|  | //===-- Value.cpp - Implement the Value class -----------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the Value, ValueHandle, and User classes. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "LLVMContextImpl.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/SmallString.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DebugInfo.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/DerivedUser.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/ValueHandle.h" | 
|  | #include "llvm/IR/ValueSymbolTable.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | static cl::opt<unsigned> UseDerefAtPointSemantics( | 
|  | "use-dereferenceable-at-point-semantics", cl::Hidden, cl::init(false), | 
|  | cl::desc("Deref attributes and metadata infer facts at definition only")); | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                                Value Class | 
|  | //===----------------------------------------------------------------------===// | 
|  | static inline Type *checkType(Type *Ty) { | 
|  | assert(Ty && "Value defined with a null type: Error!"); | 
|  | return Ty; | 
|  | } | 
|  |  | 
|  | Value::Value(Type *ty, unsigned scid) | 
|  | : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid), HasValueHandle(0), | 
|  | SubclassOptionalData(0), SubclassData(0), NumUserOperands(0), | 
|  | IsUsedByMD(false), HasName(false), HasMetadata(false) { | 
|  | static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)"); | 
|  | // FIXME: Why isn't this in the subclass gunk?? | 
|  | // Note, we cannot call isa<CallInst> before the CallInst has been | 
|  | // constructed. | 
|  | unsigned OpCode = 0; | 
|  | if (SubclassID >= InstructionVal) | 
|  | OpCode = SubclassID - InstructionVal; | 
|  | if (OpCode == Instruction::Call || OpCode == Instruction::Invoke || | 
|  | OpCode == Instruction::CallBr) | 
|  | assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) && | 
|  | "invalid CallBase type!"); | 
|  | else if (SubclassID != BasicBlockVal && | 
|  | (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal)) | 
|  | assert((VTy->isFirstClassType() || VTy->isVoidTy()) && | 
|  | "Cannot create non-first-class values except for constants!"); | 
|  | static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned), | 
|  | "Value too big"); | 
|  | } | 
|  |  | 
|  | Value::~Value() { | 
|  | // Notify all ValueHandles (if present) that this value is going away. | 
|  | if (HasValueHandle) | 
|  | ValueHandleBase::ValueIsDeleted(this); | 
|  | if (isUsedByMetadata()) | 
|  | ValueAsMetadata::handleDeletion(this); | 
|  |  | 
|  | // Remove associated metadata from context. | 
|  | if (HasMetadata) | 
|  | clearMetadata(); | 
|  |  | 
|  | #ifndef NDEBUG      // Only in -g mode... | 
|  | // Check to make sure that there are no uses of this value that are still | 
|  | // around when the value is destroyed.  If there are, then we have a dangling | 
|  | // reference and something is wrong.  This code is here to print out where | 
|  | // the value is still being referenced. | 
|  | // | 
|  | // Note that use_empty() cannot be called here, as it eventually downcasts | 
|  | // 'this' to GlobalValue (derived class of Value), but GlobalValue has already | 
|  | // been destructed, so accessing it is UB. | 
|  | // | 
|  | if (!materialized_use_empty()) { | 
|  | dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n"; | 
|  | for (auto *U : users()) | 
|  | dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n"; | 
|  | } | 
|  | #endif | 
|  | assert(materialized_use_empty() && "Uses remain when a value is destroyed!"); | 
|  |  | 
|  | // If this value is named, destroy the name.  This should not be in a symtab | 
|  | // at this point. | 
|  | destroyValueName(); | 
|  | } | 
|  |  | 
|  | void Value::deleteValue() { | 
|  | switch (getValueID()) { | 
|  | #define HANDLE_VALUE(Name)                                                     \ | 
|  | case Value::Name##Val:                                                       \ | 
|  | delete static_cast<Name *>(this);                                          \ | 
|  | break; | 
|  | #define HANDLE_MEMORY_VALUE(Name)                                              \ | 
|  | case Value::Name##Val:                                                       \ | 
|  | static_cast<DerivedUser *>(this)->DeleteValue(                             \ | 
|  | static_cast<DerivedUser *>(this));                                     \ | 
|  | break; | 
|  | #define HANDLE_CONSTANT(Name)                                                  \ | 
|  | case Value::Name##Val:                                                       \ | 
|  | llvm_unreachable("constants should be destroyed with destroyConstant");    \ | 
|  | break; | 
|  | #define HANDLE_INSTRUCTION(Name)  /* nothing */ | 
|  | #include "llvm/IR/Value.def" | 
|  |  | 
|  | #define HANDLE_INST(N, OPC, CLASS)                                             \ | 
|  | case Value::InstructionVal + Instruction::OPC:                               \ | 
|  | delete static_cast<CLASS *>(this);                                         \ | 
|  | break; | 
|  | #define HANDLE_USER_INST(N, OPC, CLASS) | 
|  | #include "llvm/IR/Instruction.def" | 
|  |  | 
|  | default: | 
|  | llvm_unreachable("attempting to delete unknown value kind"); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Value::destroyValueName() { | 
|  | ValueName *Name = getValueName(); | 
|  | if (Name) { | 
|  | MallocAllocator Allocator; | 
|  | Name->Destroy(Allocator); | 
|  | } | 
|  | setValueName(nullptr); | 
|  | } | 
|  |  | 
|  | bool Value::hasNUses(unsigned N) const { | 
|  | return hasNItems(use_begin(), use_end(), N); | 
|  | } | 
|  |  | 
|  | bool Value::hasNUsesOrMore(unsigned N) const { | 
|  | return hasNItemsOrMore(use_begin(), use_end(), N); | 
|  | } | 
|  |  | 
|  | bool Value::hasOneUser() const { | 
