|  | //===- HexagonInstrInfo.h - Hexagon Instruction Information -----*- C++ -*-===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains the Hexagon implementation of the TargetInstrInfo class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H | 
|  | #define LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H | 
|  |  | 
|  | #include "MCTargetDesc/HexagonBaseInfo.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/TargetInstrInfo.h" | 
|  | #include "llvm/CodeGen/ValueTypes.h" | 
|  | #include "llvm/Support/MachineValueType.h" | 
|  | #include <cstdint> | 
|  | #include <vector> | 
|  |  | 
|  | #define GET_INSTRINFO_HEADER | 
|  | #include "HexagonGenInstrInfo.inc" | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | class HexagonSubtarget; | 
|  | class MachineBranchProbabilityInfo; | 
|  | class MachineFunction; | 
|  | class MachineInstr; | 
|  | class MachineOperand; | 
|  | class TargetRegisterInfo; | 
|  |  | 
|  | class HexagonInstrInfo : public HexagonGenInstrInfo { | 
|  | const HexagonSubtarget &Subtarget; | 
|  |  | 
|  | enum BundleAttribute { | 
|  | memShufDisabledMask = 0x4 | 
|  | }; | 
|  |  | 
|  | virtual void anchor(); | 
|  |  | 
|  | public: | 
|  | explicit HexagonInstrInfo(HexagonSubtarget &ST); | 
|  |  | 
|  | /// TargetInstrInfo overrides. | 
|  |  | 
|  | /// If the specified machine instruction is a direct | 
|  | /// load from a stack slot, return the virtual or physical register number of | 
|  | /// the destination along with the FrameIndex of the loaded stack slot.  If | 
|  | /// not, return 0.  This predicate must return 0 if the instruction has | 
|  | /// any side effects other than loading from the stack slot. | 
|  | unsigned isLoadFromStackSlot(const MachineInstr &MI, | 
|  | int &FrameIndex) const override; | 
|  |  | 
|  | /// If the specified machine instruction is a direct | 
|  | /// store to a stack slot, return the virtual or physical register number of | 
|  | /// the source reg along with the FrameIndex of the loaded stack slot.  If | 
|  | /// not, return 0.  This predicate must return 0 if the instruction has | 
|  | /// any side effects other than storing to the stack slot. | 
|  | unsigned isStoreToStackSlot(const MachineInstr &MI, | 
|  | int &FrameIndex) const override; | 
|  |  | 
|  | /// Check if the instruction or the bundle of instructions has | 
|  | /// load from stack slots. Return the frameindex and machine memory operand | 
|  | /// if true. | 
|  | bool hasLoadFromStackSlot( | 
|  | const MachineInstr &MI, | 
|  | SmallVectorImpl<const MachineMemOperand *> &Accesses) const override; | 
|  |  | 
|  | /// Check if the instruction or the bundle of instructions has | 
|  | /// store to stack slots. Return the frameindex and machine memory operand | 
|  | /// if true. | 
|  | bool hasStoreToStackSlot( | 
|  | const MachineInstr &MI, | 
|  | SmallVectorImpl<const MachineMemOperand *> &Accesses) const override; | 
|  |  | 
|  | /// Analyze the branching code at the end of MBB, returning | 
|  | /// true if it cannot be understood (e.g. it's a switch dispatch or isn't | 
|  | /// implemented for a target).  Upon success, this returns false and returns | 
|  | /// with the following information in various cases: | 
|  | /// | 
|  | /// 1. If this block ends with no branches (it just falls through to its succ) | 
|  | ///    just return false, leaving TBB/FBB null. | 
|  | /// 2. If this block ends with only an unconditional branch, it sets TBB to be | 
|  | ///    the destination block. | 
|  | /// 3. If this block ends with a conditional branch and it falls through to a | 
|  | ///    successor block, it sets TBB to be the branch destination block and a | 
|  | ///    list of operands that evaluate the condition. These operands can be | 
|  | ///    passed to other TargetInstrInfo methods to create new branches. | 
|  | /// 4. If this block ends with a conditional branch followed by an | 
