|  | //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "PPCTargetTransformInfo.h" | 
|  | #include "llvm/Analysis/CodeMetrics.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/CodeGen/BasicTTIImpl.h" | 
|  | #include "llvm/CodeGen/CostTable.h" | 
|  | #include "llvm/CodeGen/TargetLowering.h" | 
|  | #include "llvm/CodeGen/TargetSchedule.h" | 
|  | #include "llvm/IR/IntrinsicsPowerPC.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/KnownBits.h" | 
|  | #include "llvm/Transforms/InstCombine/InstCombiner.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "ppctti" | 
|  |  | 
|  | static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting", | 
|  | cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | EnablePPCColdCC("ppc-enable-coldcc", cl::Hidden, cl::init(false), | 
|  | cl::desc("Enable using coldcc calling conv for cold " | 
|  | "internal functions")); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | LsrNoInsnsCost("ppc-lsr-no-insns-cost", cl::Hidden, cl::init(false), | 
|  | cl::desc("Do not add instruction count to lsr cost model")); | 
|  |  | 
|  | // The latency of mtctr is only justified if there are more than 4 | 
|  | // comparisons that will be removed as a result. | 
|  | static cl::opt<unsigned> | 
|  | SmallCTRLoopThreshold("min-ctr-loop-threshold", cl::init(4), cl::Hidden, | 
|  | cl::desc("Loops with a constant trip count smaller than " | 
|  | "this value will not use the count register.")); | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // PPC cost model. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | TargetTransformInfo::PopcntSupportKind | 
|  | PPCTTIImpl::getPopcntSupport(unsigned TyWidth) { | 
|  | assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); | 
|  | if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64) | 
|  | return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ? | 
|  | TTI::PSK_SlowHardware : TTI::PSK_FastHardware; | 
|  | return TTI::PSK_Software; | 
|  | } | 
|  |  | 
|  | Optional<Instruction *> | 
|  | PPCTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const { | 
|  | Intrinsic::ID IID = II.getIntrinsicID(); | 
|  | switch (IID) { | 
|  | default: | 
|  | break; | 
|  | case Intrinsic::ppc_altivec_lvx: | 
|  | case Intrinsic::ppc_altivec_lvxl: | 
|  | // Turn PPC lvx -> load if the pointer is known aligned. | 
|  | if (getOrEnforceKnownAlignment( | 
|  | II.getArgOperand(0), Align(16), IC.getDataLayout(), &II, | 
|  | &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) { | 
|  | Value *Ptr = IC.Builder.CreateBitCast( | 
|  | II.getArgOperand(0), PointerType::getUnqual(II.getType())); | 
|  | return new LoadInst(II.getType(), Ptr, "", false, Align(16)); | 
|  | } | 
|  | break; | 
|  | case Intrinsic::ppc_vsx_lxvw4x: | 
|  | case Intrinsic::ppc_vsx_lxvd2x: { | 
|  | // Turn PPC VSX loads into normal loads. | 
|  | Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(0), | 
|  | PointerType::getUnqual(II.getType())); | 
|  | return new LoadInst(II.getType(), Ptr, Twine(""), false, Align(1)); | 
|  | } | 
|  | case Intrinsic::ppc_altivec_stvx: | 
|  | case Intrinsic::ppc_altivec_stvxl: | 
|  | // Turn stvx -> store if the pointer is known aligned. | 
|  | if (getOrEnforceKnownAlignment( | 
|  | II.getArgOperand(1), Align(16), IC.getDataLayout(), &II, | 
|  | &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) { | 
|  | Type *OpPtrTy = PointerType::getUnqual(II.getArgOperand(0)->getType()); | 
|  | Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(1), OpPtrTy); | 
|  | return new StoreInst(II.getArgOperand(0), Ptr, false, Align(16)); | 
|  | } | 
|  | break; | 
|  | case Intrinsic::ppc_vsx_stxvw4x: | 
|  | case Intrinsic::ppc_vsx_stxvd2x: { | 
|  | // Turn PPC VSX stores into normal stores. | 
|  | Type *OpPtrTy = PointerType::getUnqual(II.getArgOperand(0)->getType()); | 
|  | Value *Ptr = IC.Builder.CreateBitCast(II.getArgOperand(1), OpPtrTy); | 
|  | return new StoreInst(II.getArgOperand(0), Ptr, false, Align(1)); | 
|  | } | 
|  | case Intrinsic::ppc_altivec_vperm: | 
|  | // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant. | 
|  | // Note that ppc_altivec_vperm has a big-endian bias, so when creating | 
|  | // a vectorshuffle for little endian, we must undo the transformation | 
|  | // performed on vec_perm in altivec.h.  That is, we must complement | 
|  | // the permutation mask with respect to 31 and reverse the order of | 
|  | // V1 and V2. | 
|  | if (Constant *Mask = dyn_cast<Constant>(II.getArgOperand(2))) { | 
|  | assert(cast<FixedVectorType>(Mask->getType())->getNumElements() == 16 && | 
|  | "Bad type for intrinsic!"); | 
|  |  | 
|  | // Check that all of the elements are integer constants or undefs. | 
|  | bool AllEltsOk = true; | 
|  | for (unsigned i = 0; i != 16; ++i) { | 
|  | Constant *Elt = Mask->getAggregateElement(i); | 
|  | if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) { | 
|  | AllEltsOk = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (AllEltsOk) { | 
|  | // Cast the input vectors to byte vectors. | 
|  | Value *Op0 = | 
|  | IC.Builder.CreateBitCast(II.getArgOperand(0), Mask->getType()); | 
|  | Value *Op1 = | 
|  | IC.Builder.CreateBitCast(II.getArgOperand(1), Mask->getType()); | 
|  | Value *Result = UndefValue::get(Op0->getType()); | 
|  |  | 
|  | // Only extract each element once. | 
|  | Value *ExtractedElts[32]; | 
|  | memset(ExtractedElts, 0, sizeof(ExtractedElts)); | 
|  |  | 
|  | for (unsigned i = 0; i != 16; ++i) { | 
|  | if (isa<UndefValue>(Mask->getAggregateElement(i))) | 
|  | continue; | 
|  | unsigned Idx = | 
|  | cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue(); | 
|  | Idx &= 31; // Match the hardware behavior. | 
|  | if (DL.isLittleEndian()) | 
|  | Idx = 31 - Idx; | 
|  |  | 
|  | if (!ExtractedElts[Idx]) { | 
|  | Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0; | 
|  | Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1; | 
|  | ExtractedElts[Idx] = IC.Builder.CreateExtractElement( | 
|  | Idx < 16 ? Op0ToUse : Op1ToUse, IC.Builder.getInt32(Idx & 15)); | 
|  | } | 
|  |  | 
|  | // Insert this value into the result vector. | 
|  | Result = IC.Builder.CreateInsertElement(Result, ExtractedElts[Idx], | 
|  | IC.Builder.getInt32(i)); | 
|  | } | 
|  | return CastInst::Create(Instruction::BitCast, Result, II.getType()); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | return None; | 
|  | } | 
|  |  | 
|  | InstructionCost PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, | 
|  | TTI::TargetCostKind CostKind) { | 
|  | if (DisablePPCConstHoist) | 
|  | return BaseT::getIntImmCost(Imm, Ty, CostKind); | 
|  |  | 
|  | assert(Ty->isIntegerTy()); | 
|  |  | 
|  | unsigned BitSize = Ty->getPrimitiveSizeInBits(); | 
|  | if (BitSize == 0) | 
|  | return ~0U; | 
|  |  | 
|  | if (Imm == 0) | 
|  | return TTI::TCC_Free; | 
|  |  | 
|  | if (Imm.getBitWidth() <= 64) { | 
|  | if (isInt<16>(Imm.getSExtValue())) | 
|  | return TTI::TCC_Basic; | 
|  |  | 
|  | if (isInt<32>(Imm.getSExtValue())) { | 
|  | // A constant that can be materialized using lis. | 
|  | if ((Imm.getZExtValue() & 0xFFFF) == 0) | 
|  | return TTI::TCC_Basic; | 
|  |  | 
|  | return 2 * TTI::TCC_Basic; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 4 * TTI::TCC_Basic; | 
