREX(struct InternalInstruction *insn, uint8_t prefix) { | 
|  | return insn->mode == MODE_64BIT && prefix >= 0x40 && prefix <= 0x4f; | 
|  | } | 
|  |  | 
|  | // Consumes all of an instruction's prefix bytes, and marks the | 
|  | // instruction as having them.  Also sets the instruction's default operand, | 
|  | // address, and other relevant data sizes to report operands correctly. | 
|  | // | 
|  | // insn must not be empty. | 
|  | static int readPrefixes(struct InternalInstruction *insn) { | 
|  | bool isPrefix = true; | 
|  | uint8_t byte = 0; | 
|  | uint8_t nextByte; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "readPrefixes()"); | 
|  |  | 
|  | while (isPrefix) { | 
|  | // If we fail reading prefixes, just stop here and let the opcode reader | 
|  | // deal with it. | 
|  | if (consume(insn, byte)) | 
|  | break; | 
|  |  | 
|  | // If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then | 
|  | // break and let it be disassembled as a normal "instruction". | 
|  | if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0) // LOCK | 
|  | break; | 
|  |  | 
|  | if ((byte == 0xf2 || byte == 0xf3) && !peek(insn, nextByte)) { | 
|  | // If the byte is 0xf2 or 0xf3, and any of the following conditions are | 
|  | // met: | 
|  | // - it is followed by a LOCK (0xf0) prefix | 
|  | // - it is followed by an xchg instruction | 
|  | // then it should be disassembled as a xacquire/xrelease not repne/rep. | 
|  | if (((nextByte == 0xf0) || | 
|  | ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90))) { | 
|  | insn->xAcquireRelease = true; | 
|  | if (!(byte == 0xf3 && nextByte == 0x90)) // PAUSE instruction support | 
|  | break; | 
|  | } | 
|  | // Also if the byte is 0xf3, and the following condition is met: | 
|  | // - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or | 
|  | //                       "mov mem, imm" (opcode 0xc6/0xc7) instructions. | 
|  | // then it should be disassembled as an xrelease not rep. | 
|  | if (byte == 0xf3 && (nextByte == 0x88 || nextByte == 0x89 || | 
|  | nextByte == 0xc6 || nextByte == 0xc7)) { | 
|  | insn->xAcquireRelease = true; | 
|  | break; | 
|  | } | 
|  | if (isREX(insn, nextByte)) { | 
|  | uint8_t nnextByte; | 
|  | // Go to REX prefix after the current one | 
|  | if (consume(insn, nnextByte)) | 
|  | return -1; | 
|  | // We should be able to read next byte after REX prefix | 
|  | if (peek(insn, nnextByte)) | 
|  | return -1; | 
|  | --insn->readerCursor; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (byte) { | 
|  | case 0xf0: // LOCK | 
|  | insn->hasLockPrefix = true; | 
|  | break; | 
|  | case 0xf2: // REPNE/REPNZ | 
|  | case 0xf3: { // REP or REPE/REPZ | 
|  | uint8_t nextByte; | 
|  | if (peek(insn, nextByte)) | 
|  | break; | 
|  | // TODO: | 
|  | //  1. There could be several 0x66 | 
|  | //  2. if (nextByte == 0x66) and nextNextByte != 0x0f then | 
|  | //      it's not mandatory prefix | 
|  | //  3. if (nextByte >= 0x40 && nextByte <= 0x4f) it's REX and we need | 
|  | //     0x0f exactly after it to be mandatory prefix | 
|  | if (isREX(insn, nextByte) || nextByte == 0x0f || nextByte == 0x66) | 
|  | // The last of 0xf2 /0xf3 is mandatory prefix | 
|  | insn->mandatoryPrefix = byte; | 
|  | insn->repeatPrefix = byte; | 
|  | break; | 
|  | } | 
|  | case 0x2e: // CS segment override -OR- Branch not taken | 
|  | insn->segmentOverride = SEG_OVERRIDE_CS; | 
|  | break; | 
|  | case 0x36: // SS segment override -OR- Branch taken | 
|  | insn->segmentOverride = SEG_OVERRIDE_SS; | 
|  | break; | 
|  | case 0x3e: // DS segment override | 
|  | insn->segmentOverride = SEG_OVERRIDE_DS; | 
|  | break; | 
|  | case 0x26: // ES segment override | 
|  | insn->segmentOverride = SEG_OVERRIDE_ES; | 
|  | break; | 
|  | case 0x64: // FS segment override | 
|  | insn->segmentOverride = SEG_OVERRIDE_FS; | 
|  | break; | 
|  | case 0x65: // GS segment override | 
|  | insn->segmentOverride = SEG_OVERRIDE_GS; | 
|  | break; | 
|  | case 0x66: { // Operand-size override { | 
|  | uint8_t nextByte; | 
|  | insn->hasOpSize = true; | 
|  | if (peek(insn, nextByte)) | 
|  | break; | 
|  | // 0x66 can't overwrite existing mandatory prefix and should be ignored | 
|  | if (!insn->mandatoryPrefix && (nextByte == 0x0f || isREX(insn, nextByte))) | 
|  | insn->mandatoryPrefix = byte; | 
|  | break; | 
|  | } | 
|  | case 0x67: // Address-size override | 
|  | insn->hasAdSize = true; | 
|  | break; | 
|  | default: // Not a prefix byte | 
|  | isPrefix = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (isPrefix) | 
|  | LLVM_DEBUG(dbgs() << format("Found prefix 0x%hhx", byte)); | 
|  | } | 
|  |  | 
|  | insn->vectorExtensionType = TYPE_NO_VEX_XOP; | 
|  |  | 
|  | if (byte == 0x62) { | 
|  | uint8_t byte1, byte2; | 
|  | if (consume(insn, byte1)) { | 
|  | LLVM_DEBUG(dbgs() << "Couldn't read second byte of EVEX prefix"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (peek(insn, byte2)) { | 
|  | LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) && | 
|  | ((~byte1 & 0x8) == 0x8) && ((byte2 & 0x4) == 0x4)) { | 
|  | insn->vectorExtensionType = TYPE_EVEX; | 
|  | } else { | 
|  | --insn->readerCursor; // unconsume byte1 | 
|  | --insn->readerCursor; // unconsume byte | 
|  | } | 
|  |  | 
|  | if (insn->vectorExtensionType == TYPE_EVEX) { | 
|  | insn->vectorExtensionPrefix[0] = byte; | 
|  | insn->vectorExtensionPrefix[1] = byte1; | 
|  | if (consume(insn, insn->vectorExtensionPrefix[2])) { | 
|  | LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix"); | 
|  | return -1; | 
|  | } | 
|  | if (consume(insn, insn->vectorExtensionPrefix[3])) { | 
|  | LLVM_DEBUG(dbgs() << "Couldn't read fourth byte of EVEX prefix"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // We simulate the REX prefix for simplicity's sake | 
|  | if (insn->mode == MODE_64BIT) { | 
|  | insn->rexPrefix = 0x40 | | 
|  | (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3) | | 
|  | (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2) | | 
|  | (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1) | | 
|  | (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG( | 
|  | dbgs() << format( | 
|  | "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx", | 
|  | insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1], | 
|  | insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3])); | 
|  | } | 
|  | } else if (byte == 0xc4) { | 
|  | uint8_t byte1; | 
|  | if (peek(insn, byte1)) { | 
|  | LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) | 
|  | insn->vectorExtensionType = TYPE_VEX_3B; | 
|  | else | 
|  | --insn->readerCursor; | 
|  |  | 
|  | if (insn->vectorExtensionType == TYPE_VEX_3B) { | 
|  | insn->vectorExtensionPrefix[0] = byte; | 
|  | consume(insn, insn->vectorExtensionPrefix[1]); | 
|  | consume(insn, insn->vectorExtensionPrefix[2]); | 
|  |  | 
|  | // We simulate the REX prefix for simplicity's sake | 
|  |  | 
|  | if (insn->mode == MODE_64BIT) | 
|  | insn->rexPrefix = 0x40 | | 
|  | (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3) | | 
|  | (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2) | | 
|  | (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1) | | 
|  | (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx 0x%hhx", | 
|  | insn->vectorExtensionPrefix[0], | 
|  | insn->vectorExtensionPrefix[1], | 
|  | insn->vectorExtensionPrefix[2])); | 
|  | } | 
|  | } else if (byte == 0xc5) { | 
|  | uint8_t byte1; | 
|  | if (peek(insn, byte1)) { | 
|  | LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) | 
|  | insn->vectorExtensionType = TYPE_VEX_2B; | 
|  | else | 
|  | --insn->readerCursor; | 
|  |  | 
|  | if (insn->vectorExtensionType == TYPE_VEX_2B) { | 
|  | insn->vectorExtensionPrefix[0] = byte; | 
|  | consume(insn, insn->vectorExtensionPrefix[1]); | 
|  |  | 
|  | if (insn->mode == MODE_64BIT) | 
|  | insn->rexPrefix = | 
|  | 0x40 | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2); | 
|  |  | 
|  | switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) { | 
|  | default: | 
|  | break; | 
|  | case VEX_PREFIX_66: | 
|  | insn->hasOpSize = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx", | 
|  | insn->vectorExtensionPrefix[0], | 
|  | insn->vectorExtensionPrefix[1])); | 
|  | } | 
|  | } else if (byte == 0x8f) { | 
|  | uint8_t byte1; | 
|  | if (peek(insn, byte1)) { | 
|  | LLVM_DEBUG(dbgs() << "Couldn't read second byte of XOP"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if ((byte1 & 0x38) != 0x0) // 0 in these 3 bits is a POP instruction. | 
|  | insn->vectorExtensionType = TYPE_XOP; | 
|  | else | 
|  | --insn->readerCursor; | 
|  |  | 
|  | if (insn->vectorExtensionType == TYPE_XOP) { | 
|  | insn->vectorExtensionPrefix[0] = byte; | 
|  | consume(insn, insn->vectorExtensionPrefix[1]); | 
|  | consume(insn, insn->vectorExtensionPrefix[2]); | 
|  |  | 
|  | // We simulate the REX prefix for simplicity's sake | 
|  |  | 
|  | if (insn->mode == MODE_64BIT) | 
|  | insn->rexPrefix = 0x40 | | 
|  | (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3) | | 
|  | (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2) | | 
|  | (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1) | | 
|  | (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0); | 
|  |  | 
|  | switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) { | 
|  | default: | 
|  | break; | 
|  | case VEX_PREFIX_66: | 
|  | insn->hasOpSize = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << format("Found XOP prefix 0x%hhx 0x%hhx 0x%hhx", | 
|  | insn->vectorExtensionPrefix[0], | 
|  | insn->vectorExtensionPrefix[1], | 
|  | insn->vectorExtensionPrefix[2])); | 
|  | } | 
|  | } else if (isREX(insn, byte)) { | 
|  | if (peek(insn, nextByte)) | 
|  | return -1; | 