|  | ///    unconditional branch, it returns the 'true' destination in TBB, the | 
|  | ///    'false' destination in FBB, and a list of operands that evaluate the | 
|  | ///    condition.  These operands can be passed to other TargetInstrInfo | 
|  | ///    methods to create new branches. | 
|  | /// | 
|  | /// Note that removeBranch and insertBranch must be implemented to support | 
|  | /// cases where this method returns success. | 
|  | /// | 
|  | /// If AllowModify is true, then this routine is allowed to modify the basic | 
|  | /// block (e.g. delete instructions after the unconditional branch). | 
|  | bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, | 
|  | MachineBasicBlock *&FBB, | 
|  | SmallVectorImpl<MachineOperand> &Cond, | 
|  | bool AllowModify) const override; | 
|  |  | 
|  | /// Remove the branching code at the end of the specific MBB. | 
|  | /// This is only invoked in cases where analyzeBranch returns success. It | 
|  | /// returns the number of instructions that were removed. | 
|  | unsigned removeBranch(MachineBasicBlock &MBB, | 
|  | int *BytesRemoved = nullptr) const override; | 
|  |  | 
|  | /// Insert branch code into the end of the specified MachineBasicBlock. | 
|  | /// The operands to this method are the same as those | 
|  | /// returned by analyzeBranch.  This is only invoked in cases where | 
|  | /// analyzeBranch returns success. It returns the number of instructions | 
|  | /// inserted. | 
|  | /// | 
|  | /// It is also invoked by tail merging to add unconditional branches in | 
|  | /// cases where analyzeBranch doesn't apply because there was no original | 
|  | /// branch to analyze.  At least this much must be implemented, else tail | 
|  | /// merging needs to be disabled. | 
|  | unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, | 
|  | MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond, | 
|  | const DebugLoc &DL, | 
|  | int *BytesAdded = nullptr) const override; | 
|  |  | 
|  | /// Analyze loop L, which must be a single-basic-block loop, and if the | 
|  | /// conditions can be understood enough produce a PipelinerLoopInfo object. | 
|  | std::unique_ptr<PipelinerLoopInfo> | 
|  | analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const override; | 
|  |  | 
|  | /// Return true if it's profitable to predicate | 
|  | /// instructions with accumulated instruction latency of "NumCycles" | 
|  | /// of the specified basic block, where the probability of the instructions | 
|  | /// being executed is given by Probability, and Confidence is a measure | 
|  | /// of our confidence that it will be properly predicted. | 
|  | bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, | 
|  | unsigned ExtraPredCycles, | 
|  | BranchProbability Probability) const override; | 
|  |  | 
|  | /// Second variant of isProfitableToIfCvt. This one | 
|  | /// checks for the case where two basic blocks from true and false path | 
|  | /// of a if-then-else (diamond) are predicated on mutally exclusive | 
|  | /// predicates, where the probability of the true path being taken is given | 
|  | /// by Probability, and Confidence is a measure of our confidence that it | 
|  | /// will be properly predicted. | 
|  | bool isProfitableToIfCvt(MachineBasicBlock &TMBB, | 
|  | unsigned NumTCycles, unsigned ExtraTCycles, | 
|  | MachineBasicBlock &FMBB, | 
|  | unsigned NumFCycles, unsigned ExtraFCycles, | 
|  | BranchProbability Probability) const override; | 
|  |  | 
|  | /// Return true if it's profitable for if-converter to duplicate instructions | 
|  | /// of specified accumulated instruction latencies in the specified MBB to | 
|  | /// enable if-conversion. | 
|  | /// The probability of the instructions being executed is given by | 
|  | /// Probability, and Confidence is a measure of our confidence that it | 
|  | /// will be properly predicted. | 