|  | } | 
|  |  | 
|  | InstructionCost PPCTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, | 
|  | const APInt &Imm, Type *Ty, | 
|  | TTI::TargetCostKind CostKind) { | 
|  | if (DisablePPCConstHoist) | 
|  | return BaseT::getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind); | 
|  |  | 
|  | assert(Ty->isIntegerTy()); | 
|  |  | 
|  | unsigned BitSize = Ty->getPrimitiveSizeInBits(); | 
|  | if (BitSize == 0) | 
|  | return ~0U; | 
|  |  | 
|  | switch (IID) { | 
|  | default: | 
|  | return TTI::TCC_Free; | 
|  | case Intrinsic::sadd_with_overflow: | 
|  | case Intrinsic::uadd_with_overflow: | 
|  | case Intrinsic::ssub_with_overflow: | 
|  | case Intrinsic::usub_with_overflow: | 
|  | if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue())) | 
|  | return TTI::TCC_Free; | 
|  | break; | 
|  | case Intrinsic::experimental_stackmap: | 
|  | if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) | 
|  | return TTI::TCC_Free; | 
|  | break; | 
|  | case Intrinsic::experimental_patchpoint_void: | 
|  | case Intrinsic::experimental_patchpoint_i64: | 
|  | if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) | 
|  | return TTI::TCC_Free; | 
|  | break; | 
|  | } | 
|  | return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind); | 
|  | } | 
|  |  | 
|  | InstructionCost PPCTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, | 
|  | const APInt &Imm, Type *Ty, | 
|  | TTI::TargetCostKind CostKind, | 
|  | Instruction *Inst) { | 
|  | if (DisablePPCConstHoist) | 
|  | return BaseT::getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst); | 
|  |  | 
|  | assert(Ty->isIntegerTy()); | 
|  |  | 
|  | unsigned BitSize = Ty->getPrimitiveSizeInBits(); | 
|  | if (BitSize == 0) | 
|  | return ~0U; | 
|  |  | 
|  | unsigned ImmIdx = ~0U; | 
|  | bool ShiftedFree = false, RunFree = false, UnsignedFree = false, | 
|  | ZeroFree = false; | 
|  | switch (Opcode) { | 
|  | default: | 
|  | return TTI::TCC_Free; | 
|  | case Instruction::GetElementPtr: | 
|  | // Always hoist the base address of a GetElementPtr. This prevents the | 
|  | // creation of new constants for every base constant that gets constant | 
|  | // folded with the offset. | 
|  | if (Idx == 0) | 
|  | return 2 * TTI::TCC_Basic; | 
|  | return TTI::TCC_Free; | 
|  | case Instruction::And: | 
|  | RunFree = true; // (for the rotate-and-mask instructions) | 
|  | LLVM_FALLTHROUGH; | 
|  | case Instruction::Add: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | ShiftedFree = true; | 
|  | LLVM_FALLTHROUGH; | 
|  | case Instruction::Sub: | 
|  | case Instruction::Mul: | 
|  | case Instruction::Shl: | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | ImmIdx = 1; | 
|  | break; | 
|  | case Instruction::ICmp: | 
|  | UnsignedFree = true; | 
|  | ImmIdx = 1; | 
|  | // Zero comparisons can use record-form instructions. | 
|  | LLVM_FALLTHROUGH; | 
|  | case Instruction::Select: | 
|  | ZeroFree = true; | 
|  | break; | 
|  | case Instruction::PHI: | 
|  | case Instruction::Call: | 
|  | case Instruction::Ret: | 
|  | case Instruction::Load: | 
|  | case Instruction::Store: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (ZeroFree && Imm == 0) | 
|  | return TTI::TCC_Free; | 
|  |  | 
|  | if (Idx == ImmIdx && Imm.getBitWidth() <= 64) { | 
|  | if (isInt<16>(Imm.getSExtValue())) | 
|  | return TTI::TCC_Free; | 
|  |  | 
|  | if (RunFree) { | 
|  | if (Imm.getBitWidth() <= 32 && | 
|  | (isShiftedMask_32(Imm.getZExtValue()) || | 
|  | isShiftedMask_32(~Imm.getZExtValue()))) | 
|  | return TTI::TCC_Free; | 
|  |  | 
|  | if (ST->isPPC64() && | 
|  | (isShiftedMask_64(Imm.getZExtValue()) || | 
|  | isShiftedMask_64(~Imm.getZExtValue()))) | 
|  | return TTI::TCC_Free; | 
|  | } | 
|  |  | 
|  | if (UnsignedFree && isUInt<16>(Imm.getZExtValue())) | 
|  | return TTI::TCC_Free; | 
|  |  | 
|  | if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0) | 
|  | return TTI::TCC_Free; | 
|  | } | 
|  |  | 
|  | return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind); | 
|  | } | 
|  |  | 
|  | // Check if the current Type is an MMA vector type. Valid MMA types are | 
|  | // v256i1 and v512i1 respectively. | 
|  | static bool isMMAType(Type *Ty) { | 
|  | return Ty->isVectorTy() && (Ty->getScalarSizeInBits() == 1) && | 
|  | (Ty->getPrimitiveSizeInBits() > 128); | 
|  | } | 
|  |  | 
|  | InstructionCost PPCTTIImpl::getUserCost(const User *U, | 
|  | ArrayRef<const Value *> Operands, | 
|  | TTI::TargetCostKind CostKind) { | 
|  | // We already implement getCastInstrCost and getMemoryOpCost where we perform | 
|  | // the vector adjustment there. | 
|  | if (isa<CastInst>(U) || isa<LoadInst>(U) || isa<StoreInst>(U)) | 
|  | return BaseT::getUserCost(U, Operands, CostKind); | 
|  |  | 
|  | if (U->getType()->isVectorTy()) { | 
|  | // Instructions that need to be split should cost more. | 
|  | std::pair<InstructionCost, MVT> LT = | 
|  | TLI->getTypeLegalizationCost(DL, U->getType()); | 
|  | return LT.first * BaseT::getUserCost(U, Operands, CostKind); | 
|  | } | 
|  |  | 
|  | return BaseT::getUserCost(U, Operands, CostKind); | 
|  | } | 
|  |  | 
|  | // Determining the address of a TLS variable results in a function call in | 
|  | // certain TLS models. | 
|  | static bool memAddrUsesCTR(const Value *MemAddr, const PPCTargetMachine &TM, | 
|  | SmallPtrSetImpl<const Value *> &Visited) { | 
|  | // No need to traverse again if we already checked this operand. | 
|  | if (!Visited.insert(MemAddr).second) | 
|  | return false; | 
|  | const auto *GV = dyn_cast<GlobalValue>(MemAddr); | 
|  | if (!GV) { | 
|  | // Recurse to check for constants that refer to TLS global variables. | 
|  | if (const auto *CV = dyn_cast<Constant>(MemAddr)) | 
|  | for (const auto &CO : CV->operands()) | 
|  | if (memAddrUsesCTR(CO, TM, Visited)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!GV->isThreadLocal()) | 
|  | return false; | 
|  | TLSModel::Model Model = TM.getTLSModel(GV); | 
|  | return Model == TLSModel::GeneralDynamic || Model == TLSModel::LocalDynamic; | 
|  | } | 
|  |  | 
|  | bool PPCTTIImpl::mightUseCTR(BasicBlock *BB, TargetLibraryInfo *LibInfo, | 
|  | SmallPtrSetImpl<const Value *> &Visited) { | 
|  | const PPCTargetMachine &TM = ST->getTargetMachine(); | 
|  |  | 
|  | // Loop through the inline asm constraints and look for something that | 
|  | // clobbers ctr. | 
|  | auto asmClobbersCTR = [](InlineAsm *IA) { | 
|  | InlineAsm::ConstraintInfoVector CIV = IA->ParseConstraints(); | 
|  | for (const InlineAsm::ConstraintInfo &C : CIV) { | 
|  | if (C.Type != InlineAsm::isInput) | 
|  | for (const auto &Code : C.Codes) | 
|  | if (StringRef(Code).equals_insensitive("{ctr}")) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | auto isLargeIntegerTy = [](bool Is32Bit, Type *Ty) { | 
|  | if (IntegerType *ITy = dyn_cast<IntegerType>(Ty)) | 
|  | return ITy->getBitWidth() > (Is32Bit ? 32U : 64U); | 
|  |  | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | auto supportedHalfPrecisionOp = [](Instruction *Inst) { | 
|  | switch (Inst->getOpcode()) { | 
|  | default: | 
|  | return false; | 
|  | case Instruction::FPTrunc: | 
|  | case Instruction::FPExt: | 