|  | insn->rexPrefix = byte; | 
|  | LLVM_DEBUG(dbgs() << format("Found REX prefix 0x%hhx", byte)); | 
|  | } else | 
|  | --insn->readerCursor; | 
|  |  | 
|  | if (insn->mode == MODE_16BIT) { | 
|  | insn->registerSize = (insn->hasOpSize ? 4 : 2); | 
|  | insn->addressSize = (insn->hasAdSize ? 4 : 2); | 
|  | insn->displacementSize = (insn->hasAdSize ? 4 : 2); | 
|  | insn->immediateSize = (insn->hasOpSize ? 4 : 2); | 
|  | } else if (insn->mode == MODE_32BIT) { | 
|  | insn->registerSize = (insn->hasOpSize ? 2 : 4); | 
|  | insn->addressSize = (insn->hasAdSize ? 2 : 4); | 
|  | insn->displacementSize = (insn->hasAdSize ? 2 : 4); | 
|  | insn->immediateSize = (insn->hasOpSize ? 2 : 4); | 
|  | } else if (insn->mode == MODE_64BIT) { | 
|  | insn->displacementSize = 4; | 
|  | if (insn->rexPrefix && wFromREX(insn->rexPrefix)) { | 
|  | insn->registerSize = 8; | 
|  | insn->addressSize = (insn->hasAdSize ? 4 : 8); | 
|  | insn->immediateSize = 4; | 
|  | insn->hasOpSize = false; | 
|  | } else { | 
|  | insn->registerSize = (insn->hasOpSize ? 2 : 4); | 
|  | insn->addressSize = (insn->hasAdSize ? 4 : 8); | 
|  | insn->immediateSize = (insn->hasOpSize ? 2 : 4); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Consumes the SIB byte to determine addressing information. | 
|  | static int readSIB(struct InternalInstruction *insn) { | 
|  | SIBBase sibBaseBase = SIB_BASE_NONE; | 
|  | uint8_t index, base; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "readSIB()"); | 
|  | switch (insn->addressSize) { | 
|  | case 2: | 
|  | default: | 
|  | llvm_unreachable("SIB-based addressing doesn't work in 16-bit mode"); | 
|  | case 4: | 
|  | insn->sibIndexBase = SIB_INDEX_EAX; | 
|  | sibBaseBase = SIB_BASE_EAX; | 
|  | break; | 
|  | case 8: | 
|  | insn->sibIndexBase = SIB_INDEX_RAX; | 
|  | sibBaseBase = SIB_BASE_RAX; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (consume(insn, insn->sib)) | 
|  | return -1; | 
|  |  | 
|  | index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3); | 
|  |  | 
|  | if (index == 0x4) { | 
|  | insn->sibIndex = SIB_INDEX_NONE; | 
|  | } else { | 
|  | insn->sibIndex = (SIBIndex)(insn->sibIndexBase + index); | 
|  | } | 
|  |  | 
|  | insn->sibScale = 1 << scaleFromSIB(insn->sib); | 
|  |  | 
|  | base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3); | 
|  |  | 
|  | switch (base) { | 
|  | case 0x5: | 
|  | case 0xd: | 
|  | switch (modFromModRM(insn->modRM)) { | 
|  | case 0x0: | 
|  | insn->eaDisplacement = EA_DISP_32; | 
|  | insn->sibBase = SIB_BASE_NONE; | 
|  | break; | 
|  | case 0x1: | 
|  | insn->eaDisplacement = EA_DISP_8; | 
|  | insn->sibBase = (SIBBase)(sibBaseBase + base); | 
|  | break; | 
|  | case 0x2: | 
|  | insn->eaDisplacement = EA_DISP_32; | 
|  | insn->sibBase = (SIBBase)(sibBaseBase + base); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Cannot have Mod = 0b11 and a SIB byte"); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | insn->sibBase = (SIBBase)(sibBaseBase + base); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int readDisplacement(struct InternalInstruction *insn) { | 
|  | int8_t d8; | 
|  | int16_t d16; | 
|  | int32_t d32; | 
|  | LLVM_DEBUG(dbgs() << "readDisplacement()"); | 
|  |  | 
|  | insn->displacementOffset = insn->readerCursor - insn->startLocation; | 
|  | switch (insn->eaDisplacement) { | 
|  | case EA_DISP_NONE: | 
|  | break; | 
|  | case EA_DISP_8: | 
|  | if (consume(insn, d8)) | 
|  | return -1; | 
|  | insn->displacement = d8; | 
|  | break; | 
|  | case EA_DISP_16: | 
|  | if (consume(insn, d16)) | 
|  | return -1; | 
|  | insn->displacement = d16; | 
|  | break; | 
|  | case EA_DISP_32: | 
|  | if (consume(insn, d32)) | 
|  | return -1; | 
|  | insn->displacement = d32; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Consumes all addressing information (ModR/M byte, SIB byte, and displacement. | 
|  | static int readModRM(struct InternalInstruction *insn) { | 
|  | uint8_t mod, rm, reg, evexrm; | 
|  | LLVM_DEBUG(dbgs() << "readModRM()"); | 
|  |  | 
|  | if (insn->consumedModRM) | 
|  | return 0; | 
|  |  | 
|  | if (consume(insn, insn->modRM)) | 
|  | return -1; | 
|  | insn->consumedModRM = true; | 
|  |  | 
|  | mod = modFromModRM(insn->modRM); | 
|  | rm = rmFromModRM(insn->modRM); | 
|  | reg = regFromModRM(insn->modRM); | 
|  |  | 
|  | // This goes by insn->registerSize to pick the correct register, which messes | 
|  | // up if we're using (say) XMM or 8-bit register operands. That gets fixed in | 
|  | // fixupReg(). | 
|  | switch (insn->registerSize) { | 
|  | case 2: | 
|  | insn->regBase = MODRM_REG_AX; | 
|  | insn->eaRegBase = EA_REG_AX; | 
|  | break; | 
|  | case 4: | 
|  | insn->regBase = MODRM_REG_EAX; | 
|  | insn->eaRegBase = EA_REG_EAX; | 
|  | break; | 
|  | case 8: | 
|  | insn->regBase = MODRM_REG_RAX; | 
|  | insn->eaRegBase = EA_REG_RAX; | 
|  | break; | 
|  | } | 
|  |  | 
|  | reg |= rFromREX(insn->rexPrefix) << 3; | 
|  | rm |= bFromREX(insn->rexPrefix) << 3; | 
|  |  | 
|  | evexrm = 0; | 
|  | if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT) { | 
|  | reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4; | 
|  | evexrm = xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4; | 
|  | } | 
|  |  | 
|  | insn->reg = (Reg)(insn->regBase + reg); | 
|  |  | 
|  | switch (insn->addressSize) { | 
|  | case 2: { | 
|  | EABase eaBaseBase = EA_BASE_BX_SI; | 
|  |  | 
|  | switch (mod) { | 
|  | case 0x0: | 
|  | if (rm == 0x6) { | 
|  | insn->eaBase = EA_BASE_NONE; | 
|  | insn->eaDisplacement = EA_DISP_16; | 
|  | if (readDisplacement(insn)) | 
|  | return -1; | 
|  | } else { | 
|  | insn->eaBase = (EABase)(eaBaseBase + rm); | 
|  | insn->eaDisplacement = EA_DISP_NONE; | 
|  | } | 
|  | break; | 
|  | case 0x1: | 
|  | insn->eaBase = (EABase)(eaBaseBase + rm); | 
|  | insn->eaDisplacement = EA_DISP_8; | 
|  | insn->displacementSize = 1; | 
|  | if (readDisplacement(insn)) | 
|  | return -1; | 
|  | break; | 
|  | case 0x2: | 
|  | insn->eaBase = (EABase)(eaBaseBase + rm); | 
|  | insn->eaDisplacement = EA_DISP_16; | 
|  | if (readDisplacement(insn)) | 
|  | return -1; | 
|  | break; | 
|  | case 0x3: | 
|  | insn->eaBase = (EABase)(insn->eaRegBase + rm); | 
|  | if (readDisplacement(insn)) | 
|  | return -1; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case 4: | 
|  | case 8: { | 
|  | EABase eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX); | 
|  |  | 
|  | switch (mod) { | 
|  | case 0x0: | 
|  | insn->eaDisplacement = EA_DISP_NONE; // readSIB may override this | 
|  | // In determining whether RIP-relative mode is used (rm=5), | 
|  | // or whether a SIB byte is present (rm=4), | 
|  | // the extension bits (REX.b and EVEX.x) are ignored. | 
|  | switch (rm & 7) { | 
|  | case 0x4: // SIB byte is present | 
|  | insn->eaBase = (insn->addressSize == 4 ? EA_BASE_sib : EA_BASE_sib64); | 
|  | if (readSIB(insn) || readDisplacement(insn)) | 
|  | return -1; | 
|  | break; | 
|  | case 0x5: // RIP-relative | 
|  | insn->eaBase = EA_BASE_NONE; | 
|  | insn->eaDisplacement = EA_DISP_32; | 
|  | if (readDisplacement(insn)) | 
|  | return -1; | 
|  | break; | 
|  | default: | 
|  | insn->eaBase = (EABase)(eaBaseBase + rm); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case 0x1: | 
|  | insn->displacementSize = 1; | 
|  | LLVM_FALLTHROUGH; | 
|  | case 0x2: | 
|  | insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32); | 
|  | switch (rm & 7) { | 
|  | case 0x4: // SIB byte is present | 
|  | insn->eaBase = EA_BASE_sib; | 
|  | if (readSIB(insn) || readDisplacement(insn)) | 
|  | return -1; | 
|  | break; | 
|  | default: | 
|  | insn->eaBase = (EABase)(eaBaseBase + rm); | 
|  | if (readDisplacement(insn)) | 
|  | return -1; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case 0x3: | 
|  | insn->eaDisplacement = EA_DISP_NONE; | 
|  | insn->eaBase = (EABase)(insn->eaRegBase + rm + evexrm); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } // switch (insn->addressSize) | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define GENERIC_FIXUP_FUNC(name, base, prefix, mask)                           \ | 
|  | static uint16_t name(struct InternalInstruction *insn, OperandType type,     \ | 
|  | uint8_t index, uint8_t *valid) {                        \ | 
|  | *valid = 1;                                                                \ | 
|  | switch (type) {                                                            \ | 
|  | default:                                                                   \ | 
|  | debug("Unhandled register type");                                        \ | 
|  | *valid = 0;                                                              \ | 
|  | return 0;                                                                \ | 
|  | case TYPE_Rv:                                                              \ | 
|  | return base + index;                                                     \ | 
|  | case TYPE_R8:                                                              \ | 
|  | index &= mask;                                                           \ | 
|  | if (index > 0xf)                                                         \ | 
|  | *valid = 0;                                                            \ | 
|  | if (insn->rexPrefix && index >= 4 && index <= 7) {                       \ | 
|  | return prefix##_SPL + (index - 4);                                     \ | 
|  | } else {                                                                 \ | 
|  | return prefix##_AL + index;                                            \ | 
|  | }                                                                        \ | 
|  | case TYPE_R16:                                                             \ | 