|  | bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, | 
|  | BranchProbability Probability) const override; | 
|  |  | 
|  | /// Emit instructions to copy a pair of physical registers. | 
|  | /// | 
|  | /// This function should support copies within any legal register class as | 
|  | /// well as any cross-class copies created during instruction selection. | 
|  | /// | 
|  | /// The source and destination registers may overlap, which may require a | 
|  | /// careful implementation when multiple copy instructions are required for | 
|  | /// large registers. See for example the ARM target. | 
|  | void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, | 
|  | const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg, | 
|  | bool KillSrc) const override; | 
|  |  | 
|  | /// Store the specified register of the given register class to the specified | 
|  | /// stack frame index. The store instruction is to be added to the given | 
|  | /// machine basic block before the specified machine instruction. If isKill | 
|  | /// is true, the register operand is the last use and must be marked kill. | 
|  | void storeRegToStackSlot(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MBBI, | 
|  | Register SrcReg, bool isKill, int FrameIndex, | 
|  | const TargetRegisterClass *RC, | 
|  | const TargetRegisterInfo *TRI) const override; | 
|  |  | 
|  | /// Load the specified register of the given register class from the specified | 
|  | /// stack frame index. The load instruction is to be added to the given | 
|  | /// machine basic block before the specified machine instruction. | 
|  | void loadRegFromStackSlot(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MBBI, | 
|  | Register DestReg, int FrameIndex, | 
|  | const TargetRegisterClass *RC, | 
|  | const TargetRegisterInfo *TRI) const override; | 
|  |  | 
|  | /// This function is called for all pseudo instructions | 
|  | /// that remain after register allocation. Many pseudo instructions are | 
|  | /// created to help register allocation. This is the place to convert them | 
|  | /// into real instructions. The target can edit MI in place, or it can insert | 
|  | /// new instructions and erase MI. The function should return true if | 
|  | /// anything was changed. | 
|  | bool expandPostRAPseudo(MachineInstr &MI) const override; | 
|  |  | 
|  | /// Get the base register and byte offset of a load/store instr. | 
|  | bool getMemOperandsWithOffsetWidth( | 
|  | const MachineInstr &LdSt, | 
|  | SmallVectorImpl<const MachineOperand *> &BaseOps, int64_t &Offset, | 
|  | bool &OffsetIsScalable, unsigned &Width, | 
|  | const TargetRegisterInfo *TRI) const override; | 
|  |  | 
|  | /// Reverses the branch condition of the specified condition list, | 
|  | /// returning false on success and true if it cannot be reversed. | 
|  | bool reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) | 
|  | const override; | 
|  |  | 
|  | /// Insert a noop into the instruction stream at the specified point. | 
|  | void insertNoop(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI) const override; | 
|  |  | 
|  | /// Returns true if the instruction is already predicated. | 
|  | bool isPredicated(const MachineInstr &MI) const override; | 
|  |  | 
|  | /// Return true for post-incremented instructions. | 
|  | bool isPostIncrement(const MachineInstr &MI) const override; | 
|  |  | 
|  | /// Convert the instruction into a predicated instruction. | 
|  | /// It returns true if the operation was successful. | 
|  | bool PredicateInstruction(MachineInstr &MI, | 
|  | ArrayRef<MachineOperand> Cond) const override; | 
|  |  | 
|  | /// Returns true if the first specified predicate | 
|  | /// subsumes the second, e.g. GE subsumes GT. | 
|  | bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1, | 
|  | ArrayRef<MachineOperand> Pred2) const override; | 