|  | case Instruction::Load: | 
|  | case Instruction::Store: | 
|  | case Instruction::FPToUI: | 
|  | case Instruction::UIToFP: | 
|  | case Instruction::FPToSI: | 
|  | case Instruction::SIToFP: | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | for (BasicBlock::iterator J = BB->begin(), JE = BB->end(); | 
|  | J != JE; ++J) { | 
|  | // There are no direct operations on half precision so assume that | 
|  | // anything with that type requires a call except for a few select | 
|  | // operations with Power9. | 
|  | if (Instruction *CurrInst = dyn_cast<Instruction>(J)) { | 
|  | for (const auto &Op : CurrInst->operands()) { | 
|  | if (Op->getType()->getScalarType()->isHalfTy() || | 
|  | CurrInst->getType()->getScalarType()->isHalfTy()) | 
|  | return !(ST->isISA3_0() && supportedHalfPrecisionOp(CurrInst)); | 
|  | } | 
|  | } | 
|  | if (CallInst *CI = dyn_cast<CallInst>(J)) { | 
|  | // Inline ASM is okay, unless it clobbers the ctr register. | 
|  | if (InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand())) { | 
|  | if (asmClobbersCTR(IA)) | 
|  | return true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (Function *F = CI->getCalledFunction()) { | 
|  | // Most intrinsics don't become function calls, but some might. | 
|  | // sin, cos, exp and log are always calls. | 
|  | unsigned Opcode = 0; | 
|  | if (F->getIntrinsicID() != Intrinsic::not_intrinsic) { | 
|  | switch (F->getIntrinsicID()) { | 
|  | default: continue; | 
|  | // If we have a call to loop_decrement or set_loop_iterations, | 
|  | // we're definitely using CTR. | 
|  | case Intrinsic::set_loop_iterations: | 
|  | case Intrinsic::loop_decrement: | 
|  | return true; | 
|  |  | 
|  | // Binary operations on 128-bit value will use CTR. | 
|  | case Intrinsic::experimental_constrained_fadd: | 
|  | case Intrinsic::experimental_constrained_fsub: | 
|  | case Intrinsic::experimental_constrained_fmul: | 
|  | case Intrinsic::experimental_constrained_fdiv: | 
|  | case Intrinsic::experimental_constrained_frem: | 
|  | if (F->getType()->getScalarType()->isFP128Ty() || | 
|  | F->getType()->getScalarType()->isPPC_FP128Ty()) | 
|  | return true; | 
|  | break; | 
|  |  | 
|  | case Intrinsic::experimental_constrained_fptosi: | 
|  | case Intrinsic::experimental_constrained_fptoui: | 
|  | case Intrinsic::experimental_constrained_sitofp: | 
|  | case Intrinsic::experimental_constrained_uitofp: { | 
|  | Type *SrcType = CI->getArgOperand(0)->getType()->getScalarType(); | 
|  | Type *DstType = CI->getType()->getScalarType(); | 
|  | if (SrcType->isPPC_FP128Ty() || DstType->isPPC_FP128Ty() || | 
|  | isLargeIntegerTy(!TM.isPPC64(), SrcType) || | 
|  | isLargeIntegerTy(!TM.isPPC64(), DstType)) | 
|  | return true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Exclude eh_sjlj_setjmp; we don't need to exclude eh_sjlj_longjmp | 
|  | // because, although it does clobber the counter register, the | 
|  | // control can't then return to inside the loop unless there is also | 
|  | // an eh_sjlj_setjmp. | 
|  | case Intrinsic::eh_sjlj_setjmp: | 
|  |  | 
|  | case Intrinsic::memcpy: | 
|  | case Intrinsic::memmove: | 
|  | case Intrinsic::memset: | 
|  | case Intrinsic::powi: | 
|  | case Intrinsic::log: | 
|  | case Intrinsic::log2: | 
|  | case Intrinsic::log10: | 
|  | case Intrinsic::exp: | 
|  | case Intrinsic::exp2: | 
|  | case Intrinsic::pow: | 
|  | case Intrinsic::sin: | 
|  | case Intrinsic::cos: | 
|  | case Intrinsic::experimental_constrained_powi: | 
|  | case Intrinsic::experimental_constrained_log: | 
|  | case Intrinsic::experimental_constrained_log2: | 
|  | case Intrinsic::experimental_constrained_log10: | 
|  | case Intrinsic::experimental_constrained_exp: | 
|  | case Intrinsic::experimental_constrained_exp2: | 
|  | case Intrinsic::experimental_constrained_pow: | 
|  | case Intrinsic::experimental_constrained_sin: | 
|  | case Intrinsic::experimental_constrained_cos: | 
|  | return true; | 
|  | case Intrinsic::copysign: | 
|  | if (CI->getArgOperand(0)->getType()->getScalarType()-> | 
|  | isPPC_FP128Ty()) | 
|  | return true; | 
|  | else | 
|  | continue; // ISD::FCOPYSIGN is never a library call. | 
|  | case Intrinsic::fmuladd: | 
|  | case Intrinsic::fma:                Opcode = ISD::FMA;        break; | 
|  | case Intrinsic::sqrt:               Opcode = ISD::FSQRT;      break; | 
|  | case Intrinsic::floor:              Opcode = ISD::FFLOOR;     break; | 
|  | case Intrinsic::ceil:               Opcode = ISD::FCEIL;      break; | 
|  | case Intrinsic::trunc:              Opcode = ISD::FTRUNC;     break; | 
|  | case Intrinsic::rint:               Opcode = ISD::FRINT;      break; | 
|  | case Intrinsic::lrint:              Opcode = ISD::LRINT;      break; | 
|  | case Intrinsic::llrint:             Opcode = ISD::LLRINT;     break; | 
|  | case Intrinsic::nearbyint:          Opcode = ISD::FNEARBYINT; break; | 
|  | case Intrinsic::round:              Opcode = ISD::FROUND;     break; | 
|  | case Intrinsic::lround:             Opcode = ISD::LROUND;     break; | 
|  | case Intrinsic::llround:            Opcode = ISD::LLROUND;    break; | 
|  | case Intrinsic::minnum:             Opcode = ISD::FMINNUM;    break; | 
|  | case Intrinsic::maxnum:             Opcode = ISD::FMAXNUM;    break; | 
|  | case Intrinsic::experimental_constrained_fcmp: | 
|  | Opcode = ISD::STRICT_FSETCC; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_fcmps: | 
|  | Opcode = ISD::STRICT_FSETCCS; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_fma: | 
|  | Opcode = ISD::STRICT_FMA; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_sqrt: | 
|  | Opcode = ISD::STRICT_FSQRT; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_floor: | 
|  | Opcode = ISD::STRICT_FFLOOR; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_ceil: | 
|  | Opcode = ISD::STRICT_FCEIL; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_trunc: | 
|  | Opcode = ISD::STRICT_FTRUNC; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_rint: | 
|  | Opcode = ISD::STRICT_FRINT; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_lrint: | 
|  | Opcode = ISD::STRICT_LRINT; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_llrint: | 
|  | Opcode = ISD::STRICT_LLRINT; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_nearbyint: | 
|  | Opcode = ISD::STRICT_FNEARBYINT; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_round: | 
|  | Opcode = ISD::STRICT_FROUND; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_lround: | 
|  | Opcode = ISD::STRICT_LROUND; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_llround: | 
|  | Opcode = ISD::STRICT_LLROUND; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_minnum: | 
|  | Opcode = ISD::STRICT_FMINNUM; | 
|  | break; | 
|  | case Intrinsic::experimental_constrained_maxnum: | 
|  | Opcode = ISD::STRICT_FMAXNUM; | 
|  | break; | 
|  | case Intrinsic::umul_with_overflow: Opcode = ISD::UMULO;      break; | 
|  | case Intrinsic::smul_with_overflow: Opcode = ISD::SMULO;      break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // PowerPC does not use [US]DIVREM or other library calls for | 
|  | // operations on regular types which are not otherwise library calls | 
|  | // (i.e. soft float or atomics). If adapting for targets that do, | 