|  | index &= mask;                                                           \ | 
|  | if (index > 0xf)                                                         \ | 
|  | *valid = 0;                                                            \ | 
|  | return prefix##_AX + index;                                              \ | 
|  | case TYPE_R32:                                                             \ | 
|  | index &= mask;                                                           \ | 
|  | if (index > 0xf)                                                         \ | 
|  | *valid = 0;                                                            \ | 
|  | return prefix##_EAX + index;                                             \ | 
|  | case TYPE_R64:                                                             \ | 
|  | index &= mask;                                                           \ | 
|  | if (index > 0xf)                                                         \ | 
|  | *valid = 0;                                                            \ | 
|  | return prefix##_RAX + index;                                             \ | 
|  | case TYPE_ZMM:                                                             \ | 
|  | return prefix##_ZMM0 + index;                                            \ | 
|  | case TYPE_YMM:                                                             \ | 
|  | return prefix##_YMM0 + index;                                            \ | 
|  | case TYPE_XMM:                                                             \ | 
|  | return prefix##_XMM0 + index;                                            \ | 
|  | case TYPE_TMM:                                                             \ | 
|  | if (index > 7)                                                           \ | 
|  | *valid = 0;                                                            \ | 
|  | return prefix##_TMM0 + index;                                            \ | 
|  | case TYPE_VK:                                                              \ | 
|  | index &= 0xf;                                                            \ | 
|  | if (index > 7)                                                           \ | 
|  | *valid = 0;                                                            \ | 
|  | return prefix##_K0 + index;                                              \ | 
|  | case TYPE_VK_PAIR:                                                         \ | 
|  | if (index > 7)                                                           \ | 
|  | *valid = 0;                                                            \ | 
|  | return prefix##_K0_K1 + (index / 2);                                     \ | 
|  | case TYPE_MM64:                                                            \ | 
|  | return prefix##_MM0 + (index & 0x7);                                     \ | 
|  | case TYPE_SEGMENTREG:                                                      \ | 
|  | if ((index & 7) > 5)                                                     \ | 
|  | *valid = 0;                                                            \ | 
|  | return prefix##_ES + (index & 7);                                        \ | 
|  | case TYPE_DEBUGREG:                                                        \ | 
|  | return prefix##_DR0 + index;                                             \ | 
|  | case TYPE_CONTROLREG:                                                      \ | 
|  | return prefix##_CR0 + index;                                             \ | 
|  | case TYPE_MVSIBX:                                                          \ | 
|  | return prefix##_XMM0 + index;                                            \ | 
|  | case TYPE_MVSIBY:                                                          \ | 
|  | return prefix##_YMM0 + index;                                            \ | 
|  | case TYPE_MVSIBZ:                                                          \ | 
|  | return prefix##_ZMM0 + index;                                            \ | 
|  | }                                                                          \ | 
|  | } | 
|  |  | 
|  | // Consult an operand type to determine the meaning of the reg or R/M field. If | 
|  | // the operand is an XMM operand, for example, an operand would be XMM0 instead | 
|  | // of AX, which readModRM() would otherwise misinterpret it as. | 
|  | // | 
|  | // @param insn  - The instruction containing the operand. | 
|  | // @param type  - The operand type. | 
|  | // @param index - The existing value of the field as reported by readModRM(). | 
|  | // @param valid - The address of a uint8_t.  The target is set to 1 if the | 
|  | //                field is valid for the register class; 0 if not. | 
|  | // @return      - The proper value. | 
|  | GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG, 0x1f) | 
|  | GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG, 0xf) | 
|  |  | 
|  | // Consult an operand specifier to determine which of the fixup*Value functions | 
|  | // to use in correcting readModRM()'ss interpretation. | 
|  | // | 
|  | // @param insn  - See fixup*Value(). | 
|  | // @param op    - The operand specifier. | 
|  | // @return      - 0 if fixup was successful; -1 if the register returned was | 
|  | //                invalid for its class. | 
|  | static int fixupReg(struct InternalInstruction *insn, | 
|  | const struct OperandSpecifier *op) { | 
|  | uint8_t valid; | 
|  | LLVM_DEBUG(dbgs() << "fixupReg()"); | 
|  |  | 
|  | switch ((OperandEncoding)op->encoding) { | 
|  | default: | 
|  | debug("Expected a REG or R/M encoding in fixupReg"); | 
|  | return -1; | 
|  | case ENCODING_VVVV: | 
|  | insn->vvvv = | 
|  | (Reg)fixupRegValue(insn, (OperandType)op->type, insn->vvvv, &valid); | 
|  | if (!valid) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_REG: | 
|  | insn->reg = (Reg)fixupRegValue(insn, (OperandType)op->type, | 
|  | insn->reg - insn->regBase, &valid); | 
|  | if (!valid) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_SIB: | 
|  | CASE_ENCODING_RM: | 
|  | if (insn->eaBase >= insn->eaRegBase) { | 
|  | insn->eaBase = (EABase)fixupRMValue( | 
|  | insn, (OperandType)op->type, insn->eaBase - insn->eaRegBase, &valid); | 
|  | if (!valid) | 
|  | return -1; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Read the opcode (except the ModR/M byte in the case of extended or escape | 
|  | // opcodes). | 
|  | static bool readOpcode(struct InternalInstruction *insn) { | 
|  | uint8_t current; | 
|  | LLVM_DEBUG(dbgs() << "readOpcode()"); | 
|  |  | 
|  | insn->opcodeType = ONEBYTE; | 
|  | if (insn->vectorExtensionType == TYPE_EVEX) { | 
|  | switch (mmmFromEVEX2of4(insn->vectorExtensionPrefix[1])) { | 
|  | default: | 
|  | LLVM_DEBUG( | 
|  | dbgs() << format("Unhandled mmm field for instruction (0x%hhx)", | 
|  | mmmFromEVEX2of4(insn->vectorExtensionPrefix[1]))); | 
|  | return true; | 
|  | case VEX_LOB_0F: | 
|  | insn->opcodeType = TWOBYTE; | 
|  | return consume(insn, insn->opcode); | 
|  | case VEX_LOB_0F38: | 
|  | insn->opcodeType = THREEBYTE_38; | 
|  | return consume(insn, insn->opcode); | 
|  | case VEX_LOB_0F3A: | 
|  | insn->opcodeType = THREEBYTE_3A; | 
|  | return consume(insn, insn->opcode); | 
|  | case VEX_LOB_MAP5: | 
|  | insn->opcodeType = MAP5; | 
|  | return consume(insn, insn->opcode); | 
|  | case VEX_LOB_MAP6: | 
|  | insn->opcodeType = MAP6; | 
|  | return consume(insn, insn->opcode); | 
|  | } | 
|  | } else if (insn->vectorExtensionType == TYPE_VEX_3B) { | 
|  | switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) { | 
|  | default: | 
|  | LLVM_DEBUG( | 
|  | dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)", | 
|  | mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]))); | 
|  | return true; | 
|  | case VEX_LOB_0F: | 
|  | insn->opcodeType = TWOBYTE; | 
|  | return consume(insn, insn->opcode); | 
|  | case VEX_LOB_0F38: | 
|  | insn->opcodeType = THREEBYTE_38; | 
|  | return consume(insn, insn->opcode); | 
|  | case VEX_LOB_0F3A: | 
|  | insn->opcodeType = THREEBYTE_3A; | 
|  | return consume(insn, insn->opcode); | 
|  | case VEX_LOB_MAP5: | 
|  | insn->opcodeType = MAP5; | 
|  | return consume(insn, insn->opcode); | 
|  | case VEX_LOB_MAP6: | 
|  | insn->opcodeType = MAP6; | 
|  | return consume(insn, insn->opcode); | 
|  | } | 
|  | } else if (insn->vectorExtensionType == TYPE_VEX_2B) { | 
|  | insn->opcodeType = TWOBYTE; | 
|  | return consume(insn, insn->opcode); | 
|  | } else if (insn->vectorExtensionType == TYPE_XOP) { | 
|  | switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) { | 
|  | default: | 
|  | LLVM_DEBUG( | 
|  | dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)", | 
|  | mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]))); | 
|  | return true; | 
|  | case XOP_MAP_SELECT_8: | 
|  | insn->opcodeType = XOP8_MAP; | 
|  | return consume(insn, insn->opcode); | 
|  | case XOP_MAP_SELECT_9: | 
|  | insn->opcodeType = XOP9_MAP; | 
|  | return consume(insn, insn->opcode); | 
|  | case XOP_MAP_SELECT_A: | 
|  | insn->opcodeType = XOPA_MAP; | 
|  | return consume(insn, insn->opcode); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (consume(insn, current)) | 
|  | return true; | 
|  |  | 
|  | if (current == 0x0f) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << format("Found a two-byte escape prefix (0x%hhx)", current)); | 
|  | if (consume(insn, current)) | 
|  | return true; | 
|  |  | 
|  | if (current == 0x38) { | 
|  | LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)", | 
|  | current)); | 
|  | if (consume(insn, current)) | 
|  | return true; | 
|  |  | 
|  | insn->opcodeType = THREEBYTE_38; | 