|  |  | 
|  | /// If the specified instruction defines any predicate | 
|  | /// or condition code register(s) used for predication, returns true as well | 
|  | /// as the definition predicate(s) by reference. | 
|  | bool ClobbersPredicate(MachineInstr &MI, std::vector<MachineOperand> &Pred, | 
|  | bool SkipDead) const override; | 
|  |  | 
|  | /// Return true if the specified instruction can be predicated. | 
|  | /// By default, this returns true for every instruction with a | 
|  | /// PredicateOperand. | 
|  | bool isPredicable(const MachineInstr &MI) const override; | 
|  |  | 
|  | /// Test if the given instruction should be considered a scheduling boundary. | 
|  | /// This primarily includes labels and terminators. | 
|  | bool isSchedulingBoundary(const MachineInstr &MI, | 
|  | const MachineBasicBlock *MBB, | 
|  | const MachineFunction &MF) const override; | 
|  |  | 
|  | /// Measure the specified inline asm to determine an approximation of its | 
|  | /// length. | 
|  | unsigned getInlineAsmLength( | 
|  | const char *Str, | 
|  | const MCAsmInfo &MAI, | 
|  | const TargetSubtargetInfo *STI = nullptr) const override; | 
|  |  | 
|  | /// Allocate and return a hazard recognizer to use for this target when | 
|  | /// scheduling the machine instructions after register allocation. | 
|  | ScheduleHazardRecognizer* | 
|  | CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, | 
|  | const ScheduleDAG *DAG) const override; | 
|  |  | 
|  | /// For a comparison instruction, return the source registers | 
|  | /// in SrcReg and SrcReg2 if having two register operands, and the value it | 
|  | /// compares against in CmpValue. Return true if the comparison instruction | 
|  | /// can be analyzed. | 
|  | bool analyzeCompare(const MachineInstr &MI, Register &SrcReg, | 
|  | Register &SrcReg2, int64_t &Mask, | 
|  | int64_t &Value) const override; | 
|  |  | 
|  | /// Compute the instruction latency of a given instruction. | 
|  | /// If the instruction has higher cost when predicated, it's returned via | 
|  | /// PredCost. | 
|  | unsigned getInstrLatency(const InstrItineraryData *ItinData, | 
|  | const MachineInstr &MI, | 
|  | unsigned *PredCost = nullptr) const override; | 
|  |  | 
|  | /// Create machine specific model for scheduling. | 
|  | DFAPacketizer * | 
|  | CreateTargetScheduleState(const TargetSubtargetInfo &STI) const override; | 
|  |  | 
|  | // Sometimes, it is possible for the target | 
|  | // to tell, even without aliasing information, that two MIs access different | 
|  | // memory addresses. This function returns true if two MIs access different | 
|  | // memory addresses and false otherwise. | 
|  | bool | 
|  | areMemAccessesTriviallyDisjoint(const MachineInstr &MIa, | 
|  | const MachineInstr &MIb) const override; | 
|  |  | 
|  | /// For instructions with a base and offset, return the position of the | 
|  | /// base register and offset operands. | 
|  | bool getBaseAndOffsetPosition(const MachineInstr &MI, unsigned &BasePos, | 
|  | unsigned &OffsetPos) const override; | 
|  |  | 
|  | /// If the instruction is an increment of a constant value, return the amount. | 
|  | bool getIncrementValue(const MachineInstr &MI, int &Value) const override; | 
|  |  | 
|  | /// getOperandLatency - Compute and return the use operand latency of a given | 
|  | /// pair of def and use. | 
|  | /// In most cases, the static scheduling itinerary was enough to determine the | 
|  | /// operand latency. But it may not be possible for instructions with variable | 
|  | /// number of defs / uses. | 
|  | /// | 
|  | /// This is a raw interface to the itinerary that may be directly overriden by | 
|  | /// a target. Use computeOperandLatency to get the best estimate of latency. | 
|  | int getOperandLatency(const InstrItineraryData *ItinData, | 
|  | const MachineInstr &DefMI, unsigned DefIdx, | 