|  | if (use_empty()) | 
|  | return false; | 
|  | if (hasOneUse()) | 
|  | return true; | 
|  | return std::equal(++user_begin(), user_end(), user_begin()); | 
|  | } | 
|  |  | 
|  | static bool isUnDroppableUser(const User *U) { return !U->isDroppable(); } | 
|  |  | 
|  | Use *Value::getSingleUndroppableUse() { | 
|  | Use *Result = nullptr; | 
|  | for (Use &U : uses()) { | 
|  | if (!U.getUser()->isDroppable()) { | 
|  | if (Result) | 
|  | return nullptr; | 
|  | Result = &U; | 
|  | } | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | User *Value::getUniqueUndroppableUser() { | 
|  | User *Result = nullptr; | 
|  | for (auto *U : users()) { | 
|  | if (!U->isDroppable()) { | 
|  | if (Result && Result != U) | 
|  | return nullptr; | 
|  | Result = U; | 
|  | } | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | bool Value::hasNUndroppableUses(unsigned int N) const { | 
|  | return hasNItems(user_begin(), user_end(), N, isUnDroppableUser); | 
|  | } | 
|  |  | 
|  | bool Value::hasNUndroppableUsesOrMore(unsigned int N) const { | 
|  | return hasNItemsOrMore(user_begin(), user_end(), N, isUnDroppableUser); | 
|  | } | 
|  |  | 
|  | void Value::dropDroppableUses( | 
|  | llvm::function_ref<bool(const Use *)> ShouldDrop) { | 
|  | SmallVector<Use *, 8> ToBeEdited; | 
|  | for (Use &U : uses()) | 
|  | if (U.getUser()->isDroppable() && ShouldDrop(&U)) | 
|  | ToBeEdited.push_back(&U); | 
|  | for (Use *U : ToBeEdited) | 
|  | dropDroppableUse(*U); | 
|  | } | 
|  |  | 
|  | void Value::dropDroppableUsesIn(User &Usr) { | 
|  | assert(Usr.isDroppable() && "Expected a droppable user!"); | 
|  | for (Use &UsrOp : Usr.operands()) { | 
|  | if (UsrOp.get() == this) | 
|  | dropDroppableUse(UsrOp); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Value::dropDroppableUse(Use &U) { | 
|  | U.removeFromList(); | 
|  | if (auto *Assume = dyn_cast<AssumeInst>(U.getUser())) { | 
|  | unsigned OpNo = U.getOperandNo(); | 
|  | if (OpNo == 0) | 
|  | U.set(ConstantInt::getTrue(Assume->getContext())); | 
|  | else { | 
|  | U.set(UndefValue::get(U.get()->getType())); | 
|  | CallInst::BundleOpInfo &BOI = Assume->getBundleOpInfoForOperand(OpNo); | 
|  | BOI.Tag = Assume->getContext().pImpl->getOrInsertBundleTag("ignore"); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("unkown droppable use"); | 
|  | } | 
|  |  | 
|  | bool Value::isUsedInBasicBlock(const BasicBlock *BB) const { | 
|  | // This can be computed either by scanning the instructions in BB, or by | 
|  | // scanning the use list of this Value. Both lists can be very long, but | 
|  | // usually one is quite short. | 
|  | // | 
|  | // Scan both lists simultaneously until one is exhausted. This limits the | 
|  | // search to the shorter list. | 
|  | BasicBlock::const_iterator BI = BB->begin(), BE = BB->end(); | 
|  | const_user_iterator UI = user_begin(), UE = user_end(); | 
|  | for (; BI != BE && UI != UE; ++BI, ++UI) { | 
|  | // Scan basic block: Check if this Value is used by the instruction at BI. | 
|  | if (is_contained(BI->operands(), this)) | 
|  | return true; | 
|  | // Scan use list: Check if the use at UI is in BB. | 
|  | const auto *User = dyn_cast<Instruction>(*UI); | 
|  | if (User && User->getParent() == BB) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned Value::getNumUses() const { | 
|  | return (unsigned)std::distance(use_begin(), use_end()); | 
|  | } | 
|  |  | 
|  | static bool getSymTab(Value *V, ValueSymbolTable *&ST) { | 
|  | ST = nullptr; | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) { | 
|  | if (BasicBlock *P = I->getParent()) | 
|  | if (Function *PP = P->getParent()) | 
|  | ST = PP->getValueSymbolTable(); | 
|  | } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) { | 
|  | if (Function *P = BB->getParent()) | 
|  | ST = P->getValueSymbolTable(); | 
|  | } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { | 
|  | if (Module *P = GV->getParent()) | 
|  | ST = &P->getValueSymbolTable(); | 
|  | } else if (Argument *A = dyn_cast<Argument>(V)) { | 
|  | if (Function *P = A->getParent()) | 
|  | ST = P->getValueSymbolTable(); | 
|  | } else { | 
|  | assert(isa<Constant>(V) && "Unknown value type!"); | 
|  | return true;  // no name is setable for this. | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ValueName *Value::getValueName() const { | 
|  | if (!HasName) return nullptr; | 
|  |  | 
|  | LLVMContext &Ctx = getContext(); | 
|  | auto I = Ctx.pImpl->ValueNames.find(this); | 
|  | assert(I != Ctx.pImpl->ValueNames.end() && | 
|  | "No name entry found!"); | 
|  |  | 
|  | return I->second; | 
|  | } | 
|  |  | 
|  | void Value::setValueName(ValueName *VN) { | 
|  | LLVMContext &Ctx = getContext(); | 
|  |  | 
|  | assert(HasName == Ctx.pImpl->ValueNames.count(this) && | 
|  | "HasName bit out of sync!"); | 
|  |  | 
|  | if (!VN) { | 
|  | if (HasName) | 
|  | Ctx.pImpl->ValueNames.erase(this); | 
|  | HasName = false; | 
|  | return; | 
|  | } | 
|  |  | 
|  | HasName = true; | 
|  | Ctx.pImpl->ValueNames[this] = VN; | 
|  | } | 
|  |  | 
|  | StringRef Value::getName() const { | 
|  | // Make sure the empty string is still a C string. For historical reasons, | 
|  | // some clients want to call .data() on the result and expect it to be null | 
|  | // terminated. | 
|  | if (!hasName()) | 
|  | return StringRef("", 0); | 
|  | return getValueName()->getKey(); | 
|  | } | 
|  |  | 
|  | void Value::setNameImpl(const Twine &NewName) { | 
|  | // Fast-path: LLVMContext can be set to strip out non-GlobalValue names | 
|  | if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this)) | 
|  | return; | 
|  |  | 
|  | // Fast path for common IRBuilder case of setName("") when there is no name. | 
|  | if (NewName.isTriviallyEmpty() && !hasName()) | 
|  | return; | 
|  |  | 
|  | SmallString<256> NameData; | 
|  | StringRef NameRef = NewName.toStringRef(NameData); | 