|  | // additional care is required here. | 
|  |  | 
|  | LibFunc Func; | 
|  | if (!F->hasLocalLinkage() && F->hasName() && LibInfo && | 
|  | LibInfo->getLibFunc(F->getName(), Func) && | 
|  | LibInfo->hasOptimizedCodeGen(Func)) { | 
|  | // Non-read-only functions are never treated as intrinsics. | 
|  | if (!CI->onlyReadsMemory()) | 
|  | return true; | 
|  |  | 
|  | // Conversion happens only for FP calls. | 
|  | if (!CI->getArgOperand(0)->getType()->isFloatingPointTy()) | 
|  | return true; | 
|  |  | 
|  | switch (Func) { | 
|  | default: return true; | 
|  | case LibFunc_copysign: | 
|  | case LibFunc_copysignf: | 
|  | continue; // ISD::FCOPYSIGN is never a library call. | 
|  | case LibFunc_copysignl: | 
|  | return true; | 
|  | case LibFunc_fabs: | 
|  | case LibFunc_fabsf: | 
|  | case LibFunc_fabsl: | 
|  | continue; // ISD::FABS is never a library call. | 
|  | case LibFunc_sqrt: | 
|  | case LibFunc_sqrtf: | 
|  | case LibFunc_sqrtl: | 
|  | Opcode = ISD::FSQRT; break; | 
|  | case LibFunc_floor: | 
|  | case LibFunc_floorf: | 
|  | case LibFunc_floorl: | 
|  | Opcode = ISD::FFLOOR; break; | 
|  | case LibFunc_nearbyint: | 
|  | case LibFunc_nearbyintf: | 
|  | case LibFunc_nearbyintl: | 
|  | Opcode = ISD::FNEARBYINT; break; | 
|  | case LibFunc_ceil: | 
|  | case LibFunc_ceilf: | 
|  | case LibFunc_ceill: | 
|  | Opcode = ISD::FCEIL; break; | 
|  | case LibFunc_rint: | 
|  | case LibFunc_rintf: | 
|  | case LibFunc_rintl: | 
|  | Opcode = ISD::FRINT; break; | 
|  | case LibFunc_round: | 
|  | case LibFunc_roundf: | 
|  | case LibFunc_roundl: | 
|  | Opcode = ISD::FROUND; break; | 
|  | case LibFunc_trunc: | 
|  | case LibFunc_truncf: | 
|  | case LibFunc_truncl: | 
|  | Opcode = ISD::FTRUNC; break; | 
|  | case LibFunc_fmin: | 
|  | case LibFunc_fminf: | 
|  | case LibFunc_fminl: | 
|  | Opcode = ISD::FMINNUM; break; | 
|  | case LibFunc_fmax: | 
|  | case LibFunc_fmaxf: | 
|  | case LibFunc_fmaxl: | 
|  | Opcode = ISD::FMAXNUM; break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Opcode) { | 
|  | EVT EVTy = | 
|  | TLI->getValueType(DL, CI->getArgOperand(0)->getType(), true); | 
|  |  | 
|  | if (EVTy == MVT::Other) | 
|  | return true; | 
|  |  | 
|  | if (TLI->isOperationLegalOrCustom(Opcode, EVTy)) | 
|  | continue; | 
|  | else if (EVTy.isVector() && | 
|  | TLI->isOperationLegalOrCustom(Opcode, EVTy.getScalarType())) | 
|  | continue; | 
|  |  | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } else if ((J->getType()->getScalarType()->isFP128Ty() || | 
|  | J->getType()->getScalarType()->isPPC_FP128Ty())) { | 
|  | // Most operations on f128 or ppc_f128 values become calls. | 
|  | return true; | 
|  | } else if (isa<FCmpInst>(J) && | 
|  | J->getOperand(0)->getType()->getScalarType()->isFP128Ty()) { | 
|  | return true; | 
|  | } else if ((isa<FPTruncInst>(J) || isa<FPExtInst>(J)) && | 
|  | (cast<CastInst>(J)->getSrcTy()->getScalarType()->isFP128Ty() || | 
|  | cast<CastInst>(J)->getDestTy()->getScalarType()->isFP128Ty())) { | 
|  | return true; | 
|  | } else if (isa<UIToFPInst>(J) || isa<SIToFPInst>(J) || | 
|  | isa<FPToUIInst>(J) || isa<FPToSIInst>(J)) { | 
|  | CastInst *CI = cast<CastInst>(J); | 
|  | if (CI->getSrcTy()->getScalarType()->isPPC_FP128Ty() || | 
|  | CI->getDestTy()->getScalarType()->isPPC_FP128Ty() || | 
|  | isLargeIntegerTy(!TM.isPPC64(), CI->getSrcTy()->getScalarType()) || | 
|  | isLargeIntegerTy(!TM.isPPC64(), CI->getDestTy()->getScalarType())) | 
|  | return true; | 
|  | } else if (isLargeIntegerTy(!TM.isPPC64(), | 
|  | J->getType()->getScalarType()) && | 
|  | (J->getOpcode() == Instruction::UDiv || | 
|  | J->getOpcode() == Instruction::SDiv || | 
|  | J->getOpcode() == Instruction::URem || | 
|  | J->getOpcode() == Instruction::SRem)) { | 
|  | return true; | 
|  | } else if (!TM.isPPC64() && | 
|  | isLargeIntegerTy(false, J->getType()->getScalarType()) && | 
|  | (J->getOpcode() == Instruction::Shl || | 
|  | J->getOpcode() == Instruction::AShr || | 
|  | J->getOpcode() == Instruction::LShr)) { | 
|  | // Only on PPC32, for 128-bit integers (specifically not 64-bit | 
|  | // integers), these might be runtime calls. | 
|  | return true; | 
|  | } else if (isa<IndirectBrInst>(J) || isa<InvokeInst>(J)) { | 
|  | // On PowerPC, indirect jumps use the counter register. | 
|  | return true; | 
|  | } else if (SwitchInst *SI = dyn_cast<SwitchInst>(J)) { | 
|  | if (SI->getNumCases() + 1 >= (unsigned)TLI->getMinimumJumpTableEntries()) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // FREM is always a call. | 
|  | if (J->getOpcode() == Instruction::FRem) | 
|  | return true; | 
|  |  | 
|  | if (ST->useSoftFloat()) { | 
|  | switch(J->getOpcode()) { | 
|  | case Instruction::FAdd: | 
|  | case Instruction::FSub: | 
|  | case Instruction::FMul: | 
|  | case Instruction::FDiv: | 
|  | case Instruction::FPTrunc: | 
|  | case Instruction::FPExt: | 
|  | case Instruction::FPToUI: | 
|  | case Instruction::FPToSI: | 
|  | case Instruction::UIToFP: | 
|  | case Instruction::SIToFP: | 
|  | case Instruction::FCmp: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (Value *Operand : J->operands()) | 
|  | if (memAddrUsesCTR(Operand, TM, Visited)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool PPCTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, | 
|  | AssumptionCache &AC, | 
|  | TargetLibraryInfo *LibInfo, | 
|  | HardwareLoopInfo &HWLoopInfo) { | 
|  | const PPCTargetMachine &TM = ST->getTargetMachine(); | 
|  | TargetSchedModel SchedModel; | 
|  | SchedModel.init(ST); | 
|  |  | 
|  | // Do not convert small short loops to CTR loop. | 
|  | unsigned ConstTripCount = SE.getSmallConstantTripCount(L); | 
|  | if (ConstTripCount && ConstTripCount < SmallCTRLoopThreshold) { | 
|  | SmallPtrSet<const Value *, 32> EphValues; | 
|  | CodeMetrics::collectEphemeralValues(L, &AC, EphValues); | 
|  | CodeMetrics Metrics; | 
|  | for (BasicBlock *BB : L->blocks()) | 
|  | Metrics.analyzeBasicBlock(BB, *this, EphValues); | 
|  | // 6 is an approximate latency for the mtctr instruction. | 
|  | if (Metrics.NumInsts <= (6 * SchedModel.getIssueWidth())) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // We don't want to spill/restore the counter register, and so we don't | 
|  | // want to use the counter register if the loop contains calls. | 
|  | SmallPtrSet<const Value *, 4> Visited; | 
|  | for (Loop::block_iterator I = L->block_begin(), IE = L->block_end(); | 
|  | I != IE; ++I) | 
|  | if (mightUseCTR(*I, LibInfo, Visited)) | 
|  | return false; | 
|  |  | 
|  | SmallVector<BasicBlock*, 4> ExitingBlocks; | 
|  | L->getExitingBlocks(ExitingBlocks); | 
|  |  | 
|  | // If there is an exit edge known to be frequently taken, | 
|  | // we should not transform this loop. | 
|  | for (auto &BB : ExitingBlocks) { | 
|  | Instruction *TI = BB->getTerminator(); | 
|  | if (!TI) continue; | 
|  |  | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { | 
|  | uint64_t TrueWeight = 0, FalseWeight = 0; | 
|  | if (!BI->isConditional() || | 
|  | !BI->extractProfMetadata(TrueWeight, FalseWeight)) | 
|  | continue; | 
|  |  | 
|  | // If the exit path is more frequent than the loop path, | 
|  | // we return here without further analysis for this loop. | 