|  | const MachineInstr &UseMI, | 
|  | unsigned UseIdx) const override; | 
|  |  | 
|  | /// Decompose the machine operand's target flags into two values - the direct | 
|  | /// target flag value and any of bit flags that are applied. | 
|  | std::pair<unsigned, unsigned> | 
|  | decomposeMachineOperandsTargetFlags(unsigned TF) const override; | 
|  |  | 
|  | /// Return an array that contains the direct target flag values and their | 
|  | /// names. | 
|  | /// | 
|  | /// MIR Serialization is able to serialize only the target flags that are | 
|  | /// defined by this method. | 
|  | ArrayRef<std::pair<unsigned, const char *>> | 
|  | getSerializableDirectMachineOperandTargetFlags() const override; | 
|  |  | 
|  | /// Return an array that contains the bitmask target flag values and their | 
|  | /// names. | 
|  | /// | 
|  | /// MIR Serialization is able to serialize only the target flags that are | 
|  | /// defined by this method. | 
|  | ArrayRef<std::pair<unsigned, const char *>> | 
|  | getSerializableBitmaskMachineOperandTargetFlags() const override; | 
|  |  | 
|  | bool isTailCall(const MachineInstr &MI) const override; | 
|  | bool isAsCheapAsAMove(const MachineInstr &MI) const override; | 
|  |  | 
|  | // Return true if the instruction should be sunk by MachineSink. | 
|  | // MachineSink determines on its own whether the instruction is safe to sink; | 
|  | // this gives the target a hook to override the default behavior with regards | 
|  | // to which instructions should be sunk. | 
|  | bool shouldSink(const MachineInstr &MI) const override; | 
|  |  | 
|  | /// HexagonInstrInfo specifics. | 
|  |  | 
|  | unsigned createVR(MachineFunction *MF, MVT VT) const; | 
|  | MachineInstr *findLoopInstr(MachineBasicBlock *BB, unsigned EndLoopOp, | 
|  | MachineBasicBlock *TargetBB, | 
|  | SmallPtrSet<MachineBasicBlock *, 8> &Visited) const; | 
|  |  | 
|  | bool isAbsoluteSet(const MachineInstr &MI) const; | 
|  | bool isAccumulator(const MachineInstr &MI) const; | 
|  | bool isAddrModeWithOffset(const MachineInstr &MI) const; | 
|  | bool isBaseImmOffset(const MachineInstr &MI) const; | 
|  | bool isComplex(const MachineInstr &MI) const; | 
|  | bool isCompoundBranchInstr(const MachineInstr &MI) const; | 
|  | bool isConstExtended(const MachineInstr &MI) const; | 
|  | bool isDeallocRet(const MachineInstr &MI) const; | 
|  | bool isDependent(const MachineInstr &ProdMI, | 
|  | const MachineInstr &ConsMI) const; | 
|  | bool isDotCurInst(const MachineInstr &MI) const; | 
|  | bool isDotNewInst(const MachineInstr &MI) const; | 
|  | bool isDuplexPair(const MachineInstr &MIa, const MachineInstr &MIb) const; | 
|  | bool isEndLoopN(unsigned Opcode) const; | 
|  | bool isExpr(unsigned OpType) const; | 
|  | bool isExtendable(const MachineInstr &MI) const; | 
|  | bool isExtended(const MachineInstr &MI) const; | 
|  | bool isFloat(const MachineInstr &MI) const; | 
|  | bool isHVXMemWithAIndirect(const MachineInstr &I, | 
|  | const MachineInstr &J) const; | 
|  | bool isIndirectCall(const MachineInstr &MI) const; | 
|  | bool isIndirectL4Return(const MachineInstr &MI) const; | 
|  | bool isJumpR(const MachineInstr &MI) const; | 
|  | bool isJumpWithinBranchRange(const MachineInstr &MI, unsigned offset) const; | 
|  | bool isLateSourceInstr(const MachineInstr &MI) const; | 
|  | bool isLoopN(const MachineInstr &MI) const; | 
|  | bool isMemOp(const MachineInstr &MI) const; | 
|  | bool isNewValue(const MachineInstr &MI) const; | 
|  | bool isNewValue(unsigned Opcode) const; | 
|  | bool isNewValueInst(const MachineInstr &MI) const; | 
|  | bool isNewValueJump(const MachineInstr &MI) const; | 
|  | bool isNewValueJump(unsigned Opcode) const; | 
|  | bool isNewValueStore(const MachineInstr &MI) const; | 
|  | bool isNewValueStore(unsigned Opcode) const; | 
|  | bool isOperandExtended(const MachineInstr &MI, unsigned OperandNum) const; | 