|  | assert(NameRef.find_first_of(0) == StringRef::npos && | 
|  | "Null bytes are not allowed in names"); | 
|  |  | 
|  | // Name isn't changing? | 
|  | if (getName() == NameRef) | 
|  | return; | 
|  |  | 
|  | assert(!getType()->isVoidTy() && "Cannot assign a name to void values!"); | 
|  |  | 
|  | // Get the symbol table to update for this object. | 
|  | ValueSymbolTable *ST; | 
|  | if (getSymTab(this, ST)) | 
|  | return;  // Cannot set a name on this value (e.g. constant). | 
|  |  | 
|  | if (!ST) { // No symbol table to update?  Just do the change. | 
|  | if (NameRef.empty()) { | 
|  | // Free the name for this value. | 
|  | destroyValueName(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // NOTE: Could optimize for the case the name is shrinking to not deallocate | 
|  | // then reallocated. | 
|  | destroyValueName(); | 
|  |  | 
|  | // Create the new name. | 
|  | MallocAllocator Allocator; | 
|  | setValueName(ValueName::Create(NameRef, Allocator)); | 
|  | getValueName()->setValue(this); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // NOTE: Could optimize for the case the name is shrinking to not deallocate | 
|  | // then reallocated. | 
|  | if (hasName()) { | 
|  | // Remove old name. | 
|  | ST->removeValueName(getValueName()); | 
|  | destroyValueName(); | 
|  |  | 
|  | if (NameRef.empty()) | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Name is changing to something new. | 
|  | setValueName(ST->createValueName(NameRef, this)); | 
|  | } | 
|  |  | 
|  | void Value::setName(const Twine &NewName) { | 
|  | setNameImpl(NewName); | 
|  | if (Function *F = dyn_cast<Function>(this)) | 
|  | F->recalculateIntrinsicID(); | 
|  | } | 
|  |  | 
|  | void Value::takeName(Value *V) { | 
|  | assert(V != this && "Illegal call to this->takeName(this)!"); | 
|  | ValueSymbolTable *ST = nullptr; | 
|  | // If this value has a name, drop it. | 
|  | if (hasName()) { | 
|  | // Get the symtab this is in. | 
|  | if (getSymTab(this, ST)) { | 
|  | // We can't set a name on this value, but we need to clear V's name if | 
|  | // it has one. | 
|  | if (V->hasName()) V->setName(""); | 
|  | return;  // Cannot set a name on this value (e.g. constant). | 
|  | } | 
|  |  | 
|  | // Remove old name. | 
|  | if (ST) | 
|  | ST->removeValueName(getValueName()); | 
|  | destroyValueName(); | 
|  | } | 
|  |  | 
|  | // Now we know that this has no name. | 
|  |  | 
|  | // If V has no name either, we're done. | 
|  | if (!V->hasName()) return; | 
|  |  | 
|  | // Get this's symtab if we didn't before. | 
|  | if (!ST) { | 
|  | if (getSymTab(this, ST)) { | 
|  | // Clear V's name. | 
|  | V->setName(""); | 
|  | return;  // Cannot set a name on this value (e.g. constant). | 
|  | } | 
|  | } | 
|  |  | 
|  | // Get V's ST, this should always succeed, because V has a name. | 
|  | ValueSymbolTable *VST; | 
|  | bool Failure = getSymTab(V, VST); | 
|  | assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure; | 
|  |  | 
|  | // If these values are both in the same symtab, we can do this very fast. | 
|  | // This works even if both values have no symtab yet. | 
|  | if (ST == VST) { | 
|  | // Take the name! | 
|  | setValueName(V->getValueName()); | 
|  | V->setValueName(nullptr); | 
|  | getValueName()->setValue(this); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, things are slightly more complex.  Remove V's name from VST and | 
|  | // then reinsert it into ST. | 
|  |  | 
|  | if (VST) | 
|  | VST->removeValueName(V->getValueName()); | 
|  | setValueName(V->getValueName()); | 
|  | V->setValueName(nullptr); | 
|  | getValueName()->setValue(this); | 
|  |  | 
|  | if (ST) | 
|  | ST->reinsertValue(this); | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | std::string Value::getNameOrAsOperand() const { | 
|  | if (!getName().empty()) | 
|  | return std::string(getName()); | 
|  |  | 
|  | std::string BBName; | 
|  | raw_string_ostream OS(BBName); | 
|  | printAsOperand(OS, false); | 
|  | return OS.str(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void Value::assertModuleIsMaterializedImpl() const { | 
|  | #ifndef NDEBUG | 
|  | const GlobalValue *GV = dyn_cast<GlobalValue>(this); | 
|  | if (!GV) | 
|  | return; | 
|  | const Module *M = GV->getParent(); | 
|  | if (!M) | 
|  | return; | 
|  | assert(M->isMaterialized()); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr, | 
|  | Constant *C) { | 
|  | if (!Cache.insert(Expr).second) | 
|  | return false; | 
|  |  | 
|  | for (auto &O : Expr->operands()) { | 
|  | if (O == C) | 
|  | return true; | 
|  | auto *CE = dyn_cast<ConstantExpr>(O); | 
|  | if (!CE) | 
|  | continue; | 
|  | if (contains(Cache, CE, C)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool contains(Value *Expr, Value *V) { | 
|  | if (Expr == V) | 
|  | return true; | 
|  |  | 
|  | auto *C = dyn_cast<Constant>(V); | 
|  | if (!C) | 
|  | return false; | 
|  |  | 
|  | auto *CE = dyn_cast<ConstantExpr>(Expr); | 
|  | if (!CE) | 
|  | return false; | 
|  |  | 
|  | SmallPtrSet<ConstantExpr *, 4> Cache; | 
|  | return contains(Cache, CE, C); | 
|  | } | 
|  | #endif // NDEBUG | 
|  |  | 
|  | void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) { | 
|  | assert(New && "Value::replaceAllUsesWith(<null>) is invalid!"); | 
|  | assert(!contains(New, this) && | 
|  | "this->replaceAllUsesWith(expr(this)) is NOT valid!"); | 
|  | assert(New->getType() == getType() && | 
|  | "replaceAllUses of value with new value of different type!"); | 
|  |  | 
|  | // Notify all ValueHandles (if present) that this value is going away. | 
|  | if (HasValueHandle) | 
|  | ValueHandleBase::ValueIsRAUWd(this, New); | 
|  | if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata()) | 
|  | ValueAsMetadata::handleRAUW(this, New); | 
|  |  | 
|  | while (!materialized_use_empty()) { | 
|  | Use &U = *UseList; | 