|  | } else if (current == 0x3a) { | 
|  | LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)", | 
|  | current)); | 
|  | if (consume(insn, current)) | 
|  | return true; | 
|  |  | 
|  | insn->opcodeType = THREEBYTE_3A; | 
|  | } else if (current == 0x0f) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << format("Found a 3dnow escape prefix (0x%hhx)", current)); | 
|  |  | 
|  | // Consume operands before the opcode to comply with the 3DNow encoding | 
|  | if (readModRM(insn)) | 
|  | return true; | 
|  |  | 
|  | if (consume(insn, current)) | 
|  | return true; | 
|  |  | 
|  | insn->opcodeType = THREEDNOW_MAP; | 
|  | } else { | 
|  | LLVM_DEBUG(dbgs() << "Didn't find a three-byte escape prefix"); | 
|  | insn->opcodeType = TWOBYTE; | 
|  | } | 
|  | } else if (insn->mandatoryPrefix) | 
|  | // The opcode with mandatory prefix must start with opcode escape. | 
|  | // If not it's legacy repeat prefix | 
|  | insn->mandatoryPrefix = 0; | 
|  |  | 
|  | // At this point we have consumed the full opcode. | 
|  | // Anything we consume from here on must be unconsumed. | 
|  | insn->opcode = current; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Determine whether equiv is the 16-bit equivalent of orig (32-bit or 64-bit). | 
|  | static bool is16BitEquivalent(const char *orig, const char *equiv) { | 
|  | for (int i = 0;; i++) { | 
|  | if (orig[i] == '\0' && equiv[i] == '\0') | 
|  | return true; | 
|  | if (orig[i] == '\0' || equiv[i] == '\0') | 
|  | return false; | 
|  | if (orig[i] != equiv[i]) { | 
|  | if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W') | 
|  | continue; | 
|  | if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1') | 
|  | continue; | 
|  | if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6') | 
|  | continue; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Determine whether this instruction is a 64-bit instruction. | 
|  | static bool is64Bit(const char *name) { | 
|  | for (int i = 0;; ++i) { | 
|  | if (name[i] == '\0') | 
|  | return false; | 
|  | if (name[i] == '6' && name[i + 1] == '4') | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Determine the ID of an instruction, consuming the ModR/M byte as appropriate | 
|  | // for extended and escape opcodes, and using a supplied attribute mask. | 
|  | static int getInstructionIDWithAttrMask(uint16_t *instructionID, | 
|  | struct InternalInstruction *insn, | 
|  | uint16_t attrMask) { | 
|  | auto insnCtx = InstructionContext(x86DisassemblerContexts[attrMask]); | 
|  | const ContextDecision *decision; | 
|  | switch (insn->opcodeType) { | 
|  | case ONEBYTE: | 
|  | decision = &ONEBYTE_SYM; | 
|  | break; | 
|  | case TWOBYTE: | 
|  | decision = &TWOBYTE_SYM; | 
|  | break; | 
|  | case THREEBYTE_38: | 
|  | decision = &THREEBYTE38_SYM; | 
|  | break; | 
|  | case THREEBYTE_3A: | 
|  | decision = &THREEBYTE3A_SYM; | 
|  | break; | 
|  | case XOP8_MAP: | 
|  | decision = &XOP8_MAP_SYM; | 
|  | break; | 
|  | case XOP9_MAP: | 
|  | decision = &XOP9_MAP_SYM; | 
|  | break; | 
|  | case XOPA_MAP: | 
|  | decision = &XOPA_MAP_SYM; | 
|  | break; | 
|  | case THREEDNOW_MAP: | 
|  | decision = &THREEDNOW_MAP_SYM; | 
|  | break; | 
|  | case MAP5: | 
|  | decision = &MAP5_SYM; | 
|  | break; | 
|  | case MAP6: | 
|  | decision = &MAP6_SYM; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (decision->opcodeDecisions[insnCtx] | 
|  | .modRMDecisions[insn->opcode] | 
|  | .modrm_type != MODRM_ONEENTRY) { | 
|  | if (readModRM(insn)) | 
|  | return -1; | 
|  | *instructionID = | 
|  | decode(insn->opcodeType, insnCtx, insn->opcode, insn->modRM); | 
|  | } else { | 
|  | *instructionID = decode(insn->opcodeType, insnCtx, insn->opcode, 0); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Determine the ID of an instruction, consuming the ModR/M byte as appropriate | 
|  | // for extended and escape opcodes. Determines the attributes and context for | 
|  | // the instruction before doing so. | 
|  | static int getInstructionID(struct InternalInstruction *insn, | 
|  | const MCInstrInfo *mii) { | 
|  | uint16_t attrMask; | 
|  | uint16_t instructionID; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "getID()"); | 
|  |  | 
|  | attrMask = ATTR_NONE; | 
|  |  | 
|  | if (insn->mode == MODE_64BIT) | 
|  | attrMask |= ATTR_64BIT; | 
|  |  | 
|  | if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) { | 
|  | attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX; | 
|  |  | 
|  | if (insn->vectorExtensionType == TYPE_EVEX) { | 
|  | switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) { | 
|  | case VEX_PREFIX_66: | 
|  | attrMask |= ATTR_OPSIZE; | 
|  | break; | 
|  | case VEX_PREFIX_F3: | 
|  | attrMask |= ATTR_XS; | 
|  | break; | 
|  | case VEX_PREFIX_F2: | 
|  | attrMask |= ATTR_XD; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (zFromEVEX4of4(insn->vectorExtensionPrefix[3])) | 
|  | attrMask |= ATTR_EVEXKZ; | 
|  | if (bFromEVEX4of4(insn->vectorExtensionPrefix[3])) | 
|  | attrMask |= ATTR_EVEXB; | 
|  | if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3])) | 
|  | attrMask |= ATTR_EVEXK; | 
|  | if (lFromEVEX4of4(insn->vectorExtensionPrefix[3])) | 
|  | attrMask |= ATTR_VEXL; | 
|  | if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3])) | 
|  | attrMask |= ATTR_EVEXL2; | 
|  | } else if (insn->vectorExtensionType == TYPE_VEX_3B) { | 
|  | switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) { | 
|  | case VEX_PREFIX_66: | 
|  | attrMask |= ATTR_OPSIZE; | 
|  | break; | 
|  | case VEX_PREFIX_F3: | 
|  | attrMask |= ATTR_XS; | 
|  | break; | 
|  | case VEX_PREFIX_F2: | 
|  | attrMask |= ATTR_XD; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (lFromVEX3of3(insn->vectorExtensionPrefix[2])) | 
|  | attrMask |= ATTR_VEXL; | 
|  | } else if (insn->vectorExtensionType == TYPE_VEX_2B) { | 
|  | switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) { | 
|  | case VEX_PREFIX_66: | 
|  | attrMask |= ATTR_OPSIZE; | 
|  | if (insn->hasAdSize) | 
|  | attrMask |= ATTR_ADSIZE; | 
|  | break; | 
|  | case VEX_PREFIX_F3: | 
|  | attrMask |= ATTR_XS; | 
|  | break; | 
|  | case VEX_PREFIX_F2: | 
|  | attrMask |= ATTR_XD; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (lFromVEX2of2(insn->vectorExtensionPrefix[1])) | 
|  | attrMask |= ATTR_VEXL; | 
|  | } else if (insn->vectorExtensionType == TYPE_XOP) { | 
|  | switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) { | 
|  | case VEX_PREFIX_66: | 
|  | attrMask |= ATTR_OPSIZE; | 
|  | break; | 
|  | case VEX_PREFIX_F3: | 
|  | attrMask |= ATTR_XS; | 
|  | break; | 
|  | case VEX_PREFIX_F2: | 
|  | attrMask |= ATTR_XD; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (lFromXOP3of3(insn->vectorExtensionPrefix[2])) | 
|  | attrMask |= ATTR_VEXL; | 
|  | } else { | 
|  | return -1; | 
|  | } | 
|  | } else if (!insn->mandatoryPrefix) { | 
|  | // If we don't have mandatory prefix we should use legacy prefixes here | 
|  | if (insn->hasOpSize && (insn->mode != MODE_16BIT)) | 
|  | attrMask |= ATTR_OPSIZE; | 
|  | if (insn->hasAdSize) | 
|  | attrMask |= ATTR_ADSIZE; | 
|  | if (insn->opcodeType == ONEBYTE) { | 
|  | if (insn->repeatPrefix == 0xf3 && (insn->opcode == 0x90)) | 
|  | // Special support for PAUSE | 
|  | attrMask |= ATTR_XS; | 
|  | } else { | 
|  | if (insn->repeatPrefix == 0xf2) | 
|  | attrMask |= ATTR_XD; | 
|  | else if (insn->repeatPrefix == 0xf3) | 
|  | attrMask |= ATTR_XS; | 
|  | } | 
|  | } else { | 
|  | switch (insn->mandatoryPrefix) { | 
|  | case 0xf2: | 
|  | attrMask |= ATTR_XD; | 
|  | break; | 
|  | case 0xf3: | 
|  | attrMask |= ATTR_XS; | 
|  | break; | 
|  | case 0x66: | 
|  | if (insn->mode != MODE_16BIT) | 
|  | attrMask |= ATTR_OPSIZE; | 
|  | if (insn->hasAdSize) | 
|  | attrMask |= ATTR_ADSIZE; | 
|  | break; | 
|  | case 0x67: | 
|  | attrMask |= ATTR_ADSIZE; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (insn->rexPrefix & 0x08) { | 
|  | attrMask |= ATTR_REXW; | 
|  | attrMask &= ~ATTR_ADSIZE; | 
|  | } | 
|  |  | 
|  | if (insn->mode == MODE_16BIT) { | 
|  | // JCXZ/JECXZ need special handling for 16-bit mode because the meaning | 
|  | // of the AdSize prefix is inverted w.r.t. 32-bit mode. | 
|  | if (insn->opcodeType == ONEBYTE && insn->opcode == 0xE3) | 
|  | attrMask ^= ATTR_ADSIZE; | 
|  | // If we're in 16-bit mode and this is one of the relative jumps and opsize | 
|  | // prefix isn't present, we need to force the opsize attribute since the | 
|  | // prefix is inverted relative to 32-bit mode. | 
|  | if (!insn->hasOpSize && insn->opcodeType == ONEBYTE && | 
|  | (insn->opcode == 0xE8 || insn->opcode == 0xE9)) | 
|  | attrMask |= ATTR_OPSIZE; | 
|  |  | 
|  | if (!insn->hasOpSize && insn->opcodeType == TWOBYTE && | 
|  | insn->opcode >= 0x80 && insn->opcode <= 0x8F) | 
|  | attrMask |= ATTR_OPSIZE; | 
|  | } | 
|  |  | 
|  |  | 
|  | if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask)) | 
|  | return -1; | 
|  |  | 
|  | // The following clauses compensate for limitations of the tables. | 
|  |  | 
|  | if (insn->mode != MODE_64BIT && | 
|  | insn->vectorExtensionType != TYPE_NO_VEX_XOP) { | 
|  | // The tables can't distinquish between cases where the W-bit is used to | 
|  | // select register size and cases where its a required part of the opcode. | 
|  | if ((insn->vectorExtensionType == TYPE_EVEX && | 
|  | wFromEVEX3of4(insn->vectorExtensionPrefix[2])) || | 
|  | (insn->vectorExtensionType == TYPE_VEX_3B && | 
|  | wFromVEX3of3(insn->vectorExtensionPrefix[2])) || | 
|  | (insn->vectorExtensionType == TYPE_XOP && | 
|  | wFromXOP3of3(insn->vectorExtensionPrefix[2]))) { | 
|  |  | 
|  | uint16_t instructionIDWithREXW; | 
|  | if (getInstructionIDWithAttrMask(&instructionIDWithREXW, insn, | 
|  | attrMask | ATTR_REXW)) { | 