|  | bool TrueIsExit = !L->contains(BI->getSuccessor(0)); | 
|  | if (( TrueIsExit && FalseWeight < TrueWeight) || | 
|  | (!TrueIsExit && FalseWeight > TrueWeight)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If an exit block has a PHI that accesses a TLS variable as one of the | 
|  | // incoming values from the loop, we cannot produce a CTR loop because the | 
|  | // address for that value will be computed in the loop. | 
|  | SmallVector<BasicBlock *, 4> ExitBlocks; | 
|  | L->getExitBlocks(ExitBlocks); | 
|  | for (auto &BB : ExitBlocks) { | 
|  | for (auto &PHI : BB->phis()) { | 
|  | for (int Idx = 0, EndIdx = PHI.getNumIncomingValues(); Idx < EndIdx; | 
|  | Idx++) { | 
|  | const BasicBlock *IncomingBB = PHI.getIncomingBlock(Idx); | 
|  | const Value *IncomingValue = PHI.getIncomingValue(Idx); | 
|  | if (L->contains(IncomingBB) && | 
|  | memAddrUsesCTR(IncomingValue, TM, Visited)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | LLVMContext &C = L->getHeader()->getContext(); | 
|  | HWLoopInfo.CountType = TM.isPPC64() ? | 
|  | Type::getInt64Ty(C) : Type::getInt32Ty(C); | 
|  | HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, | 
|  | TTI::UnrollingPreferences &UP, | 
|  | OptimizationRemarkEmitter *ORE) { | 
|  | if (ST->getCPUDirective() == PPC::DIR_A2) { | 
|  | // The A2 is in-order with a deep pipeline, and concatenation unrolling | 
|  | // helps expose latency-hiding opportunities to the instruction scheduler. | 
|  | UP.Partial = UP.Runtime = true; | 
|  |  | 
|  | // We unroll a lot on the A2 (hundreds of instructions), and the benefits | 
|  | // often outweigh the cost of a division to compute the trip count. | 
|  | UP.AllowExpensiveTripCount = true; | 
|  | } | 
|  |  | 
|  | BaseT::getUnrollingPreferences(L, SE, UP, ORE); | 
|  | } | 
|  |  | 
|  | void PPCTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, | 
|  | TTI::PeelingPreferences &PP) { | 
|  | BaseT::getPeelingPreferences(L, SE, PP); | 
|  | } | 
|  | // This function returns true to allow using coldcc calling convention. | 
|  | // Returning true results in coldcc being used for functions which are cold at | 
|  | // all call sites when the callers of the functions are not calling any other | 
|  | // non coldcc functions. | 
|  | bool PPCTTIImpl::useColdCCForColdCall(Function &F) { | 
|  | return EnablePPCColdCC; | 
|  | } | 
|  |  | 
|  | bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) { | 
|  | // On the A2, always unroll aggressively. | 
|  | if (ST->getCPUDirective() == PPC::DIR_A2) | 
|  | return true; | 
|  |  | 
|  | return LoopHasReductions; | 
|  | } | 
|  |  | 
|  | PPCTTIImpl::TTI::MemCmpExpansionOptions | 
|  | PPCTTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { | 
|  | TTI::MemCmpExpansionOptions Options; | 
|  | Options.LoadSizes = {8, 4, 2, 1}; | 
|  | Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize); | 
|  | return Options; | 
|  | } | 
|  |  | 
|  | bool PPCTTIImpl::enableInterleavedAccessVectorization() { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | unsigned PPCTTIImpl::getNumberOfRegisters(unsigned ClassID) const { | 
|  | assert(ClassID == GPRRC || ClassID == FPRRC || | 
|  | ClassID == VRRC || ClassID == VSXRC); | 
|  | if (ST->hasVSX()) { | 
|  | assert(ClassID == GPRRC || ClassID == VSXRC || ClassID == VRRC); | 
|  | return ClassID == VSXRC ? 64 : 32; | 
|  | } | 
|  | assert(ClassID == GPRRC || ClassID == FPRRC || ClassID == VRRC); | 
|  | return 32; | 
|  | } | 
|  |  | 
|  | unsigned PPCTTIImpl::getRegisterClassForType(bool Vector, Type *Ty) const { | 
|  | if (Vector) | 
|  | return ST->hasVSX() ? VSXRC : VRRC; | 
|  | else if (Ty && (Ty->getScalarType()->isFloatTy() || | 
|  | Ty->getScalarType()->isDoubleTy())) | 
|  | return ST->hasVSX() ? VSXRC : FPRRC; | 
|  | else if (Ty && (Ty->getScalarType()->isFP128Ty() || | 
|  | Ty->getScalarType()->isPPC_FP128Ty())) | 
|  | return VRRC; | 
|  | else if (Ty && Ty->getScalarType()->isHalfTy()) | 
|  | return VSXRC; | 
|  | else | 
|  | return GPRRC; | 
|  | } | 
|  |  | 
|  | const char* PPCTTIImpl::getRegisterClassName(unsigned ClassID) const { | 
|  |  | 
|  | switch (ClassID) { | 
|  | default: | 
|  | llvm_unreachable("unknown register class"); | 
|  | return "PPC::unknown register class"; | 
|  | case GPRRC:       return "PPC::GPRRC"; | 
|  | case FPRRC:       return "PPC::FPRRC"; | 
|  | case VRRC:        return "PPC::VRRC"; | 
|  | case VSXRC:       return "PPC::VSXRC"; | 
|  | } | 
|  | } | 
|  |  | 
|  | TypeSize | 
|  | PPCTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const { | 
|  | switch (K) { | 
|  | case TargetTransformInfo::RGK_Scalar: | 
|  | return TypeSize::getFixed(ST->isPPC64() ? 64 : 32); | 
|  | case TargetTransformInfo::RGK_FixedWidthVector: | 
|  | return TypeSize::getFixed(ST->hasAltivec() ? 128 : 0); | 
|  | case TargetTransformInfo::RGK_ScalableVector: | 
|  | return TypeSize::getScalable(0); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Unsupported register kind"); | 
|  | } | 
|  |  | 
|  | unsigned PPCTTIImpl::getCacheLineSize() const { | 
|  | // Starting with P7 we have a cache line size of 128. | 
|  | unsigned Directive = ST->getCPUDirective(); | 
|  | // Assume that Future CPU has the same cache line size as the others. | 
|  | if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 || | 
|  | Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 || | 
|  | Directive == PPC::DIR_PWR_FUTURE) | 
|  | return 128; | 
|  |  | 
|  | // On other processors return a default of 64 bytes. | 
|  | return 64; | 
|  | } | 
|  |  | 
|  | unsigned PPCTTIImpl::getPrefetchDistance() const { | 
|  | return 300; | 
|  | } | 
|  |  | 
|  | unsigned PPCTTIImpl::getMaxInterleaveFactor(unsigned VF) { | 
|  | unsigned Directive = ST->getCPUDirective(); | 
|  | // The 440 has no SIMD support, but floating-point instructions | 
|  | // have a 5-cycle latency, so unroll by 5x for latency hiding. | 
|  | if (Directive == PPC::DIR_440) | 
|  | return 5; | 
|  |  | 
|  | // The A2 has no SIMD support, but floating-point instructions | 
|  | // have a 6-cycle latency, so unroll by 6x for latency hiding. | 
|  | if (Directive == PPC::DIR_A2) | 
|  | return 6; | 
|  |  | 
|  | // FIXME: For lack of any better information, do no harm... | 
|  | if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) | 
|  | return 1; | 
|  |  | 
|  | // For P7 and P8, floating-point instructions have a 6-cycle latency and | 
|  | // there are two execution units, so unroll by 12x for latency hiding. | 
|  | // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready | 
|  | // FIXME: the same for P10 as previous gen until POWER10 scheduling is ready | 
|  | // Assume that future is the same as the others. | 
|  | if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 || | 
|  | Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 || | 
|  | Directive == PPC::DIR_PWR_FUTURE) | 
|  | return 12; | 
|  |  | 
|  | // For most things, modern systems have two execution units (and | 
|  | // out-of-order execution). | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | // Returns a cost adjustment factor to adjust the cost of vector instructions | 