|  | // Must handle Constants specially, we cannot call replaceUsesOfWith on a | 
|  | // constant because they are uniqued. | 
|  | if (auto *C = dyn_cast<Constant>(U.getUser())) { | 
|  | if (!isa<GlobalValue>(C)) { | 
|  | C->handleOperandChange(this, New); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | U.set(New); | 
|  | } | 
|  |  | 
|  | if (BasicBlock *BB = dyn_cast<BasicBlock>(this)) | 
|  | BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New)); | 
|  | } | 
|  |  | 
|  | void Value::replaceAllUsesWith(Value *New) { | 
|  | doRAUW(New, ReplaceMetadataUses::Yes); | 
|  | } | 
|  |  | 
|  | void Value::replaceNonMetadataUsesWith(Value *New) { | 
|  | doRAUW(New, ReplaceMetadataUses::No); | 
|  | } | 
|  |  | 
|  | void Value::replaceUsesWithIf(Value *New, | 
|  | llvm::function_ref<bool(Use &U)> ShouldReplace) { | 
|  | assert(New && "Value::replaceUsesWithIf(<null>) is invalid!"); | 
|  | assert(New->getType() == getType() && | 
|  | "replaceUses of value with new value of different type!"); | 
|  |  | 
|  | SmallVector<TrackingVH<Constant>, 8> Consts; | 
|  | SmallPtrSet<Constant *, 8> Visited; | 
|  |  | 
|  | for (Use &U : llvm::make_early_inc_range(uses())) { | 
|  | if (!ShouldReplace(U)) | 
|  | continue; | 
|  | // Must handle Constants specially, we cannot call replaceUsesOfWith on a | 
|  | // constant because they are uniqued. | 
|  | if (auto *C = dyn_cast<Constant>(U.getUser())) { | 
|  | if (!isa<GlobalValue>(C)) { | 
|  | if (Visited.insert(C).second) | 
|  | Consts.push_back(TrackingVH<Constant>(C)); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | U.set(New); | 
|  | } | 
|  |  | 
|  | while (!Consts.empty()) { | 
|  | // FIXME: handleOperandChange() updates all the uses in a given Constant, | 
|  | //        not just the one passed to ShouldReplace | 
|  | Consts.pop_back_val()->handleOperandChange(this, New); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Replace llvm.dbg.* uses of MetadataAsValue(ValueAsMetadata(V)) outside BB | 
|  | /// with New. | 
|  | static void replaceDbgUsesOutsideBlock(Value *V, Value *New, BasicBlock *BB) { | 
|  | SmallVector<DbgVariableIntrinsic *> DbgUsers; | 
|  | findDbgUsers(DbgUsers, V); | 
|  | for (auto *DVI : DbgUsers) { | 
|  | if (DVI->getParent() != BB) | 
|  | DVI->replaceVariableLocationOp(V, New); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Like replaceAllUsesWith except it does not handle constants or basic blocks. | 
|  | // This routine leaves uses within BB. | 
|  | void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) { | 
|  | assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!"); | 
|  | assert(!contains(New, this) && | 
|  | "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!"); | 
|  | assert(New->getType() == getType() && | 
|  | "replaceUses of value with new value of different type!"); | 
|  | assert(BB && "Basic block that may contain a use of 'New' must be defined\n"); | 
|  |  | 
|  | replaceDbgUsesOutsideBlock(this, New, BB); | 
|  | replaceUsesWithIf(New, [BB](Use &U) { | 
|  | auto *I = dyn_cast<Instruction>(U.getUser()); | 
|  | // Don't replace if it's an instruction in the BB basic block. | 
|  | return !I || I->getParent() != BB; | 
|  | }); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | // Various metrics for how much to strip off of pointers. | 
|  | enum PointerStripKind { | 
|  | PSK_ZeroIndices, | 
|  | PSK_ZeroIndicesAndAliases, | 
|  | PSK_ZeroIndicesSameRepresentation, | 
|  | PSK_ForAliasAnalysis, | 
|  | PSK_InBoundsConstantIndices, | 
|  | PSK_InBounds | 
|  | }; | 
|  |  | 
|  | template <PointerStripKind StripKind> static void NoopCallback(const Value *) {} | 
|  |  | 
|  | template <PointerStripKind StripKind> | 
|  | static const Value *stripPointerCastsAndOffsets( | 
|  | const Value *V, | 
|  | function_ref<void(const Value *)> Func = NoopCallback<StripKind>) { | 
|  | if (!V->getType()->isPointerTy()) | 
|  | return V; | 
|  |  | 
|  | // Even though we don't look through PHI nodes, we could be called on an | 
|  | // instruction in an unreachable block, which may be on a cycle. | 
|  | SmallPtrSet<const Value *, 4> Visited; | 
|  |  | 
|  | Visited.insert(V); | 
|  | do { | 
|  | Func(V); | 
|  | if (auto *GEP = dyn_cast<GEPOperator>(V)) { | 
|  | switch (StripKind) { | 
|  | case PSK_ZeroIndices: | 
|  | case PSK_ZeroIndicesAndAliases: | 
|  | case PSK_ZeroIndicesSameRepresentation: | 
|  | case PSK_ForAliasAnalysis: | 
|  | if (!GEP->hasAllZeroIndices()) | 
|  | return V; | 
|  | break; | 
|  | case PSK_InBoundsConstantIndices: | 
|  | if (!GEP->hasAllConstantIndices()) | 
|  | return V; | 
|  | LLVM_FALLTHROUGH; | 
|  | case PSK_InBounds: | 
|  | if (!GEP->isInBounds()) | 
|  | return V; | 
|  | break; | 
|  | } | 
|  | V = GEP->getPointerOperand(); | 
|  | } else if (Operator::getOpcode(V) == Instruction::BitCast) { | 
|  | V = cast<Operator>(V)->getOperand(0); | 
|  | if (!V->getType()->isPointerTy()) | 
|  | return V; | 
|  | } else if (StripKind != PSK_ZeroIndicesSameRepresentation && | 
|  | Operator::getOpcode(V) == Instruction::AddrSpaceCast) { | 
|  | // TODO: If we know an address space cast will not change the | 
|  | //       representation we could look through it here as well. | 
|  | V = cast<Operator>(V)->getOperand(0); | 
|  | } else if (StripKind == PSK_ZeroIndicesAndAliases && isa<GlobalAlias>(V)) { | 
|  | V = cast<GlobalAlias>(V)->getAliasee(); | 
|  | } else if (StripKind == PSK_ForAliasAnalysis && isa<PHINode>(V) && | 
|  | cast<PHINode>(V)->getNumIncomingValues() == 1) { | 
|  | V = cast<PHINode>(V)->getIncomingValue(0); | 
|  | } else { | 
|  | if (const auto *Call = dyn_cast<CallBase>(V)) { | 
|  | if (const Value *RV = Call->getReturnedArgOperand()) { | 
|  | V = RV; | 
|  | continue; | 
|  | } | 
|  | // The result of launder.invariant.group must alias it's argument, | 