|  | insn->instructionID = instructionID; | 
|  | insn->spec = &INSTRUCTIONS_SYM[instructionID]; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | auto SpecName = mii->getName(instructionIDWithREXW); | 
|  | // If not a 64-bit instruction. Switch the opcode. | 
|  | if (!is64Bit(SpecName.data())) { | 
|  | insn->instructionID = instructionIDWithREXW; | 
|  | insn->spec = &INSTRUCTIONS_SYM[instructionIDWithREXW]; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Absolute moves, umonitor, and movdir64b need special handling. | 
|  | // -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are | 
|  | //  inverted w.r.t. | 
|  | // -For 32-bit mode we need to ensure the ADSIZE prefix is observed in | 
|  | //  any position. | 
|  | if ((insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) || | 
|  | (insn->opcodeType == TWOBYTE && (insn->opcode == 0xAE)) || | 
|  | (insn->opcodeType == THREEBYTE_38 && insn->opcode == 0xF8)) { | 
|  | // Make sure we observed the prefixes in any position. | 
|  | if (insn->hasAdSize) | 
|  | attrMask |= ATTR_ADSIZE; | 
|  | if (insn->hasOpSize) | 
|  | attrMask |= ATTR_OPSIZE; | 
|  |  | 
|  | // In 16-bit, invert the attributes. | 
|  | if (insn->mode == MODE_16BIT) { | 
|  | attrMask ^= ATTR_ADSIZE; | 
|  |  | 
|  | // The OpSize attribute is only valid with the absolute moves. | 
|  | if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) | 
|  | attrMask ^= ATTR_OPSIZE; | 
|  | } | 
|  |  | 
|  | if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask)) | 
|  | return -1; | 
|  |  | 
|  | insn->instructionID = instructionID; | 
|  | insn->spec = &INSTRUCTIONS_SYM[instructionID]; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if ((insn->mode == MODE_16BIT || insn->hasOpSize) && | 
|  | !(attrMask & ATTR_OPSIZE)) { | 
|  | // The instruction tables make no distinction between instructions that | 
|  | // allow OpSize anywhere (i.e., 16-bit operations) and that need it in a | 
|  | // particular spot (i.e., many MMX operations). In general we're | 
|  | // conservative, but in the specific case where OpSize is present but not in | 
|  | // the right place we check if there's a 16-bit operation. | 
|  | const struct InstructionSpecifier *spec; | 
|  | uint16_t instructionIDWithOpsize; | 
|  | llvm::StringRef specName, specWithOpSizeName; | 
|  |  | 
|  | spec = &INSTRUCTIONS_SYM[instructionID]; | 
|  |  | 
|  | if (getInstructionIDWithAttrMask(&instructionIDWithOpsize, insn, | 
|  | attrMask | ATTR_OPSIZE)) { | 
|  | // ModRM required with OpSize but not present. Give up and return the | 
|  | // version without OpSize set. | 
|  | insn->instructionID = instructionID; | 
|  | insn->spec = spec; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | specName = mii->getName(instructionID); | 
|  | specWithOpSizeName = mii->getName(instructionIDWithOpsize); | 
|  |  | 
|  | if (is16BitEquivalent(specName.data(), specWithOpSizeName.data()) && | 
|  | (insn->mode == MODE_16BIT) ^ insn->hasOpSize) { | 
|  | insn->instructionID = instructionIDWithOpsize; | 
|  | insn->spec = &INSTRUCTIONS_SYM[instructionIDWithOpsize]; | 
|  | } else { | 
|  | insn->instructionID = instructionID; | 
|  | insn->spec = spec; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 && | 
|  | insn->rexPrefix & 0x01) { | 
|  | // NOOP shouldn't decode as NOOP if REX.b is set. Instead it should decode | 
|  | // as XCHG %r8, %eax. | 
|  | const struct InstructionSpecifier *spec; | 
|  | uint16_t instructionIDWithNewOpcode; | 
|  | const struct InstructionSpecifier *specWithNewOpcode; | 
|  |  | 
|  | spec = &INSTRUCTIONS_SYM[instructionID]; | 
|  |  | 
|  | // Borrow opcode from one of the other XCHGar opcodes | 
|  | insn->opcode = 0x91; | 
|  |  | 
|  | if (getInstructionIDWithAttrMask(&instructionIDWithNewOpcode, insn, | 
|  | attrMask)) { | 
|  | insn->opcode = 0x90; | 
|  |  | 
|  | insn->instructionID = instructionID; | 
|  | insn->spec = spec; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | specWithNewOpcode = &INSTRUCTIONS_SYM[instructionIDWithNewOpcode]; | 
|  |  | 
|  | // Change back | 
|  | insn->opcode = 0x90; | 
|  |  | 
|  | insn->instructionID = instructionIDWithNewOpcode; | 
|  | insn->spec = specWithNewOpcode; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | insn->instructionID = instructionID; | 
|  | insn->spec = &INSTRUCTIONS_SYM[insn->instructionID]; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Read an operand from the opcode field of an instruction and interprets it | 
|  | // appropriately given the operand width. Handles AddRegFrm instructions. | 
|  | // | 
|  | // @param insn  - the instruction whose opcode field is to be read. | 
|  | // @param size  - The width (in bytes) of the register being specified. | 
|  | //                1 means AL and friends, 2 means AX, 4 means EAX, and 8 means | 
|  | //                RAX. | 
|  | // @return      - 0 on success; nonzero otherwise. | 
|  | static int readOpcodeRegister(struct InternalInstruction *insn, uint8_t size) { | 
|  | LLVM_DEBUG(dbgs() << "readOpcodeRegister()"); | 
|  |  | 
|  | if (size == 0) | 
|  | size = insn->registerSize; | 
|  |  | 
|  | switch (size) { | 
|  | case 1: | 
|  | insn->opcodeRegister = (Reg)( | 
|  | MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7))); | 
|  | if (insn->rexPrefix && insn->opcodeRegister >= MODRM_REG_AL + 0x4 && | 
|  | insn->opcodeRegister < MODRM_REG_AL + 0x8) { | 
|  | insn->opcodeRegister = | 
|  | (Reg)(MODRM_REG_SPL + (insn->opcodeRegister - MODRM_REG_AL - 4)); | 
|  | } | 
|  |  | 
|  | break; | 
|  | case 2: | 
|  | insn->opcodeRegister = (Reg)( | 
|  | MODRM_REG_AX + ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7))); | 
|  | break; | 
|  | case 4: | 
|  | insn->opcodeRegister = | 
|  | (Reg)(MODRM_REG_EAX + | 
|  | ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7))); | 
|  | break; | 
|  | case 8: | 
|  | insn->opcodeRegister = | 
|  | (Reg)(MODRM_REG_RAX + | 
|  | ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7))); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Consume an immediate operand from an instruction, given the desired operand | 
|  | // size. | 
|  | // | 
|  | // @param insn  - The instruction whose operand is to be read. | 
|  | // @param size  - The width (in bytes) of the operand. | 
|  | // @return      - 0 if the immediate was successfully consumed; nonzero | 
|  | //                otherwise. | 
|  | static int readImmediate(struct InternalInstruction *insn, uint8_t size) { | 
|  | uint8_t imm8; | 
|  | uint16_t imm16; | 
|  | uint32_t imm32; | 
|  | uint64_t imm64; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "readImmediate()"); | 
|  |  | 
|  | assert(insn->numImmediatesConsumed < 2 && "Already consumed two immediates"); | 
|  |  | 
|  | insn->immediateSize = size; | 
|  | insn->immediateOffset = insn->readerCursor - insn->startLocation; | 
|  |  | 
|  | switch (size) { | 
|  | case 1: | 
|  | if (consume(insn, imm8)) | 
|  | return -1; | 
|  | insn->immediates[insn->numImmediatesConsumed] = imm8; | 
|  | break; | 
|  | case 2: | 
|  | if (consume(insn, imm16)) | 
|  | return -1; | 
|  | insn->immediates[insn->numImmediatesConsumed] = imm16; | 
|  | break; | 
|  | case 4: | 
|  | if (consume(insn, imm32)) | 
|  | return -1; | 
|  | insn->immediates[insn->numImmediatesConsumed] = imm32; | 
|  | break; | 
|  | case 8: | 
|  | if (consume(insn, imm64)) | 
|  | return -1; | 
|  | insn->immediates[insn->numImmediatesConsumed] = imm64; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("invalid size"); | 
|  | } | 
|  |  | 
|  | insn->numImmediatesConsumed++; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Consume vvvv from an instruction if it has a VEX prefix. | 
|  | static int readVVVV(struct InternalInstruction *insn) { | 
|  | LLVM_DEBUG(dbgs() << "readVVVV()"); | 
|  |  | 
|  | int vvvv; | 
|  | if (insn->vectorExtensionType == TYPE_EVEX) | 
|  | vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 | | 
|  | vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2])); | 
|  | else if (insn->vectorExtensionType == TYPE_VEX_3B) | 
|  | vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]); | 
|  | else if (insn->vectorExtensionType == TYPE_VEX_2B) | 
|  | vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]); | 
|  | else if (insn->vectorExtensionType == TYPE_XOP) | 
|  | vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]); | 
|  | else | 
|  | return -1; | 
|  |  | 
|  | if (insn->mode != MODE_64BIT) | 
|  | vvvv &= 0xf; // Can only clear bit 4. Bit 3 must be cleared later. | 
|  |  | 
|  | insn->vvvv = static_cast<Reg>(vvvv); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Read an mask register from the opcode field of an instruction. | 
|  | // | 
|  | // @param insn    - The instruction whose opcode field is to be read. | 
|  | // @return        - 0 on success; nonzero otherwise. | 
|  | static int readMaskRegister(struct InternalInstruction *insn) { | 
|  | LLVM_DEBUG(dbgs() << "readMaskRegister()"); | 
|  |  | 
|  | if (insn->vectorExtensionType != TYPE_EVEX) | 
|  | return -1; | 
|  |  | 
|  | insn->writemask = | 
|  | static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3])); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Consults the specifier for an instruction and consumes all | 
|  | // operands for that instruction, interpreting them as it goes. | 
|  | static int readOperands(struct InternalInstruction *insn) { | 
|  | int hasVVVV, needVVVV; | 
|  | int sawRegImm = 0; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "readOperands()"); | 
|  |  | 
|  | // If non-zero vvvv specified, make sure one of the operands uses it. | 
|  | hasVVVV = !readVVVV(insn); | 
|  | needVVVV = hasVVVV && (insn->vvvv != 0); | 