|  | // on targets which there is overlap between the vector and scalar units, | 
|  | // thereby reducing the overall throughput of vector code wrt. scalar code. | 
|  | // An invalid instruction cost is returned if the type is an MMA vector type. | 
|  | InstructionCost PPCTTIImpl::vectorCostAdjustmentFactor(unsigned Opcode, | 
|  | Type *Ty1, Type *Ty2) { | 
|  | // If the vector type is of an MMA type (v256i1, v512i1), an invalid | 
|  | // instruction cost is returned. This is to signify to other cost computing | 
|  | // functions to return the maximum instruction cost in order to prevent any | 
|  | // opportunities for the optimizer to produce MMA types within the IR. | 
|  | if (isMMAType(Ty1)) | 
|  | return InstructionCost::getInvalid(); | 
|  |  | 
|  | if (!ST->vectorsUseTwoUnits() || !Ty1->isVectorTy()) | 
|  | return InstructionCost(1); | 
|  |  | 
|  | std::pair<InstructionCost, MVT> LT1 = TLI->getTypeLegalizationCost(DL, Ty1); | 
|  | // If type legalization involves splitting the vector, we don't want to | 
|  | // double the cost at every step - only the last step. | 
|  | if (LT1.first != 1 || !LT1.second.isVector()) | 
|  | return InstructionCost(1); | 
|  |  | 
|  | int ISD = TLI->InstructionOpcodeToISD(Opcode); | 
|  | if (TLI->isOperationExpand(ISD, LT1.second)) | 
|  | return InstructionCost(1); | 
|  |  | 
|  | if (Ty2) { | 
|  | std::pair<InstructionCost, MVT> LT2 = TLI->getTypeLegalizationCost(DL, Ty2); | 
|  | if (LT2.first != 1 || !LT2.second.isVector()) | 
|  | return InstructionCost(1); | 
|  | } | 
|  |  | 
|  | return InstructionCost(2); | 
|  | } | 
|  |  | 
|  | InstructionCost PPCTTIImpl::getArithmeticInstrCost( | 
|  | unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, | 
|  | TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info, | 
|  | TTI::OperandValueProperties Opd1PropInfo, | 
|  | TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args, | 
|  | const Instruction *CxtI) { | 
|  | assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); | 
|  |  | 
|  | InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Ty, nullptr); | 
|  | if (!CostFactor.isValid()) | 
|  | return InstructionCost::getMax(); | 
|  |  | 
|  | // TODO: Handle more cost kinds. | 
|  | if (CostKind != TTI::TCK_RecipThroughput) | 
|  | return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, | 
|  | Op2Info, Opd1PropInfo, | 
|  | Opd2PropInfo, Args, CxtI); | 
|  |  | 
|  | // Fallback to the default implementation. | 
|  | InstructionCost Cost = BaseT::getArithmeticInstrCost( | 
|  | Opcode, Ty, CostKind, Op1Info, Op2Info, Opd1PropInfo, Opd2PropInfo); | 
|  | return Cost * CostFactor; | 
|  | } | 
|  |  | 
|  | InstructionCost PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, | 
|  | ArrayRef<int> Mask, int Index, | 
|  | Type *SubTp, | 
|  | ArrayRef<const Value *> Args) { | 
|  |  | 
|  | InstructionCost CostFactor = | 
|  | vectorCostAdjustmentFactor(Instruction::ShuffleVector, Tp, nullptr); | 
|  | if (!CostFactor.isValid()) | 
|  | return InstructionCost::getMax(); | 
|  |  | 
|  | // Legalize the type. | 
|  | std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); | 
|  |  | 
|  | // PPC, for both Altivec/VSX, support cheap arbitrary permutations | 
|  | // (at least in the sense that there need only be one non-loop-invariant | 
|  | // instruction). We need one such shuffle instruction for each actual | 
|  | // register (this is not true for arbitrary shuffles, but is true for the | 
|  | // structured types of shuffles covered by TTI::ShuffleKind). | 
|  | return LT.first * CostFactor; | 
|  | } | 
|  |  | 
|  | InstructionCost PPCTTIImpl::getCFInstrCost(unsigned Opcode, | 
|  | TTI::TargetCostKind CostKind, | 
|  | const Instruction *I) { | 
|  | if (CostKind != TTI::TCK_RecipThroughput) | 
|  | return Opcode == Instruction::PHI ? 0 : 1; | 
|  | // Branches are assumed to be predicted. | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | InstructionCost PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, | 
|  | Type *Src, | 
|  | TTI::CastContextHint CCH, | 
|  | TTI::TargetCostKind CostKind, | 
|  | const Instruction *I) { | 
|  | assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode"); | 
|  |  | 
|  | InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Dst, Src); | 
|  | if (!CostFactor.isValid()) | 
|  | return InstructionCost::getMax(); | 
|  |  | 
|  | InstructionCost Cost = | 
|  | BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); | 
|  | Cost *= CostFactor; | 
|  | // TODO: Allow non-throughput costs that aren't binary. | 
|  | if (CostKind != TTI::TCK_RecipThroughput) | 
|  | return Cost == 0 ? 0 : 1; | 
|  | return Cost; | 
|  | } | 
|  |  | 
|  | InstructionCost PPCTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, | 
|  | Type *CondTy, | 
|  | CmpInst::Predicate VecPred, | 
|  | TTI::TargetCostKind CostKind, | 
|  | const Instruction *I) { | 
|  | InstructionCost CostFactor = | 
|  | vectorCostAdjustmentFactor(Opcode, ValTy, nullptr); | 
|  | if (!CostFactor.isValid()) | 
|  | return InstructionCost::getMax(); | 
|  |  | 
|  | InstructionCost Cost = | 
|  | BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I); | 
|  | // TODO: Handle other cost kinds. | 
|  | if (CostKind != TTI::TCK_RecipThroughput) | 
|  | return Cost; | 
|  | return Cost * CostFactor; | 
|  | } | 
|  |  | 
|  | InstructionCost PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, | 
|  | unsigned Index) { | 
|  | assert(Val->isVectorTy() && "This must be a vector type"); | 
|  |  | 
|  | int ISD = TLI->InstructionOpcodeToISD(Opcode); | 
|  | assert(ISD && "Invalid opcode"); | 
|  |  | 
|  | InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Val, nullptr); | 
|  | if (!CostFactor.isValid()) | 
|  | return InstructionCost::getMax(); | 
|  |  | 
|  | InstructionCost Cost = BaseT::getVectorInstrCost(Opcode, Val, Index); | 
|  | Cost *= CostFactor; | 
|  |  | 
|  | if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) { | 
|  | // Double-precision scalars are already located in index #0 (or #1 if LE). | 
|  | if (ISD == ISD::EXTRACT_VECTOR_ELT && | 
|  | Index == (ST->isLittleEndian() ? 1 : 0)) | 
|  | return 0; | 
|  |  | 
|  | return Cost; | 
|  |  | 
|  | } else if (Val->getScalarType()->isIntegerTy() && Index != -1U) { | 
|  | if (ST->hasP9Altivec()) { | 
|  | if (ISD == ISD::INSERT_VECTOR_ELT) | 
|  | // A move-to VSR and a permute/insert.  Assume vector operation cost | 
|  | // for both (cost will be 2x on P9). | 
|  | return 2 * CostFactor; | 
|  |  | 
|  | // It's an extract.  Maybe we can do a cheap move-from VSR. | 
|  | unsigned EltSize = Val->getScalarSizeInBits(); | 
|  | if (EltSize == 64) { | 
|  | unsigned MfvsrdIndex = ST->isLittleEndian() ? 1 : 0; | 
|  | if (Index == MfvsrdIndex) | 
|  | return 1; | 
|  | } else if (EltSize == 32) { | 
|  | unsigned MfvsrwzIndex = ST->isLittleEndian() ? 2 : 1; | 
|  | if (Index == MfvsrwzIndex) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // We need a vector extract (or mfvsrld).  Assume vector operation cost. | 
|  | // The cost of the load constant for a vector extract is disregarded | 
|  | // (invariant, easily schedulable). | 
|  | return CostFactor; | 
|  |  | 
|  | } else if (ST->hasDirectMove()) | 