|  | // but it can't be marked with returned attribute, that's why it needs | 
|  | // special case. | 
|  | if (StripKind == PSK_ForAliasAnalysis && | 
|  | (Call->getIntrinsicID() == Intrinsic::launder_invariant_group || | 
|  | Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) { | 
|  | V = Call->getArgOperand(0); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | return V; | 
|  | } | 
|  | assert(V->getType()->isPointerTy() && "Unexpected operand type!"); | 
|  | } while (Visited.insert(V).second); | 
|  |  | 
|  | return V; | 
|  | } | 
|  | } // end anonymous namespace | 
|  |  | 
|  | const Value *Value::stripPointerCasts() const { | 
|  | return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this); | 
|  | } | 
|  |  | 
|  | const Value *Value::stripPointerCastsAndAliases() const { | 
|  | return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this); | 
|  | } | 
|  |  | 
|  | const Value *Value::stripPointerCastsSameRepresentation() const { | 
|  | return stripPointerCastsAndOffsets<PSK_ZeroIndicesSameRepresentation>(this); | 
|  | } | 
|  |  | 
|  | const Value *Value::stripInBoundsConstantOffsets() const { | 
|  | return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this); | 
|  | } | 
|  |  | 
|  | const Value *Value::stripPointerCastsForAliasAnalysis() const { | 
|  | return stripPointerCastsAndOffsets<PSK_ForAliasAnalysis>(this); | 
|  | } | 
|  |  | 
|  | const Value *Value::stripAndAccumulateConstantOffsets( | 
|  | const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, | 
|  | bool AllowInvariantGroup, | 
|  | function_ref<bool(Value &, APInt &)> ExternalAnalysis) const { | 
|  | if (!getType()->isPtrOrPtrVectorTy()) | 
|  | return this; | 
|  |  | 
|  | unsigned BitWidth = Offset.getBitWidth(); | 
|  | assert(BitWidth == DL.getIndexTypeSizeInBits(getType()) && | 
|  | "The offset bit width does not match the DL specification."); | 
|  |  | 
|  | // Even though we don't look through PHI nodes, we could be called on an | 
|  | // instruction in an unreachable block, which may be on a cycle. | 
|  | SmallPtrSet<const Value *, 4> Visited; | 
|  | Visited.insert(this); | 
|  | const Value *V = this; | 
|  | do { | 
|  | if (auto *GEP = dyn_cast<GEPOperator>(V)) { | 
|  | // If in-bounds was requested, we do not strip non-in-bounds GEPs. | 
|  | if (!AllowNonInbounds && !GEP->isInBounds()) | 
|  | return V; | 
|  |  | 
|  | // If one of the values we have visited is an addrspacecast, then | 
|  | // the pointer type of this GEP may be different from the type | 
|  | // of the Ptr parameter which was passed to this function.  This | 
|  | // means when we construct GEPOffset, we need to use the size | 
|  | // of GEP's pointer type rather than the size of the original | 
|  | // pointer type. | 
|  | APInt GEPOffset(DL.getIndexTypeSizeInBits(V->getType()), 0); | 
|  | if (!GEP->accumulateConstantOffset(DL, GEPOffset, ExternalAnalysis)) | 
|  | return V; | 
|  |  | 
|  | // Stop traversal if the pointer offset wouldn't fit in the bit-width | 
|  | // provided by the Offset argument. This can happen due to AddrSpaceCast | 
|  | // stripping. | 
|  | if (GEPOffset.getMinSignedBits() > BitWidth) | 
|  | return V; | 
|  |  | 
|  | // External Analysis can return a result higher/lower than the value | 
|  | // represents. We need to detect overflow/underflow. | 
|  | APInt GEPOffsetST = GEPOffset.sextOrTrunc(BitWidth); | 
|  | if (!ExternalAnalysis) { | 
|  | Offset += GEPOffsetST; | 
|  | } else { | 
|  | bool Overflow = false; | 
|  | APInt OldOffset = Offset; | 
|  | Offset = Offset.sadd_ov(GEPOffsetST, Overflow); | 
|  | if (Overflow) { | 
|  | Offset = OldOffset; | 
|  | return V; | 
|  | } | 
|  | } | 
|  | V = GEP->getPointerOperand(); | 
|  | } else if (Operator::getOpcode(V) == Instruction::BitCast || | 
|  | Operator::getOpcode(V) == Instruction::AddrSpaceCast) { | 
|  | V = cast<Operator>(V)->getOperand(0); | 
|  | } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { | 
|  | if (!GA->isInterposable()) | 
|  | V = GA->getAliasee(); | 
|  | } else if (const auto *Call = dyn_cast<CallBase>(V)) { | 
|  | if (const Value *RV = Call->getReturnedArgOperand()) | 
|  | V = RV; | 
|  | if (AllowInvariantGroup && Call->isLaunderOrStripInvariantGroup()) | 
|  | V = Call->getArgOperand(0); | 
|  | } | 
|  | assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"); | 
|  | } while (Visited.insert(V).second); | 
|  |  | 
|  | return V; | 
|  | } | 
|  |  | 
|  | const Value * | 
|  | Value::stripInBoundsOffsets(function_ref<void(const Value *)> Func) const { | 
|  | return stripPointerCastsAndOffsets<PSK_InBounds>(this, Func); | 
|  | } | 
|  |  | 
|  | bool Value::canBeFreed() const { | 
|  | assert(getType()->isPointerTy()); | 
|  |  | 
|  | // Cases that can simply never be deallocated | 
|  | // *) Constants aren't allocated per se, thus not deallocated either. | 
|  | if (isa<Constant>(this)) | 
|  | return false; | 
|  |  | 
|  | // Handle byval/byref/sret/inalloca/preallocated arguments.  The storage | 
|  | // lifetime is guaranteed to be longer than the callee's lifetime. | 
|  | if (auto *A = dyn_cast<Argument>(this)) { | 
|  | if (A->hasPointeeInMemoryValueAttr()) | 
|  | return false; | 
|  | // A pointer to an object in a function which neither frees, nor can arrange | 
|  | // for another thread to free on its behalf, can not be freed in the scope | 
|  | // of the function.  Note that this logic is restricted to memory | 
|  | // allocations in existance before the call; a nofree function *is* allowed | 
|  | // to free memory it allocated. | 
|  | const Function *F = A->getParent(); | 
|  | if (F->doesNotFreeMemory() && F->hasNoSync()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const Function *F = nullptr; | 
|  | if (auto *I = dyn_cast<Instruction>(this)) | 
|  | F = I->getFunction(); | 
|  | if (auto *A = dyn_cast<Argument>(this)) | 
|  | F = A->getParent(); | 