|  |  | 
|  | for (const auto &Op : x86OperandSets[insn->spec->operands]) { | 
|  | switch (Op.encoding) { | 
|  | case ENCODING_NONE: | 
|  | case ENCODING_SI: | 
|  | case ENCODING_DI: | 
|  | break; | 
|  | CASE_ENCODING_VSIB: | 
|  | // VSIB can use the V2 bit so check only the other bits. | 
|  | if (needVVVV) | 
|  | needVVVV = hasVVVV & ((insn->vvvv & 0xf) != 0); | 
|  | if (readModRM(insn)) | 
|  | return -1; | 
|  |  | 
|  | // Reject if SIB wasn't used. | 
|  | if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64) | 
|  | return -1; | 
|  |  | 
|  | // If sibIndex was set to SIB_INDEX_NONE, index offset is 4. | 
|  | if (insn->sibIndex == SIB_INDEX_NONE) | 
|  | insn->sibIndex = (SIBIndex)(insn->sibIndexBase + 4); | 
|  |  | 
|  | // If EVEX.v2 is set this is one of the 16-31 registers. | 
|  | if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT && | 
|  | v2FromEVEX4of4(insn->vectorExtensionPrefix[3])) | 
|  | insn->sibIndex = (SIBIndex)(insn->sibIndex + 16); | 
|  |  | 
|  | // Adjust the index register to the correct size. | 
|  | switch ((OperandType)Op.type) { | 
|  | default: | 
|  | debug("Unhandled VSIB index type"); | 
|  | return -1; | 
|  | case TYPE_MVSIBX: | 
|  | insn->sibIndex = | 
|  | (SIBIndex)(SIB_INDEX_XMM0 + (insn->sibIndex - insn->sibIndexBase)); | 
|  | break; | 
|  | case TYPE_MVSIBY: | 
|  | insn->sibIndex = | 
|  | (SIBIndex)(SIB_INDEX_YMM0 + (insn->sibIndex - insn->sibIndexBase)); | 
|  | break; | 
|  | case TYPE_MVSIBZ: | 
|  | insn->sibIndex = | 
|  | (SIBIndex)(SIB_INDEX_ZMM0 + (insn->sibIndex - insn->sibIndexBase)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Apply the AVX512 compressed displacement scaling factor. | 
|  | if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8) | 
|  | insn->displacement *= 1 << (Op.encoding - ENCODING_VSIB); | 
|  | break; | 
|  | case ENCODING_SIB: | 
|  | // Reject if SIB wasn't used. | 
|  | if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64) | 
|  | return -1; | 
|  | if (readModRM(insn)) | 
|  | return -1; | 
|  | if (fixupReg(insn, &Op)) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_REG: | 
|  | CASE_ENCODING_RM: | 
|  | if (readModRM(insn)) | 
|  | return -1; | 
|  | if (fixupReg(insn, &Op)) | 
|  | return -1; | 
|  | // Apply the AVX512 compressed displacement scaling factor. | 
|  | if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8) | 
|  | insn->displacement *= 1 << (Op.encoding - ENCODING_RM); | 
|  | break; | 
|  | case ENCODING_IB: | 
|  | if (sawRegImm) { | 
|  | // Saw a register immediate so don't read again and instead split the | 
|  | // previous immediate. FIXME: This is a hack. | 
|  | insn->immediates[insn->numImmediatesConsumed] = | 
|  | insn->immediates[insn->numImmediatesConsumed - 1] & 0xf; | 
|  | ++insn->numImmediatesConsumed; | 
|  | break; | 
|  | } | 
|  | if (readImmediate(insn, 1)) | 
|  | return -1; | 
|  | if (Op.type == TYPE_XMM || Op.type == TYPE_YMM) | 
|  | sawRegImm = 1; | 
|  | break; | 
|  | case ENCODING_IW: | 
|  | if (readImmediate(insn, 2)) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_ID: | 
|  | if (readImmediate(insn, 4)) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_IO: | 
|  | if (readImmediate(insn, 8)) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_Iv: | 
|  | if (readImmediate(insn, insn->immediateSize)) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_Ia: | 
|  | if (readImmediate(insn, insn->addressSize)) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_IRC: | 
|  | insn->RC = (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 1) | | 
|  | lFromEVEX4of4(insn->vectorExtensionPrefix[3]); | 
|  | break; | 
|  | case ENCODING_RB: | 
|  | if (readOpcodeRegister(insn, 1)) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_RW: | 
|  | if (readOpcodeRegister(insn, 2)) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_RD: | 
|  | if (readOpcodeRegister(insn, 4)) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_RO: | 
|  | if (readOpcodeRegister(insn, 8)) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_Rv: | 
|  | if (readOpcodeRegister(insn, 0)) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_CC: | 
|  | insn->immediates[1] = insn->opcode & 0xf; | 
|  | break; | 
|  | case ENCODING_FP: | 
|  | break; | 
|  | case ENCODING_VVVV: | 
|  | needVVVV = 0; // Mark that we have found a VVVV operand. | 
|  | if (!hasVVVV) | 
|  | return -1; | 
|  | if (insn->mode != MODE_64BIT) | 
|  | insn->vvvv = static_cast<Reg>(insn->vvvv & 0x7); | 
|  | if (fixupReg(insn, &Op)) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_WRITEMASK: | 
|  | if (readMaskRegister(insn)) | 
|  | return -1; | 
|  | break; | 
|  | case ENCODING_DUP: | 
|  | break; | 
|  | default: | 
|  | LLVM_DEBUG(dbgs() << "Encountered an operand with an unknown encoding."); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail | 
|  | if (needVVVV) | 
|  | return -1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | // Fill-ins to make the compiler happy. These constants are never actually | 
|  | // assigned; they are just filler to make an automatically-generated switch | 
|  | // statement work. | 
|  | namespace X86 { | 
|  | enum { | 
|  | BX_SI = 500, | 
|  | BX_DI = 501, | 
|  | BP_SI = 502, | 
|  | BP_DI = 503, | 
|  | sib   = 504, | 
|  | sib64 = 505 | 
|  | }; | 
|  | } // namespace X86 | 
|  |  | 
|  | } // namespace llvm | 
|  |  | 
|  | static bool translateInstruction(MCInst &target, | 
|  | InternalInstruction &source, | 
|  | const MCDisassembler *Dis); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Generic disassembler for all X86 platforms. All each platform class should | 
|  | /// have to do is subclass the constructor, and provide a different | 
|  | /// disassemblerMode value. | 
|  | class X86GenericDisassembler : public MCDisassembler { | 
|  | std::unique_ptr<const MCInstrInfo> MII; | 
|  | public: | 
|  | X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx, | 
|  | std::unique_ptr<const MCInstrInfo> MII); | 
|  | public: | 
|  | DecodeStatus getInstruction(MCInst &instr, uint64_t &size, | 
|  | ArrayRef<uint8_t> Bytes, uint64_t Address, | 
|  | raw_ostream &cStream) const override; | 
|  |  | 
|  | private: | 
|  | DisassemblerMode              fMode; | 
|  | }; | 
|  |  | 
|  | } // namespace | 
|  |  | 
|  | X86GenericDisassembler::X86GenericDisassembler( | 
|  | const MCSubtargetInfo &STI, | 
|  | MCContext &Ctx, | 
|  | std::unique_ptr<const MCInstrInfo> MII) | 
|  | : MCDisassembler(STI, Ctx), MII(std::move(MII)) { | 
|  | const FeatureBitset &FB = STI.getFeatureBits(); | 
|  | if (FB[X86::Is16Bit]) { | 
|  | fMode = MODE_16BIT; | 
|  | return; | 
|  | } else if (FB[X86::Is32Bit]) { | 
|  | fMode = MODE_32BIT; | 
|  | return; | 
|  | } else if (FB[X86::Is64Bit]) { | 
|  | fMode = MODE_64BIT; | 
|  | return; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Invalid CPU mode"); | 
|  | } | 
|  |  | 
|  | MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction( | 
|  | MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address, | 
|  | raw_ostream &CStream) const { | 
|  | CommentStream = &CStream; | 
|  |  | 
|  | InternalInstruction Insn; | 
|  | memset(&Insn, 0, sizeof(InternalInstruction)); | 
|  | Insn.bytes = Bytes; | 
|  | Insn.startLocation = Address; | 
|  | Insn.readerCursor = Address; | 
|  | Insn.mode = fMode; | 
|  |  | 
|  | if (Bytes.empty() || readPrefixes(&Insn) || readOpcode(&Insn) || | 
|  | getInstructionID(&Insn, MII.get()) || Insn.instructionID == 0 || | 
|  | readOperands(&Insn)) { | 
|  | Size = Insn.readerCursor - Address; | 
|  | return Fail; | 
|  | } | 
|  |  | 
|  | Insn.operands = x86OperandSets[Insn.spec->operands]; | 
|  | Insn.length = Insn.readerCursor - Insn.startLocation; | 
|  | Size = Insn.length; | 
|  | if (Size > 15) | 
|  | LLVM_DEBUG(dbgs() << "Instruction exceeds 15-byte limit"); | 
|  |  | 
|  | bool Ret = translateInstruction(Instr, Insn, this); | 
|  | if (!Ret) { | 
|  | unsigned Flags = X86::IP_NO_PREFIX; | 
|  | if (Insn.hasAdSize) | 
|  | Flags |= X86::IP_HAS_AD_SIZE; | 
|  | if (!Insn.mandatoryPrefix) { | 
|  | if (Insn.hasOpSize) | 
|  | Flags |= X86::IP_HAS_OP_SIZE; | 
|  | if (Insn.repeatPrefix == 0xf2) | 
|  | Flags |= X86::IP_HAS_REPEAT_NE; | 
|  | else if (Insn.repeatPrefix == 0xf3 && | 
|  | // It should not be 'pause' f3 90 | 
|  | Insn.opcode != 0x90) | 
|  | Flags |= X86::IP_HAS_REPEAT; | 
|  | if (Insn.hasLockPrefix) | 
|  | Flags |= X86::IP_HAS_LOCK; | 
|  | } | 
|  | Instr.setFlags(Flags); | 
|  | } | 
|  | return (!Ret) ? Success : Fail; | 
|  | } | 
|  |  | 
|  | // | 
|  | // Private code that translates from struct InternalInstructions to MCInsts. | 
|  | // | 
|  |  | 
|  | /// translateRegister - Translates an internal register to the appropriate LLVM | 
|  | ///   register, and appends it as an operand to an MCInst. | 
|  | /// | 
|  | /// @param mcInst     - The MCInst to append to. | 
|  | /// @param reg        - The Reg to append. | 
|  | static void translateRegister(MCInst &mcInst, Reg reg) { | 
|  | #define ENTRY(x) X86::x, | 
|  | static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS}; | 
|  | #undef ENTRY | 
|  |  | 
|  | MCPhysReg llvmRegnum = llvmRegnums[reg]; | 
|  | mcInst.addOperand(MCOperand::createReg(llvmRegnum)); | 
|  | } | 
|  |  | 
|  | static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = { | 
|  | 0,        // SEG_OVERRIDE_NONE | 
|  | X86::CS, | 
|  | X86::SS, | 
|  | X86::DS, | 
|  | X86::ES, | 
|  | X86::FS, | 
|  | X86::GS | 
|  | }; | 
|  |  | 
|  | /// translateSrcIndex   - Appends a source index operand to an MCInst. | 
|  | /// | 
|  | /// @param mcInst       - The MCInst to append to. | 
|  | /// @param insn         - The internal instruction. | 