|  | // Assume permute has standard cost. | 
|  | // Assume move-to/move-from VSR have 2x standard cost. | 
|  | return 3; | 
|  | } | 
|  |  | 
|  | // Estimated cost of a load-hit-store delay.  This was obtained | 
|  | // experimentally as a minimum needed to prevent unprofitable | 
|  | // vectorization for the paq8p benchmark.  It may need to be | 
|  | // raised further if other unprofitable cases remain. | 
|  | unsigned LHSPenalty = 2; | 
|  | if (ISD == ISD::INSERT_VECTOR_ELT) | 
|  | LHSPenalty += 7; | 
|  |  | 
|  | // Vector element insert/extract with Altivec is very expensive, | 
|  | // because they require store and reload with the attendant | 
|  | // processor stall for load-hit-store.  Until VSX is available, | 
|  | // these need to be estimated as very costly. | 
|  | if (ISD == ISD::EXTRACT_VECTOR_ELT || | 
|  | ISD == ISD::INSERT_VECTOR_ELT) | 
|  | return LHSPenalty + Cost; | 
|  |  | 
|  | return Cost; | 
|  | } | 
|  |  | 
|  | InstructionCost PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, | 
|  | MaybeAlign Alignment, | 
|  | unsigned AddressSpace, | 
|  | TTI::TargetCostKind CostKind, | 
|  | const Instruction *I) { | 
|  |  | 
|  | InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Src, nullptr); | 
|  | if (!CostFactor.isValid()) | 
|  | return InstructionCost::getMax(); | 
|  |  | 
|  | if (TLI->getValueType(DL, Src,  true) == MVT::Other) | 
|  | return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, | 
|  | CostKind); | 
|  | // Legalize the type. | 
|  | std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); | 
|  | assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && | 
|  | "Invalid Opcode"); | 
|  |  | 
|  | InstructionCost Cost = | 
|  | BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind); | 
|  | // TODO: Handle other cost kinds. | 
|  | if (CostKind != TTI::TCK_RecipThroughput) | 
|  | return Cost; | 
|  |  | 
|  | Cost *= CostFactor; | 
|  |  | 
|  | bool IsAltivecType = ST->hasAltivec() && | 
|  | (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 || | 
|  | LT.second == MVT::v4i32 || LT.second == MVT::v4f32); | 
|  | bool IsVSXType = ST->hasVSX() && | 
|  | (LT.second == MVT::v2f64 || LT.second == MVT::v2i64); | 
|  |  | 
|  | // VSX has 32b/64b load instructions. Legalization can handle loading of | 
|  | // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and | 
|  | // PPCTargetLowering can't compute the cost appropriately. So here we | 
|  | // explicitly check this case. | 
|  | unsigned MemBytes = Src->getPrimitiveSizeInBits(); | 
|  | if (Opcode == Instruction::Load && ST->hasVSX() && IsAltivecType && | 
|  | (MemBytes == 64 || (ST->hasP8Vector() && MemBytes == 32))) | 
|  | return 1; | 
|  |  | 
|  | // Aligned loads and stores are easy. | 
|  | unsigned SrcBytes = LT.second.getStoreSize(); | 
|  | if (!SrcBytes || !Alignment || *Alignment >= SrcBytes) | 
|  | return Cost; | 
|  |  | 
|  | // If we can use the permutation-based load sequence, then this is also | 
|  | // relatively cheap (not counting loop-invariant instructions): one load plus | 
|  | // one permute (the last load in a series has extra cost, but we're | 
|  | // neglecting that here). Note that on the P7, we could do unaligned loads | 
|  | // for Altivec types using the VSX instructions, but that's more expensive | 
|  | // than using the permutation-based load sequence. On the P8, that's no | 
|  | // longer true. | 
|  | if (Opcode == Instruction::Load && (!ST->hasP8Vector() && IsAltivecType) && | 
|  | *Alignment >= LT.second.getScalarType().getStoreSize()) | 
|  | return Cost + LT.first; // Add the cost of the permutations. | 
|  |  | 
|  | // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the | 
|  | // P7, unaligned vector loads are more expensive than the permutation-based | 
|  | // load sequence, so that might be used instead, but regardless, the net cost | 
|  | // is about the same (not counting loop-invariant instructions). | 
|  | if (IsVSXType || (ST->hasVSX() && IsAltivecType)) | 
|  | return Cost; | 
|  |  | 
|  | // Newer PPC supports unaligned memory access. | 
|  | if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0)) | 
|  | return Cost; | 
|  |  | 
|  | // PPC in general does not support unaligned loads and stores. They'll need | 
|  | // to be decomposed based on the alignment factor. | 
|  |  | 
|  | // Add the cost of each scalar load or store. | 
|  | assert(Alignment); | 
|  | Cost += LT.first * ((SrcBytes / Alignment->value()) - 1); | 
|  |  | 
|  | // For a vector type, there is also scalarization overhead (only for | 
|  | // stores, loads are expanded using the vector-load + permutation sequence, | 
|  | // which is much less expensive). | 
|  | if (Src->isVectorTy() && Opcode == Instruction::Store) | 
|  | for (int i = 0, e = cast<FixedVectorType>(Src)->getNumElements(); i < e; | 
|  | ++i) | 
|  | Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i); | 
|  |  | 
|  | return Cost; | 
|  | } | 
|  |  | 
|  | InstructionCost PPCTTIImpl::getInterleavedMemoryOpCost( | 
|  | unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, | 
|  | Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, | 
|  | bool UseMaskForCond, bool UseMaskForGaps) { | 
|  | InstructionCost CostFactor = | 
|  | vectorCostAdjustmentFactor(Opcode, VecTy, nullptr); | 
|  | if (!CostFactor.isValid()) | 
|  | return InstructionCost::getMax(); | 
|  |  | 
|  | if (UseMaskForCond || UseMaskForGaps) | 
|  | return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, | 
|  | Alignment, AddressSpace, CostKind, | 
|  | UseMaskForCond, UseMaskForGaps); | 
|  |  | 
|  | assert(isa<VectorType>(VecTy) && | 
|  | "Expect a vector type for interleaved memory op"); | 
|  |  | 
|  | // Legalize the type. | 
|  | std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, VecTy); | 
|  |  | 
|  | // Firstly, the cost of load/store operation. | 
|  | InstructionCost Cost = getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment), | 
|  | AddressSpace, CostKind); | 
|  |  | 
|  | // PPC, for both Altivec/VSX, support cheap arbitrary permutations | 
|  | // (at least in the sense that there need only be one non-loop-invariant | 
|  | // instruction). For each result vector, we need one shuffle per incoming | 
|  | // vector (except that the first shuffle can take two incoming vectors | 
|  | // because it does not need to take itself). | 
|  | Cost += Factor*(LT.first-1); | 
|  |  | 
|  | return Cost; | 
|  | } | 
|  |  | 
|  | InstructionCost | 
|  | PPCTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, | 
|  | TTI::TargetCostKind CostKind) { | 
|  | return BaseT::getIntrinsicInstrCost(ICA, CostKind); | 
|  | } | 
|  |  | 
|  | bool PPCTTIImpl::areTypesABICompatible(const Function *Caller, | 
|  | const Function *Callee, | 
|  | const ArrayRef<Type *> &Types) const { | 
|  |  | 
|  | // We need to ensure that argument promotion does not | 
|  | // attempt to promote pointers to MMA types (__vector_pair | 
|  | // and __vector_quad) since these types explicitly cannot be | 
|  | // passed as arguments. Both of these types are larger than | 
|  | // the 128-bit Altivec vectors and have a scalar size of 1 bit. | 
|  | if (!BaseT::areTypesABICompatible(Caller, Callee, Types)) | 