|  |  | 
|  | if (!F) | 
|  | return true; | 
|  |  | 
|  | // With garbage collection, deallocation typically occurs solely at or after | 
|  | // safepoints.  If we're compiling for a collector which uses the | 
|  | // gc.statepoint infrastructure, safepoints aren't explicitly present | 
|  | // in the IR until after lowering from abstract to physical machine model. | 
|  | // The collector could chose to mix explicit deallocation and gc'd objects | 
|  | // which is why we need the explicit opt in on a per collector basis. | 
|  | if (!F->hasGC()) | 
|  | return true; | 
|  |  | 
|  | const auto &GCName = F->getGC(); | 
|  | if (GCName == "statepoint-example") { | 
|  | auto *PT = cast<PointerType>(this->getType()); | 
|  | if (PT->getAddressSpace() != 1) | 
|  | // For the sake of this example GC, we arbitrarily pick addrspace(1) as | 
|  | // our GC managed heap.  This must match the same check in | 
|  | // RewriteStatepointsForGC (and probably needs better factored.) | 
|  | return true; | 
|  |  | 
|  | // It is cheaper to scan for a declaration than to scan for a use in this | 
|  | // function.  Note that gc.statepoint is a type overloaded function so the | 
|  | // usual trick of requesting declaration of the intrinsic from the module | 
|  | // doesn't work. | 
|  | for (auto &Fn : *F->getParent()) | 
|  | if (Fn.getIntrinsicID() == Intrinsic::experimental_gc_statepoint) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL, | 
|  | bool &CanBeNull, | 
|  | bool &CanBeFreed) const { | 
|  | assert(getType()->isPointerTy() && "must be pointer"); | 
|  |  | 
|  | uint64_t DerefBytes = 0; | 
|  | CanBeNull = false; | 
|  | CanBeFreed = UseDerefAtPointSemantics && canBeFreed(); | 
|  | if (const Argument *A = dyn_cast<Argument>(this)) { | 
|  | DerefBytes = A->getDereferenceableBytes(); | 
|  | if (DerefBytes == 0) { | 
|  | // Handle byval/byref/inalloca/preallocated arguments | 
|  | if (Type *ArgMemTy = A->getPointeeInMemoryValueType()) { | 
|  | if (ArgMemTy->isSized()) { | 
|  | // FIXME: Why isn't this the type alloc size? | 
|  | DerefBytes = DL.getTypeStoreSize(ArgMemTy).getKnownMinSize(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (DerefBytes == 0) { | 
|  | DerefBytes = A->getDereferenceableOrNullBytes(); | 
|  | CanBeNull = true; | 
|  | } | 
|  | } else if (const auto *Call = dyn_cast<CallBase>(this)) { | 
|  | DerefBytes = Call->getRetDereferenceableBytes(); | 
|  | if (DerefBytes == 0) { | 
|  | DerefBytes = Call->getRetDereferenceableOrNullBytes(); | 
|  | CanBeNull = true; | 
|  | } | 
|  | } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { | 
|  | if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) { | 
|  | ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); | 
|  | DerefBytes = CI->getLimitedValue(); | 
|  | } | 
|  | if (DerefBytes == 0) { | 
|  | if (MDNode *MD = | 
|  | LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { | 
|  | ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); | 
|  | DerefBytes = CI->getLimitedValue(); | 
|  | } | 
|  | CanBeNull = true; | 
|  | } | 
|  | } else if (auto *IP = dyn_cast<IntToPtrInst>(this)) { | 
|  | if (MDNode *MD = IP->getMetadata(LLVMContext::MD_dereferenceable)) { | 
|  | ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); | 
|  | DerefBytes = CI->getLimitedValue(); | 
|  | } | 
|  | if (DerefBytes == 0) { | 
|  | if (MDNode *MD = | 
|  | IP->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { | 
|  | ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); | 
|  | DerefBytes = CI->getLimitedValue(); | 
|  | } | 
|  | CanBeNull = true; | 
|  | } | 
|  | } else if (auto *AI = dyn_cast<AllocaInst>(this)) { | 
|  | if (!AI->isArrayAllocation()) { | 
|  | DerefBytes = | 
|  | DL.getTypeStoreSize(AI->getAllocatedType()).getKnownMinSize(); | 
|  | CanBeNull = false; | 
|  | CanBeFreed = false; | 
|  | } | 
|  | } else if (auto *GV = dyn_cast<GlobalVariable>(this)) { | 
|  | if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) { | 
|  | // TODO: Don't outright reject hasExternalWeakLinkage but set the | 
|  | // CanBeNull flag. | 
|  | DerefBytes = DL.getTypeStoreSize(GV->getValueType()).getFixedSize(); | 
|  | CanBeNull = false; | 
|  | CanBeFreed = false; | 
|  | } | 
|  | } | 
|  | return DerefBytes; | 
|  | } | 
|  |  | 
|  | Align Value::getPointerAlignment(const DataLayout &DL) const { | 
|  | assert(getType()->isPointerTy() && "must be pointer"); | 
|  | if (auto *GO = dyn_cast<GlobalObject>(this)) { | 
|  | if (isa<Function>(GO)) { | 
|  | Align FunctionPtrAlign = DL.getFunctionPtrAlign().valueOrOne(); | 
|  | switch (DL.getFunctionPtrAlignType()) { | 
|  | case DataLayout::FunctionPtrAlignType::Independent: | 
|  | return FunctionPtrAlign; | 
|  | case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign: | 
|  | return std::max(FunctionPtrAlign, GO->getAlign().valueOrOne()); | 
|  | } | 
|  | llvm_unreachable("Unhandled FunctionPtrAlignType"); | 
|  | } | 
|  | const MaybeAlign Alignment(GO->getAlign()); | 
|  | if (!Alignment) { | 
|  | if (auto *GVar = dyn_cast<GlobalVariable>(GO)) { | 
|  | Type *ObjectType = GVar->getValueType(); | 
|  | if (ObjectType->isSized()) { | 
|  | // If the object is defined in the current Module, we'll be giving | 
|  | // it the preferred alignment. Otherwise, we have to assume that it | 
|  | // may only have the minimum ABI alignment. | 
|  | if (GVar->isStrongDefinitionForLinker()) | 
|  | return DL.getPreferredAlign(GVar); | 
|  | else | 
|  | return DL.getABITypeAlign(ObjectType); | 
|  | } | 
|  | } | 
|  | } | 
|  | return Alignment.valueOrOne(); | 
|  | } else if (const Argument *A = dyn_cast<Argument>(this)) { | 
|  | const MaybeAlign Alignment = A->getParamAlign(); | 
|  | if (!Alignment && A->hasStructRetAttr()) { | 
|  | // An sret parameter has at least the ABI alignment of the return type. | 
|  | Type *EltTy = A->getParamStructRetType(); | 