|  | bool isPredicatedNew(const MachineInstr &MI) const; | 
|  | bool isPredicatedNew(unsigned Opcode) const; | 
|  | bool isPredicatedTrue(const MachineInstr &MI) const; | 
|  | bool isPredicatedTrue(unsigned Opcode) const; | 
|  | bool isPredicated(unsigned Opcode) const; | 
|  | bool isPredicateLate(unsigned Opcode) const; | 
|  | bool isPredictedTaken(unsigned Opcode) const; | 
|  | bool isPureSlot0(const MachineInstr &MI) const; | 
|  | bool isRestrictNoSlot1Store(const MachineInstr &MI) const; | 
|  | bool isSaveCalleeSavedRegsCall(const MachineInstr &MI) const; | 
|  | bool isSignExtendingLoad(const MachineInstr &MI) const; | 
|  | bool isSolo(const MachineInstr &MI) const; | 
|  | bool isSpillPredRegOp(const MachineInstr &MI) const; | 
|  | bool isTC1(const MachineInstr &MI) const; | 
|  | bool isTC2(const MachineInstr &MI) const; | 
|  | bool isTC2Early(const MachineInstr &MI) const; | 
|  | bool isTC4x(const MachineInstr &MI) const; | 
|  | bool isToBeScheduledASAP(const MachineInstr &MI1, | 
|  | const MachineInstr &MI2) const; | 
|  | bool isHVXVec(const MachineInstr &MI) const; | 
|  | bool isValidAutoIncImm(const EVT VT, const int Offset) const; | 
|  | bool isValidOffset(unsigned Opcode, int Offset, | 
|  | const TargetRegisterInfo *TRI, bool Extend = true) const; | 
|  | bool isVecAcc(const MachineInstr &MI) const; | 
|  | bool isVecALU(const MachineInstr &MI) const; | 
|  | bool isVecUsableNextPacket(const MachineInstr &ProdMI, | 
|  | const MachineInstr &ConsMI) const; | 
|  | bool isZeroExtendingLoad(const MachineInstr &MI) const; | 
|  |  | 
|  | bool addLatencyToSchedule(const MachineInstr &MI1, | 
|  | const MachineInstr &MI2) const; | 
|  | bool canExecuteInBundle(const MachineInstr &First, | 
|  | const MachineInstr &Second) const; | 
|  | bool doesNotReturn(const MachineInstr &CallMI) const; | 
|  | bool hasEHLabel(const MachineBasicBlock *B) const; | 
|  | bool hasNonExtEquivalent(const MachineInstr &MI) const; | 
|  | bool hasPseudoInstrPair(const MachineInstr &MI) const; | 
|  | bool hasUncondBranch(const MachineBasicBlock *B) const; | 
|  | bool mayBeCurLoad(const MachineInstr &MI) const; | 
|  | bool mayBeNewStore(const MachineInstr &MI) const; | 
|  | bool producesStall(const MachineInstr &ProdMI, | 
|  | const MachineInstr &ConsMI) const; | 
|  | bool producesStall(const MachineInstr &MI, | 
|  | MachineBasicBlock::const_instr_iterator MII) const; | 
|  | bool predCanBeUsedAsDotNew(const MachineInstr &MI, unsigned PredReg) const; | 
|  | bool PredOpcodeHasJMP_c(unsigned Opcode) const; | 
|  | bool predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const; | 
|  |  | 
|  | unsigned getAddrMode(const MachineInstr &MI) const; | 
|  | MachineOperand *getBaseAndOffset(const MachineInstr &MI, int64_t &Offset, | 
|  | unsigned &AccessSize) const; | 
|  | SmallVector<MachineInstr*,2> getBranchingInstrs(MachineBasicBlock& MBB) const; | 
|  | unsigned getCExtOpNum(const MachineInstr &MI) const; | 
|  | HexagonII::CompoundGroup | 
|  | getCompoundCandidateGroup(const MachineInstr &MI) const; | 
|  | unsigned getCompoundOpcode(const MachineInstr &GA, | 
|  | const MachineInstr &GB) const; | 
|  | int getDuplexOpcode(const MachineInstr &MI, bool ForBigCore = true) const; | 
|  | int getCondOpcode(int Opc, bool sense) const; | 
|  | int getDotCurOp(const MachineInstr &MI) const; | 
|  | int getNonDotCurOp(const MachineInstr &MI) const; | 
|  | int getDotNewOp(const MachineInstr &MI) const; | 
|  | int getDotNewPredJumpOp(const MachineInstr &MI, | 
|  | const MachineBranchProbabilityInfo *MBPI) const; | 
|  | int getDotNewPredOp(const MachineInstr &MI, | 
|  | const MachineBranchProbabilityInfo *MBPI) const; | 
|  | int getDotOldOp(const MachineInstr &MI) const; | 
|  | HexagonII::SubInstructionGroup getDuplexCandidateGroup(const MachineInstr &MI) | 
|  | const; | 
|  | short getEquivalentHWInstr(const MachineInstr &MI) const; | 