|  | static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) { | 
|  | unsigned baseRegNo; | 
|  |  | 
|  | if (insn.mode == MODE_64BIT) | 
|  | baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI; | 
|  | else if (insn.mode == MODE_32BIT) | 
|  | baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI; | 
|  | else { | 
|  | assert(insn.mode == MODE_16BIT); | 
|  | baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI; | 
|  | } | 
|  | MCOperand baseReg = MCOperand::createReg(baseRegNo); | 
|  | mcInst.addOperand(baseReg); | 
|  |  | 
|  | MCOperand segmentReg; | 
|  | segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]); | 
|  | mcInst.addOperand(segmentReg); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// translateDstIndex   - Appends a destination index operand to an MCInst. | 
|  | /// | 
|  | /// @param mcInst       - The MCInst to append to. | 
|  | /// @param insn         - The internal instruction. | 
|  |  | 
|  | static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) { | 
|  | unsigned baseRegNo; | 
|  |  | 
|  | if (insn.mode == MODE_64BIT) | 
|  | baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI; | 
|  | else if (insn.mode == MODE_32BIT) | 
|  | baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI; | 
|  | else { | 
|  | assert(insn.mode == MODE_16BIT); | 
|  | baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI; | 
|  | } | 
|  | MCOperand baseReg = MCOperand::createReg(baseRegNo); | 
|  | mcInst.addOperand(baseReg); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// translateImmediate  - Appends an immediate operand to an MCInst. | 
|  | /// | 
|  | /// @param mcInst       - The MCInst to append to. | 
|  | /// @param immediate    - The immediate value to append. | 
|  | /// @param operand      - The operand, as stored in the descriptor table. | 
|  | /// @param insn         - The internal instruction. | 
|  | static void translateImmediate(MCInst &mcInst, uint64_t immediate, | 
|  | const OperandSpecifier &operand, | 
|  | InternalInstruction &insn, | 
|  | const MCDisassembler *Dis) { | 
|  | // Sign-extend the immediate if necessary. | 
|  |  | 
|  | OperandType type = (OperandType)operand.type; | 
|  |  | 
|  | bool isBranch = false; | 
|  | uint64_t pcrel = 0; | 
|  | if (type == TYPE_REL) { | 
|  | isBranch = true; | 
|  | pcrel = insn.startLocation + insn.length; | 
|  | switch (operand.encoding) { | 
|  | default: | 
|  | break; | 
|  | case ENCODING_Iv: | 
|  | switch (insn.displacementSize) { | 
|  | default: | 
|  | break; | 
|  | case 1: | 
|  | if(immediate & 0x80) | 
|  | immediate |= ~(0xffull); | 
|  | break; | 
|  | case 2: | 
|  | if(immediate & 0x8000) | 
|  | immediate |= ~(0xffffull); | 
|  | break; | 
|  | case 4: | 
|  | if(immediate & 0x80000000) | 
|  | immediate |= ~(0xffffffffull); | 
|  | break; | 
|  | case 8: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case ENCODING_IB: | 
|  | if(immediate & 0x80) | 
|  | immediate |= ~(0xffull); | 
|  | break; | 
|  | case ENCODING_IW: | 
|  | if(immediate & 0x8000) | 
|  | immediate |= ~(0xffffull); | 
|  | break; | 
|  | case ENCODING_ID: | 
|  | if(immediate & 0x80000000) | 
|  | immediate |= ~(0xffffffffull); | 
|  | break; | 
|  | } | 
|  | } | 
|  | // By default sign-extend all X86 immediates based on their encoding. | 
|  | else if (type == TYPE_IMM) { | 
|  | switch (operand.encoding) { | 
|  | default: | 
|  | break; | 
|  | case ENCODING_IB: | 
|  | if(immediate & 0x80) | 
|  | immediate |= ~(0xffull); | 
|  | break; | 
|  | case ENCODING_IW: | 
|  | if(immediate & 0x8000) | 
|  | immediate |= ~(0xffffull); | 
|  | break; | 
|  | case ENCODING_ID: | 
|  | if(immediate & 0x80000000) | 
|  | immediate |= ~(0xffffffffull); | 
|  | break; | 
|  | case ENCODING_IO: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (type) { | 
|  | case TYPE_XMM: | 
|  | mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4))); | 
|  | return; | 
|  | case TYPE_YMM: | 
|  | mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4))); | 
|  | return; | 
|  | case TYPE_ZMM: | 
|  | mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4))); | 
|  | return; | 
|  | default: | 
|  | // operand is 64 bits wide.  Do nothing. | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!Dis->tryAddingSymbolicOperand( | 
|  | mcInst, immediate + pcrel, insn.startLocation, isBranch, | 
|  | insn.immediateOffset, insn.immediateSize, insn.length)) | 
|  | mcInst.addOperand(MCOperand::createImm(immediate)); | 
|  |  | 
|  | if (type == TYPE_MOFFS) { | 
|  | MCOperand segmentReg; | 
|  | segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]); | 
|  | mcInst.addOperand(segmentReg); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// translateRMRegister - Translates a register stored in the R/M field of the | 
|  | ///   ModR/M byte to its LLVM equivalent and appends it to an MCInst. | 
|  | /// @param mcInst       - The MCInst to append to. | 
|  | /// @param insn         - The internal instruction to extract the R/M field | 
|  | ///                       from. | 
|  | /// @return             - 0 on success; -1 otherwise | 
|  | static bool translateRMRegister(MCInst &mcInst, | 
|  | InternalInstruction &insn) { | 
|  | if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) { | 
|  | debug("A R/M register operand may not have a SIB byte"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | switch (insn.eaBase) { | 
|  | default: | 
|  | debug("Unexpected EA base register"); | 
|  | return true; | 
|  | case EA_BASE_NONE: | 
|  | debug("EA_BASE_NONE for ModR/M base"); | 
|  | return true; | 
|  | #define ENTRY(x) case EA_BASE_##x: | 
|  | ALL_EA_BASES | 
|  | #undef ENTRY | 
|  | debug("A R/M register operand may not have a base; " | 
|  | "the operand must be a register."); | 
|  | return true; | 
|  | #define ENTRY(x)                                                      \ | 
|  | case EA_REG_##x:                                                    \ | 
|  | mcInst.addOperand(MCOperand::createReg(X86::x)); break; | 
|  | ALL_REGS | 
|  | #undef ENTRY | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// translateRMMemory - Translates a memory operand stored in the Mod and R/M | 
|  | ///   fields of an internal instruction (and possibly its SIB byte) to a memory | 
|  | ///   operand in LLVM's format, and appends it to an MCInst. | 
|  | /// | 
|  | /// @param mcInst       - The MCInst to append to. | 
|  | /// @param insn         - The instruction to extract Mod, R/M, and SIB fields | 
|  | ///                       from. | 
|  | /// @param ForceSIB     - The instruction must use SIB. | 
|  | /// @return             - 0 on success; nonzero otherwise | 
|  | static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn, | 
|  | const MCDisassembler *Dis, | 
|  | bool ForceSIB = false) { | 
|  | // Addresses in an MCInst are represented as five operands: | 
|  | //   1. basereg       (register)  The R/M base, or (if there is a SIB) the | 
|  | //                                SIB base | 
|  | //   2. scaleamount   (immediate) 1, or (if there is a SIB) the specified | 
|  | //                                scale amount | 
|  | //   3. indexreg      (register)  x86_registerNONE, or (if there is a SIB) | 
|  | //                                the index (which is multiplied by the | 
|  | //                                scale amount) | 
|  | //   4. displacement  (immediate) 0, or the displacement if there is one | 
|  | //   5. segmentreg    (register)  x86_registerNONE for now, but could be set | 
|  | //                                if we have segment overrides | 
|  |  | 
|  | MCOperand baseReg; | 
|  | MCOperand scaleAmount; | 
|  | MCOperand indexReg; | 
|  | MCOperand displacement; | 
|  | MCOperand segmentReg; | 
|  | uint64_t pcrel = 0; | 
|  |  | 
|  | if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) { | 
|  | if (insn.sibBase != SIB_BASE_NONE) { | 
|  | switch (insn.sibBase) { | 
|  | default: | 
|  | debug("Unexpected sibBase"); | 
|  | return true; | 
|  | #define ENTRY(x)                                          \ | 
|  | case SIB_BASE_##x:                                  \ | 
|  | baseReg = MCOperand::createReg(X86::x); break; | 
|  | ALL_SIB_BASES | 
|  | #undef ENTRY | 
|  | } | 
|  | } else { | 
|  | baseReg = MCOperand::createReg(X86::NoRegister); | 
|  | } | 
|  |  | 
|  | if (insn.sibIndex != SIB_INDEX_NONE) { | 
|  | switch (insn.sibIndex) { | 
|  | default: | 
|  | debug("Unexpected sibIndex"); | 
|  | return true; | 
|  | #define ENTRY(x)                                          \ | 
|  | case SIB_INDEX_##x:                                 \ | 
|  | indexReg = MCOperand::createReg(X86::x); break; | 
|  | EA_BASES_32BIT | 
|  | EA_BASES_64BIT | 
|  | REGS_XMM | 
|  | REGS_YMM | 
|  | REGS_ZMM | 
|  | #undef ENTRY | 
|  | } | 
|  | } else { | 
|  | // Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present, | 
|  | // but no index is used and modrm alone should have been enough. | 
|  | // -No base register in 32-bit mode. In 64-bit mode this is used to | 
|  | //  avoid rip-relative addressing. | 
|  | // -Any base register used other than ESP/RSP/R12D/R12. Using these as a | 
|  | //  base always requires a SIB byte. | 
|  | // -A scale other than 1 is used. | 
|  | if (!ForceSIB && | 
|  | (insn.sibScale != 1 || | 
|  | (insn.sibBase == SIB_BASE_NONE && insn.mode != MODE_64BIT) || | 
|  | (insn.sibBase != SIB_BASE_NONE && | 
|  | insn.sibBase != SIB_BASE_ESP && insn.sibBase != SIB_BASE_RSP && | 
|  | insn.sibBase != SIB_BASE_R12D && insn.sibBase != SIB_BASE_R12))) { | 
|  | indexReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIZ : | 
|  | X86::RIZ); | 
|  | } else | 
|  | indexReg = MCOperand::createReg(X86::NoRegister); | 