|  | if (EltTy->isSized()) | 
|  | return DL.getABITypeAlign(EltTy); | 
|  | } | 
|  | return Alignment.valueOrOne(); | 
|  | } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) { | 
|  | return AI->getAlign(); | 
|  | } else if (const auto *Call = dyn_cast<CallBase>(this)) { | 
|  | MaybeAlign Alignment = Call->getRetAlign(); | 
|  | if (!Alignment && Call->getCalledFunction()) | 
|  | Alignment = Call->getCalledFunction()->getAttributes().getRetAlignment(); | 
|  | return Alignment.valueOrOne(); | 
|  | } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) { | 
|  | if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) { | 
|  | ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); | 
|  | return Align(CI->getLimitedValue()); | 
|  | } | 
|  | } else if (auto *CstPtr = dyn_cast<Constant>(this)) { | 
|  | // Strip pointer casts to avoid creating unnecessary ptrtoint expression | 
|  | // if the only "reduction" is combining a bitcast + ptrtoint. | 
|  | CstPtr = CstPtr->stripPointerCasts(); | 
|  | if (auto *CstInt = dyn_cast_or_null<ConstantInt>(ConstantExpr::getPtrToInt( | 
|  | const_cast<Constant *>(CstPtr), DL.getIntPtrType(getType()), | 
|  | /*OnlyIfReduced=*/true))) { | 
|  | size_t TrailingZeros = CstInt->getValue().countTrailingZeros(); | 
|  | // While the actual alignment may be large, elsewhere we have | 
|  | // an arbitrary upper alignmet limit, so let's clamp to it. | 
|  | return Align(TrailingZeros < Value::MaxAlignmentExponent | 
|  | ? uint64_t(1) << TrailingZeros | 
|  | : Value::MaximumAlignment); | 
|  | } | 
|  | } | 
|  | return Align(1); | 
|  | } | 
|  |  | 
|  | const Value *Value::DoPHITranslation(const BasicBlock *CurBB, | 
|  | const BasicBlock *PredBB) const { | 
|  | auto *PN = dyn_cast<PHINode>(this); | 
|  | if (PN && PN->getParent() == CurBB) | 
|  | return PN->getIncomingValueForBlock(PredBB); | 
|  | return this; | 
|  | } | 
|  |  | 
|  | LLVMContext &Value::getContext() const { return VTy->getContext(); } | 
|  |  | 
|  | void Value::reverseUseList() { | 
|  | if (!UseList || !UseList->Next) | 
|  | // No need to reverse 0 or 1 uses. | 
|  | return; | 
|  |  | 
|  | Use *Head = UseList; | 
|  | Use *Current = UseList->Next; | 
|  | Head->Next = nullptr; | 
|  | while (Current) { | 
|  | Use *Next = Current->Next; | 
|  | Current->Next = Head; | 
|  | Head->Prev = &Current->Next; | 
|  | Head = Current; | 
|  | Current = Next; | 
|  | } | 
|  | UseList = Head; | 
|  | Head->Prev = &UseList; | 
|  | } | 
|  |  | 
|  | bool Value::isSwiftError() const { | 
|  | auto *Arg = dyn_cast<Argument>(this); | 
|  | if (Arg) | 
|  | return Arg->hasSwiftErrorAttr(); | 
|  | auto *Alloca = dyn_cast<AllocaInst>(this); | 
|  | if (!Alloca) | 
|  | return false; | 
|  | return Alloca->isSwiftError(); | 
|  | } | 
|  |  | 
|  | bool Value::isTransitiveUsedByMetadataOnly() const { | 
|  | SmallVector<const User *, 32> WorkList(user_begin(), user_end()); | 
|  | SmallPtrSet<const User *, 32> Visited(user_begin(), user_end()); | 
|  | while (!WorkList.empty()) { | 
|  | const User *U = WorkList.pop_back_val(); | 
|  | // If it is transitively used by a global value or a non-constant value, | 
|  | // it's obviously not only used by metadata. | 
|  | if (!isa<Constant>(U) || isa<GlobalValue>(U)) | 
|  | return false; | 
|  | for (const User *UU : U->users()) | 
|  | if (Visited.insert(UU).second) | 
|  | WorkList.push_back(UU); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                             ValueHandleBase Class | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) { | 
|  | assert(List && "Handle list is null?"); | 
|  |  | 
|  | // Splice ourselves into the list. | 
|  | Next = *List; | 
|  | *List = this; | 
|  | setPrevPtr(List); | 
|  | if (Next) { | 
|  | Next->setPrevPtr(&Next); | 
|  | assert(getValPtr() == Next->getValPtr() && "Added to wrong list?"); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) { | 
|  | assert(List && "Must insert after existing node"); | 
|  |  | 
|  | Next = List->Next; | 
|  | setPrevPtr(&List->Next); | 
|  | List->Next = this; | 
|  | if (Next) | 
|  | Next->setPrevPtr(&Next); | 
|  | } | 
|  |  | 
|  | void ValueHandleBase::AddToUseList() { | 
|  | assert(getValPtr() && "Null pointer doesn't have a use list!"); | 
|  |  | 
|  | LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; | 
|  |  | 
|  | if (getValPtr()->HasValueHandle) { | 
|  | // If this value already has a ValueHandle, then it must be in the | 
|  | // ValueHandles map already. | 
|  | ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()]; | 
|  | assert(Entry && "Value doesn't have any handles?"); | 
|  | AddToExistingUseList(&Entry); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Ok, it doesn't have any handles yet, so we must insert it into the | 
|  | // DenseMap.  However, doing this insertion could cause the DenseMap to | 
|  | // reallocate itself, which would invalidate all of the PrevP pointers that | 
|  | // point into the old table.  Handle this by checking for reallocation and | 
|  | // updating the stale pointers only if needed. | 
|  | DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; | 
|  | const void *OldBucketPtr = Handles.getPointerIntoBucketsArray(); | 
|  |  | 
|  | ValueHandleBase *&Entry = Handles[getValPtr()]; | 
|  | assert(!Entry && "Value really did already have handles?"); | 
|  | AddToExistingUseList(&Entry); | 
|  | getValPtr()->HasValueHandle = true; | 
|  |  | 
|  | // If reallocation didn't happen or if this was the first insertion, don't | 
|  | // walk the table. | 
|  | if (Handles.isPointerIntoBucketsArray(OldBucketPtr) || | 
|  | Handles.size() == 1) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Okay, reallocation did happen.  Fix the Prev Pointers. | 
|  | for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(), | 
|  | E = Handles.end(); I != E; ++I) { | 