|  | unsigned getInstrTimingClassLatency(const InstrItineraryData *ItinData, | 
|  | const MachineInstr &MI) const; | 
|  | bool getInvertedPredSense(SmallVectorImpl<MachineOperand> &Cond) const; | 
|  | unsigned getInvertedPredicatedOpcode(const int Opc) const; | 
|  | int getMaxValue(const MachineInstr &MI) const; | 
|  | unsigned getMemAccessSize(const MachineInstr &MI) const; | 
|  | int getMinValue(const MachineInstr &MI) const; | 
|  | short getNonExtOpcode(const MachineInstr &MI) const; | 
|  | bool getPredReg(ArrayRef<MachineOperand> Cond, unsigned &PredReg, | 
|  | unsigned &PredRegPos, unsigned &PredRegFlags) const; | 
|  | short getPseudoInstrPair(const MachineInstr &MI) const; | 
|  | short getRegForm(const MachineInstr &MI) const; | 
|  | unsigned getSize(const MachineInstr &MI) const; | 
|  | uint64_t getType(const MachineInstr &MI) const; | 
|  | InstrStage::FuncUnits getUnits(const MachineInstr &MI) const; | 
|  |  | 
|  | MachineBasicBlock::instr_iterator expandVGatherPseudo(MachineInstr &MI) const; | 
|  |  | 
|  | /// getInstrTimingClassLatency - Compute the instruction latency of a given | 
|  | /// instruction using Timing Class information, if available. | 
|  | unsigned nonDbgBBSize(const MachineBasicBlock *BB) const; | 
|  | unsigned nonDbgBundleSize(MachineBasicBlock::const_iterator BundleHead) const; | 
|  |  | 
|  | void immediateExtend(MachineInstr &MI) const; | 
|  | bool invertAndChangeJumpTarget(MachineInstr &MI, | 
|  | MachineBasicBlock *NewTarget) const; | 
|  | void genAllInsnTimingClasses(MachineFunction &MF) const; | 
|  | bool reversePredSense(MachineInstr &MI) const; | 
|  | unsigned reversePrediction(unsigned Opcode) const; | 
|  | bool validateBranchCond(const ArrayRef<MachineOperand> &Cond) const; | 
|  |  | 
|  | void setBundleNoShuf(MachineBasicBlock::instr_iterator MIB) const; | 
|  | bool getBundleNoShuf(const MachineInstr &MIB) const; | 
|  |  | 
|  | // When TinyCore with Duplexes is enabled, this function is used to translate | 
|  | // tiny-instructions to big-instructions and vice versa to get the slot | 
|  | // consumption. | 
|  | void changeDuplexOpcode(MachineBasicBlock::instr_iterator MII, | 
|  | bool ToBigInstrs) const; | 
|  | void translateInstrsForDup(MachineFunction &MF, | 
|  | bool ToBigInstrs = true) const; | 
|  | void translateInstrsForDup(MachineBasicBlock::instr_iterator MII, | 
|  | bool ToBigInstrs) const; | 
|  |  | 
|  | // Addressing mode relations. | 
|  | short changeAddrMode_abs_io(short Opc) const; | 
|  | short changeAddrMode_io_abs(short Opc) const; | 
|  | short changeAddrMode_io_pi(short Opc) const; | 
|  | short changeAddrMode_io_rr(short Opc) const; | 
|  | short changeAddrMode_pi_io(short Opc) const; | 
|  | short changeAddrMode_rr_io(short Opc) const; | 
|  | short changeAddrMode_rr_ur(short Opc) const; | 
|  | short changeAddrMode_ur_rr(short Opc) const; | 
|  |  | 
|  | short changeAddrMode_abs_io(const MachineInstr &MI) const { | 
|  | return changeAddrMode_abs_io(MI.getOpcode()); | 
|  | } | 
|  | short changeAddrMode_io_abs(const MachineInstr &MI) const { | 
|  | return changeAddrMode_io_abs(MI.getOpcode()); | 
|  | } | 
|  | short changeAddrMode_io_rr(const MachineInstr &MI) const { | 
|  | return changeAddrMode_io_rr(MI.getOpcode()); | 
|  | } | 
|  | short changeAddrMode_rr_io(const MachineInstr &MI) const { | 
|  | return changeAddrMode_rr_io(MI.getOpcode()); | 
|  | } | 
|  | short changeAddrMode_rr_ur(const MachineInstr &MI) const { | 
|  | return changeAddrMode_rr_ur(MI.getOpcode()); | 
|  | } | 
|  | short changeAddrMode_ur_rr(const MachineInstr &MI) const { | 
|  | return changeAddrMode_ur_rr(MI.getOpcode()); | 
|  | } | 
|  |  | 
|  | MCInst getNop() const override; | 
|  | }; | 
|  |  | 
|  | } // end namespace llvm | 
|  |  | 
|  | #endif // LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H |