|  | } | 
|  |  | 
|  | scaleAmount = MCOperand::createImm(insn.sibScale); | 
|  | } else { | 
|  | switch (insn.eaBase) { | 
|  | case EA_BASE_NONE: | 
|  | if (insn.eaDisplacement == EA_DISP_NONE) { | 
|  | debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base"); | 
|  | return true; | 
|  | } | 
|  | if (insn.mode == MODE_64BIT){ | 
|  | pcrel = insn.startLocation + insn.length; | 
|  | Dis->tryAddingPcLoadReferenceComment(insn.displacement + pcrel, | 
|  | insn.startLocation + | 
|  | insn.displacementOffset); | 
|  | // Section 2.2.1.6 | 
|  | baseReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIP : | 
|  | X86::RIP); | 
|  | } | 
|  | else | 
|  | baseReg = MCOperand::createReg(X86::NoRegister); | 
|  |  | 
|  | indexReg = MCOperand::createReg(X86::NoRegister); | 
|  | break; | 
|  | case EA_BASE_BX_SI: | 
|  | baseReg = MCOperand::createReg(X86::BX); | 
|  | indexReg = MCOperand::createReg(X86::SI); | 
|  | break; | 
|  | case EA_BASE_BX_DI: | 
|  | baseReg = MCOperand::createReg(X86::BX); | 
|  | indexReg = MCOperand::createReg(X86::DI); | 
|  | break; | 
|  | case EA_BASE_BP_SI: | 
|  | baseReg = MCOperand::createReg(X86::BP); | 
|  | indexReg = MCOperand::createReg(X86::SI); | 
|  | break; | 
|  | case EA_BASE_BP_DI: | 
|  | baseReg = MCOperand::createReg(X86::BP); | 
|  | indexReg = MCOperand::createReg(X86::DI); | 
|  | break; | 
|  | default: | 
|  | indexReg = MCOperand::createReg(X86::NoRegister); | 
|  | switch (insn.eaBase) { | 
|  | default: | 
|  | debug("Unexpected eaBase"); | 
|  | return true; | 
|  | // Here, we will use the fill-ins defined above.  However, | 
|  | //   BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and | 
|  | //   sib and sib64 were handled in the top-level if, so they're only | 
|  | //   placeholders to keep the compiler happy. | 
|  | #define ENTRY(x)                                        \ | 
|  | case EA_BASE_##x:                                 \ | 
|  | baseReg = MCOperand::createReg(X86::x); break; | 
|  | ALL_EA_BASES | 
|  | #undef ENTRY | 
|  | #define ENTRY(x) case EA_REG_##x: | 
|  | ALL_REGS | 
|  | #undef ENTRY | 
|  | debug("A R/M memory operand may not be a register; " | 
|  | "the base field must be a base."); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | scaleAmount = MCOperand::createImm(1); | 
|  | } | 
|  |  | 
|  | displacement = MCOperand::createImm(insn.displacement); | 
|  |  | 
|  | segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]); | 
|  |  | 
|  | mcInst.addOperand(baseReg); | 
|  | mcInst.addOperand(scaleAmount); | 
|  | mcInst.addOperand(indexReg); | 
|  |  | 
|  | const uint8_t dispSize = | 
|  | (insn.eaDisplacement == EA_DISP_NONE) ? 0 : insn.displacementSize; | 
|  |  | 
|  | if (!Dis->tryAddingSymbolicOperand( | 
|  | mcInst, insn.displacement + pcrel, insn.startLocation, false, | 
|  | insn.displacementOffset, dispSize, insn.length)) | 
|  | mcInst.addOperand(displacement); | 
|  | mcInst.addOperand(segmentReg); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// translateRM - Translates an operand stored in the R/M (and possibly SIB) | 
|  | ///   byte of an instruction to LLVM form, and appends it to an MCInst. | 
|  | /// | 
|  | /// @param mcInst       - The MCInst to append to. | 
|  | /// @param operand      - The operand, as stored in the descriptor table. | 
|  | /// @param insn         - The instruction to extract Mod, R/M, and SIB fields | 
|  | ///                       from. | 
|  | /// @return             - 0 on success; nonzero otherwise | 
|  | static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand, | 
|  | InternalInstruction &insn, const MCDisassembler *Dis) { | 
|  | switch (operand.type) { | 
|  | default: | 
|  | debug("Unexpected type for a R/M operand"); | 
|  | return true; | 
|  | case TYPE_R8: | 
|  | case TYPE_R16: | 
|  | case TYPE_R32: | 
|  | case TYPE_R64: | 
|  | case TYPE_Rv: | 
|  | case TYPE_MM64: | 
|  | case TYPE_XMM: | 
|  | case TYPE_YMM: | 
|  | case TYPE_ZMM: | 
|  | case TYPE_TMM: | 
|  | case TYPE_VK_PAIR: | 
|  | case TYPE_VK: | 
|  | case TYPE_DEBUGREG: | 
|  | case TYPE_CONTROLREG: | 
|  | case TYPE_BNDR: | 
|  | return translateRMRegister(mcInst, insn); | 
|  | case TYPE_M: | 
|  | case TYPE_MVSIBX: | 
|  | case TYPE_MVSIBY: | 
|  | case TYPE_MVSIBZ: | 
|  | return translateRMMemory(mcInst, insn, Dis); | 
|  | case TYPE_MSIB: | 
|  | return translateRMMemory(mcInst, insn, Dis, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// translateFPRegister - Translates a stack position on the FPU stack to its | 
|  | ///   LLVM form, and appends it to an MCInst. | 
|  | /// | 
|  | /// @param mcInst       - The MCInst to append to. | 
|  | /// @param stackPos     - The stack position to translate. | 
|  | static void translateFPRegister(MCInst &mcInst, | 
|  | uint8_t stackPos) { | 
|  | mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos)); | 
|  | } | 
|  |  | 
|  | /// translateMaskRegister - Translates a 3-bit mask register number to | 
|  | ///   LLVM form, and appends it to an MCInst. | 
|  | /// | 
|  | /// @param mcInst       - The MCInst to append to. | 
|  | /// @param maskRegNum   - Number of mask register from 0 to 7. | 
|  | /// @return             - false on success; true otherwise. | 
|  | static bool translateMaskRegister(MCInst &mcInst, | 
|  | uint8_t maskRegNum) { | 
|  | if (maskRegNum >= 8) { | 
|  | debug("Invalid mask register number"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// translateOperand - Translates an operand stored in an internal instruction | 
|  | ///   to LLVM's format and appends it to an MCInst. | 
|  | /// | 
|  | /// @param mcInst       - The MCInst to append to. | 
|  | /// @param operand      - The operand, as stored in the descriptor table. | 
|  | /// @param insn         - The internal instruction. | 
|  | /// @return             - false on success; true otherwise. | 
|  | static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand, | 
|  | InternalInstruction &insn, | 
|  | const MCDisassembler *Dis) { | 
|  | switch (operand.encoding) { | 
|  | default: | 
|  | debug("Unhandled operand encoding during translation"); | 
|  | return true; | 
|  | case ENCODING_REG: | 
|  | translateRegister(mcInst, insn.reg); | 
|  | return false; | 
|  | case ENCODING_WRITEMASK: | 
|  | return translateMaskRegister(mcInst, insn.writemask); | 
|  | case ENCODING_SIB: | 
|  | CASE_ENCODING_RM: | 
|  | CASE_ENCODING_VSIB: | 
|  | return translateRM(mcInst, operand, insn, Dis); | 
|  | case ENCODING_IB: | 
|  | case ENCODING_IW: | 
|  | case ENCODING_ID: | 
|  | case ENCODING_IO: | 
|  | case ENCODING_Iv: | 
|  | case ENCODING_Ia: | 
|  | translateImmediate(mcInst, | 
|  | insn.immediates[insn.numImmediatesTranslated++], | 
|  | operand, | 
|  | insn, | 
|  | Dis); | 
|  | return false; | 
|  | case ENCODING_IRC: | 
|  | mcInst.addOperand(MCOperand::createImm(insn.RC)); | 
|  | return false; | 
|  | case ENCODING_SI: | 
|  | return translateSrcIndex(mcInst, insn); | 
|  | case ENCODING_DI: | 
|  | return translateDstIndex(mcInst, insn); | 
|  | case ENCODING_RB: | 
|  | case ENCODING_RW: | 
|  | case ENCODING_RD: | 
|  | case ENCODING_RO: | 
|  | case ENCODING_Rv: | 
|  | translateRegister(mcInst, insn.opcodeRegister); | 
|  | return false; | 
|  | case ENCODING_CC: | 
|  | mcInst.addOperand(MCOperand::createImm(insn.immediates[1])); | 
|  | return false; | 
|  | case ENCODING_FP: | 
|  | translateFPRegister(mcInst, insn.modRM & 7); | 
|  | return false; | 
|  | case ENCODING_VVVV: | 
|  | translateRegister(mcInst, insn.vvvv); | 
|  | return false; | 
|  | case ENCODING_DUP: | 
|  | return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0], | 
|  | insn, Dis); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// translateInstruction - Translates an internal instruction and all its | 
|  | ///   operands to an MCInst. | 
|  | /// | 
|  | /// @param mcInst       - The MCInst to populate with the instruction's data. | 
|  | /// @param insn         - The internal instruction. | 
|  | /// @return             - false on success; true otherwise. | 
|  | static bool translateInstruction(MCInst &mcInst, | 
|  | InternalInstruction &insn, | 
|  | const MCDisassembler *Dis) { | 
|  | if (!insn.spec) { | 
|  | debug("Instruction has no specification"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | mcInst.clear(); | 
|  | mcInst.setOpcode(insn.instructionID); | 
|  | // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3 | 
|  | // prefix bytes should be disassembled as xrelease and xacquire then set the | 
|  | // opcode to those instead of the rep and repne opcodes. | 
|  | if (insn.xAcquireRelease) { | 
|  | if(mcInst.getOpcode() == X86::REP_PREFIX) | 
|  | mcInst.setOpcode(X86::XRELEASE_PREFIX); | 
|  | else if(mcInst.getOpcode() == X86::REPNE_PREFIX) | 
|  | mcInst.setOpcode(X86::XACQUIRE_PREFIX); | 
|  | } | 
|  |  | 
|  | insn.numImmediatesTranslated = 0; | 
|  |  | 
|  | for (const auto &Op : insn.operands) { | 
|  | if (Op.encoding != ENCODING_NONE) { | 
|  | if (translateOperand(mcInst, Op, insn, Dis)) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static MCDisassembler *createX86Disassembler(const Target &T, | 
|  | const MCSubtargetInfo &STI, | 
|  | MCContext &Ctx) { | 
|  | std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo()); | 
|  | return new X86GenericDisassembler(STI, Ctx, std::move(MII)); | 
|  | } | 
|  |  | 
|  | extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Disassembler() { | 
|  | // Register the disassembler. | 
|  | TargetRegistry::RegisterMCDisassembler(getTheX86_32Target(), | 
|  | createX86Disassembler); | 
|  | TargetRegistry::RegisterMCDisassembler(getTheX86_64Target(), | 
|  | createX86Disassembler); | 
|  | } |