|  | return false; | 
|  |  | 
|  | return llvm::none_of(Types, [](Type *Ty) { | 
|  | if (Ty->isSized()) | 
|  | return Ty->isIntOrIntVectorTy(1) && Ty->getPrimitiveSizeInBits() > 128; | 
|  | return false; | 
|  | }); | 
|  | } | 
|  |  | 
|  | bool PPCTTIImpl::canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, | 
|  | LoopInfo *LI, DominatorTree *DT, | 
|  | AssumptionCache *AC, TargetLibraryInfo *LibInfo) { | 
|  | // Process nested loops first. | 
|  | for (Loop *I : *L) | 
|  | if (canSaveCmp(I, BI, SE, LI, DT, AC, LibInfo)) | 
|  | return false; // Stop search. | 
|  |  | 
|  | HardwareLoopInfo HWLoopInfo(L); | 
|  |  | 
|  | if (!HWLoopInfo.canAnalyze(*LI)) | 
|  | return false; | 
|  |  | 
|  | if (!isHardwareLoopProfitable(L, *SE, *AC, LibInfo, HWLoopInfo)) | 
|  | return false; | 
|  |  | 
|  | if (!HWLoopInfo.isHardwareLoopCandidate(*SE, *LI, *DT)) | 
|  | return false; | 
|  |  | 
|  | *BI = HWLoopInfo.ExitBranch; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool PPCTTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1, | 
|  | const TargetTransformInfo::LSRCost &C2) { | 
|  | // PowerPC default behaviour here is "instruction number 1st priority". | 
|  | // If LsrNoInsnsCost is set, call default implementation. | 
|  | if (!LsrNoInsnsCost) | 
|  | return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, C1.NumIVMuls, | 
|  | C1.NumBaseAdds, C1.ScaleCost, C1.ImmCost, C1.SetupCost) < | 
|  | std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, C2.NumIVMuls, | 
|  | C2.NumBaseAdds, C2.ScaleCost, C2.ImmCost, C2.SetupCost); | 
|  | else | 
|  | return TargetTransformInfoImplBase::isLSRCostLess(C1, C2); | 
|  | } | 
|  |  | 
|  | bool PPCTTIImpl::isNumRegsMajorCostOfLSR() { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool PPCTTIImpl::shouldBuildRelLookupTables() const { | 
|  | const PPCTargetMachine &TM = ST->getTargetMachine(); | 
|  | // XCOFF hasn't implemented lowerRelativeReference, disable non-ELF for now. | 
|  | if (!TM.isELFv2ABI()) | 
|  | return false; | 
|  | return BaseT::shouldBuildRelLookupTables(); | 
|  | } | 
|  |  | 
|  | bool PPCTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, | 
|  | MemIntrinsicInfo &Info) { | 
|  | switch (Inst->getIntrinsicID()) { | 
|  | case Intrinsic::ppc_altivec_lvx: | 
|  | case Intrinsic::ppc_altivec_lvxl: | 
|  | case Intrinsic::ppc_altivec_lvebx: | 
|  | case Intrinsic::ppc_altivec_lvehx: | 
|  | case Intrinsic::ppc_altivec_lvewx: | 
|  | case Intrinsic::ppc_vsx_lxvd2x: | 
|  | case Intrinsic::ppc_vsx_lxvw4x: | 
|  | case Intrinsic::ppc_vsx_lxvd2x_be: | 
|  | case Intrinsic::ppc_vsx_lxvw4x_be: | 
|  | case Intrinsic::ppc_vsx_lxvl: | 
|  | case Intrinsic::ppc_vsx_lxvll: | 
|  | case Intrinsic::ppc_vsx_lxvp: { | 
|  | Info.PtrVal = Inst->getArgOperand(0); | 
|  | Info.ReadMem = true; | 
|  | Info.WriteMem = false; | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::ppc_altivec_stvx: | 
|  | case Intrinsic::ppc_altivec_stvxl: | 
|  | case Intrinsic::ppc_altivec_stvebx: | 
|  | case Intrinsic::ppc_altivec_stvehx: | 
|  | case Intrinsic::ppc_altivec_stvewx: | 
|  | case Intrinsic::ppc_vsx_stxvd2x: | 
|  | case Intrinsic::ppc_vsx_stxvw4x: | 
|  | case Intrinsic::ppc_vsx_stxvd2x_be: | 
|  | case Intrinsic::ppc_vsx_stxvw4x_be: | 
|  | case Intrinsic::ppc_vsx_stxvl: | 
|  | case Intrinsic::ppc_vsx_stxvll: | 
|  | case Intrinsic::ppc_vsx_stxvp: { | 
|  | Info.PtrVal = Inst->getArgOperand(1); | 
|  | Info.ReadMem = false; | 
|  | Info.WriteMem = true; | 
|  | return true; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool PPCTTIImpl::hasActiveVectorLength(unsigned Opcode, Type *DataType, | 
|  | Align Alignment) const { | 
|  | // Only load and stores instructions can have variable vector length on Power. | 
|  | if (Opcode != Instruction::Load && Opcode != Instruction::Store) | 
|  | return false; | 
|  | // Loads/stores with length instructions use bits 0-7 of the GPR operand and | 
|  | // therefore cannot be used in 32-bit mode. | 
|  | if ((!ST->hasP9Vector() && !ST->hasP10Vector()) || !ST->isPPC64()) | 
|  | return false; | 
|  | if (isa<FixedVectorType>(DataType)) { | 
|  | unsigned VecWidth = DataType->getPrimitiveSizeInBits(); | 
|  | return VecWidth == 128; | 
|  | } | 
|  | Type *ScalarTy = DataType->getScalarType(); | 
|  |  | 
|  | if (ScalarTy->isPointerTy()) | 
|  | return true; | 
|  |  | 
|  | if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy()) | 
|  | return true; | 
|  |  | 
|  | if (!ScalarTy->isIntegerTy()) | 
|  | return false; | 
|  |  | 
|  | unsigned IntWidth = ScalarTy->getIntegerBitWidth(); | 
|  | return IntWidth == 8 || IntWidth == 16 || IntWidth == 32 || IntWidth == 64; | 
|  | } | 
|  |  | 
|  | InstructionCost PPCTTIImpl::getVPMemoryOpCost(unsigned Opcode, Type *Src, | 
|  | Align Alignment, | 
|  | unsigned AddressSpace, | 
|  | TTI::TargetCostKind CostKind, | 
|  | const Instruction *I) { | 
|  | InstructionCost Cost = BaseT::getVPMemoryOpCost(Opcode, Src, Alignment, | 
|  | AddressSpace, CostKind, I); | 
|  | if (TLI->getValueType(DL, Src, true) == MVT::Other) | 
|  | return Cost; | 
|  | // TODO: Handle other cost kinds. | 
|  | if (CostKind != TTI::TCK_RecipThroughput) | 
|  | return Cost; | 
|  |  | 
|  | assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && | 
|  | "Invalid Opcode"); | 
|  |  | 
|  | auto *SrcVTy = dyn_cast<FixedVectorType>(Src); | 
|  | assert(SrcVTy && "Expected a vector type for VP memory operations"); | 
|  |  | 
|  | if (hasActiveVectorLength(Opcode, Src, Alignment)) { | 
|  | std::pair<InstructionCost, MVT> LT = | 
|  | TLI->getTypeLegalizationCost(DL, SrcVTy); | 
|  |  | 
|  | InstructionCost CostFactor = | 
|  | vectorCostAdjustmentFactor(Opcode, Src, nullptr); | 
|  | if (!CostFactor.isValid()) | 
|  | return InstructionCost::getMax(); | 
|  |  | 
|  | InstructionCost Cost = LT.first * CostFactor; | 
|  | assert(Cost.isValid() && "Expected valid cost"); | 
|  |  | 
|  | // On P9 but not on P10, if the op is misaligned then it will cause a | 
|  | // pipeline flush. Otherwise the VSX masked memops cost the same as unmasked | 
|  | // ones. | 
|  | const Align DesiredAlignment(16); | 
|  | if (Alignment >= DesiredAlignment || ST->getCPUDirective() != PPC::DIR_PWR9) | 
|  | return Cost; | 
|  |  | 
|  | // Since alignment may be under estimated, we try to compute the probability | 
|  | // that the actual address is aligned to the desired boundary. For example | 
|  | // an 8-byte aligned load is assumed to be actually 16-byte aligned half the | 
|  | // time, while a 4-byte aligned load has a 25% chance of being 16-byte | 
|  | // aligned. | 
|  | float AlignmentProb = ((float)Alignment.value()) / DesiredAlignment.value(); | 
|  | float MisalignmentProb = 1.0 - AlignmentProb; | 
|  | return (MisalignmentProb * P9PipelineFlushEstimate) + | 
|  | (AlignmentProb * *Cost.getValue()); | 
|  | } | 
|  |  | 
|  | // Usually we should not get to this point, but the following is an attempt to | 
|  | // model the cost of legalization. Currently we can only lower intrinsics with | 
|  | // evl but no mask, on Power 9/10. Otherwise, we must scalarize. | 
|  | return getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind); | 
|  | } |