|  | assert(I->second && I->first == I->second->getValPtr() && | 
|  | "List invariant broken!"); | 
|  | I->second->setPrevPtr(&I->second); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ValueHandleBase::RemoveFromUseList() { | 
|  | assert(getValPtr() && getValPtr()->HasValueHandle && | 
|  | "Pointer doesn't have a use list!"); | 
|  |  | 
|  | // Unlink this from its use list. | 
|  | ValueHandleBase **PrevPtr = getPrevPtr(); | 
|  | assert(*PrevPtr == this && "List invariant broken"); | 
|  |  | 
|  | *PrevPtr = Next; | 
|  | if (Next) { | 
|  | assert(Next->getPrevPtr() == &Next && "List invariant broken"); | 
|  | Next->setPrevPtr(PrevPtr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If the Next pointer was null, then it is possible that this was the last | 
|  | // ValueHandle watching VP.  If so, delete its entry from the ValueHandles | 
|  | // map. | 
|  | LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl; | 
|  | DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; | 
|  | if (Handles.isPointerIntoBucketsArray(PrevPtr)) { | 
|  | Handles.erase(getValPtr()); | 
|  | getValPtr()->HasValueHandle = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | void ValueHandleBase::ValueIsDeleted(Value *V) { | 
|  | assert(V->HasValueHandle && "Should only be called if ValueHandles present"); | 
|  |  | 
|  | // Get the linked list base, which is guaranteed to exist since the | 
|  | // HasValueHandle flag is set. | 
|  | LLVMContextImpl *pImpl = V->getContext().pImpl; | 
|  | ValueHandleBase *Entry = pImpl->ValueHandles[V]; | 
|  | assert(Entry && "Value bit set but no entries exist"); | 
|  |  | 
|  | // We use a local ValueHandleBase as an iterator so that ValueHandles can add | 
|  | // and remove themselves from the list without breaking our iteration.  This | 
|  | // is not really an AssertingVH; we just have to give ValueHandleBase a kind. | 
|  | // Note that we deliberately do not the support the case when dropping a value | 
|  | // handle results in a new value handle being permanently added to the list | 
|  | // (as might occur in theory for CallbackVH's): the new value handle will not | 
|  | // be processed and the checking code will mete out righteous punishment if | 
|  | // the handle is still present once we have finished processing all the other | 
|  | // value handles (it is fine to momentarily add then remove a value handle). | 
|  | for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { | 
|  | Iterator.RemoveFromUseList(); | 
|  | Iterator.AddToExistingUseListAfter(Entry); | 
|  | assert(Entry->Next == &Iterator && "Loop invariant broken."); | 
|  |  | 
|  | switch (Entry->getKind()) { | 
|  | case Assert: | 
|  | break; | 
|  | case Weak: | 
|  | case WeakTracking: | 
|  | // WeakTracking and Weak just go to null, which unlinks them | 
|  | // from the list. | 
|  | Entry->operator=(nullptr); | 
|  | break; | 
|  | case Callback: | 
|  | // Forward to the subclass's implementation. | 
|  | static_cast<CallbackVH*>(Entry)->deleted(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // All callbacks, weak references, and assertingVHs should be dropped by now. | 
|  | if (V->HasValueHandle) { | 
|  | #ifndef NDEBUG      // Only in +Asserts mode... | 
|  | dbgs() << "While deleting: " << *V->getType() << " %" << V->getName() | 
|  | << "\n"; | 
|  | if (pImpl->ValueHandles[V]->getKind() == Assert) | 
|  | llvm_unreachable("An asserting value handle still pointed to this" | 
|  | " value!"); | 
|  |  | 
|  | #endif | 
|  | llvm_unreachable("All references to V were not removed?"); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) { | 
|  | assert(Old->HasValueHandle &&"Should only be called if ValueHandles present"); | 
|  | assert(Old != New && "Changing value into itself!"); | 
|  | assert(Old->getType() == New->getType() && | 
|  | "replaceAllUses of value with new value of different type!"); | 
|  |  | 
|  | // Get the linked list base, which is guaranteed to exist since the | 
|  | // HasValueHandle flag is set. | 
|  | LLVMContextImpl *pImpl = Old->getContext().pImpl; | 
|  | ValueHandleBase *Entry = pImpl->ValueHandles[Old]; | 
|  |  | 
|  | assert(Entry && "Value bit set but no entries exist"); | 
|  |  | 
|  | // We use a local ValueHandleBase as an iterator so that | 
|  | // ValueHandles can add and remove themselves from the list without | 
|  | // breaking our iteration.  This is not really an AssertingVH; we | 
|  | // just have to give ValueHandleBase some kind. | 
|  | for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { | 
|  | Iterator.RemoveFromUseList(); | 
|  | Iterator.AddToExistingUseListAfter(Entry); | 
|  | assert(Entry->Next == &Iterator && "Loop invariant broken."); | 
|  |  | 
|  | switch (Entry->getKind()) { | 
|  | case Assert: | 
|  | case Weak: | 
|  | // Asserting and Weak handles do not follow RAUW implicitly. | 
|  | break; | 
|  | case WeakTracking: | 
|  | // Weak goes to the new value, which will unlink it from Old's list. | 
|  | Entry->operator=(New); | 
|  | break; | 
|  | case Callback: | 
|  | // Forward to the subclass's implementation. | 
|  | static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // If any new weak value handles were added while processing the | 
|  | // list, then complain about it now. | 
|  | if (Old->HasValueHandle) | 
|  | for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next) | 
|  | switch (Entry->getKind()) { | 
|  | case WeakTracking: | 
|  | dbgs() << "After RAUW from " << *Old->getType() << " %" | 
|  | << Old->getName() << " to " << *New->getType() << " %" | 
|  | << New->getName() << "\n"; | 
|  | llvm_unreachable( | 
|  | "A weak tracking value handle still pointed to the old value!\n"); | 
|  | default: | 
|  | break; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // Pin the vtable to this file. | 
|  | void CallbackVH::anchor() {} |